
Proving properties of continuous systems:

qualitative simulation and temporal logic�

Benjamin Shults
Department of Mathematics (bshults@math.utexas.edu)
University of Texas at Austin, Austin, TX 78712 USA

Benjamin J. Kuipers
Computer Science Department (kuipers@cs.utexas.edu)
University of Texas at Austin, Austin, TX 78712 USA

To appear, Arti�cial Intelligence Journal, 1997.

Abstract

We demonstrate an automated method for proving temporal logic
statements about solutions to ordinary di�erential equations (ODEs),
even in the face of an incomplete speci�cation of the ODE. The method
combines an implemented, on-the-
y, model-checking algorithm for state-
ments in the temporal logic CTL* [3, 7, 8] with the output of the qualita-
tive simulation algorithm QSIM [13, 16]. Based on the QSIM Guaranteed
Coverage Theorem, we prove that for certain CTL* statements, �, if � is
true for the temporal structure produced by QSIM, then a corresponding
temporal statement, �0, holds for the solution of any ODE consistent with
the qualitative di�erential equation (QDE) that QSIM used to generate
the temporal structure.

1 Introduction

The world is continuous and dynamic, but we want to use discrete symbolic
means to reason reliably about it. We demonstrate a method for doing this for
a signi�cant range of cases by using qualitative simulation to generate a �nite
structure guaranteed to describe the behaviors of the continuous system, then
interpreting that structure as a model to check the validity of statements in
temporal logic.

�This work has been supported in part by the National Science Foundation (grant IRI-
9216584) and by the Electric Power Research Institute. A preliminary report on this work
appeared as [17].

1

The main theorem of this paper, stated informally, says the following: Sup-
pose M is a QSIM behavior tree generated from the qualitative di�erential
equation C. If M is a model for a temporal logic formula, then the formula
describes every solution to every ODE which abstracts to C. Of course, we will
formalize all of these relationships carefully in this paper.

In many applications in which ordinary di�erential equations are used, in-
formation about initial conditions or the speci�c relationship between a pair of
quantities is not completely known. In some cases constants are only known to
lie in a certain range or the relationship between quantities is only known to be
monotonic. Qualitative reasoning allows this information to be used to generate
descriptions of solutions to any ODE which abstracts to the known information.
We call such an abstract ODE a qualitative di�erential equation (or QDE). In
many such applications we want to draw conclusions about the solution to any
ODE consistent with the limited information we have about a system.

Furthermore, there are a number of applications of model-based reasoning
that can pro�t from reliable inference about time-ordered events over the set of
possible behaviors of a continuous system. Since applications such as control,
monitoring, diagnosis and design must often cope with conditions of incomplete
knowledge, the ability to do temporal reasoning over the possible behaviors of
a system described by a qualitative or semi-quantitative model is particularly
valuable. Our program, TL, makes a formal connection between solutions to
real di�erential equations and temporal-logic model checking.

A qualitative simulator, such as QSIM, constructs a tree-like structure whose
branches represent the possible behaviors consistent with the qualitative di�er-
ential equation and initial state input to the QSIM algorithm [13, 16]. This set
of behaviors is expressed as a �nite structure of qualitative state descriptions.
In the case of QSIM, this structure is guaranteed to contain a branch which
describes any \reasonable" extended real valued function which is a solution
of an ordinary di�erential equation which abstracts to the QDE under circum-
stances to be described. We call this property the \soundness" of QSIM, and
this property is the content of the Guaranteed Coverage Theorem.

Since the output of the QSIM algorithm is a structure whose paths describe
reasonable, extended real valued functions, we would like to be able to formu-
late temporal questions about the system it describes and have those questions
answered. This is accomplished using temporal-logic model-checking. A model-
checking algorithm takes as input a temporal-logic formula and a tree-like struc-
ture and determines whether the structure is a model (in the logical sense of the
word) for the formula. Temporal logic augments propositional logic with tem-
poral operators on time-varying truth-values, such as always, eventually, and
until. Modal logic adds operators for truth-values in alternate possible worlds
(i.e., alternate behaviors or paths), such as necessarily and possibly.

We have chosen to use the branching-time temporal logic CTL* which is
described by Emerson and Clarke [7, 8].

Because QSIM is sound, for any CTL* statement � which is \universal" in a

2

sense we will de�ne, if � is modeled by the structure produced by QSIM, then a
corresponding theorem holds for the solution of any ordinary di�erential equa-
tion consistent with the QDE that generated the QSIM structure. Therefore,
at least for universals, statements in temporal logic about continuous systems
can be proved by qualitative simulation. This allows a hybrid reasoning system
to prove common-sense statements and to do expert reasoning about dynamical
systems.

We also provide a limited completeness result: in case all paths in the struc-
ture output by QSIM describe reasonable, extended real valued functions which
are solutions to di�erential equations consistent with the QDE input to QSIM,
then even CTL* formulas which are not universal may be used to prove prop-
erties of the system.

The propositional part of the temporal language includes propositions which
allow the construction of formulas containing numerical information. This can
be used in conjunction with the numerical extensions to QSIM|Q2 [14], Q3 [2]
and NSIM [12]|in order to prove numerical properties of physical systems.

In Section 2 we describe and de�ne the temporal-logic language CTL* and
present some basic de�nitions and facts which will be needed in our main the-
orem. The reader already familiar with CTL* may want to read only Section
2.1 to learn about our notation conventions and Section 2.4 to see the standard
results from the literature which we will be using.

In Section 3 we describe the QSIM framework and prove the Guaranteed
Coverage Theorem. Even readers familiar with QSIM should read most of Sec-
tion 3 since we use an updated formalization and add some new terminology.

Section 4 begins to show how the QSIM framework and the underlying di�er-
ential equations are related to the theory of temporal logic and CTL* formulas.
There we explain how the output of the QSIM algorithm is used as a structure
over which formulas in CTL* can be interpreted. We also show how CTL*
formulas describe reasonable real-valued functions.

In Section 5 we introduce the last hypothesis to the main theorem and prove
the main theorem. We also prove some useful special cases and a completeness
result. Section 5 also discusses some issues concerning the implementation.

In Section 6 we describe some applications of the combination of temporal-
logic model-checking with qualitative simulation.

Sections 2{4 lay the groundwork for the statement of the main theorem. We
will be stating the main theorem in increasing degrees of formality as we develop
the terminology.

2 CTL*

Computational Tree Logic (CTL and its extension CTL*) is a branching-time
temporal logic. The theory of branching-time temporal logics is summarized
by Emerson in The Handbook of Theoretical Computer Science [8]. We will

3

customize CTL* slightly in order to allow states with no successors because in
continuous systems a state may have no successor (e.g. if time reaches in�nity or
if the value of some variable crosses a boundary of its range). In this section, we
de�ne the syntax and semantics of the CTL* language and, in Section 2.4, give
some basic results and de�nitions which will be used by our main theorems. The
presentation of CTL* here does not di�er signi�cantly from the presentation of
the language in [8] except in the notation we use. We use this notation as a
convenience for our implementation.

A model-checking algorithm examines a temporal structure and a temporal-
logic formula and determines whether the structure is a model (in the logical
sense of the word) for the formula.

Our implementation (TL) of a model-checking algorithm for CTL* is an
\on-the-
y" model-checker based on the algorithm of Bhat, Cleaveland and
Grumberg [3]. On-the-
y algorithms have the advantage over the more common
\global" algorithms of being able to terminate with the correct result before
constructing the entire exponentially-large structure. If the formula happens
to be in the sublanguage CTL of CTL* then the complexity of this on-the-
y
algorithm is the same as the best known algorithms for CTL model-checking.
Our implementation is customized for expressing statements about continuous
systems (see Section 4).

2.1 Terminology and Notation

We interpret a CTL* formula over a temporal structure M = hS;X;Li where

� S is a set of states,

� X is a set of fullpaths,

� L : S � AP ! fT; Fg is an interpretation which takes a state s 2 S and
an atomic proposition � 2 AP and assigns a Boolean truth value.

Here AP is the set of atomic propositions. A fullpath is a path which is either
in�nite or terminates with a state which has no successor.

We use the notation hs0; s1; s2; : : :i to denote an in�nite or �nite totally-
ordered set. We let �(x) denote the cardinality of a �nite, totally-ordered set
x. If x is an in�nite, totally-ordered set, then by i < �(x) we mean i is any
nonnegative integer. Here we use totally ordered sets to represent paths and
fullpaths. Notice that the last state in a �nite fullpath x = hs0; s1; s2; : : :i is
s�(x)�1.

We now describe the path quanti�ers and the basic temporal operators on
propositions. The names we use for path quanti�ers and temporal operators
are equivalent to the more concise names used in the temporal logic research
community:

4

A � necessarily G � always X � next

E � possibly F � eventually U � until

We prefer to give a rough description before the formal syntax and semantics
are de�ned. Suppose some state s and path x starting at s are given and that
p is a formula. The two path quanti�ers are

(necessarily p), which is true at s if p is true of every fullpath
starting with s, and

(possibly p), which is true at s if p is true of some fullpath starting
at s.

The elementary temporal operators are (next p) and (until p q) where p
and q are formulas.

(next p) is true of the path x if �(x) = 1 or p is true of the path
obtained from x by deleting its �rst state, and

(until p q) is true of x if q is true of some state in x and p is
true of every state preceding the �rst state in which q is true.
This operator is sometimes called strong-until, to distinguish
it from weak-until to be de�ned below.

The precise syntax and semantics of until and next will be de�ned in
the following sections. We will use the following abbreviations to de�ne other
operators in terms of until and next:

(releases p q) � (not (until (not p) (not q)))

(before p q) � (not (until (not p) q))

(strong-next p) � (not (next (not p)))

(eventually p) � (until true p)

(always p) � (not (eventually (not p)))

(never p) � (always (not p))

(weak-until p q) � (before q (and (not q) (not p)))

(infinitely-often p) � (always (eventually p))

(almost-everywhere p) � (eventually (always p))

The formula (releases p q) is true of a path if q is always true or if q is true
through the �rst state in which p is true. The statement (before p q) is true
of a path if p is true in some state previous to the �rst state in which q is true
(though q does not necessarily ever become true). The formula (weak-until p
q) is true of a path if p is true in every state or in every state before the �rst
state in which q is true.

Because we are applying CTL* to structures which may have �nite fullpaths,
the temporal operator next may seem ambiguous. Therefore, we must distin-
guish between strong-next and weak-next. The statement (weak-next p) is

5

true of a path if the path has no next state or if the path has a second state and
p is true of it. The statement (strong-next p) is true of a path if the path has
a second state and p is true of that state. In our discussion, we consider next
alone to mean weak-next.

In the following two subsections we give the formal de�nitions for the tem-
poral operators and path quanti�ers of CTL*.

2.2 Syntax

A state formula is a formula which is interpreted over a state and a path formula
is a formula which is interpreted over a path. State formulas in CTL* are
generated by rules (S1{S3) below. The path formulas in CTL* are generated
by rules (B1{B3) below. Although the semantics of releases, strong-next
and or can be derived from their de�nitions as abbreviations, we include the
de�nitions here so that the proofs later will be easier to follow.

De�nition 1 The syntax of CTL* is de�ned as follows.

(S1) Each atomic proposition � is a state formula,

(S2) if p1; : : : ; pn are state formulas then so are (and p1 � � �pn), (or p1 � � �pn)
and (not p1),

(S3) if p is a path formula then (possibly p) and (necessarily p) are state
formulas,

(B1) every state formula is a path formula,

(B2) if p1; : : : ; pn are path formulas then so are (and p1 � � �pn), (or p1 � � �pn)
and (not p1),

(B3) if p, q are path formulas then so are (next p), (strong-next p), (releases
p q) and (until p q).

We also allow the standard boolean abbreviation for implies.

2.3 Semantics

The following notation is needed before the semantics of our logic can be de�ned.
Given a path x = hs0; s1; s2; : : :i, for every nonnegative integer i < �(x) we let
xi denote the path hsi; si+1; si+2; : : :i, which is the su�x of x starting at si.
Thus, for any nonnegative integer i < �(x), xi is the path obtained from x by
deleting from x the �rst i states. Notice that if x is �nite, then xi is not de�ned
for i � �(x) and �(xi) = �(x)� i.

