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ABSTRACT
Entity resolution (ER) identifies database records that refer to the
same real world entity. In practice, ER is not a one-time process,
but is constantly improved as the data, schema and application are
better understood. We address the problem of keeping the ER re-
sult up-to-date when the ER logic “evolves” frequently. A naı̈ve
approach that re-runs ER from scratch may not be tolerable for re-
solving large datasets. This paper investigates when and how we
can instead exploit previous “materialized” ER results to save re-
dundant work with evolved logic. We introduce algorithm proper-
ties that facilitate evolution, and we propose efficient rule evolution
techniques for two clustering ER models: match-based clustering
and distance-based clustering. Using real data sets, we illustrate
the cost of materializations and the potential gains over the naı̈ve
approach.

1. INTRODUCTION
Entity resolution [7, 21, 13] (also known as record linkage or

deduplication) is the process of identifying records that represent
the same real-world entity. For example, two companies that merge
may want to combine their customer records. In such a case, the
same customer may be represented by multiple records, so these
matching records must be identified and combined (into what we
will call a cluster). This ER process is often extremely expensive
due to very large data sets and complex logic that decides when
records represent the same entity.

In practice, an entity resolution (ER) result is not produced once,
but is constantly improved based on better understandings of the
data, the schema, and the logic that examines and compares records.
In particular, here we focus on changes to the logic that compares
two records. We call this logic the rule, and it can be a Boolean
function that determines if two records represent the same entity,
or a distance function that quantifies how different (or similar) the
records are. Initially we start with a set of records S, then produce
a first ER result E1 based on S and a rule B1. Some time later rule
B1 is improved yielding rule B2, so we need to compute a new ER
result E2 based on S and B2. The process continues with new rules
B3, B4 and so on.
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Record Name Zip Phone
r1 John 54321 123-4567
r2 John 54321 987-6543
r3 John 11111 987-6543
r4 Bob null 121-1212

Figure 1: Records to resolve

Comparison Rule Definition
B1 pname

B2 pname ∧ pzip

B3 pname ∧ pphone

Figure 2: Evolving from rule B1 to rule B2

A naı̈ve approach would compute each new ER result from scratch,
starting from S, a potentially very expensive proposition. Instead,
in this paper we explore an incremental approach, where for exam-
ple we compute E2 based on E1. Of course for this approach to
work, we need to understand how the new rule B2 relates to the old
one B1, so we can understand what changes incrementally in E1

to obtain E2. As we will see, our incremental approach may yield
large savings over the naı̈ve approach, but not in all cases.

To motivate and explain our approach, consider the following
example. Our initial set of people records S is shown in Fig-
ure 1. The first rule B1 (see Figure 2) says that two records match
(represent the same real world entity) if predicate pname evalu-
ates to true. Predicates can in general be quite complex, but for
this example assume that predicates simply perform an equality
check. The ER algorithm calls on B1 to compare records and
groups together records with name “John”, producing the result
{{r1, r2, r3}, {r4}}. (As we will see, there are different types of
ER algorithms, but in this simple case most would return this same
result.)

Next, say users are not satisfied with this result, so a data ad-
ministrator decides to refine B1 by adding a predicate that checks
zip codes. Thus, the new rule is B2 shown in Figure 2. The naı̈ve
option is to run the same ER algorithm with rule B2 on set S to
obtain the partition {{r1, r2}, {r3}, {r4}}. (Only records r1 and
r2 have the same name and same zip code.) This process repeats
much unnecessary work: For instance, we would need to compare
r1 with r4 to see if they match on name and zip code, but we al-
ready know from the first run that they do not match on name (B1),
so they cannot match under B2.

Because the new rule B2 is stricter than B1 (we define this term
precisely later on), we can actually start the second ER from the
first result {{r1, r2, r3}, {r4}}. That is, we only need to check
each cluster separately and see if it needs to split. In our exam-
ple, we find that r3 does not match the other records in its cluster,
so we arrive at {{r1, r2}, {r3}, {r4}}. This approach only works
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if the ER algorithm satisfies certain properties and B2 is stricter
than B1. If B2 is not stricter and the ER algorithm satisfies differ-
ent properties, there are other incremental techniques we can apply.
Our long-term goal in this paper is to explore these options: Under
what conditions and for what ER algorithms are incremental ap-
proaches feasible? And in what scenarios are the savings over the
naı̈ve approach significant?

In addition, we study a complementary technique: materialize
auxiliary results during one ER run, in order to improve the perfor-
mance of future ER runs. To illustrate, say that when we process
B2 = pname ∧ pzip, we concurrently produce the results for each
predicate individually. That is, we compute three separate parti-
tions, one for the full B2, one for rule pname and one for rule pzip.
The result for pname is the same {{r1, r2, r3}, {r4}} seen ear-
lier. For pzip it is {{r1, r2}, {r3}, {r4}}. As we will see later,
the cost of computing the two extra materializations can be signifi-
cantly lower than running the ER algorithm three times, as a lot of
the work can be shared among the runs.

The materializations pay off when rule B2 evolves into a related
rule that is not quite stricter. For example, say that B2 evolves into
B3 = pname ∧ pphone, where pphone checks for matching phone
numbers. In this case, B3 is not stricter than B2 so we cannot start
from the B2 result. However, we can start from the pname result,
since B3 is stricter than pname. Thus, we independently examine
each cluster in {{r1, r2, r3}, {r4}}, splitting the first cluster be-
cause r2 has a different phone number. The final result is {{r1, r3},
{r2}, {r4}}. Clearly, materialization of partial results may or may
not pay off, just like materialized views and indexes may or may
not help. Our long-term objective here is, again, to study when is
materialization feasible and to show scenarios where it can pay off.

In summary, our contributions in this paper are as follows:
• We formalize rule evolution for two general types of record

comparison rules: Boolean match functions and distance-based
functions. We identify two desirable properties of ER algo-
rithms (rule monotonic and context free) that enable efficient
rule evolution. We also contrast these properties to two prop-
erties mentioned in the literature (order independent and incre-
mental). We categorize a number of existing ER algorithms
based on the properties they satisfy. (Existing ER algorithms
are reviewed in Appendixes A.1 and B.1, while other related
work is in Appendix E.) We then propose efficient rule evo-
lution techniques that use one or more of the four properties
(Sections 2 and 3). We believe that our results can be a use-
ful guide for ER algorithm designers: if they need to handle
evolving rules efficiently, they may want to build algorithms
that have at least some of the properties we present.
• We experimentally evaluate (Section 4) the rule evolution al-

gorithms for various ER algorithms using actual comparison
shopping data from Yahoo! Shopping and hotel information
from Yahoo! Travel. Our results show scenarios where rule
evolution can be faster than the naı̈ve approach by up to several
orders of magnitude. We also illustrate the time and space cost
of materializing partial results, and argue that these costs can
be amortized with a small number of future evolutions. Finally,
we also experiment with ER algorithms that do not satisfy our
properties, and show that if one is willing to sacrifice accuracy,
one can still use our rule evolution techniques.

2. MATCH-BASED EVOLUTION
We consider rule evolution for ER algorithms that cluster records

based on Boolean comparison rules. (We consider ER algorithms
based on distance functions in Section 3.) We first formalize an

ER model that is based on clustering. We then discuss two impor-
tant properties for ER algorithms that can significantly enhance the
runtime of rule evolution. We also compare the two properties with
existing properties for ER algorithms in the literature. Finally, we
present efficient rule evolution algorithms that use one or more of
the four properties.

2.1 Match-based Clustering Model
We define a Boolean comparison rule B as a function that takes

two records and returns true or false. We assume that B is com-
mutative, i.e., ∀ri, rj , B(ri, rj) = B(rj , ri).

Suppose we are given a set of records S = {r1, . . . , rn}. An ER
algorithm receives as inputs a partition Pi of S and a Boolean com-
parison rule B, and returns another partition Po of S. A partition
of S is defined as a set of clusters P = {c1, . . . , cm} such that c1 ∪
. . . ∪ cm = S and ∀ci, cj ∈ P where i 6= j, ci ∩ cj = ∅.

We require the input to be a partition of S so that we may also run
ER on the output of a previous ER result. In our motivating exam-
ple in Section 1, the input was a set of records S = {r1, r2, r3, r4},
which can be viewed as a partition of singletons Pi = {{r1}, {r2},
{r3}, {r4}}, and the output using the comparison rule B2 = pname

∧ pzip was the partition Po = {{r1, r2},{r3},{r4}}. If we run ER a
second time on the ER output {{r1, r2}, {r3}, {r4}}, we may ob-
tain the new output partition Po = {{r1, r2, r3}, {r4}} where the
cluster {r1, r2} accumulated enough information to match with the
cluster {r3}.

