
Digital Technologies, 2016, Vol. 2, No. 1, 9-13
Available online at http://pubs.sciepub.com/dt/2/1/2
© Science and Education Publishing
DOI:10.12691/dt-2-1-2

Noise Reduction in Data Communication Using
Compression Technique

Brian E. Usibe*, Donatus E. Bassey, Julie Ogbulezie

Department of Physics, University of Calabar, Nigeria
*Corresponding author: brianonics@yahoo.com

Abstract Noise is an ever present phenomenon while dealing with recording devices, be it digital or analog, be it
specks in images or background hiss in music recordings. Therefore, this paper aims at ways of reducing the effects
of these forms of noise on image and sound files that can be compressed and sent through a communication channel.
This noise reduction mechanism is represented in the form of algorithms and combined with data compression to
minimize the effects of noise, while images and sounds are transmitted with their original content undistorted.

Keywords: data compression, noise reduction, compression algorithm, image smoothening, quantization

Cite This Article: Brian E. Usibe, Donatus E. Bassey, and Julie Ogbulezie, “Noise Reduction in Data
Communication Using Compression Technique.” Digital Technologies, vol. 2, no. 1 (2016): 9-13. doi:
10.12691/dt-2-1-2.

1. Introduction
Data Compression is the encoding of data to save

storage space or transmission time. It is also a process of
reducing the electronic space (data bits) used in
representing a piece of information, by eliminating the
repetition of identical sets of data bits (redundancy) in an
audio, video, graphic or text file. White spaces in text and
graphics, large blocks of the same color in pictures, or
other continuously recurring data are reduced or
eliminated by coding (encryption) with a program that
uses a particular type of compression algorithm [7].

The same program is used to decompress (decrypt) the
data so that it can be heard, read, or seen as the original
data. Compression ratios of 1:10 to 1:20(or even much
higher with emerging technologies) are achieved with
common types of data, resulting in much smaller storage
requirements or much faster communications.

Designing and selecting data compression schemes
involves tradeoffs among factors such as the degree of
compression, the amount of distortion introduced (for
lossy compression schemes) and the computational resources
required to compress and uncompress the data [3].

1.1. Data Compression Schemes
Morse Code, invented in 1838 for use in telegraphy, is

an early example of data compression, based on using
shorter code words for letters such as 'e' and ’t’ that are
common in English. Modern works on data compression
started in the late 1940s with the development of
information theory [12].

In 1949, Claude Shannon and Robert Fano devised a
systematic way to assign code words based on
probabilities of blocks. An optimal method of doing this
was developed by Huffman in 1951. Early implementations

were typically done in hardware, with specific choice of
code words being made as compromises between
compression and error correction. In the mid-1970s, the
idea emerged of dynamically updating code words based
on actual data encountered using Huffman coding, online
storage of text files also became common and software
compression programs began to be developed almost all
based on Huffman coding.

In 1977, Abraham Lempel and Jacob Ziv suggested the
basic idea of a pointer based encoding, following further
work by Terry Welch in 1978; the so called LZW
algorithm rapidly became a method of choice for most
general purpose compression systems, which was applied
in modems.

In the late 1980s, digital images became more common
and standards for compressing them emerged. In early
1990s lossy compression methods also began to be widely
used [12].

2. Subject
Noise is an ever present part of all communication

systems. Any receiver must contend with noise [8]. Noise
can be defined as a spurious voltage of random nature
with little or no periodicity. Noise is random undesirable
electrical energy that enters the communication medium
and interferes with the transmitted message. However,
some noise is produced at the receiver. In analog systems,
noise deteriorates the quality of the received signal, e.g.
the appearance of ‘snow’ on the TV screen, or ‘static’
sounds in audio transmission. In digital communication
systems, noise degrades the throughput (the average rate
of successful message delivery over a communication
channel) because it requires retransmission of data packets
or extra coding to recover the data in the presence of
errors [8].

10 Digital Technologies

There are two types of data compression techniques;
lossless compression and lossy compression techniques.

2.1. Lossy Compression
Lossy compression is a type of data compression

technique in which some data is deliberately discarded to
achieve massive reductions in the size of the compressed
file [2]. Higher compression ratios are achieved with lossy
compression, than when compared with lossless
compression technique. Lossy compression is mostly
applied in graphic files in which the loss of data is not
noticeable, a typical example is the Joint Photographic
Experts Group (JPEG) compression scheme used for
images [5].

2.2. Lossless Compression
Lossless data compression is a class of data

compression algorithms that allows the original data to be
perfectly reconstructed from the compressed data.
Lossless compression is used in cases where it is
important that the original and decompressed data be
identical or where deviations from the original data could
be harmful [10].

Typical examples are executable programs, text
documents, as well as source code of some image file
formats like Portable Network Graphics (PNG) that use
only lossless compression.

Most lossless compression programs do two things in
sequence, the first step generates a statistical model for the
input data and the second step uses this model to map
input data into bit sequences in such a way that frequently
encountered data (probable data) will produce shorter
output than improbable data.

3. Methods

3.1. Quantization
In lossy compression, quantization is at the basis of all

compression schemes. Quantization is the process of
representing the output of a source of a large alphabet with
a small alphabet. It can also be defined as restricting a
variable quantity to discrete values rather than to a
continuous set of values [5]. It is a many-to-one mapping
and is therefore irreversible. In the field of data
compression, quantization is used in two ways:

1.) If the data to be compressed are in the form of large
numbers, quantization is used to convert them to small
numbers. Small numbers occupy less space than large
ones. On the other hand, small numbers generally contain
less information than large ones, so quantization results in
lossy compression.

2.) If the data to be compressed are analog (i.e a voltage
that changes with time), quantization is used to digitize it
into small numbers.