Now we are ready to give the semantics for the language. We writeM; s0 j= �
(respectively M;x j= �) to mean that the state formula � (respectively path
formula �) is true in the temporal structure M at the state s0 (respectively of

6

the path x). Each item below gives the interpretation of the corresponding item
in the syntax above.

De�nition 2 If s0 is a state in M and x = hs0; s1; : : :i is a nonempty fullpath
in M starting at s0, then we inductively de�ne j= as follows:

(S1) M; s0 j= � where � is an atomic proposition if and only if L(s0; �) = T,

(S2) M; s0 j=(and p1 � � �pn) if and only if M; s0 j= pi for all i; 1 � i � n,
M; s0 j=(or p1 � � �pn) if and only if M; s0 j= pi for some i; 1 � i � n,
M; s0 j=(not p) if and only if it is not the case that M; s0 j= p,

(S3) M; s0 j=(possibly p) if and only if there is a fullpath y inM starting at
s0, such that M; y j= p,
M; s0 j=(necessarily p) if and only if for every fullpath y inM starting
at s0, M; y j= p.

(B1) M;x j= p where p is a state formula if and only if M; s0 j= p,

(B2) M;x j=(and p1 � � �pn) if and only if M;x j= pi for all i; 1 � i � n,
M;x j=(or p1 � � �pn) if and only if M;x j= pi for some i; 1 � i � n,
M;x j=(not p) if and only if it is not the case that M;x j= p,

(B3) M;x j=(until p q) if and only if there is a nonnegative integer i < �(x),
such that M;xi j= q and for every nonnegative integer j < i, M;xj j= p,
M;x j=(releases p q) if and only if for every nonnegative integer i <
�(x), M;xi j= q or there is a nonnegative integer i < �(x) such that
M;xi j= p and for every j � i, M;xj j= q,
M;x j=(next p) if and only if �(x) = 1 or M;x1 j= p,
M;x j=(strong-next p) if and only if �(x) > 1 and M;x1 j= p.

2.4 Basic Results

The proofs of our main theorems will use the fact that any formula can be
written in the following form.

De�nition 3 (Positive Normal Form) A CTL* formula is in positive nor-
mal form if until, releases, next and strong-next are the only temporal
operators in the formula and for every not in the formula, its scope is an atomic
proposition.

Here we require that implies �rst be rewritten in terms of not and and or or.
Every CTL* formula is equivalent to a formula in positive normal form because
all temporal operators can be written in terms of those mentioned above and
nots can be propagated inward to propositions [3].

7

De�nition 4 (Universal Formula) A CTL* expression � is said to be uni-
versal if, when the formula is written in positive normal form, there are no
occurrences of the path quanti�er possibly.

We call a path formula a perfect path formula if it contains no path quanti-
�ers. These are exactly the formulas which correspond to formulas in Proposi-
tional Linear Time Logic (PLTL). If � is a formula in CTL*, then �0 denotes
the perfect path formula obtained from � by deleting all occurrences of the path
quanti�ers. For example, if p and q are propositions and

� = (necessarily (until p (necessarily q))),

then

�0 = (until p q).

We call �0 the perfection of �.
The following lemma is needed in the proof of Lemma 2 which is used in the

proof of one of the main theorems.

Lemma 1 If � is a universal formula and x is a fullpath inM such thatM;x j=
�, then M;x j= �0.

The proof of this is complex and not enlightening. Therefore, it has been put
in Appendix C.

Lemma 2 For every universal CTL* state formula�, and every temporal struc-
ture M and state s in M , if M; s j= � then for every fullpath x in M starting
at s, M;x j= �0.

bf Proof: The proof follows easily by induction on the length of � by using
Lemma 1.

3 QSIM

In Section 3.1 we brie
y describe the QSIM framework. We refer the reader to
Kuipers' full description of the QSIM framework [16] and to Appendix B for
details on the new de�nition of a reasonable function. Other reformalizations
of concepts related to the Guaranteed Coverage Theorem are described in the
present section.

The QSIM algorithm takes as input the user's qualitative or semi-quantitative
description of a physical system. This input is called a qualitative di�erential
equation. This description is formally related to some class of ODEs as we ex-
plain below. The output from the QSIM algorithm is a tree whose nodes are
states describing the values of the variables in the input QDE.

8

The main theorem of this section (the Guaranteed Coverage Theorem) stated
informally says that every solution to any ODE related to the QDE is repre-
sented in the tree output by QSIM. We give the formal statement of the Guar-
anteed Coverage Theorem below.

Sections 3.1 and 3.2 explain some of the basic terminology used in the state-
ment of the Guaranteed Coverage Theorem. These sections also explain why the
hypotheses of the theorem are necessary. Those sections are designed so that
the basic ideas are easy to �nd. A casual reader should be able to understand
the statement of the Guaranteed Coverage Theorem without reading all of the
details in Sections 3.1 and 3.2.

Section 3.1 among other things, formalizes the relationship between QDEs
and ODEs and the relationship between the �nite output of QSIM and the
generally in�nite structure which it represents. Section 3.2 formalizes the rela-
tionship between fullpaths in QSIM structures and continuous functions.

Now we give the formal statement of the Guaranteed Coverage Theorem.
All unfamiliar terms used in this statement (e.g., speci�cation, splitting, closed,
abstraction) are de�ned in Sections 3.1 and 3.2.

Suppose M is a closed tree generated from the QDE and initial state hC; Ii.
Suppose the ODE, F , abstracts to C and that the structural abstraction, F 0,
of F has solution set U . The QSIM algorithm is carefully crafted to guarantee
that the qualitative structure of U is described by some rooted fullpath in the
represented structure cM :

Theorem 1 (Guaranteed Coverage) Under the conditions above, there is a

rooted fullpath x in cM and a speci�cation hx; ci of x such that hx; ci qualitatively
describes some splitting hftig; U i of U .

The proof is given by Kuipers [13, 16]. Because most of the QSIM framework|
the algorithm itself, for example|is beyond the scope of this paper, we will not
detail the proof here.

3.1 The QSIM Framework

A qualitative di�erential equation consists of a �nite set of variables (each of
which is associated with a quantity space which is a totally-ordered set of land-
marks), and a set of constraints on the values of the variables. A QDE is a
structural abstraction of a class of ordinary di�erential equations. The QDE
codi�es the QSIM user's incomplete knowledge of a physical system.

Starting with a QDE, C, and an initial state, I, qualitative simulation with
QSIM produces a �nite tree, M = hS;R;Bi, of qualitative states, linked by the
QSIM successor relation, R. The �nite tree which it produces is called a QSIM
behavior tree in the literature. We let M = hS;R;Bi represent the behavior
tree where S is the set of states, R is the successor relation and B is the set of
fullpaths starting at the initial state. Each behavior is represented as a �nite,

9

totally-ordered set beginning at the initial state and terminating at a state with
no R-successor. The set B is completely determined by the relation R and the
initial state I. Because of the signi�cance of the initial state, we call fullpaths
whose �rst state is I rooted fullpaths.

We will say that this QSIM behavior tree was generated by the pair hC; Ii
of the QDE and the initial state. A QSIM behavior is a path in the behavior
tree, starting at the root and terminating at a leaf of the tree, i.e. B is the set of
QSIM behaviors inM . Each state describes the qualitative value of each variable
appearing in the QDE model. Each variable will represent a function of time.
The qualitative value of a variable v over a state s is of the form hqmag; qdiri,
where qmag describes the magnitude of v as equal to a landmark or in an open
interval de�ned by two landmarks, and qdir is the sign of the derivative of v. By
considering the qualitative values of the variables at a state, and the constraints
in the QDE, QSIM is able to derive a number of properties of the states and
behaviors, including quiescence, stability and cycles.

A QSIM state is called a transition state if it has no R-successors due to
the fact that the value of one of its variables crosses a boundary of the QDE
description. QSIM allows the user to produce transition relations between a
transition state in one tree and the root of a tree generated by another QDE.
This allows the user to produce a tree which has di�erent models for its behavior
in di�erent ranges. The theorems here could be extended to take transition
relations into account, however, the extension is tedious and unenlightening
so, in the theorems in this paper, we assume that transition states have no
successors.

Structural Abstraction The class of ODEs related to a given QDE is that
class of ODEs which structurally abstract to the QDE. The concept of structural
abstraction is best understood by example.

Example 1 Given an ODE, F , there is associated with it a set, F 0, of si-
multaneous equations which is derived from F . We will call F 0 the structural
abstraction of F . For example, consider an equation for simple harmonicmotion:

d2x

dt
= �x

We structurally abstract this equation in several steps. First we introduce
a variable v so that v = dx

dt
and again we let a = dv

dt
. Finally, we write a = �x

so that F 0 is a set of three equations in three variables (not including time). At
each step, the equation is broken down into its components until each equation is
simple enough to be abstracted to a QSIM constraint. This set of three equations
is called the structural abstraction of the original equation for harmonic motion
and is denoted F 0. From the structural abstraction, it is easy to create a QDE.
See Section 3.3.1 of Kuipers' book Qualitative Reasoning [16] for more details
on the structural abstraction of an ODE.

10

The structural abstraction, F 0, is useful because it can easily be abstracted
into a QDE. Following our example, we obtain the following QDE from F 0:

(d/dt X V)

(d/dt V A)

(M- a X)

>From this QDE, QSIM will produce a temporal structure. Since the equa-
tion describing simple harmonic motion abstracts to this QDE, we would like to
know that the solutions to this ODE are described by some fullpath in the tem-
poral structure generated by QSIM. The Guaranteed Coverage Theorem says
just that.

A solution, U , of F 0 is a set of functions of time which simultaneously make
each of the equations in F 0 true. Since U is a set of functions we need a way of
relating the functions in U to the variables in F 0 for which they are supposed
to be substituted. We will use the symbol to represent this bijection from the
set of functions in U to the set of variables in F 0. Similarly, if M is a QSIM
tree produced by the QDE, C, abstracted from F 0 and U is a solution to F 0, we
let

U;M
be the bijection from U to the set of variables in C. The bijection is

simply the relationship between the names of the variables in F 0 and the names
of the variables in C.

It should be clear that a solution, U , to F 0 can be converted into a solution
to F by going through this transformation in the other direction. For example,
since U = fsin; cos;� sing is a solution to F 0, where (sin) = x; (cos) = v and
 (� sin) = a, we can conclude that the sine function is a solution to the original
equation for simple harmonic motion.

The Represented QSIM Structure Here we make the important distinc-
tion between the �nite QSIM tree, M , and the corresponding in�nite structure
cM . Essentially, cM is obtained from M by following cycles states through the
states which they match. However, we have to be careful to do this in a sensible
way when the strong-match criterion is used.

QSIM may use various matching criteria when it detects cycles. The strong-
match criterion requires that the value of each variable in the states to be
matched is a landmark (rather than an interval) and that those landmarks
match the values of the variables in the previously-existing state (the qualitative
derivatives have to match regardless of the match criterion). The weak-match
criterion allows a match when the values are either intervals or landmarks. The
QSIM user may also dictate whether cycles are detected across QSIM behaviors
(cross-edge cycles) or only on the same QSIM behavior.

The type of cycle detection chosen makes a di�erence in the interpretation
of the tree. If strong-matching is used, then a match represents a real cycle in
the system. That is, the system has returned to a previous state and therefore,
by the uniqueness theorem for di�erential equations, it must continue from that

11

point exactly as it did before. Therefore, such a cycle behavior represents a
single fullpath in the in�nite structure. If weak-matching is used, then a match
does not necessarily represent precisely the same state and hence, the system
may continue from the cycle along a di�erent path than the one it has already
followed.

In the former case, there will be a one-to-one correspondence between the
behaviors in M and the rooted fullpaths in cM . In the latter case, we may end
up with in�nitely many rooted fullpaths in cM .