How exactly the ER algorithm uses B to derive the output par-
tition Po depends on the specific ER algorithm. The records are
clustered based on the results of B when comparing records. In our
motivating example (Section 1), all pairs of records that matched
according to B2 = pname∧pzip were clustered together. Note that,
in general, an ER algorithm may not cluster two records simply be-
cause they match according to B. For example, two records r and
s may be in the same cluster c ∈ Po even if B(r, s) = false. Or
the two records could also be in two different clusters ci, cj ∈ Po

(i 6= j) even if B(r, s) = true.
We also allow input clusters to be un-merged as long as the

final ER result is still a partition of the records in S. For ex-
ample, given an input partition {{r1, r2, r3},{r4}}, an output of
an ER algorithm could be {{r1, r2},{r3, r4}} and not necessarily
{{r1, r2, r3},{r4}} or {{r1, r2, r3, r4}}. Un-merging could occur
when an ER algorithm decides that some records were incorrectly
clustered [18].

Finally, we assume the ER algorithm to be non-deterministic in
a sense that different partitions of S may be produced depend-
ing on the order of records processed or by some random factor
(e.g., the ER algorithm could be a randomized algorithm). For ex-
ample, a hierarchical clustering algorithm based on Boolean rules
(see Appendix A.1) may produce different partitions depending on
which records are compared first. While the ER algorithm is non-
deterministic, we assume the comparison rule itself to be determin-
istic, i.e., it always returns the same matching result for a given pair
of records.

We now formally define a valid ER algorithm.

DEFINITION 2.1. Given any input partition Pi of a set of records
S and any Boolean comparison rule B, a valid ER algorithm E
non-deterministically returns an ER result E(Pi,B) that is also a
partition Po of S.

We denote all the possible partitions that can be produced by
the ER algorithm E as Ē(Pi, B), which is a set of partitions of
S. Hence, E(Pi,B) is always one of the partitions in Ē(Pi,B).
For example, given Pi = {{r1}, {r2}, {r3}}, Ē(Pi,B) could be
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{{{r1, r2}, {r3}}, {{r1}, {r2, r3}}} while E(Pi, B) = {{r1, r2},
{r3}}.

A rule evolution occurs when a Boolean comparison rule B1 is
replaced by a new Boolean comparison rule B2. An important con-
cept used throughout the paper is the relative strictness between
comparison rules:

DEFINITION 2.2. A Boolean comparison rule B1 is stricter than
another rule B2 (denoted as B1 ≤ B2) if ∀ri, rj , B1(ri, rj) =
true implies B2(ri, rj) = true.

For example, a comparison rule B1 that compares the string dis-
tance of two names and returns true when the distance is lower
than 5 is stricter than a comparison rule B2 that uses a higher
threshold of, say, 10. As another example, a comparison rule B1

that checks whether the names and addresses are same is stricter
than another rule B2 that only checks whether the names are same.

2.2 Properties
We introduce two important properties for ER algorithms – rule

monotonicity and context free – that enable efficient rule evolution
for match-based clustering.

2.2.1 Rule Monotonicity
Before defining the rule monotonicity property, we first define

the notion of refinement between partitions.

DEFINITION 2.3. A partition P1 of a set S refines another par-
tition P2 of S (denoted as P1 ≤ P2) if ∀c1 ∈ P1, ∃c2 ∈ P2 s.t.
c1 ⊆ c2.

For example, given the partitions P1 = {{r1, r2}, {r3}, {r4}}
and P2 = {{r1, r2, r3}, {r4}}, P1 ≤ P2 because {r1, r2} and
{r3} are subsets of {r1, r2, r3} while {r4} is a subset of {r4}.

We now define the rule monotonicity property, which guarantees
that the stricter the comparison rule, the more refined the ER result.

DEFINITION 2.4. An ER algorithm is rule monotonic (RM)
if, for any three partitions P, P 1

o , P 2
o and two comparison rules B1

and B2 such that
• B1 ≤ B2 and
• P 1

o ∈ Ē(P , B1) and
• P 2

o ∈ Ē(P , B2)
then P 1

o ≤ P 2
o .

An ER algorithm satisfying RM guarantees that, if the com-
parison rule B1 is stricter than B2, the ER result produced with
B1 refines the ER result produced with B2. For example, suppose
that P = {{r1},{r2},{r3},{r4}}, B1 ≤ B2, and E(Pi, B1) =
{{r1, r2, r3}, {r4}}. If the ER algorithm is RM, E(Pi, B2) can
only return {{r1, r2, r3}, {r4}} or {{r1, r2, r3, r4}}.

2.2.2 Context Free
The second property, context free, tells us when a subset of Pi

can be processed “in isolation” from the rest of the clusters. (For
clarification, the second conditions says that none of the records in
P can match with any of the records in Pi − P .)

DEFINITION 2.5. An ER algorithm is context free (CF ) if for
any four partitions P, Pi, P

1
o , P 2

o and a comparison rule B such
that
• P ⊆ Pi and
• ∀Po ∈ Ē(Pi, B), Po ≤ {

S
c∈P c ,

S
c∈Pi−P c} and

• P 1
o ∈ Ē(P , B) and

• P 2
o ∈ Ē(Pi − P , B)

then P 1
o ∪ P 2

o ∈ Ē(Pi, B).

Suppose that we are resolving Pi = {{r1}, {r2}, {r3}, {r4}}
with the knowledge that no clusters in P = {{r1}, {r2}}will merge
with any of the clusters in Pi − P = {{r3}, {r4}}. Then for any
Po ∈ Ē(Pi, B), Po ≤ {{r1, r2}, {r3, r4}}. In this case, an ER
algorithm that is CF can resolve {{r1}, {r2}} independently from
{{r3}, {r4}}, and there exists an ER result of Pi that is the same
as the union of the ER results of {{r1}, {r2}} and {{r3}, {r4}}.

2.2.3 Existing ER Properties
To get a better understanding ofRM and CF , we compare them

to two existing properties in the literature: incremental and order
independence.

An ER algorithm is incremental [13] if it can resolve one record
at a time. We define a more generalized version of the incremental
property for our ER model where any subsets of clusters in Pi can
be resolved at a time.

DEFINITION 2.6. An ER algorithm is general incremental (GI)
if for any four partitions P, Pi, P

1
o , P 2

o , and a comparison rule B
such that
• P ⊆ Pi and
• P 1

o ∈ Ē(P , B) and
• P 2

o ∈ Ē(P 1
o ∪ (Pi − P ), B)

then P 2
o ∈ Ē(Pi, B).

For example, suppose we have P = {{r1}, {r2}}, Pi = {{r1},
{r2}, {r3}}, and P 1

o = {{r1, r2}}. That is, we have already re-
solved P into the result P 1

o . We can then add to P 1
o the remaining

cluster {r3}, and resolve all the clusters together. The result is as
if we had resolved everything from scratch (i.e., from Pi). Presum-
ably, the former way (incremental) will be more efficient than the
latter.

The GI property is similar to the CF property, but also different
in a number of ways. First GI and CF are similar in a sense that
they use two subsets of Pi: P and Pi − P . However, under GI,
Pi − P is not resolved until P has been resolved. Also, GI does
not assume P and Pi − P to be independent (i.e., a cluster in P
may merge with a cluster in Pi − P ).

We now explore the second property in the literature. An ER
algorithm is order independent (OI) [13] if the ER result is same
regardless of the order of the records processed. That is, for any
input partition Pi and comparison rule B, Ē(Pi, B) is a singleton
(i.e., Ē(Pi, B) contains exactly one partition of S).

2.2.4 ER Algorithm Categorization
To see how the four properties RM, CF , GI, and OI hold in

practice, we consider several ER algorithms in the literature: SN ,
HCB , HCBR, and ME (for their definitions, see Appendix A.1).
The venn diagram in Figure 3 shows which ER algorithms satisfy
which of the four properties. The SN2 and HC2

B algorithms are
variants of the SN and HCB algorithms, respectively, and are dis-
cussed in our technical report [19]. For now, ignore the HCDS and
HCDC algorithms, which are distance-based clustering algorithms
covered in Section 3.2. All the proofs for verifying Figure 3 can be
found in our technical report [19].

2.3 Materialization
To improve our chances that we can efficiently compute a new

ER result with rule B2, when we compute earlier results we can
materialize results that involve predicates likely to be in B2. In par-
ticular, let us assume that rules are Boolean expressions of smaller
binary predicates. For example, a rule that compares the names and
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Figure 3: ER Algorithms satisfying properties

addresses of two people can be defined as pname ∧ paddress where
pname could be a function that compares the names of two peo-
ple while the predicate paddress could compare the street addresses
and apartment numbers of two people. In general, a predicate can
be any function that compares an arbitrary number of attributes.
We assume that all predicates are commutative and (without loss
of generality) all rules are in conjunctive normal form (CNF). For
example, the rule B = p1 ∧ p2 ∧ (p3 ∨ p4) is in CNF and has three
conjuncts p1, p2, and p3 ∨ p4.

When we compute an earlier result E(Pi, B1) where say B1 =
p1 ∧ p2 ∧ p3, we can also materialize results such as E(Pi, p1),
E(Pi, p2), E(Pi, p1 ∧ p2), and so on. The most useful material-
izations will be those that can help us later with E(Pi, B2). (See
Appendix C.) For concreteness, here we will assume that we mate-
rialize all conjuncts of B1 (in our example, E(Pi, p1), E(Pi, p2),
and E(Pi, p3)).