We want to do temporal reasoning about paths which pass through these
cycle states. Therefore we will de�ne what we call the QSIM structure, cM =
hS;Xi, represented byM = hS;R;Bi. Here X is the set of fullpaths represented
in the behavior tree M . To construct X, we �rst de�ne the set Xr of rooted
fullpaths. A rooted fullpath in cM is a path starting at the root of the QSIM
tree and continuing through cycle states in a semantically sensible way. That
is to say, we only add fullpaths which satisfy the restrictions mentioned above
related to the type of cycle matching used. If the strong-match criterion was
used with no cross-edge cycles allowed, then for each cycle behavior, we add
a single in�nite fullpath which follows that behavior then passes through the
same cycle in�nitely many times. If another kind of matching was used, then
we simply add the cycle pairs to the relation R to obtain the relation bR and Xr

is the set of rooted fullpaths generated by bR. Finally, we de�ne X to be the
su�x closure of Xr .

1

In the case of strong-matching with no cross edge cycles, it will be useful to
go into more detail. Since, in this case, each behavior becomes associated with
a single rooted fullpath we can de�ne the natural bijection, z0, from the set of
rooted fullpaths, Xr , to the set of behaviors, B. Since, in this case, any fullpath
in X is a su�x of a unique rooted fullpath, we can extend the bijection z0 to a
function z : X ! B so that for any x 2 X; z(x) = z(xr) where xr is the rooted
fullpath of which x is a su�x. (Thus, z is not generally a bijection.) We think
of z as mapping a fullpath to its associated QSIM behavior. This assignment
will be useful when we prove properties of systems about which we have some
quantitative information.

Closed Trees Ideally, given a QDE, the QSIM algorithm will terminate, not
because it runs out of memory or other resources, but because it has �nished
simulating all possible behaviors. When the QSIM algorithm terminates in this
\natural" way, we call the tree it produces closed. In this case, every behavior in
the behavior tree returned by QSIM terminates with a state which is a transition
state, a cycle state or a quiescent state. There are cases, however, in which
QSIM does not return a closed tree regardless of how long it is allowed to run.

1Notice that, in the former case, X is not necessarily fusion closed and hence not R-
generable. A set X is fusion closed if, whenever x1sy1; x2sy2 2 X, then x1sy2 2 X for any
states x1; x2 and path s; y1; y2. A set X is R-generable if it is naturally generated by some
relation [8].

12

In cases where QSIM returns a tree which is not closed, the hypotheses of the
Guaranteed Coverage Theorem do not hold. If the behavior tree M is not closed
then it is possible that an actual behavior of the system is not represented by
any rooted fullpath in the represented structure cM .

The normal QSIM simulation style creates new landmarks for critical values,
applies a strong cycle-match criterion (all variables must have identical land-
mark values), and does not allow cross-edge cycles (i.e. considers cycle matches
only within the same QSIM behavior.) Under this simulation style, certain
systems such as the damped spring never close. However, by applying the envi-
sionment simulation style (no new landmarks, weak cycle-match criterion, and
cycle matches anywhere in the behavior tree), every qualitative model has a
�nite closed behavior tree. (See Chapter 5 of Kuipers' Qualitative Reasoning
[16].)

Quantitative Information When strong-cycle matching is used and cross-
edge cycles are not allowed, then the QDE and the initial state may be aug-
mented with quantitative information such as numerical interval bounds on the
real values denoted by landmarks and other symbolic terms in the behavior
prediction [2, 12, 14, 16]. In this case, QSIM propagates this quantitative in-
formation and uses it to prune branches of the tree which are inconsistent with
the information. The most important quantitative information for the purposes
of this paper is the information which QSIM derives about the landmarks.

A landmark in a quantity space of a QSIM variable is intended to name
some real number. The quantitative extensions to QSIM are able to restrict
the possible values of a landmark to some closed, extended-real interval. This
quantitative information may be di�erent on each QSIM behavior. Thus, the
user cannot simply ask for the range of the possible values of a landmark. The
user must ask for the range of the possible values of a landmark in a given
behavior. So in this case, we will use the function z to determine which behavior
a given fullpath is related to. If weak-cycle matching is used or cross-edge cycles
are detected, then the numeric information loses its sense.

Example 2 In order to illustrate the fact that quantitative information is
stored on QSIM behaviors rather than on states, we will construct a simple
example with numeric information. Three billiard balls [20] start to move with
constant velocities and initial positions shown in Figure 1(a). The QSIM QDE
model for this scenario provides quantity spaces for position, velocity, and accel-
eration in the x and y directions, and constraints for constant-velocity motion.
Collisions are detected when the di�erences in x and y positions of two balls are
simultaneously zero.

When there is partial quantitative information about the speeds of the
balls|A and B have velocity �2 units/second, and the velocity, Cxp, of C is
some constant within the interval [�3:5;�1:5] in units/second|QSIM predicts
three possible behaviors, corresponding to C passing ahead of B, passing behind

13

x

x

x

?

?

�

A

B

C

0 1 2

1

2

(a) Three balls on a billiard table, with initial positions and velocities.

↓.....
↓.....↓.....

↓.....↓.....↓.....↓.....↓.....↓.....↓.....↓

INF

D-8 [1 1]

0 [0 0]

MINF

T0 T1 T2 T3 T4 T5

DXBC

↑....
.↑.....↑.....↑....

.↑....
.↑.....↑.....↑.....↑.....↑....

.↑ INF

0 [0 0]

D-9 [-1 -1]

MINF

T0 T1 T2 T3 T4 T5

DYBC

↓.....
↓.....↓.....↓.....↓.....

↓.....↓.....↓.....↓.....↓.....↓

INF

D-8 [1 1]

0 [0 0]

MINF

T0 T1 T2 T3 T4 T5

DXBC

↑....
.↑....

.↑....
.↑.....↑.....↑.....↑.....↑.....↑.....↑....

.↑ INF

0 [0 0]

D-9 [-1 -1]

MINF

T0 T1 T2 T3 T4 T5

DYBC

↓
↓ ↓

INF

D-8 [1 1]

0 [0 0]

MINF

T0 T1

DXBC

↑ ↑ ↑

INF

0 [0 0]

D-9 [-1 -1]

MINF

T0 T1

DYBC

(b) Given incomplete knowledge of the speed of ball C, QSIM predicts that C
may pass ahead of B, behind B, or collide with B at t = 0:5.

Figure 1: Predicting behaviors of a real-time system.

14

B, and colliding with B (Figure 1(b)). In case C collides with B, the collision
takes place at t = 0:5 seconds. There is no possibility of C colliding with A.

We chose to deal with this amount of information because it illustrated
our point without much complexity. Naturally, if the user had more or less
knowledge about the conditions on the system, another QDE and initial state
could be constructed.

Now, consider the value of horizontal velocity, Cxp, of C in the �rst state. We
know that it is a real number between �3:5 and �1:5 and that it is constant. In
the third state of the third behavior, we know that Cxp is equal to �2. In the
third state of the second behavior, we know that Cxp is greater than �2. In the
third state of the �rst behavior, we know that Cxp is less than �2. But since
Cxp is a constant, its value over each behavior does not vary, therefore, its value
at the �rst state (which all three behaviors share) depends on which behavior
we are in. QSIM must store the quantitative information about the values of
landmarks not at each state but at each behavior.

We shall return to this example in section 6.1.

3.2 Qualitative Description

In this section, we give a formal meaning to the following informal phrase: \the
QSIM fullpath x describes the set of real valued functions U ." This is what we
want to say when U is the solution to an ODE which abstracts to the QDE used
to generate the behavior x.

In order to do this, we will �rst partition the domain of the functions in U
in such a way that the partition corresponds to the value of the time variable
in the states in x. That will be called a splitting of U . Second, we will assign
speci�c real numbers to the landmarks of the variables in x. This will be called
a speci�cation of x. From there, it will be relatively easy to de�ne what it means
for the fullpath x to describe the set of functions U . At the end of this section,
we give a detailed example showing how the function sine is described by the
rooted fullpath generated by QSIM, given the simple harmonic motion QDE.

Splittings We are given a set of reasonable, extended real valued functions
U = fui : 1 � i � ng. Since we are thinking of U as a solution to a set of
simultaneous equations which was derived from an ODE, we will assume that
each of the functions in U shares the domain, A, some interval (of time) in the
extended reals. In order to say that U is described by a QSIM fullpath, we need
a way of partitioning the domain of the functions in U that will be consistent
with the values of the time variable in the fullpath.

We de�ne a splitting of U as follows. Let ftig be a strictly increasing sequence
of points (indexed from 0) in A satisfying the following conditions: (1) if t is
a critical point of some uk, then t 2 ftig, (2) ftig has no �nite limit point
and (3) ftig converges to 1 only if 1 62 A. According to the de�nition of a
reasonable function (Appendix B), such a set exists, and may be in�nite only

15

if 1 is the supremum of A and A is open on the right. We will call the pair
hftig; U i a splitting of U . Since the critical points of the functions all must be
in ftig (condition 1 above), one splitting is distinguished from another splitting
by the choice of non-critical points in ftig. If the set ftig is �nite, then we will
let tJ be the greatest element of ftig. Consequently, J + 1 is the cardinality of
ftig.

Associated with any splitting hftig; U i there is a natural partition fDkg of
the interval A. Each Dk is either a singleton containing one of the points in ftig
or an open interval whose endpoints are two consecutive points in ftig. The
indexes on the sets in the partition follow the order of the indexes in ftig. That
is, if A is closed on the left then D0 = ft0g; D1 = (t0; t1); and so on. If A is open
on the left then D0 = (a; t0); D1 = ft0g; D2 = (t0; t1); and so on, where a is the
in�mum of A. If A is closed on the right then D2J = ftJg (or D2J+1 = ftJg if
A is open on the left). To avoid the problem of going to this much trouble to
�gure out which ti is the left endpoint of Dk, we will let dk denote the index
such that tdk is the left endpoint of Dk. If A is open on the right, then as we
have said, there may be in�nitely many sets in fDkg.

When dealing with a splitting, hftig; U i, of U , we will use the following
abbreviations:

U j
l

= fuijDl : 1 � i � ng

U j
l+

= fuijS
l�k

fDkg
: 1 � i � ng

That is to say that U j
l
is the set of functions in U each restricted to the domain

Dl and U jl+ is the set of functions in U each restricted to the domain
S

l�k
fDkg.

Speci�cation of a fullpath In order to de�ne the notion of a splitting being
described by a fullpath, we will need to relate the landmarks in the fullpath to
speci�c extended real numbers. We call a mapping of landmarks to extended
real numbers satisfying certain sensible conditions, a speci�cation of the land-
marks. We want the speci�cation to be order-preserving. Also if quantitative
information is assigned on a fullpath, we want the mapping to be consistent
with that information.

Suppose c is a function with domain, some partially ordered set V of land-
marks, and range, the set R� of extended real numbers. The function c is called a
speci�cation of V if c preserves the partial order and c(minf) = �1; c(inf) =1
and c(0) = 0. The reason the order on V is only partial is that the landmarks
come from di�erent variables. The landmarks of any single variable are totally
ordered in V .

Given a fullpath x and a speci�cation, c, of the landmarks of the variables
in x under the partial order determined by the quantity spaces of the variables
in x, we call the pair hx; ci a speci�cation of x if c is also consistent with any
numeric information which might be associated with z(x). (Recall, z(x) is the

16

QSIM behavior associated with x when such can be determined uniquely.) In
particular, if, on the behavior z(x), the qualitative landmark, X1, has been
determined, by a quantitative extension to QSIM, to refer to a number in the
numeric range [n1; n2], then c(X1) 2 [n1; n2].

De�nition of Qualitatively Describes Now we can state the phrase \the
QSIM fullpath x describes the set of real valued functions U" formally. Given
a speci�cation hx; ci of a fullpath x = hs0; s1; : : :i in a QSIM directed graph cM
and a splitting hftig; U i of the set of reasonable, extended real valued functions
U = fui : 1 � i � ng with common domain, A, we say that hx; ci qualita-
tively describes the splitting if the speci�cation corresponds to the splitting as
described in detail in the remainder of this subsection.

The intention is that the partition, fDkg, of the domain, A, determined by
the splitting will correspond to the range of the time variable in the fullpath
x in such a way that each element, Dk, of the partition will correspond to the
value of the time variable in the state sk and thus the values of the functions in
U j

k
will correspond to the values of the QSIM variables in the state sk.
The function

U;M
referred to below is the bijection described in Section 3.1

which relates the variables in M with the variables in U .
The cardinality of ftig must equal the number of time-point states in x.