Instead of serially materializing each conjunct, however, we can
amortize the common costs by materializing different conjuncts
in a concurrent fashion. For example, parsing and initializing the
records can be done once during the entire materialization. More
operations can be amortized depending on the given ER algorithm.
For example, when materializing conjuncts using an ER algorithm
that always sorts its records before resolving them, the records only
need to be sorted once for all materializations. In Section 4.4, we
show that amortizing common operations can significantly reduce
the time overhead of materializing conjuncts. A partition of the
records in S can be stored compactly in various ways. One ap-
proach is to store sets of records IDs in a set where each inner
set represents a cluster of records. A possibly more space-efficient
technique is to maintain an array A of records (where the ID is used
as the index) where each cell contains the cluster ID. For example,
if r5 is in the second cluster, then A[5] = 2. If there are only a few
clusters, we only need a small number of bits for saving each clus-
ter ID. For example, if there are only 8 clusters, then each entry in
A only takes 3 bits of space.

2.4 Rule Evolution
We provide efficient rule evolution techniques for ER algorithms

using the properties. Our first algorithm supports ER algorithms
that are RM and CF . As we will see, rule evolution can still be
efficient for ER algorithms that are only RM. Our second algo-
rithm supports ER algorithms that are GI. Before running the rule
evolution algorithms, we materialize ER results for conjuncts of the
old comparison rule B1 by storing a partition of the input records
S (i.e., the ER result) for each conjunct in B1 (see Appendix C for
possible optimizations). In general, we suspect that (although we
will not explicitly show) the number of properties satisfied by the
ER algorithm is correlated with better runtime performance.

To explain our rule evolution algorithms, we review a basic op-
eration on partitions. The meet of two partitions P1 and P2 (de-

noted as P1 ∧ P2) returns a new partition of S whose members are
the non-empty intersections of the clusters of P1 with those of P2.
For example, given the partitions P1 = {{r1, r2, r3}, {r4}} and
P2 = {{r1}, {r2, r3, r4}}, the meet of P1 and P2 becomes {{r1},
{r2, r3}, {r4}} since r2 and r3 are clustered in both partitions.

Algorithm 1 performs rule evolution for ER algorithms that are
both RM and CF . The input requires the input partition Pi, the
old and new comparison rules (B1 and B2, respectively), and a
hash table H that contains the materialized ER results for the con-
juncts of B1. The conjuncts of a comparison rule B is denoted as
Conj(B). For simplicity, we assume that B1 and B2 share at least
one conjunct. Step 3 exploits theRM property and meets the par-
titions of the common conjuncts between B1 and B2. For example,
suppose that we have B1 = p1 ∧ p2 ∧ p3 and B2 = p1 ∧ p2 ∧ p4.
Given Pi = {{r1}, {r2}, {r3}, {r4}}, say we also have the ma-
terialized ER results E(Pi, p1) = {{r1, r2, r3}, {r4}} and E(Pi,
p2) = E(Pi, p3) = {{r1}, {r2, r3, r4}}. Since the common con-
juncts of B1 and B2 are p1 and p2, we generate the meet of E(Pi,
p1) and E(Pi, p2) as M = {{r1}, {r2, r3}, {r4}}. By RM, we
know that E(Pi, B2) refines M because B2 is stricter than both
p1 and p2. That is, each cluster in the new ER result is contained
in exactly one cluster in the meet M . Step 4 then exploits the CF
property to resolve for each cluster c of M , the clusters in Pi that
are subsets of c (i.e., {c′ ∈ Pi|c′ ⊆ c}). Since the clusters in
different {c′ ∈ Pi|c′ ⊆ c}’s do not merge with each other, each
{c′ ∈ Pi|c′ ⊆ c} can be resolved independently. As a result, we
can return {{r1}} ∪ E({{r2}, {r3}}, B2) ∪ {{r4}} as the new
ER result of B2.

1: input: The input partition Pi, the comparison rules B1, B2, the
ER result for each conjunct of B1, the hash table H containing
materializations of conjuncts in B1

2: output: The output partition Po ∈ Ē(Pi, B2)
3: Partition M ←

V
conj∈Conj(B1)∩Conj(B2)H(conj)

4: return
S

c∈ME({c′ ∈ Pi|c′ ⊆ c}, B2)

Algorithm 1: Rule evolution givenRM and CF

The proofs for the correctness and complexity of Algorithm 1
can be found in our technical report [19].

PROPOSITION 2.7. Algorithm 1 correctly returns a partition
Po ∈ Ē(Pi, B2).

PROPOSITION 2.8. The complexity of Algorithm 1 is O(c ×
|S|+ |S|c

zc × g( |Pi|×zc

|S|c , |S||Pi|
)) where S is the set of records in the

input partition of records Pi, c is the number of common conjuncts
between B1 and B2, z is the average cluster size for any partition
produced by a conjunct, and g(N, A) is the complexity of the ER
algorithm E for an input partition containing N clusters with an
average size of A records.

While Algorithm 1 does not improve the complexity of the given
ER algorithm E running without rule evolution, its runtime can be
much faster in practice because the overhead for meeting partitions
is not high (Step 3), and there can be large savings by running ER
on small subsets of Pi (i.e., the {c′ ∈ Pi|c′ ⊆ c}’s) (Step 4) rather
than on the entire partition Pi.

The rule evolution algorithm for ER algorithms that are only
RM is identical to Algorithm 1 except for Step 4, where we can no
longer process subsets of Pi independently. However, we can still
run Step 4 efficiently using global information. We provide rule
evolution techniques for the SN algorithm (which isRM, but not
CF ) in Appendix A.2.
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Algorithm 2 performs rule evolution for ER algorithms that only
satisfy the GI property. Algorithm 2 is identical to Algorithm 1 ex-
cept that Step 4 is replaced with the code “return E(

S
c∈ME({c′ ∈

Pi|c′ ⊆ c}, B2), B2)”. Since the RM property is not satisfied
anymore, we can no longer assume that the meet M is refined by
the ER result of B2. Hence, after each {c′ ∈ Pi|c′ ⊆ c} is re-
solved, we need to run ER on the union of the results (i.e., the
outermost ER operation in Step 4) to make sure we found all the
matching records. The GI property guarantees that the output Po

is equivalent to a result in Ē(Pi, B2). Using the same example
for Algorithm 1, we now return E({{r1}} ∪ E({r2, r3}, B2) ∪
{{r4}}, B2).

There are two factors that make Algorithm 2 efficient for certain
ER algorithms. First, each cluster in M is common to several ER
results and thus contains records that are likely to be clustered. An
ER algorithm may run faster by resolving clusters that are likely to
match first. Second, there are fewer clusters for the outer E oper-
ation to resolve compared to when E runs on the initial partition
Pi. An ER algorithm may run faster when resolving fewer (but
larger) clusters. While not all ER algorithms that are GI will speed
up from these two factors, we will see in Section 4 that the HCB

algorithm indeed benefits from Algorithm 2.
The complexity of Algorithm 2 can be computed by adding the

cost for meeting partitions and the cost for running ER on clusters.
In comparison to Algorithm 1, the additional cost is the outermost
ER operation in Step 4. In practice, Algorithm 2 is slower than
Algorithm 1, but can still be faster than running the ER algorithm
E without rule evolution.

The proof for the correctness of Algorithm 2 can be found in our
technical report [19].

PROPOSITION 2.9. Algorithm 2 correctly returns an ER result
Po ∈ Ē(Pi, B2).

3. DISTANCE-BASED EVOLUTION
We now consider rule evolution on distance-based clustering where

records are clustered based on their relative distances instead of the
Boolean match results used in the match-based clustering model.
We first define our comparison rule as a distance function. We then
define the notion of strictness between distance comparison rules
and define properties analogous to those in Section 2.2. Finally, we
provide a model on how the distance comparison rule can evolve
and present our rule evolution techniques.

3.1 Distance-based Clustering Model
In the distance-based clustering model, records are clustered based

on their relative distances with each other. The comparison rule is
now defined as a commutative distance function D that returns a
non-negative distance between two records instead of a Boolean
function as in Section 2. For example, the distance between two
person records may be the sum of the distances between their names,
addresses, and phone numbers. The details on how exactly D is
used for the clustering differs for each ER algorithm. In hierar-
chical clustering using distances [14], the closest pairs of records
are merged first until a certain criterion is met. A more sophisti-
cated approach [5] may cluster a set of records that are closer to
each other compared to records outside, regardless of the absolute
distance values. Other than using a distance comparison rule in-
stead of a Boolean comparison rule, the definition of a valid ER
algorithm remains the same as Definition 2.1.

In order to support rule evolution, we model D to return a range
of possible non-negative distances instead of a single non-negative
distance. For example, the distance D(r1, r2) can be all possible

distances within the range [13, 15]. We denote the minimum pos-
sible value of D(r1, r2) as D(r1, r2).min (in our example, 13)
and the maximum value as D(r1, r2).max (in our example, 15).
As a result, an ER algorithm that only supports single-value dis-
tances must be extended to support ranges of values. The extension
is specific to the given ER algorithm. However, in the case where
the distance comparison rule only returns single value ranges, the
extended algorithm must be identical to the original ER algorithm.
Thus, the extension for general distances is only needed for rule
evolution and does not change the behavior of the original ER al-
gorithm.

A rule evolution occurs when a distance comparison rule D1 is
replaced by a new distance comparison rule D2. We define the no-
tion of relative strictness between distance comparison rules analo-
gous to Definition 2.2.

DEFINITION 3.1. A distance comparison rule D1 is stricter than
another rule D2 (denoted as D1 ≤ D2) if ∀r, s, D1(r, s).min ≥
D2(r, s).min and D1(r, s).max ≤ D2(r, s).max.

That is, D1 is stricter than D2 if its distance range is always
within that of D2 for any record pair. For example, if D2(r, s) is
defined as all the possible distance values within [D1(r, s).min−1,
D1(r, s).max+1], then D1 ≤ D2 (assuming D1(r, s).min ≥ 1).

3.2 Properties
We use properties analogous to RM, CF , GI, and OI from

Section 2.2 for the distance-based clustering model. The only dif-
ferences are that we now use distance comparison rules instead
of Boolean comparison rules (hence we must replace all B’s with
D’s) and Definition 3.1 instead of Definition 2.2 for comparing the
strictness between distance comparison rules. To show how the
properties hold in practice, we consider two distance-based clus-
tering algorithms: HCDS and HCDC (see their definitions in Ap-
pendix B.1). Figure 3 shows that the HCDS algorithm is RM,
CF , GI, and OI. As a result, the HCDS algorithm can use Al-
gorithm 1 (with minor changes; see Section 3.3) for rule evolution.
On the other hand, the HCDC algorithm is CF and OI, but not
RM or GI. As a result, the extended HCDC algorithm cannot
use Algorithms 1 or 2 for rule evolution.

3.3 Rule Evolution
While we used the CNF structures of comparison rules to per-

form rule evolution in Section 2.4, the distance comparison rules
are not Boolean expressions. Instead, we define a model on how
the distance comparison rule can evolve. We assume that each dis-
tance D1(r, s) changes by at most f(D1(r, s)) where f is a posi-
tive function that can be provided by a domain expert who knows
how much D1 can change. Examples of f include a constant value
(i.e., each distance can change by at most some constant c) or a cer-
tain ratio of the original distance (i.e., each distance can change by
at most X percent). As a result, D1(r, s).max + f(D1(r, s)) ≥
D2(r, s).max and D1(r, s).min− f(D1(r, s))≤D2(r, s).min.
As a practical example, suppose that D1 returns the sum of the dis-
tances for the names, addresses, and zip codes, and D2 returns the
sum of the distances for the names, addresses, and phone numbers.
If we restrict the zip code and phone number distances to be at most
10, then when D1 evolves to D2, we can set f = 10. Or if the zip
code and phone number distances are always within 20% of the D1

distance, then f = 0.2×D1.
Given D1 and D2, we can now define a third distance com-

parison rule D3(r, s) = [max{D1(r, s).min − f(D1(r, s)), 0},
D1(r, s).max+f(D1(r, s))], which satisfies D3 ≥ D1 and D3 ≥
D2. (Notice that our definition ensures all the possible distances
of D3 to be non-negative.) Compared to the Boolean clustering
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model, rule D3 acts as the “common conjuncts” between D1 and
D2. As a result, we now materialize the ER result of D3, E(Pi,
D3), instead of the ER results for all the conjuncts in the first com-
parison rule. We also update Algorithm 1 in Section 2.4 by replac-
ing Step 3 with “Partition M ← H(D3)” where H is a hash table
that only contains the result E(Pi, D3) for the comparison rule D3.
We illustrate rule evolution for the HCDS algorithm using the up-
dated Algorithm 1 in Appendix B.2.

4. EXPERIMENTAL EVALUATION
Evaluating rule evolution is challenging since the results depend

on many factors including the ER algorithm, the comparison rules,
and the materialization strategy. Obviously there are many cases
where evolution and/or materialization are not effective, so our goal
in this section is to show there are realistic cases where they can pay
off, and that in some cases the savings over a naı̈ve approach can
be significant. (Of course, as the saying goes, “your mileage may
vary”!) The savings can be very important in scenarios where data
sets are large and where it is important to obtain a new ER result as
quickly as possible (think of national security applications where it
is critical to respond to new threats as quickly as possible).

For our evaluation, we assume that blocking [17] is used, as it
is in most ER applications with massive data. With blocking, the
input records are divided into separate blocks using one or more
key fields. For instance, if we are resolving products, we can par-
tition them by category (books, movies, electronics, etc). Then the
records within one block are resolved independently from the other
blocks. This approach lowers accuracy because records in separate
blocks are not compared, but makes resolution feasible. (See [15,
20] for more sophisticated approaches). From our point of view,
the use of blocking means that we can read a full block (which
can still span many disk blocks) into memory, perform resolution
(naı̈ve or evolutionary), and then move on to the next block. In our
experiments we thus evaluate the cost of resolving a single block.
Keep in mind that these costs should be multiplied by the number
of blocks.

There are three metrics that we use to compare ER strategies:
CPU, IO and storage costs. (Except for Section 4.6, we do not con-
sider accuracy since our evolution techniques do not change the ER
result, only the cost of obtaining it.) We discuss CPU and storage
costs in the rest of this section, leaving a discussion of IO costs
to Appendix D.2. In general, CPU costs tend to be the most crit-
ical due to the quadratic nature of the ER problem, and because
matching/distance rules tend to be expensive. In Appendix D.2 we
argue that IO costs do not vary significantly with or without evo-
lution and/or materialization, further justifying our focus here on
CPU costs.

We start by describing our experimental setting in Section 4.1.
Then in Sections 4.2 and 4.3, we discuss the CPU costs of ER
evolution compared to a naı̈ve approach (ignoring materialization
costs, if any). In Section 4.4 we consider the CPU and space over-
head of materializing partitions. Note that we do not discuss the
orthogonal problem of when to materialize (a problem analogous
to selecting what views to materialize). In Section 4.5 we briefly
discuss total costs, including materialization and evolution.

4.1 Experimental Setting
We experiment on a comparison shopping dataset provided by

Yahoo! Shopping and a hotel dataset provided by Yahoo! Travel.
Table 1 summarizes the comparison rules used in our experiments.
We evaluated the following ER algorithms: SN , HCB , HCBR,
ME, HCDS , and HCDC . Details on the datasets, comparison
rules, and which rule evolution algorithm was used for which ER

algorithm can be found in Appendix D.1. Our algorithms were
implemented in Java, and our experiments were run on a 2.4GHz
Intel(R) Core 2 processor with 4GB of RAM.

Table 1: Comparison Rules
Type Data Comparison rules

Boolean Shopping BS
1 : pti ∧ pca

BS
2 : pti ∧ ppr

Boolean Hotel BH
1 : pst ∧ pci ∧ pzi ∧ pna

BH
2 : pst ∧ pci ∧ pzi ∧ psa

Distance Shopping DS
1 : Jaroti

DS
2 : Jaroti changes randomly within 5%

Distance Hotel DH
1 : Jarona + 0.05×Equalsci

DH
2 : Jarona + 0.05×Equalszi

4.2 Rule Evolution Efficiency
We first focus on the CPU time cost of rule evolution (exclu-

sive of materialization costs, if any) using blocks of data that fit
in memory. For each ER algorithm, we use the best evaluation
scheme (see Appendix D.1) given the properties of the ER algo-
rithm. Table 2 shows the results. We run the ER algorithms SN ,
HCB , and HCBR using the Boolean comparison rules in Table 1
on the shopping and hotel datasets. When evaluating each compar-
ison rule, the conjuncts involving string comparisons (i.e., pti, pna,
and psa) are evaluated last because they are more expensive than
the rest of the conjuncts. We also run the HCDS algorithm using
the distance comparison rules in Table 1 on the two datasets. Each
column head in Table 2 encodes the dataset used and the number
of records resolved in the block. For example, Sh1K means 1,000
shopping records while Ho3K means 3,000 hotel records. The top
five rows of data show the runtime results of the naı̈ve approach
while the bottom five rows show the runtime improvements of rule
evolution compared to the naı̈ve approach. Each runtime improve-
ment is computed by dividing the naı̈ve approach runtime by the
rule evolution runtime. For example, the HCBR algorithm takes
3.56 seconds to run on 1K shopping records and rule evolution is
162 times faster (i.e., having a runtime of 3.56

162
= 0.022 seconds).