Therefore, since the states in x alternate between time-point states and time-
interval states, hx; ci qualitatively describes hftig; U i if and only if there is a
correspondence between x and U in which sk corresponds to U j

k
as follows:

� Given any landmark X1 of a QSIM variable X=
U;M

(ui) and any nonneg-
ative integer k, the qualitative value of X at the state sk is X1 if and only
if uijDk = c(X1).

� u0ijDk > 0 if and only if the qualitative derivative of the variable
U;M

(ui)
in sk is inc.

� u0ijDk = 0 if and only if the qualitative derivative of the variable
U;M

(ui)
in sk is std.

� u0ijDk < 0 if and only if the qualitative derivative of the variable
U;M

(ui)
in sk is dec.

� If the fullpath x is �nite and QSIM has labeled the last state in x with
t=inf then tJ =1.

� If the fullpath x is �nite and QSIM has labeled the last state in x with
t<inf then tJ 6=1.

Lemma 3 The speci�cation hx; ci of x qualitatively describes hftig; U i if and
only if hxh; ci qualitatively describes hfti : dh � ig; U j

h+
i for every nonnegative

integer h < �(x).

17

bf Proof: The proof comes straight from the de�nition of what it means for a
speci�cation of a fullpath to describe qualitatively a splitting of a set of func-
tions. This de�nition involves a correspondence between sh with Dh for every
nonnegative integer h < �(x).

It follows from this de�nition and the de�nition of the QSIM algorithm
that if hx; ci qualitatively describes a splitting hftig; U i of a set of reasonable,
extended real valued functions, then given any pair of landmarks, X0 and X1, of
a QSIM variable X=

U;M
(ui) and any nonnegative integer k, if the qualitative

value of X at the state sk is the interval (X0 X1) then ui(Dk) � (c(X0); c(X1)).
It also follows that the state sk has been determined by QSIM to be quiescent
if and only if u0ijDk = 0 for each 1 � i � n.

Example 3 Let us consider our simple example again. We will show how the
Guaranteed Coverage Theorem is satis�ed in this example. Recall that we have
the solution U = fsin; cos;� sing to the structural abstraction of the equation

d2x

dt
= �x

where (sin) = x; (cos) = v and (� sin) = a. We will show that some
rooted fullpath in the structure represented by the output of the QSIM algorithm
describes this set of functions.

We translated the structural abstraction into the QDE:

(d/dt X V)

(d/dt V A)

(M- A X).

IfM is the tree produced by QSIM from this input, then
U;M

(sin) = X;
U;M

(cos) =
V and

U;M
(� sin) = A.

Given the abstraction of the simple harmonic motion ODE, we complete the
input to QSIM by describing the initial state, and giving instructions to QSIM
such as \do not create new landmarks." (See Figure 2.) In order to make the
output more interesting, we add a single additional landmark X* to the quantity
space of the position variable. From this, QSIM generates the tree, M , shown
in Figure 2.

It is a consequence of the Guaranteed Coverage Theorem that some rooted
fullpath in cM has a speci�cation which qualitatively describes some splitting
of the sine function. Since we used weak matching, cM has in�nitely many
rooted fullpaths and not all of those have speci�cations which qualitatively
describe a splitting of the sine function. If we had used strong matching, then
cM would have exactly three rooted fullpaths, all of which are in�nite and have
speci�cations that qualitatively describe a splitting of the sine function.

To demonstrate the Guaranteed Coverage Theorem in this example, let's
consider the rooted fullpath in x 2 cM which cycles through the second behavior

18

Figure 2: QSIM input and output for undamped spring

�x+ f(x) = 0

where f 2M+(x).

(define-QDE Spring-for-TL

(quantity-spaces

(X (minf 0 X* inf) "Position")

(V (minf 0 inf) "Velocity")

(A (minf 0 inf) "Acceleration"))

(constraints

((d/dt X V))

((d/dt V A))

((M- A X) (0 0) (minf inf) (inf minf))))

(defun spring-envisionment ()

(setq SS (make-new-state :from-qde Spring-for-TL

:sim (make-sim :no-new-landmarks '(X V A)

:cycle-detection :weak)

:assert-values '((X (0 nil))

(V ((0 inf) nil)))))

(qsim SS)

(qsim-display SS))

↑....
.↑....

.↑....
.↑.....°.....↓.....↓.....

↓.....↓.....
↓.....°.....↑

....
.↑

INF

X*

0

MINF

T0 T1 T2 T3 T4 T5 T6

Position

°.....↓.....↓.....↓.....
↓.....↓.....↓.....↓.....°.....↑...

..↑
...

..↑.....°
INF

0

MINF

T0 T1 T2 T3 T4 T5 T6

Velocity

↓.....↓.....↓.....↓.....°.....↑.....↑.....↑...
..↑

...
..↑.....°.....↓.....

↓

INF

0

MINF

T0 T1 T2 T3 T4 T5 T6

Acceleration

Each path in the behavior tree ends in a cycle state. Each cycle state
matches the initial state. The three behaviors are distinguished by their
amplitude. The second behavior is shown.

19

(illustrated in Figure 2) in�nitely many times. We must �nd a speci�cation of
x and a splitting of the sine function so that the two match as described in the
de�nition of qualitative description. For the speci�cation of x, we only need to
�nd a function c which maps X* to some number between 0 and 1. Let's say,
c(X*) = 1=2.

Let us now select a splitting of the sine function. We describe the set ftig
as the union of the following sets ordered by <:

f�6 + 2k�jk is a positive integerg;
fk�2 jk is a positive integerg and

f11�6 + 2k�jk is a positive integerg:

Since limx!1 sinx does not exist in R�, the domain of our sine function is open
on the right and so we are allowed to have an in�nite set ftig as a splitting.

Now it is easy to show that hx; ci qualitatively describes hftig; U i. The
partition fDkg of the domain of sine determined by ftig corresponds nicely
with the domain of the time variable in x. Consider the landmark X* of X=

U;M

(sin). In the third state of x, X has the value X*. Notice that D2 = f�6 g
and sin(�6) = 1=2 = c(X*) as required by the de�nition of qualitatively describes.
It is easy to check that the other requirements are also satis�ed.

4 QSIM and the Logic

The main theorem of this paper, stated informally, says the following: Suppose
cM is a QSIM structure generated from the QDE C. If cM is a model for a CTL*
formula, then the CTL* formula describes every solution to every ODE which
abstracts to C. In order to state and prove this formally, we need two things.
First, we need to explain what it means for a CTL* formula to describe a real-
valued function. Second, we need to explain how temporal-logic propositions
are checked in QSIM structures. We do this in reverse order since the latter is
helpful in understanding the former.

In Section 4.1, we give the details of how model checking is applied to QSIM
structures. In Section 4.2, we formalize the relationship between CTL* formulas
and continuous functions and give an example.

4.1 QSIM Structures for CTL*

Given the structure cM , the only thing needed to have a temporal structure as
de�ned in Section 2.1 is an interpretation of propositions.

The temporal structure cMTL = hS;X;Li, represented by a QSIM behavior

tree M = hS;R;Bi, is obtained from cM = hS;Xi by the interpretation L of the
propositions given in Figure 3 in which s represents the state over which the
propositions are being interpreted.

20

This temporal structure cMTL is the structure over which we will interpret
CTL* formulas.

Figure 3: The propositional level of the language

(qval v (qmag qdir)) Suppose v is a variable of the state s, qmag is a land-
mark or open interval de�ned by a pair of landmarks in the quantity space
associated with v, and qdir is one of finc, std, decg. This proposition is
true when the qualitative derivative of v in s is qdir and the qualitative
magnitude of v in s is equal to or a subset of qmag.

(status quiescent) is true exactly when the qualitative derivative of each
variable in the state is std.

t=inf is true at a state if QSIM was able to determine that the time variable
in this state must be in�nite.

t<inf is true at a state if QSIM was able to determine that the time variable
in this state must be �nite.

(in-range v (n1 n2)) Suppose v is a variable in the state s and n1 and n2
are extended real numbers. If the value of var in s is a landmark then this
proposition is true if and only if the number represented by that landmark
in s is known to lie in an interval which is a subset of [n1; n2]. If the value
of var in s is an interval (X1 X2), then this proposition is true if and only
if the interval [n1; n2] contains both of the intervals in which QSIM has
determined the numbers named by X1 and X2 to lie.

Our implementation, TL, of a model checking algorithm over QSIM struc-
tures, includes propositions in the language which are not mentioned in Figure 3
but are useful in practice. Since they add clutter to the statements of de�ni-
tions and theorems in this paper, we will describe some of these operators in
Appendix A and explain what adjustments need to be made to de�nitions and
proofs in order to retain our theorems.

The propositions t=inf and t<inf allow the user to express the di�erence
between, for example, \eventually in a possibly asymptotic sense" and \eventu-
ally in �nite time". Alone, eventually really means \eventually in a possibly
asymptotic sense". In order to express \eventually in �nite time", use the propo-
sitions t=inf and t<inf. For example, we may say (eventually (and p t<inf))

to mean that p becomes true in �nite time.
The proposition in-range is sensible only in the states of behavior trees

generated from a QDE containing some quantitative information. Simulation
with quantitative information is handled by extensions to QSIM such as Q2
[14], Q3 [2] and NSIM [12]. The numbers referred to in these expressions are

21

extended real numbers: they may be -inf or +inf as well as real values. The
use of the numeric propositions and quantitative information derived by QSIM
from the numeric information given in the QDE, allows TL to prove time-related
properties of physical systems.

The expressiveness of the application of CTL* to QSIM can easily be in-
creased without adding to the complexity of model-checking by augmenting the
propositional part of the language. See Appendix A for some such extensions.

4.2 Temporal Description

Here we de�ne what it means for a CTL* perfect path formula � to describe
a set of functions and we give an example of a simple CTL* formula and show
that it describes the sine function.

If c is a speci�cation of the landmarks mentioned in a perfect path formula �
then we will call h�; ci a speci�cation of �. Let hftig; U i be a splitting of a set of
reasonable, extended real valued functions U = fui : 1 � i � ng on a common
domain A. Let fDkg denote the partition of A associated with ftig. Let be
a bijection from some subset T of U to the set of variables mentioned in the
formula �. We recursively de�ne what it means to say that h�; ci temporally
describes the splitting hftig; U i via . We assume that � is in positive normal
form and so we make the de�nition according to the form of � as follows.

� If � is a proposition, then it must correspond to the splitting according
to the following cases:

{ � = (qval (ui) (qmag qdir)) if and only if

� if qmag is the landmark value X0 of (ui) then uijD0 = c(X0),

� if qmag is an interval (X1 X2) in the quantity space of (ui)
whose endpoints are landmark values of (ui) then ui(D0) �
(c(X1); c(X2)),

� qdir = inc if and only if u0ijD0 > 0,

� qdir = std if and only if u0ijD0 = 0 and

� qdir = dec if and only if u0ijD0 < 0,

{ � = (status quiescent) if and only if u0ijD0 = 0 for each 1 � i � n,

{ � = t=inf if and only if D0 = f1g,

{ � = t<inf if and only if every element of D0 is a real number,

{ � = (in-range (ui) (n1 n2)) if and only if ui(D0) � [n1; n2],

� � = (and p1 � � �pm) if and only if hpk; ci temporally describes hftig; U i
via for each 1 � k � m,

� � = (or p1 � � �pm) if and only if hpk; ci temporally describes hftig; U i via
 for some 1 � k � m,

22

� � = (not p) if and only if hp; ci does not temporally describe hftig; U i
via ,

� � = (until p q) if and only if for some nonnegative integer h; hq; ci
temporally describes hfti : dh � ig; U j

h+
i via and for every nonnegative

integer l < h; hp; ci temporally describes hfti : dl � ig; U j
l+
i via ,

� � = (releases p q) if and only if for every nonnegative integer h such
that hq; ci does not temporally describe hfti : dh � ig; U j

h+
i via , there

is a nonnegative integer l < h such that hp; ci temporally describes hfti :
dl � ig; U j

l+
i via ,

� � = (next p) if and only if A = D0 or hp; ci temporally describes hfti :
d1 � ig; U j

1+
i via and

� � = (strong-next p) if and only if A 6= D0 and hp; ci temporally de-
scribes hfti : d1 � ig; U j

1+
i via .