Table 2: ER algorithm and rule evolution runtimes
ER algorithm Sh1K Sh2K Sh3K Ho1K Ho2K Ho3K

ER algorithm runtime (seconds)
SN 0.094 0.152 0.249 0.012 0.027 0.042
HCB 1.85 7.59 17.43 0.386 2.317 5.933
HCBR 3.56 19.37 48.72 0.322 1.632 4.264
HCDS 8.33 40.38 111 5.482 27.96 73.59

Ratio of ER algorithm runtime to rule evolution runtime
SN 4.09 4.22 4.45 1.2 1.93 2
HCB 1.5 1.84 2.07 1.27 1.3 1.27
HCBR 162 807 1218 36 136 237
HCDS 298 708 918 322 499 545

As one can see in Table 2, the improvements vary widely but in
many cases can be very significant. For the shopping dataset, the
HCBR, and HCDS algorithms show up to orders of magnitude of
runtime improvements. The SN algorithm has a smaller speedup
because SN itself runs efficiently. The HCB algorithm has the
least speedup (although still a speedup). While the rule evolution
algorithms for SN , HCBR, and HCDS only need to resolve few
clusters at a time (i.e., each {c′ ∈ Pi|c′ ⊆ c} in Algorithm 1), Al-
gorithm 2 for the HCB algorithm also needs to run an outermost
ER operation (Step 4) to resolve the clusters produced by the inner
ER operations. The hotel data results show worse runtime improve-
ments overall because the ER algorithms without rule evolution ran
efficiently.
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4.3 Common Rule Strictness
The key factor of the runtime savings in Section 4.2 is the strict-

ness of the “common comparison rule” between the old and new
comparison rules. For match-based clustering, the common com-
parison rule between B1 and B2 comprises the common conjuncts
Conj(B1) ∩ Conj(B2). For distance-based clustering, the com-
mon comparison rule between D1 and D2 is D3, as defined in Sec-
tion 3.3. A stricter rule is more selective (fewer records match or
fewer records are within the threshold), and leads to smaller clus-
ters in a resolved result. If the common comparison rule yields
smaller clusters, then in many cases the resolution that starts from
there will have less work to do.

By changing the thresholds used by the various predicates, we
can experiment with different common rule strictness, and Figure 4
summarizes some of our findings. The horizontal axis shows the
strictness of the common rule: it gives the ratio of record pairs
placed by the common rule within in a cluster to the total number of
record pairs. For example, if an ER algorithm uses pti to produce

10 clusters of size 10, then the strictness is
10×(10

2 )
(100

2 )
= 0.09. The

lower the ratio is, the stricter the common rule, and presumably,
fewer records need to be resolved using the new comparison rule.

The vertical axis in Figure 4 shows the runtime improvement
(vs. naı̈ve), for four algorithms using our shopping data compari-
son rules in Table 1. The runtime improvement is computed as the
runtime of the naı̈ve approach computing the new ER result divided
by the runtime of rule evolution. As expected, Algorithms SN ,
HCBR, and HCDS achieve significantly higher runtime improve-
ments as the common comparison rule becomes stricter. However,
the HCB algorithm shows a counterintuitive trend (performance
decreases as strictness increases). In this case there are two com-
peting factors. On one hand, having a stricter common comparison
rule improves runtime for rule evolution because the computation
of each E({c′ ∈ Pi|c′ ⊆ c}, B2) in Step 4 becomes more efficient.
On the other hand, a common comparison rule that is too strict pro-
duces many clusters to resolve for the outermost ER operation in
Step 4, increasing the overall runtime. Hence, although not shown
in the plot, the increasing line will eventually start decreasing as
strictness decreases.
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Figure 4: Degree of change impact on runtime, 3K shopping
records

4.4 Materialization Overhead
In this section we examine the CPU and space overhead of mate-

rializations, independent of the question of what conjuncts should
be materialized. Recall that materializations are done as we per-
form the initial resolution on records S. Thus the materialization
can piggyback on the ER work that needs to be done anyway. For
example, the parsing and initialization of records can be done once

for the entire process of creating all materializations and running
ER for the old comparison rule. In addition, there are other ways
to amortize work, as the resolution is concurrently done for the old
rule and the conjuncts we want to materialize (more details can be
found in our technical report [19]). We can also compress the stor-
age space needed by materializations by storing partitions of record
IDs.
Table 3: Time overhead (ratio to old ER algorithm runtime)
and space overhead (ratio to old ER result) of rule materializa-
tion, 3K records

ER algorithm Sho3K Ho3K
Time O/H Space O/H Time O/H Space O/H

SN 0.52 (0.02) 0.28 1.14 (0.27) 0.14
HCB 0.87 (0.04) 0.14 3.18 (0.71) 0.1
HCBR 11 (3E-6) 0.14 13.28 (1.06) 0.1
HCDS 0.44 0.07 0.61 0.02

Table 3 shows the time and space overhead of materialization in
several representative scenarios. In particular, we use Algorithms
SN , HCB , HCBR, and HCDS on 3K shopping and hotel records,
and assume all conjuncts in the old rule are materialized.

The Time O/H columns show the time overhead where each num-
ber is produced by dividing the materialization CPU time by the
CPU runtime for producing the old ER result. For example, ma-
terialization time for the SN algorithm on 3K shopping records is
0.52x the time for running E(Pi,BS

1 ) using SN . Hence, the total
time to compute E(Pi, BS

1 ) and materialize all the conjuncts of
BS

1 is 1+0.52 = 1.52 times the runtime for E(Pi, BS
1 ) only. The

numbers in parentheses show the time overhead when we do not
materialize the most expensive conjunct. That is, for SN , HCB ,
and HCBR in the shopping column we only materialize pca; in the
hotel column, we only materialize pst, pci, and pzi (without pna).

For the shopping dataset, the SN and HCB algorithms have
time overheads less than 2 (i.e., the number of conjuncts in BS

1 ) due
to amortization. For the same reason, HCDS has a time overhead
below 1. The HCBR algorithm has a large overhead of 11x be-
cause each common conjunct tends to produce larger clusters com-
pared to E(Pi, BH

1 ), and HCBR ran slowly when larger clusters
were compared using the expensive pti conjunct.

The hotel dataset shows similar time overhead results, except
that the time overheads usually do not exceed 4 (i.e., the number of
conjuncts in BH

1 ) for the match-based clustering algorithms.
The Space O/H columns show the space overhead of material-

ization where each number was produced by dividing the memory
space needed for storing the materialization by the memory space
needed for storing the old ER result. For example, the materializa-
tion space for the SN algorithm on 3K shopping records is 0.28x
the memory space taken by E(Pi, BS

1 ) using SN . The total re-
quired space is thus 1+0.28 = 1.28 times the memory space needed
for E(Pi, BS

1 ). The space overhead of materialization is small in
general because we only store records by their IDs.

4.5 Total Runtime
The speedups achievable at evolution time must be balanced against

the cost of materializations during earlier resolutions. The materi-
alization cost of course depends on what is materialized: If we do
not materialize any conjuncts, as in our initial example in Section
1, then clearly there is no overhead. At the other extreme, if the ini-
tial rule B1 has many conjuncts and we materialize all of them, the
materialization cost will be higher. If we have application knowl-
edge and know what conjuncts are “stable” and likely to be used
in future rules, then we can only materialize those. Then there is
also the amortization factor: if a materialization can be used many
times (e.g., if we want to explore many new rules that share the
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materialized conjunct), then the materialization cost, even if high,
can be amortized over all the future resolutions.

In Appendix D.3 we study the total run time (CPU and IO time
for original resolution plus materializations plus evolution) for sev-
eral scenarios. We experiment on 0.25 to 1 million shopping records
(multiple blocks are processed). Our results illustrate scenarios
where materialization does pay off. That is, materialization and
evolution lowers the total time, as compared to the naı̈ve approach
that runs ER from scratch each time. Of course, one can also con-
struct scenarios where materialization does not pay off.

4.6 Without the Properties
In Appendix D.4 we consider scenarios where the necessary prop-

erties for rule evolution do not hold. In such a case, we need to use
the naı̈ve approach to get a correct answer. From our previous re-
sults, however, we know that the naı̈ve approach can be very expen-
sive compared to rule evolution. The alternatives are to fix the ER
algorithm to satisfy one of the properties or to run one of our rule
evolution algorithms even though we will not get correct answers.
We have investigated the latter case for the ME and HCDS algo-
rithms and observe that we can still return ER results with small
losses in accuracy, but with large benefits in rule evolution runtime.

5. CONCLUSION
In most ER scenarios, the logic for resolving records evolves

over time, as the application itself evolves and as the expertise for
comparing records improves. In this paper we have explored a fun-
damental question: when and how can we base a resolution on a
previous result as opposed to starting from scratch? We have an-
swered this question in two commonly-used contexts, record com-
parisons based on Boolean predicates and record comparisons based
on distance (or similarity) functions. We identified two properties
of ER algorithms, rule monotonic and context free (in addition to
order independence and general incremental), that can significantly
reduce runtime at evolution time. We also categorized several pop-
ular ER algorithms according to the four properties.

In some cases, computing an ER result with a new rule can be
much faster if certain partial results are materialized when the orig-
inal ER result (with the old rule) is computed. We studied how
to take advantage of such materializations, and how they could be
computed efficiently by piggybacking the work on the original ER
computation.

Our experimental results evaluated the cost of both materializa-
tions and the evolution itself (computing the new ER result), as
compared to a naı̈ve approach that computed the new result from
scratch. We considered a variety of popular ER algorithms (each
having different properties), two data sets, and different predicate
strictness. The results illustrate realistic cases where materializa-
tion costs are relatively low, and evolution can be done extremely
quickly.

Overall, we believe our analysis and experiments provides guid-
ance for the ER algorithm designer. The experimental results show
the potential gains, and if these gains are attractive in an application
scenario, our properties help us design algorithms that can achieve
such gains.
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APPENDIX
A. MATCH-BASED EVOLUTION
A.1 ER Algorithms

In the main body of the paper, we refer to a variety of well
known match-based clustering ER algorithms. In this section we
briefly describe the most important ones for our paper: SN , HCB ,
HCBR, and ME. While the original definitions of all four ER al-
gorithms assume a set of records S as an input, we provide simple
extensions for the algorithms to accept a set of clusters Pi as in
Definition 2.1.

SN . The sorted neighborhood (SN ) algorithm [11] first sorts the
records in Pi (i.e., we extract all the records from the clusters in
Pi) using a certain key assuming that closer records in the sorted
list are more likely to match. For example, suppose that we have
the input partition Pi = {{r1}, {r2}, {r3}} and sort the clusters by
their names (which are not visible in this example) in alphabetical
order to obtain the list [r1, r2, r3]. The SN algorithm then slides
a fixed-sized window on the sorted list of records and compares all
the pairs of clusters that are inside the same window at any point.
If the window size is 2 in our example, then we compare r1 with
r2 and then r2 with r3, but not r1 with r3 because they are never
in the same window. We thus produce pairs of records that match
with each other. We can repeat this process using different keys
(e.g., we could also sort the person records by their address values).
After collecting all the pairs of records that match, we perform a
transitive closure on all the matching pairs of records to produce a
partition Po of records. For example, if r1 matches with r2 and r2

matches with r3, then we merge r1, r2, r3 together into the output
Po = {{r1, r2, r3}}.

HCB. Hierarchical clustering based on a Boolean comparison rule
[2] (which we call HCB) combines matching pairs of clusters in
any order until no clusters match with each other. The comparison
of two clusters can be done using an arbitrary function that receives
two clusters and returns true or false, using the boolean compar-
ison rule B to compare pairs of records. For example, suppose we
have the input partition Pi = {{r1}, {r2}, {r3}} and the compari-
son rule B where B(r1, r2) = true, B(r2, r3) = true, but B(r1,
r3) = false. Also assume that, whenever we compare two clus-
ters of records, we simply compare the records with the smallest
IDs (e.g., a record r2 has an ID of 2) from each cluster using B.
For instance, when comparing {r1, r2} with {r3}, we return the
result of B(r1, r3). Depending on the order of clusters compared,
the HCB algorithm can merge {r1} and {r2} first, or {r2} and
{r3} first. In the first case, the final ER result is {{r1, r2}, {r3}}
(because the clusters {r1, r2} and {r3} do not match) while in the
second case, the ER result is {{r1}, {r2, r3}} (the clusters {r1}
and {r2, r3} do not match). Hence, Ē(Pi, B) = {{{r1, r2}, {r3}},
{{r1}, {r2, r3}}}.

HCBR. The HCB algorithm both RM and CF if two clusters
are guaranteed to match whenever at least one of their records
match according to B. (This property is equivalent to the repre-
sentativity property in reference [2].) For example, a cluster com-
parison function that compares all the records between two clusters
using B for an existential match is representative. That is, given
two clusters {r1, r2} and {r3, r4}, the cluster comparison func-
tion returns true if at least one of B(r1, r3), B(r1, r4), B(r2,
r3), or B(r2, r4) returns true. We denote the HCB algorithm
where the cluster comparison function satisfies representativity as
HCBR. We can prove that the HCBR algorithm always returns a
unique solution for any input Pi [2].

ME. The Monge Elkan (ME) clustering algorithm (we define a
variant of the algorithm in [16] for simplicity) first sorts the records
in Pi (i.e., we extract all the records from the clusters in Pi) by
some key and then starts to scan each record. For example, suppose
that we are given the input partition Pi = {{r1}, {r2}, {r3}}, and
we sort the records in Pi by their names (which are not visible in
this example) in alphabetical order into the sorted list of records
[r1, r2, r3]. Suppose we are also given the Boolean comparison
rule B where B(r1, r2) = true, but B(r1, r3) = false and B(r2,
r3) = false. Each scanned record is then compared with clusters
in a fixed-length queue. A record r matches with a cluster c if
B(r, s) = true for any s ∈ c. If the new record matches one
of the clusters, the record and cluster merge, and the new cluster
is promoted to the head of the queue. Otherwise, the new record
forms a new singleton cluster and is pushed into the head of the
queue. If the queue is full, the last cluster in the queue is dropped.
In our example, if the queue size is 1, then we first add r1 into
the head of the queue, and then compare r2 with {r1}. Since r2

matches with {r1}, we merge r2 into {r1}. We now compare r3

with the cluster {r1, r2} in the queue. Since r3 does not match with
{r1, r2}, then we insert {r3} into the head of the queue and thus
remove {r1, r2}. Hence, the only possible ER result is {{r1, r2},
{r3}} and thus Ē(Pi, B) = {{{r1, r2}, {r3}}}. In general, ME
always returns a unique partition.

A.2 Rule Evolution for ER algorithms that are
RM only

In the main body of the paper, we discuss rule evolution algo-
rithms for ER algorithms that satisfy certain properties. In this
section, we cover rule evolution for ER algorithms that are only
RM. The rule evolution algorithm is identical to Algorithm 1
except for Step 4, where we can no longer process subsets of Pi

independently. However, we can still run Step 4 efficiently using
global information. We revisit the sorted neighborhood ER algo-
rithm (SN ) in Section 2.2.4. Recall that the first step of SN is
to move a sliding window on a sorted list of records, comparing
records pairwise only within the same window of size W . (The
second step is a transitive closure of all matching pairs.) In Step
4, we are able to resolve each {c′ ∈ Pi|c′ ⊆ c} (c ∈ M ) us-
ing the same window size W as long as we also use the global
sort information of the records to make sure only the records that
would have been in the same window during the original run of SN
should be compared with each other. Suppose that we have B1 =
pname∧pzip, B2 = pname∧pphone, and the initial set Pi = {{r1},
{r2}, {r3}, {r4}, {r5}}. We set the sort key to be the record ID
(e.g., r4 has the ID 4). As a result, the records are sorted into the
list [r1, r2, r3, r4, r5]. Using a window size of W= 3, suppose we
materialize E(Pi,pname) = {{r1, r3, r5}, {r2}, {r4}} because r1

and r3 matched when the window covered [r1, r2, r3] and r3 and
r5 matched when the window covered [r3, r4, r5]. The records r1

and r5 only match during the transitive closure in the second step
of SN . The meet M in Algorithm 1 is also {{r1, r3, r5}, {r2},
{r4}} because there is only one common conjunct pname between
B1 and B2. Thus, we only need to resolve the set {r1, r3, r5} us-
ing B2. However, we must be careful and should not simply run
E({r1, r3, r5}, B2) using a sliding window of size 3. Instead, we
must take into account the global ordering information and never
compare r1 and r5, which were never in the same window. Thus, if
B2(r1, r3) = false, B2(r3, r5) = false, and B2(r1, r5) = true,
the correct ER result is that none of r1, r3, r5 are clustered. While
we need to use the global sort information of records, our rule evo-
lution is still more efficient than re-running SN on the entire input
Pi (see Section 4).
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B. DISTANCE-BASED EVOLUTION

B.1 ER Algorithms
In the main body of the paper, we refer to two well known distance-

based clustering ER algorithms. In this section, we briefly describe
the two algorithms: HCDS and HCDC .

HCDS. The Single-link Hierarchical Clustering algorithm [8, 14]
(HCDS) merges the closest pair of clusters (i.e., the two clusters
that have the smallest distance) into a single cluster until the small-
est distance among all pairs of clusters exceeds a certain threshold
T . When measuring the distance between two clusters, the algo-
rithm takes the smallest possible distance between records within
the two clusters. Suppose we have the input partition Pi = {{r1},
{r2}, {r3}} where D(r1, r2) = 2, D(r2, r3) = 4, and D(r1, r3)
= 5 (we later extend HCDS to support ranges of distances) with
T = 2. The HCDS algorithm first merges r1 and r2, which are
the closest records and have a distance smaller or equal to T , into
{r1, r2}. The cluster distance between {r1, r2} and {r3} is the
minimum of D(r1, r3) and D(r2, r3), which is 4. Since the dis-
tance exceeds T , {r1, r2} and {r3} do not merge, and the final ER
result is {{r1, r2}, {r3}}.