Example 4 As an example, let us convince ourselves that the formula

(infinitely-often

(before (qval X (0 dec))

(qval X (0 inc))))))

temporally describes the sine function restricted to [0;1). Let us call the
formula under consideration �. We let the set U contain only the restricted
sine function. The speci�cation of �, in this case, is trivial: c(0) = 0. We
will use the bijection : sin(t) 7! X. The splitting for sine will be ftig =
fi�j where i is a nonnegative integerg. Let fDkg denote the partition of [0;1)
associated with ftig. We want to convince ourselves that h�; ci temporally
describes hftig; U i via .

This amounts to proving that there are in�nitely many nonnegative integers
k satisfying the following conditions: (1) sin j

Dk
= 0, (2) cos j

Dk
< 0 and (3)

there is some l > k such that sin j
Dl

= 0 and cos j
Dl

> 0. Every positive odd
integer satis�es these conditions so we are done.

5 The Main Results

The main theorem of this paper, which we can now almost state formally, says
the following: Suppose M is a closed QSIM tree generated from the qualita-
tive di�erential equation C. If cMTL is a model for a universal CTL* formula
(necessarily �), then for every solution, U , to every ODE which abstracts
to C, there is some splitting hftig; U i of U and some speci�cation h�0; ci of the
perfection, �0, of � such that h�0; ci temporally describes hftig; U i via U;M .
Therefore, TL is sound. In this section, we prove this theorem, discuss some
corollaries and also prove a more limited completeness result.

23

There is one more hypothesis which needs to be present in the main theorem.
This hypothesis is usually satis�ed by QSIM structures but still must be men-
tioned. It is possible, for some propositions, that QSIM may not determine all
of the information needed to use that proposition with con�dence. Section 5.1
explains this notion and contains a theorem that relates the qualitative and
temporal descriptions of a set of functions as de�ned in Sections 3.2 and 4.2,
respectively. The remainder of this section contains the theorems which are the
most important for applications.

5.1 Determined QSIM Trees

Suppose that x is a fullpath in a closed QSIM structure cM and further that
cMTL; x j= � where � is a perfect path formula. Suppose that hx; ci is a speci�-
cation of x which qualitatively describes hftig; U i. In this section, we will prove
that h�; ci temporally describes hftig; U i via U;M .

In order to prove this, we need to be certain that QSIM determines the
information in propositions completely and correctly. Otherwise, the induction
step in the proof of Theorem 2 does not work. Formally, we need to know
that if s is a state in a QSIM tree M and cMTL; s j= � where � is an atomic
proposition then for every fullpath, y, starting at s; hy; ci qualitatively describes
hftig; U i if and only if h�; ci temporally describes hftig; U i via U;M . This is
the conclusion of Lemma 4. In an arbitrary QSIM tree, this may not be true,
although exceptions are not common. The only case that arises in the language
of the body of this paper occurs in a transition state at which it is impossible
to determine whether t=inf or t<inf. For example, consider the QDE x0 =
f(x), where f 2 M+

0 (that is, f is a monotonically increasing function with
f(0) = 0). With an initial state x(t0) > 0 the behavior diverges, terminating
at a qualitative state where qmag(x) is hinf; inci, which is a transition state.
However, some choices of f (e.g., f(x) = x2) imply that x(t) becomes in�nite at
�nite time, while others (e.g., f(x) = x) imply that x(t) becomes in�nite only
at in�nite time, so the time label for the transition state is undetermined.

Therefore, we de�ne a QSIM state to be determined with respect to the
propositions t=inf and t<inf if QSIM has determined one of t=inf or t<inf.
With respect to the other propositions we have de�ned, all QSIM trees are
determined. However, when we de�ne new propositions, this issue needs to be
addressed. That is to say, when one de�nes a new proposition, one needs to
de�ne what it means to be determined with respect to that proposition in such
a way that the proof of Lemma 4 goes through as well as the induction step in
Theorem 2. This can be a subtle point as you can see in Appendix A.

The TL program can warn the user about any state which is not determined
with respect to an atomic proposition being queried on that state. When a
state is not determined, the TL program still operates but the hypotheses of
the theorems relating the operation of TL with the reasonable, extended real
valued functions are no longer satis�ed.

24

Lemma 4 If s is a state in a QSIM tree M which is determined with respect
to the proposition � and cMTL; s j= �, then for every fullpath, x, starting at s,
if hx; ci is a speci�cation of x, then hx; ci qualitatively describes hftig; U i if and
only if h�; ci temporally describes hftig; U i via U;M .

bf Proof: The result follows directly from the de�nition of the semantics of the
proposition (given in Figure 3), the de�nition of the meaning of a speci�cation
of a formula temporally describing a splitting of a set of functions, and the
de�nition of the meaning of a speci�cation of a fullpath qualitatively describing
a splitting of a set of functions. Notice that the determinedness hypothesis is
needed in the part of the proof involving the propositions t=inf and t<inf

because if QSIM does not determine this information, the proof fails.

We say that a QSIM structure cM is determined with respect to a proposition
if every state in cM is determined with respect to the proposition.

Theorem 2 relates the two ways of describing a set of reasonable, extended
real valued functions and will be used in the proofs of the main theorems of this
paper.

Theorem 2 Suppose x is a fullpath in a QSIM structure cM which is deter-
mined with respect to all of the propositions in �, a perfect path formula, and
cMTL; x j= �. If the speci�cation hx; ci of x qualitatively describes hftig; U i then
h�; ci temporally describes hftig; U i via U;M .

The proof is complex and not enlightening. Therefore, it has been put into
Appendix C.

There are two reasons we did not simply make this theorem the de�nition of
a temporal description. First, when we say that a formula describes a function,
we want to be talking about a formula and a function without an intervening
QSIM structure. Second, the subtleties involved in the de�nition of determined
which are brought to light when one tries to prove Lemma 4 and Theorem 2
might be missed if the de�nition of temporally describes were given at such a
high level. See Appendix A for an example of this.

5.2 Main Theorems for Universal Formulas

This section contains the main results of this paper. As a consequence of the
main theorems, the user of the TL and QSIM systems may prove temporal
statements about dynamical systems as follows. First, the user constructs a
QDE, C, and uses QSIM to generate a closed tree, M . Then the user may use
TL to check if a universal formula, �, is modeled by cMTL. If it is, then the user
has proved that the perfection, �0, of � describes the solution to any di�erential
equation which abstracts to C.

25

Theorem 3 Let U be a solution to the structural abstraction of any ODE
which abstracts to the QDE, C. Suppose QSIM generates the closed tree M
from hC; Ii. Let � be a universal formula in CTL*. If cMTL; I j= (necessarily

�), then there is a speci�cation c of the landmarks mentioned in �0 such that
h�; ci temporally describes some splitting hftig; U i of U via

U;M
.

bf Proof: Let � be a universal path formula andM a closed QSIM behavior tree
which is determined with respect to the propositions in �. Suppose cMTL; I j=
(necessarily �). Let U be as in the hypotheses. By the Guaranteed Coverage

Theorem, we know that there is a rooted fullpath y
U
in cMTL and a speci�cation,

hy
U
; ci, of y

U
such that hy

U
; ci qualitatively describes some splitting hftig; U i

of U . By Lemma 2, cMTL; yU j= �0. Since M is determined with respect to

the propositions in �, and cMTL; yU j= �0, we use Theorem 2 to conclude that
h�0; ci temporally describes hftig; U i via U;M .

The following corollary follows from the proof of Theorem 3.

Corollary 1 Let U be a solution to the structural abstraction of any ODE
which abstracts to the QDE, C. Suppose QSIM generates the closed tree M
from hC; Ii. Let � be a universal formula in CTL*. If cMTL; I j= (necessarily

�), then there is a rooted fullpath x 2 Xr and a speci�cation, hx; ci, of x
consistent with the information derived by QSIM on the fullpath x, such that
h�; ci temporally describes some splitting hftig; U i of U via

U;M
.

We include this corollary in the discussion because it provides more infor-
mation about the speci�cation c of the landmarks mentioned in the formula.
This tells us that the speci�cation must be the speci�cation of some fullpath in
cM which qualitatively describes the splitting of U .

The conclusion of the theorem states that the perfect path formula related to
the universal formula describes the solutions to the equations. Quanti�er nesting
is irrelevant, as far as the conclusions of this theorem are concerned. While there
are situations in which nested quanti�ers are useful, such as gaining insight into
some detail of the QSIM structure (see Section 6.2), these applications do not
rely on the main point of our theorems, i.e. the relation between the QSIM
prediction and the underlying dynamical system.

Therefore, if the user is using TL only for the purpose of proving that a
formula temporally describes the solutions to an ODE, then he or she may as
well enter a formula of the form (necessarily �) where � is a perfect path
formula.

5.3 Numeric Queries

The previous discussion is particularly relevant to queries involving numeric in-
formation. It has been mentioned that the numeric information which QSIM

26

derives about landmarks may vary across behaviors. QSIM keeps track of nu-
meric information with respect to QSIM behaviors, not with respect to states.
This fact makes a more speci�c form of Theorem 3 desirable.

To check a proposition involving numeric information (such as in-range)
we must know which fullpath the state being checked is in. Furthermore, that
fullpath must be associated with a particular QSIM behavior in M so that
numeric information can be retrieved with respect to that QSIM behavior. This
problem is solved by using the function z de�ned in Section 3.1.

The following corollary is simply a special case of Corollary 1 in which we
can also specify that the speci�cation is consistent with the numeric information
on some behavior of the QSIM tree.

Corollary 2 Let U be a solution to the structural abstraction of any ODE
which abstracts to the QDE, C. Suppose QSIM generates the closed tree M
from hC; Ii using strong-match and no cross-edge cycle detection. Let � be

a universal formula in CTL*. If cMTL; I j= (necessarily �), then there is
a rooted fullpath x 2 Xr and a speci�cation, hx; ci, of x consistent with the
information derived by QSIM on the behavior z(x), such that h�; ci temporally
describes some splitting hftig; U i of U via

U;M
.

The proof of this corollary is exactly the same as the proof of Theorem 3.
The di�erence is that since we speci�ed the type of cycle detection, we know
that the function z is de�ned and can use it to obtain numeric information.

5.4 Completeness Results

Suppose the user has generated a QSIM tree, M , from hC; Ii and has an inter-

esting CTL* perfect path formula �. We know that if cMTL; I j= (necessarily

�), then the solution to any ODE which abstracts to C is described by �.
But suppose cMTL; I j= (necessarily �) is false but the user wants to know
if there is some solution, U , to some ODE which abstracts to C, such that �
describes U . The user might test the formula (possibly �). If this formula is
modeled by the QSIM temporal structure then the user still cannot, in general,
conclude that there is a solution, U , to an ODE which abstracts to C, such that
� describes U . This is so becuase the QSIM temporal structure may have a
rooted fullpath which is \spurious", i.e. a fullpath which does not describe any
solution to any ODE which abstracts to C.

In this section, we provide some circumstances under which the user may
draw positive conclusions from a formula of the form (possibly �) where �
is a perfect path formula.

Suppose cM is a closed QSIM structure generated from a QDE and initial
state hC; Ii. We sometimes would like to know whether there is any ODE, F ,
which abstracts to C whose solution is described by some given perfect path
formula. In order to do this, the QSIM tree must be closed, determined with
respect to the propositions in � and satisfy the following completeness condition.

27

De�nition 5 We call a closed QSIM behavior tree, M , complete if for every
rooted fullpath, x in cM there is an ODE with structural abstraction, F 0, which
abstracts to the input QDE and a splitting of the solution to F 0 which is qual-
itatively described by some speci�cation of x.

In other words, a closed tree is complete if every rooted fullpath in cM de-
scribes some solution to an ODE which abstracts to C.

One way to check for the completeness of a tree is to prove, either math-
ematically or by numeric simulation, that there is a reasonable, extended real
valued solution corresponding to each fullpath in the structure represented by
the tree.