We extend the HCDS algorithm by allowing ranges of distances
to be returned by a distance comparison rule, but only compar-
ing the minimum value of a range with either another range or the
threshold T . That is, D(r, s) is considered a smaller distance than
D(u, v) if D(r, s).min ≤ D(u, v).min. Also, D(r, s) is consid-
ered smaller than T if D(r, s).min ≤ T . For example, [3, 5] <
[4, 4] because 3 is smaller than 4, and [3, 5] > T = 2 because 3
is larger than 2. The extended HCDS algorithm is trivially identi-
cal to the original HCDS algorithm when D only returns a single
value.

HCDC . The Complete-link Hierarchical Clustering (HCDC ) al-
gorithm [14] is identical to the HCDS algorithm except in how
it measures the distance between two clusters. While the HCDS

algorithm chooses the smallest possible distance between records
within the two clusters, the HCDC algorithm takes the largest pos-
sible distance instead. For example, the cluster distance between
{r1, r2} and {r3} is the maximum of D(r1, r3) and D(r2, r3).
We use the same extension used in HCDS to support ranges of
values for distances where only the minimum values of each range
are compared to other ranges or thresholds.

B.2 Rule Evolution for the HCDS Algorithm
In the main body of the paper, we propose rule evolution tech-

niques for distance-based clustering ER algorithms. In this sec-
tion, we illustrate rule evolution for the HCDS algorithm using
the updated Algorithm 1. Suppose we are given the input parti-
tion Pi = {{r1}, {r2}, {r3}} and the distance comparison rule D1

where D1(r1, r2) = [2], D1(r2, r3) = [4], and D1(r1, r3) = [5].
We use the threshold T = 2 for termination. If we are given f(d)
= 0.1 × d, D3 is defined as D3(r1, r2) = [1.8, 2.2], D3(r2, r3)
= [3.6, 4.4], and D3(r1, r3) = [4.5, 5.5]. We then materialize the
ER result M = E(Pi, D3). Among the records, only r1 and r2

match having D3(r1, r2).min = 1.8 ≤ T = 2. Once the clus-
ters {r1} and {r2} merge, {r1, r2} and {r3} do not match be-
cause D3(r1, r3).min = 4.5 and D3(r2, r3).min = 3.6, both ex-
ceeding T . Hence M = {{r1, r2}, {r3}}. Suppose we are then
given D2 such that D2(r1, r2) = [2.2], D2(r2, r3) = [3.9], and
D2(r1, r3) = [4.9] (notice that indeed D2 ≤ D3). We then re-
turn

S
c∈M E({c′ ∈ Pi|c′ ⊆ c}, D2) using the same threshold

T = 2. For the first cluster in M , we run E({{r1}, {r2}}, D2).
Since D2(r1, r2).min = 2.2 > T , {r1} and {r2} do not merge.

The next partition {{r3}} is a singleton, so our new ER result is
{{r1}, {r2}, {r3}}, which is identical to E(Pi, D2).

C. MATERIALIZATION STRATEGIES
In the main body of the paper, we described one materialization

strategy where the ER result of each conjunct of a Boolean compar-
ison rule is computed and stored. In this section, we list possible
optimizations for materializations given more application-specific
knowledge. Our list is by no means exhaustive, and the possible op-
timizations will depend on the ER algorithm and comparison rules.

A group of conjuncts is “stable” if they appear together in most
comparison rules. As a result, the group can be materialized instead
of all individual conjuncts. For example, if the conjuncts p1, p2,
and p3 are always compared as a conjunction in a person records
comparison rule, then we can materialize on p1 ∧ p2 ∧ p3 together
rather than on the three conjuncts separately. Hence, the time and
space overhead of materialization can be saved.

If we know the pattern of how the comparison rule will evolve,
we can also avoid materializing on all conjuncts. In the ideal case
where we know that the comparison rule can only get stricter, we
do not have to save any additional materializations other than the
ER result of the old comparison rule. Another scenario is when
we are only changing the postfix of the old comparison rule, so we
only need to materialize on all the prefixes of the old comparison
rule. For example, if we have the comparison rule p1 ∧ p2 ∧ p3,
then we can materialize on p1, p1 ∧ p2, and p1 ∧ p2 ∧ p3. If the ER
algorithm is both RM and CF , then the ER result of p1 ∧ p2 can
be computed efficiently from the ER result of p1, and the ER result
of p1 ∧ p2 ∧ p3 from that of p1 ∧ p2.

D. EXPERIMENTAL EVALUATION

D.1 Experimental Setting
In the main body of the paper, we show experimental results for

rule evolution. In this section, we describe the experimental set-
tings used for our experiments.

Real Data. The comparison shopping dataset we use was pro-
vided by Yahoo! Shopping and contains millions of records that
arrive on a regular basis from different online stores and must be
resolved before they are used to answer customer queries. Each
record contains various attributes including the title, price, and cat-
egory of an item. We experimented on a random subset of 3,000
shopping records that had the string “iPod” in their titles and a ran-
dom subset of 1 million shopping records. We also experimented
on a hotel dataset provided by Yahoo! Travel where tens of thou-
sands of records arrive from different travel sources (e.g., Orb-
itz.com), and must be resolved before they are shown to the users.
We experimented on a random subset of 3,000 hotel records located
in the United States. While the 3K shopping and hotel datasets fit
in memory, the 1 million shopping dataset did not fit in memory
and had to be stored on disk.

Comparison Rules. Table 1 summarizes the comparison rules
used in our experiments. The Type column indicates whether the
comparison rules are Boolean comparison rules or distance com-
parison rules. The Data column indicates the data source: shop-
ping or hotel data. The Comparison rules column indicates the
comparison rules used. The first two rows define the Boolean com-
parison rules used on the shopping and hotel datasets. For the
shopping datasets, BS

1 compares the titles and categories of two
shopping records while BS

2 compares the titles and prices of shop-
ping records. For the hotel data, BH

1 compares the states, cities,
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zip codes, and names of two hotel records. The BH
2 rule com-

pares the states, cities, zip codes, and street addresses of two hotel
records. The last two rows define the distance comparison rules
for the two datasets. For the shopping data, DS

1 measures the Jaro
distance [21] between the titles of two shopping records while DS

2

randomly alters the distance of DS
1 by a maximum ratio of 5%.

The Jaro distance returns a value within the range [0, 1], and gives
higher values for closer records. For the hotel data, DH

1 sums the
Jaro distance between the names of two records and the Equality
distance between the cities of two records weighted by 0.05. We
define the Equality distance to return 1 if two values are exactly
the same and 0 if they are not the same. The DH

2 rule sums the
Jaro distance between names with the Equality distance between
the zip codes of two records weighted by 0.05. As a result, the DH

1

distance can alter by at most the constant 0.05.

ER and Rule Evolution Algorithms. We experiment rule
evolution on the following ER algorithms: SN , HCB , HCBR,
ME, HCDS , and HCDC . Table 4 summarizes for each ER algo-
rithm which section it was defined in and which rule evolution algo-
rithm is used. The HCDS and HCDC distanced-based clustering
algorithms terminate when the minimum distance between clusters
is smaller than the threshold 0.95 (recall that closer records have
higher Jaro+Equality distances). Although the ME and HCDC

algorithms do not satisfy the RM property, we can still use Al-
gorithm 1 to efficiently produce new ER results with small loss in
accuracy. Notice that, although ME is GI, Algorithm 2 is not ef-
ficient because of the way ME extracts all records from the input
partition Pi (without exploiting any of the clusters in Pi) and sorts
them again. Both the HCDS and HCDC algorithms use Algo-
rithm 1 adjusted for the distance-based clustering model (see Sec-
tion 3.3).

Table 4: ER and rule evolution algorithms tested
ER algorithm Section Rule evolution algorithm used
SN 2.4 Algorithm for SN in Appendix A.2
HCB 2.4 Algorithm 2
HCBR 2.4 Algorithm 1
ME 2.4 Algorithm 1
HCDS 3.2 Algorithm 1 (for distance-based clustering)
HCDC 3.2 Algorithm 1 (for distance-based clustering)

D.2 Evaluating IO costs
In the main body of the paper, we focused on the CPU costs for

materializing ER results, and for evolving a prior result under new
logic. In this section, we discuss the corresponding IO costs and
argue that the materialization IO costs are less significant than the
CPU costs. Using our blocking framework, we can analyze the
overall runtime of an ER process. The basic operations of an ER
process are described in Table 5. The operations are categorized
depending on whether they are disk IO consuming operations or
CPU time consuming operations.