Under these conditions, the user is able to draw sound conclusions about the
solution so some (but not every) ODE which abstracts to the QDE as in the
scenario described above. Theorem 4 details this result.

Theorem 4 Suppose � is a perfect path formula in CTL*. Suppose M is
a closed, complete QSIM behavior tree generated from the QDE and initial
state hC; Ii and determined with respect to the propositions in �. If cMTL; s j=
(possibly �), then there is an ODE, F , whose structural abstraction, F 0, has
solution U and abstracts to C and there is a speci�cation of � which temporally
describes some splitting of U via

U;M
.

bf Proof: Let � be a perfect path formula in CTL*,M a closed, complete QSIM
behavior tree generated by the QDE and initial state hC; Ii. Suppose that M

is determined with respect to the propositions in � and cMTL; s j= (possibly

�).
We want to show that there is an ODE, F , whose structural abstraction,

F 0, has solution U and abstracts to C and there is a speci�cation h�; ci which
temporally describes a splitting of U via

U;M
.

We know from the semantics of CTL* that there is a fullpath x in cMTL

such that cMTL; x j= �. Because M is complete, we know that there is a set of
reasonable, extended real valued functions U = fui : 1 � i � ng such that U is
a solution to the structural abstraction of some ODE which abstracts to C and
hx; ci qualitatively describes a splitting of U for some speci�cation hx; ci of x.

Therefore, h�; ci temporally describes this �xed splitting of U via
U;M

by
Theorem 2.

6 Applications of CTL* and QSIM

TL is the name of a CTL* model-checker customized for use with QSIM. The
current implementation replaces the experimental versions described and used
in previous publications [15, 17]. The underlying model-checking algorithm is
that of Bhat, Cleaveland and Grumberg [3]. Bhat, Cleaveland and Grumberg

28

prove that this algorithm has the same complexity as the best known global
algorithms for both CTL* and CTL. Their algorithm has the added advantage
of being \on-the-
y" rather than \global"; i.e. it is possible for the algorithm to
halt with the correct answer without constructing the entire exponentially-large
structure required to check some formulas in CTL*.

Temporal reasoning may be useful any time QSIM is used. QSIM has been
used to simulate controllers, human organs and disease, abstract and real physi-
cal systems, electrical circuits, population dynamics, chemical reactions, etc. [16]

TL can be used to prove that a QSIM tree is closed with the following query

(TL R (necessarily

(eventually (or (status quiescent)

(status cycle)

(status transition)))))

where R is the root of the tree. (See Appendix A for an explanation of arguments
to the status proposition other than quiescent.)

TL automatically reports when an atomic proposition is checked on a state
in which that proposition is not determined.

6.1 Examples

First, we demonstrate the use of TL to ask and answer questions about some sim-
ple models: the undamped oscillator, whose behavior tree (Figure 2) is rooted
in the initial state SS; and the damped oscillator, whose behavior tree (Figure 4)
is rooted in the state DS.

Example 5 (Undamped Oscillator) The simple spring conserves energy, so
all behaviors end in cycles, as shown by the behavior tree in Figure 2. Therefore,
the closedness query would return T. The three behaviors di�er according to
whether the amplitude of the oscillation passes a prede�ned landmark value, X*.
The queries shown demonstrate that the solution to any ODE consistent with
the QDE in Figure 2 never becomes quiescent, always reaches a cycle state,
and necessarily has an in�nite sequence of events crossing x = 0 in opposite
directions. (Since the variable X can have only one qualitative value in a state,
the last two formulas below are equivalent.)

(TL SS (necessarily

(always (not (status quiescent)))))

=> T

(TL SS (necessarily (eventually (status cycle))))

=> T

(TL SS (necessarily (and (infinitely-often (qval X (0 inc)))

(infinitely-often (qval X (0 dec))))))

29

=> T

(TL SS (necessarily

(infinitely-often

(before (qval X (0 dec))

(qval X (0 inc))))))

=> T

Since the simple spring tree is closed and determined, we have shown that
every reasonable solution to an ODE which abstracts to the QDE in Figure 2
has a splitting which is temporally described by a speci�cation of the perfect
path formula associated with each of the formulas above.

The predicted tree is not complete, since behaviors that cycle through dif-
ferent branches are not possible. We could rewrite the QDE in various ways to
make the tree complete. Simply removing the extraneous landmark in X would
su�ce. This would produce a single behavior. Using the strong-match cycle
criterion would also produce a complete tree in this case. The next example
produces a complete tree.

Example 6 (Damped Oscillator) The damped spring loses energy. The �rst
behavior in the behavior tree in Figure 4 ends in a cycle representing a decreas-
ing oscillation. The second two are partial cycles followed by \nodal" (i.e. over-
or critically-damped) convergence to a quiescent state at the origin. These qual-
itative behaviors have speci�cations which qualitatively describe real trajecto-
ries of nonlinear instances of the QDE. Since weak-match cycles were detected,
this �nite behavior tree represents a structure with in�nitely many rooted full-
paths, oscillating a �nite number of half-cycles around the origin before \nodal"
convergence and a single rooted fullpath which never becomes quiescent. TL
determines that each of the universal questions asked about the simple spring
behavior tree above is false of the damped spring, but the corresponding exis-
tential statements are true.

(TL DS (possibly (always (not (status quiescent)))))

=> T

(TL DS (possibly (eventually (status cycle))))

=> T

(TL DS (possibly (eventually (status quiescent))))

=> T

(TL DS (possibly (and (infinitely-often (qval x (0 inc)))

(infinitely-often (qval x (0 dec))))))

=> T

(TL DS (possibly

30

Figure 4: QSIM input and output for damped spring

�x+ g(_x) + f(x) = 0

where f and g are in M+(x).

(define-QDE DSpring-for-TL

(quantity-spaces

(x (minf 0 inf) "Position")

(v (minf 0 inf) "Velocity")

(a (minf 0 inf) "Acceleration")

(ff (minf 0 inf) "Fluid friction")

(fs (minf 0 inf) "Spring force"))

(constraints

((d/dt x v))

((d/dt v a))

((m- x fs) (0 0) (minf inf) (inf minf))

((m- v ff) (0 0) (minf inf) (inf minf))

((add fs ff a))))

(defun dspring-envisionment ()

(setq DS (make-new-state

:from-qde DSpring-for-TL

:sim (make-sim :no-new-landmarks '(x v a ff fs)

:ignore-qdirs '(a)

:cycle-detection :weak

:state-limit 200)

:assert-values '((x (0 nil)) (v ((0 inf) nil)))))

(qsim DS)

(qsim-display DS))

↑
...

..↑.....°.....↓.....↓.....↓.....
↓.....↓.....°.....↑.....↑.....↑...

..°

INF

0

MINF

T0 T1 T2 T3 T4 T5 T6

Position

↓.....↓.....
↓.....↓.....°.....↑.....↑.....↑...

..↑
...

..↑.....°.....↓.....
°

INF

0

MINF

T0 T1 T2 T3 T4 T5 T6

Velocity

..........*.....*.
...

.*.
...

.*.....*.....*.....*.....*.....*.....*.
...

.*

INF

0

MINF

T0 T1 T2 T3 T4 T5 T6

Accelleration

The �rst behavior in the tree ends in a cycle state which matches the root.
The di�erence between the second two states is the direction from which
they approach quiescence. The second behavior is shown.

31

(infinitely-often

(before (qval x (0 dec))

(qval x (0 inc))))))

=> T

(TL DS (necessarily

(always (possibly (eventually (status quiescent))))))

=> T

(TL DS (necessarily

(always (implies (not (status quiescent))

(possibly (always (not (status quiescent))))))))

=> T

The damped spring structure is complete, since there are nonlinear choices
for the two monotonic functions in the model that give \spiral in" behavior
away from the origin, followed by \nodal" behavior close to the origin. If both
monotonic functions are linear, of course, the only possibilities are pure \nodal"
and pure \spiral in" behavior. Therefore, we have proved that for each of the
�rst �ve formulas above, there is a set of functions which is a solution to an
ODE which abstracts to the QDE given in Figure 4 and is temporally described
via

U;M
by a speci�cation of the perfect path formula corresponding to the

CTL* formula.
The last two formulas say that, no matter how many oscillations you've seen

so far, it is always possible that (a) the behavior could terminate with nodal
convergence to a quiescent state, and (b) the behavior could go on oscillating
forever. Since the last two formulas are not universal, Theorem 3 gives no
information. These two formulas are used for the purpose of discovering features
of the QSIM structure, cM , and not for proving properties of dynamical systems.

Example 7 (A Quantitative Example) Now we reconsider the billiards ex-
ample in order to show the use of quantitative information in QSIM QDEs and
the resulting proofs that TL provides for time-critical systems. Refer to Figure 1
and the description of the system given in Section 3.1.

With only qualitative information about the balls' positions and speeds,
QSIM gives a closed tree with 55 di�erent behaviors, representing the di�erent
orders in which balls can collide, pass each other's positions, or reach in�nity.
With complete quantitative information, specifying identical speeds of 2 position
units per second (in the indicated directions), QSIM predicts a single behavior
in which balls B and C collide at t = 0:5 seconds. With the information provided,
QSIM produces a tree with three behaviors.

The queries given below were checked on the tree with the information de-
scribed in Section 5.3|A and B have velocity �2 units/second, and the velocity,
Cxp, of C is some constant within the interval [�3:5;�1:5] in units/second.

Because the predicted tree of behaviors is complete, we can draw conclusions
from the answers to each of the following queries.

32

(TL SS (necessarily

(always (implies (and (in-range dxBC (0 0))

(in-range dyBC (0 0)))

(in-range time (.5 .5))))))

=> T

(TL SS (possibly

(eventually (and (in-range dxBC (0 0))

(in-range dyBC (0 0))

(in-range time (.5 .5))))))

=> T

(TL SS (necessarily

(always (not (and (in-range dxAC (0 0))

(in-range dyAC (0 0)))))))

=> T

The �rst TL query proves that in the solution to any ODE which abstracts
to the QDE if B and C collide then it happens at time 0.5. The second query
proves (by Theorem 4) that there is a solution to an ODE consistent with the
given QDE in which B and C do collide at time 0.5. The third query shows that
A and C cannot collide in any ODE consistent with the given QDE. This is so
because B blocks C in the behavior in which C might hit A.

6.2 TL as a Debugging Tool for QSIM Models

Because QSIM is not complete in general, a QSIM behavior tree may contain
paths which do not correspond to real behaviors. Therefore, the truth of certain
CTL* statements (e.g. those beginning with the quanti�er possibly), do not
imply the truth of the corresponding statement in an actual behavior. This
provides an opportunity for a tool such as TL to be used to �nd such paths. If
the QSIM user knows that a certain sequence of events cannot occur in a real
behavior, he can use TL to �nd out if that sequence of events occurs in any of
the paths in the QSIM behavior tree. The user can have TL print information
which will isolate the path on which the spurious behavior occurs. Also, as in
the damped spring example, nested quanti�ers can be used to gain insight into
some interesting structures of the represented QSIM structure.

The program can be and has been used on terminals which do not support
the graphical display of QSIM behavior trees. In these circumstances, the user
can learn everything he or she may need to know about a QSIM behavior tree
by evaluating a few carefully chosen CTL* statements.

6.3 Proving Properties of Controllers

Kuipers & �Astr�om [15] have used TL and QSIM to prove properties of heteroge-
neous control laws. A heterogeneous controller is a nonlinear controller created

33

by the composition of local control laws appropriate to di�erent, possibly over-
lapping, operating regions. Such a controller can be created in the presence
of incomplete knowledge of the structure of the system, the boundaries of the
operating regions, or even the control action to take. A heterogeneous control
law can be analyzed, even in the presence of incomplete knowledge, by repre-
senting it as a qualitative di�erential equation and using qualitative simulation
to predict the set of possible behaviors of the system. By expressing the desired
guarantee as a statement in CTL*, the validity of the guarantee can be auto-
matically checked against the set of possible behaviors. Kuipers & �Astr�om [15]
demonstrate the design of heterogeneous controllers, and prove certain useful
properties, �rst for a simple level controller for a water tank, and second for a
highly nonlinear chemical reactor.