To compare the overall performance of an ER process using rule
evolution and a naı̈ve ER process without rule evolution, we con-
sider the scenario where we run ER once using an old comparison
rule and then perform one rule evolution using a new comparison
rule. A naı̈ve ER process without rule evolution would roughly re-
quire initializing the records, creating the blocks, and reading and
resolving the blocks twice. An ER process using rule evolution
on the other hand would require the same process above plus the
additional work of creating and using rule materializations minus
running ER on all blocks during the rule evolution. The decompo-
sitions of the two approaches for our one rule evolution scenario
are shown in Table 6. Notice that the listed operations are not nec-
essarily run sequentially. For example, for the naı̈ve approach, the

Table 5: Basic operations in blocking ER framework
Operation Description

IO time consuming operations
RF Read records from input file
RB Read all blocks to memory
WB Write out all blocks to disk
RM Read all materializations to memory
WM Write all materializations to disk
O Write the output ER result to disk

CPU time consuming operations
I Initialize records (trim attributes not used in rules)
E Run ER on all blocks (one block at a time)
M Create materializations for all blocks (one at a time)

V
Run rule evolution (using materializations) on all blocks
(one at a time)

RB and E operations are actually interleaved because each block
is read and then resolved before the next block is read.

Table 6: Decomposition of ER processes for one rule evolution
ER process Decomposition
Naı̈ve RF ,I ,WB ,RB ,E,O,RB ,E,O
Using rule evolution RF ,I ,WB ,RB ,E,O,M ,WM ,RB ,RM ,V ,O

The IO overhead of using rule evolution compared to the IO cost
of the naı̈ve approach can thus be written as RM +WM

RF +WB+2×RB+2×O
.

Since the size of the materializations is usually much smaller than
the size of the entire set of records (see Section 4.4), the additional
IOs for rule evolution is also smaller than the IOs for reading and
writing the blocks. Thus, the IO costs do not vary significantly with
or without evolution and/or materialization.

D.3 Total Runtime
In the main body of the paper, we claim that the runtime benefits

of rule evolution can exceed the time overhead that is payed. In this
section, we measure the total runtimes of ER processes as defined
in Appendix D.2 where we run ER once using an old compari-
son rule and then perform one rule evolution using a new compar-
ison rule. We experimented on 0.25 to 1 million random shopping
records and used the following Boolean comparison rules for the
SN , HCB , and HCBR algorithms: B1 = pca ∧ pti (same as BS

1

in Table 1) and B2 = pca ∧ ppr . In addition, we only materialized
on the conjunct pca instead of on both conjuncts in B1. The time
overheads for materializing pca were shown in parentheses in Fig-
ure 3. For the HCDS algorithm, we used DS

1 and DS
2 in Table 1.

We used minhash signatures [12] for distributing the records into
blocks. For the shopping dataset, we extracted 3-grams from the
titles of records. We then generated a minhash signature for each
records, which is an array of integers where each integer is gener-
ated by applying a random hash function to the 3-gram set of the
record.

Figure 5 shows our total time results where we measured the total
runtimes of running ER on B1 and then evolving once to B2. Each
rule evolution technique and its corresponding naı̈ve approach use
the same shape for points in their plots. For example, the rule evo-
lution runtime plot for the SN algorithm uses white square points
while the naı̈ve SN approach uses black square points. In addi-
tion, all the naı̈ve approach plots use white shapes while the rule
evolution plots use black shapes. Our results show that the total
runtimes for the SN and HCB algorithms do not change much
because the runtime benefits of using rule evolution more or less
cancels out the runtime overheads of using rule evolution. For the
HCBR and HCDS algorithms, however, the runtime benefits of
rule evolution clearly exceed the overheads. While we have shown
the worst case scenario results where only one evolution occurs, the

1336



improvements will most likely increase for multiple rule evolutions
using the same materializations.
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Figure 5: Scalability, 1M shopping records

D.4 Without the Properties
In the main body of the paper, we claim that rule evolution can

also benefit ER algorithms that do not satisfy the necessary proper-
ties. In this section, we experiment on two ER algorithms that do
not satisfy theRM property and thus cannot use Algorithm 1: the
ME and HCDC algorithms. While the ME algorithm is still GI
and can thus use Algorithm 2, there is no runtime benefit because in
ME all the records in Pi are extracted and sorted again regardless
of the clusters in Pi (see Appendix A.1).

To measure accuracy, we compare a rule evolution algorithm re-
sult with the corresponding result of the naı̈ve approach. We con-
sider all the records that merged into an output cluster to be identi-
cal to each other. For instance, if the clusters {r} and {s} merged
into {r, s} and then merged with {t} into {r, s, t}, all three records
r, s, t are considered to be the same. Suppose that the correct an-
swer A contains the set of record pairs that match for the naı̈ve
solution while set B contains the matching pairs for the rule evolu-
tion algorithm. Then the precision Pr is |A∩B|

|B| while the recall Re

is |A∩B|
|A| . Using Pr and Re, we compute the F1-measure, which

is defined as 2×Pr×Re
Pr+Re

, and use it as our accuracy metric.
Table 7 shows the runtime and accuracy results of running Algo-

rithm 1 as the rule evolution algorithm on datasets that fit in mem-
ory. The columns show the dataset used and the number of records
resolved. The top two rows of data show the runtimes for the naı̈ve
approach. The middle two rows of data show the runtime improve-
ments of rule evolution compared to the naı̈ve approaches. Each
runtime improvement is computed by dividing the naı̈ve approach
runtime by the rule evolution runtime (not including the material-
ization costs). Overall, the runtime of ME improves by 1.67x to
5.53x while the runtime of HCDC improves by 501x to 2386x. The
bottom two rows of data show the accuracy values of each ER result
compared to the correct result produced by the naı̈ve aproach. The
accuracy results are near-perfect for the ME algorithm while being
at least 0.85 for HCDC . The experiments show that rule evolution
may produce highly-accurate ER results even if the ER algorithms
do not satisfy any property while still significantly enhancing the
runtime performance of rule evolution.

E. RELATED WORK
Entity resolution has been studied under various names includ-

ing record linkage, merge/purge, deduplication, reference reconcil-
iation, object identification, and others (see [7] for a recent survey).
Entity resolution involves comparing records and determining if
they refer to the same entity or not. Most of the works fall into one
of the ER models we consider: match-based clustering [11, 2] and

Table 7: Runtime and accuracy results for ER algorithms with-
out the properties

ER algorithm Sh1K Sh2K Sh3K Ho1K Ho2K Ho3K
ER algorithm runtime (seconds)

ME 0.094 0.162 0.25 0.015 0.033 0.051
HCDC 8.08 39.2 105 5.51 28.1 73.57

Ratio of ER algorithm runtime to rule evolution time
ME 5.53 5.23 5.43 1.67 2.06 2.04
HCDC 674 1509 2386 501 879 1115

F1 accuracy of rule evolution
ME 0.94 0.95 0.97 1.0 1.0 0.997
HCDC 0.93 0.86 0.85 1.0 0.999 0.999

distance-based clustering [3, 14]. (In our technical report [19], we
also consider a more primitive model where we return the matching
pairs of records instead of a clustering of records.) While the ER lit-
erature focuses on improving the accuracy or runtime performance
of ER, they usually assume a fixed logic for resolving records. To
the best of our knowledge, our work is the first to consider the ER
result update problem when the logic for resolution itself changes.

One of the recent challenges in information integration research
is called Holistic Information Integration [9] where both schema
and data issues are addressed within a single integration frame-
work. For example, schema mapping can help with understanding
the data and thus with ER while ER could also provide valuable
information for schema mapping. Hence, schema mapping and ER
can mutually benefit each other in an iterative fashion. While our
work does not address the schema mapping problem, we provide a
framework for iteratively updating ER results when the comparison
logic (related to the schema) changes.

Another related problem is updating clustering results when the
records (data) change (also known as incremental clustering). A
fundamental difference between incremental clustering and evolv-
ing rules is that the former updates clusters when the data changes
while the latter updates clusters when the rules change. A number
of works explore the problem of clustering data streams. Charikar
et al. [4] propose incremental clustering algorithms that minimize
the maximum cluster diameter given a stream of records. Aggarwal
et al. [1] propose the CluStream algorithm, which views a stream as
a changing process over time and provides clustering over different
time horizons in an evolving environment. An interesting avenue of
further research is to combine clustering techniques for both evolv-
ing data and rules. Since our rule evolution techniques are based on
materializing ER results, we suspect that the same techniques for
evolving data can be applied on the materialized ER results.

Materializing ER results is related to the topics of query opti-
mization using materialized views [6] and incremental view main-
tenance, which have been studied extensively in the database lit-
erature. The focus of the two related works, however, is on op-
timizing the execution of SQL queries. In comparison, our work
solves a similar problem for comparison rules that are Boolean or
distance functions. Another fundamental difference between incre-
mental view maintenance and evolving rules is that the former cov-
ers the problem of keeping query results up-to-date on data changes
while the latter focuses on updating clustering results based on rule
changes. Our work is also related to constructing data cubes [10]
in data warehouses where each cell of a data cube is a view consist-
ing of an aggregation (e.g., sum, average, count) of interests like
total sales. In comparison, rule evolution stores the ER results of
comparison rules. Nonetheless, we believe our rule evolution tech-
niques can improve by using techniques from the literature above.
For example, deciding which combinations of conjuncts to materi-
alize is related to the problem of deciding which views to material-
ize.
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