Evi Gazi and Lyle Ungar also use TL to prove properties of models of chem-
ical reaction controllers [10, 9].

There are three programs|Q2 [14], Q3 [2] and NSIM [12]|which extend
QSIM to take advantage of numeric information, to prune spurious behaviors
and to derive numeric bounds on landmark values and time-points. The program
TL is easily applied to the behavior trees output by these QSIM extensions
which use quantitative bounding information and produce quantitative bounds
on the predictions. For these applications we use the propositional part of the
language with the numeric propositions to include numerical information in the
state propositions. These propositions allow TL to prove time-critical properties
of models of a system, even in the face of incomplete knowledge.

6.4 TeQSIM: Temporal Constraints on Simulation

In this paper, we use temporal logic formulas to check the output of QSIM.
Brajnik and Clancy [5, 6, 4] extend the interaction between qualitative sim-
ulation and model-checking to treat temporal logic statements as an input.
TeQSIM (pronounced tek'sim) interleaves model-checking with QSIM's simu-
lation agenda, allowing simulation only of branches that can satisfy the given
temporal logic formula. This makes it possible to focus simulation on a partic-
ular portion of the state space, which is useful for large, complex models that
might not otherwise be tractable. It also allows the user to specify exogenous
inputs, discontinuous changes, the results of observations, and various other
types of boundary conditions. One can use temporally guided simulation to ex-
plore critical portions of a large state space to discover, for example, constraints
on an exogenous variable required for a plan to succeed, followed by unguided
simulation of a model incorporating the new constraints to derive a performance
guarantee. Brajnik and Clancy [5, 6] demonstrate TeQSIM on a realistic control
and planning problem from the domain of water supply management.

34

7 Relation to other Work

The results described in this paper are related to other work done in the �elds
of temporal-logic model-checking and simulation and control.

Probably the most work in temporal-logic model-checking has been done
in applications of CTL and CTL* to computer processes such as parallel com-
puting [8, 18]. More closely related work has been done by Moon, et al [19]
who checked statements in CTL against state transition graphs in discrete-time
systems generated from programmable logic controller ladder diagrams. Their
speci�c application was to chemical process control. TL makes it possible to ap-
ply a more complex temporal logic (CTL*) to continuous-time control systems,
and indeed to dynamical systems in general.

Alur and Henzinger [1] use a logic called Metric Temporal Logic (MTL) to
check properties of discrete event systems. Metric Temporal Logic is, strictly
speaking, not as expressive as CTL*. However, it integrates time information
at a higher level of the language, therefore it is easy to express some statements
in MTL which are di�cult to express in CTL*.

Jahanian [11] modeled real time systems in the Modechart language. State-
ments in Real Time Logic were checked against a Modechart model. Real Time
Logic is undecidable in general but certain classes of statements are shown to
be decidable. Model-checking CTL* is decidable [8]. However, Real Time Logic
is especially suited for expressing statements which are useful in time-critical
systems, whereas some such statements are more di�cult to make in CTL*.

Other systems exist which allow temporal-logic sentences to be checked
against a structure representing discrete event systems. TL makes a formal
connection between continuous dynamical systems and time-critical temporal-
logic model-checking.

8 Conclusion

TL implements a method for using modal- and temporal-logic formulas to prove
properties of the behavior of a continuous physical system even with an incom-
plete, qualitative or semi-quantitative description. If the user can describe a
physical system in terms of a set of qualitative constraints, then by using QSIM
and TL, he or she can prove theorems about the behavior of any reasonable,
extended real valued function consistent with those constraints. This applies
even to systems with time-critical requirements. This provides a meaningful
and sound interpretation for the phrase, \proof by simulation."

This link between logic-based and simulation-based inference methods will
support a variety of hybrid reasoning techniques that could be of substantial
value for the design and validation of continuous and piecewise-continuous sys-
tems.

35

A Extensions to the Propositional Language

The implementation, TL, of the language includes other propositions, some of
which we describe in this appendix. In most cases, the added propositions are
useful only to describe the predicted QSIM structure, and not to prove theorems
about the underlying dynamical systems. Some of them can be included in
the proof of the theorems but this inclusion would require distracting special
treatment. This appendix discusses issues involved in adding new propositions
to the language.

First we mention the \proposition" of the form (funcall f) where f is a
lisp function. This returns the value returned by the lisp function called with
the state as its single argument. This is used mainly for side e�ects such as
printing information about a state. Note that the proposition funcall cannot
be considered as part of the logic when we talk about complexity, soundness or
the main theorems. It is added for user-extensions and convenience and should
be used with care.

The next proposition we mention illustrates the major issues involved in
adding a proposition to the language. The syntax is:

(contains-range v (n1 n2))

where v is a variable name in the state s and n1 and n2 are extended real
numbers. This proposition is true when the numeric range, in which the number
named by v in the current behavior has been determined to lie, contains the
interval [n1; n2] as a subset.

If the theorems in the paper are going to be applied to a new proposition,
then we must be able to include it in the proof of Lemma 4 in such a way that
the induction step in the proof of Theorem 2 can be performed. Therefore,
we must de�ne what it means for a speci�cation of this proposition to describe
temporally a splitting of a set of reasonable, extended real valued functions and
determine what is required for a state to be determined with respect to the
proposition. Once Lemma 4 and Theorem 2 are proved for the proposition, the
rest of the theorems will follow.

We say that a speci�cation of the proposition

(contains-range (ui) (n1 n2))

temporally describes hftig; fui : 1 � i � ngi via if and only if [n1; n2] � ui(D0)
where fDkg is the partition of the domain corresponding to the splitting.

The reader might want to try to prove Lemma 4 and Theorem 2 at this point
in order to see the problem which now arises. Without a strict de�nition of what
it means for a state to be determined with respect to this new proposition,
the proof does not go through. In fact, Theorem 2 is false without such a
de�nition. Since the set U of functions is �xed, we cannot prove that the

36

0 1 2 minf

0

a

b

inf

[0; 0]

[1=2; 2]

[2; 8]

	
"

"
"

"

Figure 5: Qualitative behavior with quantitative landmarks bounds.

subrange [n1; n2] speci�ed in the proposition contains the value of the speci�c
function ui. I.e. it is possible that a fullpath x describes a set of functions and a
path formula containing the contains-range proposition be modeled by x but
the path formula may not describe the set of functions.

Consider the following as a counterexample. Suppose that the variable V in
the QDE has real-valued function solutions u(x) = rx2 for r 2 [1=2; 2] due to
the constraints and numeric information provided by the user. Further, suppose
that V has the quantity space (minf 0 a b inf) where the real value named
by the landmark a is known to fall within the interval [1=2; 2] and the real value
named by the landmark b is known to fall in the interval [2; 8] on the behavior
in Figure 5. Suppose that, in a certain path (Figure 5), at time t = 0 we have
(qval V (0 std)), for time t 2 (0; 1) we have (qval V ((0 a) inc)), at time
t = 1 we have (qval V (a inc)), for time t 2 (1; 2) we have (qval V ((a b)

inc)) and at t = 2 we have (qval V (b inc)). The following formulas will be
true on this fullpath yet they describe functions which are not real solutions to
the QDE:

(eventually

(and (contains-range V (1/2 1/2))

(strong-next (strong-next (contains-range V (8 8))))))

(eventually

(and (contains-range V (2 2))

(strong-next (strong-next (contains-range V (2 2))))))

These path formulas describe real-valued functions which cut across the ranges
in a way which an actual solution to the QDE could not do. In this case, the
use of nontrivial range information and the contains-range proposition, can
combine to describe a function which is spurious.

In order for Lemma 4 and Theorem 2 to hold in general, for a QSIM state

37

to be determined with respect to (contains-range v (n1 n2)), the numeric
range associated with a landmark of the variable v in the state must be trivial
(i.e. contain a single point).

Other propositions such as intersects-range might be useful to the TL
user. However, because of the strict condition required for determinedness,
such propositions are intended to be used more for gaining information about
the QSIM prediction than proving theorems about continuous systems. The
exception, of course, is in the case that there is such complete information that
programs such as Q2 are able to narrow the possible values associated with
a landmark to a single real number. In this case, contains-range and other
similar propositions may be used to prove theorems about continuous systems
but they become equivalent to the in-range proposition.

Finally, we mention that the status proposition can take any of the argu-
ments fquiescent, stable, unstable, transition, cycleg. The proposition
will be true when QSIM has determined the state to have the named property.
A state has the stable property if it is quiescent and in stable equilibrium. A
transition state is a terminal state in a path in which the value of one of the
variables crosses a boundary of its range. A cycle state is a state which matches
a previously generated state and whose successors are already represented in
the tree. Other than quiescent, stable and unstable these properties have
more to do with the QSIM interface than with the underlying functions being
described. That is the reason we did not include a discussion of these properties
in the discussion of the logic.

We de�ne a QSIM state to be determined with respect to the propositions
(status stable) and (status unstable) if it is not quiescent or if it has
been determined to be stable. This is because QSIM may be incorrect when it
determines a quiescent state to be unstable.

Additional propositional operators can also be added to allow the user to
gain other information about QSIM states. For example, the newest release of
QSIM produces \chatter-sink" states in order to express more succinctly the fact
that certain variables may chatter inde�nitely or, at some point, stop chattering.
So, we could add the proposition chatter-sink-p to the language such that it
is true of a state if and only if the state is a chatter-sink state. In this case, the
proposition has no real meaning when translated to the domain of real-valued
functions. Therefore, once again, it is used mainly to draw information about
QSIM's output.

B Re�ned De�nition of a Reasonable Function

In this appendix, we use R to denote the reals and R� to denote the extended
reals.

The traditional de�nition of a reasonable function [16] is too restrictive for
our current purposes. Giving a satisfactory de�nition of reasonable is not simple.

38

We would like to let functions such as sine on [a;1) and tangent on [��=2; �=2]
to be reasonable. On the other hand, we do not want to allow functions to
be reasonable which cannot be simulated by QSIM. Finding a balance between
including functions which QSIM does simulate and excluding functions which
make simulation impossible is an area open to further investigation. The de�ni-
tion must be such that the QSIM algorithm simulates every reasonable solution
to any ODE which abstracts to the input. However, we want it to be inclusive
enough to cover interesting functions.

The following questions come up in this context. Should we allow in�nite
derivatives at points in R? Should we allow the limits of f 0 not to exist at �1?
Should we allow in�nitely many critical points in R? Is there a concise way of
expressing the de�nition which gives us the best of both worlds?

The de�nition we o�er here is adequate for the purposes of this paper. This
de�nition is more inclusive than the traditional one [16], but more inclusive
de�nitions are possible.

De�nition 6 Suppose A is an interval in R� with supremum b and in�mum a.
f : A! R� is a reasonable function over A if

1. f is continuous on A,

2. f is continuously di�erentiable on (a; b) with derivative f 0,

3. f has only �nitely many critical points in any bounded interval of R \ A
and

4. if a 2 R then limt!a+ f
0(t) exists in R� and if b 2 R then limt!b� f

0(t)
exists in R�.

According to this de�nition, sine is reasonable on any interval [a;1) for
a 2 R, but not over [a;1]. Tangent is reasonable over [��=2;+�=2], but
sin(1=x) and x sin(1=x) are not reasonable over (0; a) for 0 < a <1.

C Proofs

Proof of Lemma 1. We want to show that if � is a universal formula and x
is a fullpath in M such that M;x j= �, then M;x j= �0.

Without loss of generality, we assume that � is in positive normal form. The
proof of the lemma is by induction on the length of �.

Since atomic propositions are perfect, � = �0 and hence M;x j= � if and
only if M;x j= �0. This justi�es the base case.

Suppose that every universal formula of length less than k makes the theorem
true and that � has length k.

If � = (necessarily p), then for every fullpath y starting at the �rst state
in x,M; y j= p. Therefore, by induction, for every fullpath y starting at the �rst
state in x, M; y j= p0. In particular, M;x j= p0 and hence M;x j= �0.

39

If � = (and p1 � � �pn), then M;x j= pi for each i; 1 � i � n. We need to
show that, M;x j= p0i for each i. This follows by induction. Thus, M;x j= �0.

If � = (or p1 � � �pn), thenM; s j= pi for some i; 1 � i � n. We need to show
that, M;x j= p0i for some i. This follows by induction. Therefore, M;x j= �0.

If � = (not p), then � is an atomic proposition since � is in positive normal
form and so p = p0.

If � = (until p q), then there is a nonnegative integer i < �(x) (we
choose the smallest) such that M;xi j= q and for every nonnegative integer
j < i, M;xj j= p. Therefore, M;xi j= q0 and for every nonnegative integer
j < i, M;xj j= p0 by induction. Therefore, M;x j= (until p0 q0).

If � = (releases p q), then for every nonnegative integer i < �(x) such
that M;xi 6j= q there is a nonnegative integer j < i such that M;xj j= p.

First suppose that for every nonnegative integer i < �(x), M;xi j= q. Then
M;xi j= q0 for every nonnegative integer i < �(x) by induction. Therefore,
M;x j= �0.

Now suppose that there is a nonnegative integer i < �(x) such that M;x 6j=
q. We select i to be the smallest such nonnegative integer. Thus, there is
a nonnegative integer j < i such that M;xj j= p. For all such j we also
have M;xj j= p0 by induction. For every nonnegative integer k < i, we have
M;xk j= q by the choice of i and so M;xk j= q0 by induction. Therefore, we
get that for every nonnegative integer l < �(x) such that M;xl 6j= q0 there is
a nonnegative integer j < l such that M;xj j= p0. That is to say, M;x j=
(releases p0 q0).

If � = (next p), then if �(x) > 0 then M;x1 j= p and we are done by
induction. If �(x) = 0 then M;x j= (next p0) as well.

If � = (strong-next p), then �(x) > 0 and M;x1 j= p so we are done by
induction.

Proof of Theorem 2. Suppose x is a fullpath in a QSIM structure cM which is
determined with respect to all of the propositions in �, a perfect path formula,
and cMTL; x j= �. If the speci�cation hx; ci of x qualitatively describes hftig; U i
then we show that h�; ci temporally describes hftig; U i via U;M .

Without loss of generality, we assume that � is in positive normal form.
Suppose that x is a fullpath in a QSIM structure cM which is determined with
respect to all of the propositions in �, a perfect path formula in positive normal
form, and cMTL; x j= �. We will apply induction on the length, k, of �. In the
base case, � is an atomic proposition. This case follows from Lemma 4.

Our induction hypothesis says that for any fullpath y in a QSIM structure
such that cMTL; y j= 	 where 	 is a perfect path formula in positive normal form
of length less than k andM is determined with respect to every proposition in 	,
then if hy; ci qualitatively describes a splitting hfrig; V i then h	; ci temporally
describes hfrig; V i via U;M .

If � = (and p1 � � �pm), then we must show that if hpj; ci temporally de-

scribes hftig; U i via U;M for each j; 1 � j � m then cMTL; x j= pj for each

40

j; 1 � j � m. This follows by the induction hypothesis.
If � = (or p1 � � �pm), then we must show that if hpj ; ci temporally describes

hftig; U i via U;M for some j; 1 � j � m then cMTL; x j= pj for some j; 1 � j �
m. Again, this follows by induction.

If � = (not p), then we must show that if hp; ci does not temporally de-

scribe hftig; U i via U;M then cMTL; x 6j= p. Since, by the de�nition of positive
normal form, p must be an atomic proposition, this follows from the induction
hypothesis and Lemma 4.

If � = (until p q), then we must show that if hx; ci qualitatively describes
hftig; U i, then h�; ci temporally describes hftig; U i via U;M . By the semantics
of until we know that there is a nonnegative integer h < �(x) such that
cMTL; x

h j= q and for every nonnegative integer l < h;cMTL; x
l j= p. Since

hx; ci qualitatively describes hftig; U i, hxh; ci qualitatively describes hfti : dh �
ig; U j

h+
i by Lemma 3. Thus hq; ci temporally describes hfti : dh � ig; U j

h+
i

via
U;M

by induction. For every nonnegative integer l < h, hxl; ci qualitatively
describes hfti : dl � ig; U j

l+
i by Lemma 3. Thus hp; ci temporally describes

hfti : dl � ig; U j
l+
i via

U;M
by induction. So h�; ci temporally describes

hftig; U i via U;M .
If � = (releases p q), then we must show that if hx; ci qualitatively

describes hftig; U i then h�; ci temporally describes hftig; U i via U;M . Since
cMTL; x j= � we know that for every nonnegative integer h < �(x) such that
cMTL; x

h 6j= q there is a nonnegative integer l < h such that cMTL; x
l j= p.

First suppose that cMTL; x
h j= q for every nonnegative integer h < �(x). We

know that hxh; ci qualitatively describes hfti : dh � ig; U j
h+
i for every non-

negative integer h < �(x) by Lemma 3. Therefore, hq; ci temporally describes
hfti : dh � ig; U j

h+
i via

U;M
for every nonnegative integer h < �(x) by induc-

tion and so hx; ci qualitatively describes hftig; U i.

Now suppose that there is a nonnegative integer h < �(x) such that cMTL; x
h 6j=

q and it is the smallest such h. There is a nonnegative integer l < h such that
cMTL; x

l j= p. For every nonnegative integer j < h;cMTL; x
j j= q and since

hxj; ci qualitatively describes hfti : dj � ig; U j
j+
i, hq; ci temporally describes

hfti : dj � ig; U j
j+
i via

U;M
by induction. For one of these j;cMTL; x

j j= p
and hence hp; ci temporally describes hfti : dj � ig; U j

j+
i via

U;M
by induc-

tion. So we have that if there is a nonnegative integer h < �(x) such that
cMTL; x

h 6j= q, there is a nonnegative integer j < h such that hp; ci tempo-
rally describes hfti : dj � ig; U j

j+
i via

U;M
and for every nonnegative integer

l � j; hq; ci temporally describes hfti : dl � ig; U j
l+
i via

U;M
. Therefore, h�; ci

temporally describes hftig; U i via U;M .
If � = (next p), then we must show that if 0 = 2J or hp; ci temporally

describes hfti : d1 � ig; U j
1+
i via

U;M
then �(x) = 1 or hx1; ci qualitatively de-

scribes hfti : d1 � ig; U j
1+
i. This follows by induction and the use of Lemma 3.

If � = (strong-next p), then we must show that if 0 < 2J and hp; ci

41

temporally describes hfti : d1 � ig; U j
1+
i via

U;M
then �(x) > 1 and hx1; ci

qualitatively describes hfti : d1 � ig; U j
1+
i. Once again, this follows from the

induction hypothesis and Lemma 3.

Acknowledgments

QSIM and TL are available for anonymous ftp at ftp.cs.utexas.edu in the di-
rectory /pub/qsim. These and other results of the Qualitative Reasoning Group
are accessible by World-Wide Web via http://www.cs.utexas.edu/users/qr.

This report was prepared by the University of Texas at Austin as an ac-
count of work sponsored in part by the National Science Foundation (grant
IRI-9216584) and by the Electric Power Research Institute, Inc. (EPRI) (grant
RP8030-21). Neither EPRI, members of EPRI, the University of Texas at
Austin, nor any person acting on their behalf: (a) makes any warranty, express
or implied, with respect to the use of any information, apparatus, method, or
process disclosed in this report or that such use may not infringe privately owned
rights; or (b) assumes any liabilities with respect to the use of, or for damages
resulting from the use of, any information, apparatus, method, or process dis-
closed in this report.

We would like to thank Bhat, Grumberg and Cleaveland for their excellent
article [3] and Rance Cleaveland for answering our questions about their algo-
rithm. A di�cult task in writing a paper which is intended for audiences in
two somewhat disjoint disciplines, such as Qualitative Reasoning and Temporal
Logic, is to use language which is comfortable to readers in both �elds. We
are grateful for helpful comments and suggestions from Markus Kaltenbach,
Richard Tre
er, Dan Clancy, Bert Kay, Giorgio Brajnik, Michael Hofbaur, and
two anonymous reviewers.

References

[1] R. Alur and T. Henzinger. Real-time logics: conplexity and expressiveness.
Information and Computation, 104(1):35{77, 1993.

[2] Daniel Berleant and Benjamin Kuipers. Combined qualitative and numer-
ical simulation with Q3. In Boi Faltings and Peter Struss, editors, Recent
Advances in Qualitative Physics. MIT Press, Cambridge, MA, 1992.

[3] Girish Bhat, Rance Cleaveland, and Orna Grumberg. E�cient on-the-
y
model checking for CTL�. In Proc. Conf. on Logic in Computer Science
(LICS-95), 1995.

[4] Giorgio Brajnik and Daniel J. Clancy. Guiding and re�ning simulation
using temporal logic. In Third International Workshop on Temporal Rep-
resentation and Reasoning (TIME'96), Florida, 1996.

42

[5] Giorgio Brajnik and Daniel J. Clancy. Temporal constraints on trajectories
in qualitative simulation. In Proc. 10th Int. Workshop on Qualitative Rea-
soning About Physical Systems, Fallen Leaf Lake, California, USA, 1996.

[6] Giorgio Brajnik and Daniel J. Clancy. Temporal constraints on trajectories
in qualitative simulation. In Proc. 13th National Conf. on Arti�cial Intel-
ligence (AAAI-96), Cambridge, MA, 1996. AAAI Press/The MIT Press.

[7] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic veri�cation of
�nite-state concurrent systems using temporal logic speci�cations. ACM
Transactions on Programming Languages and Systems, 8(2):244{263, Au-
gust 1986.

[8] E. Allen Emerson. Temporal and modal logic. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, pages 995{1072. Elsevier
Science Pub. B. V./MIT Press, 1990.

[9] E. Gazi, L. H. Ungar, and B. J. Kuipers. Temporal logic for summariz-
ing monte-carlo simulation: an application to controller veri�cation. In
R. Shoureshi, editor, Intelligent Control. IEEE, 1996. (submitted).

[10] E. Gazi, L. H. Ungar, W. D. Seider, and B.J. Kuipers. Automatic analysis
of monte-carlo simulations of dynamic chemical plants. In Proceedings of the
European Symposium on Computer Aided Process Engineering (ESCAPE
6). Pergamon Press, 1996. (in press).

[11] Farnam Jahanian and Douglas A. Stewart. A method for verifying prop-
erties of Modechart speci�cations. In Proceedings of the Real-time Systems
Symposium, Huntsville, AL, December 1988.

[12] Herbert Kay and Benjamin Kuipers. Numerical behavior envelopes for
qualitative models. In Proc. 11th National Conf. on Arti�cial Intelligence,
pages 606{613, Cambridge, MA, 1993. AAAI/MIT Press.

[13] B. Kuipers. Qualitative simulation. Arti�cial Intelligence, 29:289{338,
1986.

[14] B. Kuipers and D. Berleant. Using incomplete quantitative knowledge in
qualitative reasoning. Proc. 7th National Conf. on Arti�cial Intelligence
(AAAI-88), 1988.

[15] B. J. Kuipers and K. �Astr�om. The composition and validation of hetero-
geneous control laws. Automatica, 30(2):233{249, 1994.

[16] Benjamin Kuipers. Qualitative Reasoning: Modeling and Simulation with
Incomplete Knowledge. MIT Press, Cambridge, MA, 1994.

43

[17] Benjamin Kuipers and Benjamin Shults. Reasoning in logic about continu-
ous systems. In J. Doyle, E. Sandewall, and P. Torasso, editors, Principles
of Knowledge Representation and Reasoning: Proceedings of the Fourth In-
ternational Conference (KR-94), San Mateo, CA, 1994.Morgan Kaufmann.

[18] O. Lichtenstein and A. Pnueli. Checking that �nite state concurrent pro-
grams satisfy thir linear speci�cations. In Twelfth Annual ACM Symposium
on Principles of Programming Languages, pages 97{107, 1984.

[19] I. Moon, G. J. Powers, J. R. Burch, and E. M. Clarke. Automatic veri�-
cation of sequential control systems using temporal logic. AIChE Journal,
38(1):67{75, 1992.

[20] Manny Rayner. On the applicability of nonmonotonic logic to formal rea-
soning in continuous time. Arti�cial Intelligence, 49:345{360, 1991.

44