There are two major ways of quantization:
i) Scalar Quantization: It is denoted by y= Q(x). It is the

process of a quantization function (Q) to map a scalar
(one-dimensional) input value (x) to a scalar output value
[1].

ii) Vector Quantization: It is general idea of mapping a
multidimensional space into a smaller set of messages S'.

Vector quantization is typically implemented by selecting
a set of representatives from the input space and then
mapping all other points in the space to the closest
representative.

3.2. Lossless Scheme
Lossless compression methods maybe categorized

according to the type of data they are designed to
compress, no lossless compression algorithm can
efficiently compress all possible data. For this reason,
many algorithms are designed either with a specific kind
of data in mind, or with specific assumptions about what
kinds of redundancy the uncompressed data are likely to
contain. Some of the lossless compression schemes are:
a. HUFFMAN CODING-TEXT

Huffman Coding is an entropy encoding algorithm used
for lossless data compression. It takes advantage of the
disparities between frequencies & uses less storage for the
frequently occurring characters at the expense of having to
use more storage for each of the more rare characters [13].

Huffman Coding is the ideal compression technique
used to compress text files for transmission. A case study,
let us consider the below text or string of characters;

h a p p y h i p h o p
Now, we need to single out each of the characters and

their number of occurrences as shown in Table 1 below:

Table 1. Huffman Encoding (showing Frequency of character
occurrence)
C H A R A C T E R F R E Q U E N C Y

P 4

H 3

S p a c e 2

A 1

I 1

O 1

U 1

Now we start building the encoding tree

Figure 1a. Code tree for Huffman’s code

Now, we choose the two smallest nodes. It could be in
any order, it doesn't matter which two we pick, and
combine them into a new tree whose root is a sum of the
two nodes.

Figure 1b. First tree root of Huffman’s code

 Digital Technologies 11

Now we pick out the remaining nodes and combine

Figure 1c. Second tree root of Huffman’s code

Again we pull out the two smallest nodes and build a
tree of weight “4”

Figure 1d. Weight “4” root of Huffman’s code

Further combination results to:

Figure 1e. Combined Weights “4”

Combining the two 4's gives us a tree of character
weight “8”.

Figure 1f. Tree character for weight “8” Huffman’s code

Finally, we combine the last two to get our final tree.
The root node of the final tree will always have a weight
equal to the number of characters in the input file.

Figure 1g. Huffman’s encoded character

From the last sketch, we assign bits to each of the nodes
(excluding the root node) a zero (0) to the left and a 1 to
the right. So the root node is 13, just the same as the
number of characters in the text.

happy hip hop = 13 characters

Table 2. Huffman Encoding (Showing Codes of Character)
C H A R A C T E R C O D E

P 0 0
H 1 0

S p a c e 0 1 0
A 1 1 0
I
O
Y

Happy hip hop = 10110 00000 111010101110010011000
= 31 bits of data

For this text to be encoded, it has to be interpreted in
bits. We have achieved that in 31 bits of text as shown
above. ASCII encoding would have taken 8 × 13 bits, that
is 104 bits.

It is essential to be noted that the same tree must be
used to do both encoding and decoding of your files. Since
each Huffman tree creates a unique encoding of a
particular file, you need to ensure that your decoding
algorithm generates the exact same tree, so that you can
get back the file [13].
b. LEMPEL-ZIV-WELCH CODING

LZW has its roots in the work of Jacob Ziv and
Abraham Lempel in 1977, when they published a paper on
"sliding window compression and followed it with another
paper in 1978 on "dictionary" based compression. These
algorithms were named LZ77 and LZ78, respectively.
Then in 1984, Terry Welch made a modification to LZ78,
which became very popular and was dubbed LZW coding
[7].

Many text files have certain strings that repeat very
often, for example "the"(with the spaces) takes 5 digits or
40 bits to encode. If we were to add the above 5 strings to
the list of (conventional ASCII) characters after the last
one at 256, so that whenever we encounter "the" we
replace it with 256, compression takes place [10]. This is
exactly the approach that LZW compression takes. It starts
with a "dictionary" of all the single character with indices
0-255. It then starts to expand the dictionary as
information gets sent through. Subsequently, redundant
strings will be coded as a single bit and compression is
said to have occurred. Below is the basic algorithm:

12 Digital Technologies

set
w= NIL
loop
read a character k
if wk exists in the dictionary
w=k
else
output the code for w
add wk to the dictionary
w=k
end loop

How it works:
The program reads one character at a time. If the code

is in the dictionary, then it adds the character to the current
work string and waits for the next one. If the work string
is not in the dictionary (when the second character comes
across) it adds the work string to the dictionary and sends
over the work string without the new character, and then it

sets the work string to the new character. The table below
shows the compress process of LZW method of
compression.

For decompression, the algorithm goes thus :
read a character k
output k
w=k
loop
read a character k
entry =dictionary entry for k
output entry
add w +first character of entry to the dictionary
w=entry
end loop
The nice thing is that the de-compressor builds its own

dictionary on its side that matches exactly that of the
compressor, so that only the codes need to be sent. The
table below shows the decompression process.

Table 3. Decompression process using LZW
Input Codes: / W E D 256 E 260 261 257 B 260 T

Input/NEW_CODE OLD_CODE STRING/Output CHARACTER New table entry
/ / /

W / W W 256=W
E W E E 257=WE
D E D D 258=ED

256 D /W / 259=D
E 256 E E 260=/WE

260 E /WE / 261=E/
261 260 E/ E 262=/WEE
257 261 WE W 263=E/W
B 257 B B 264=WEB

260 B /WE / 265=B
T 260 T T 266=/WET

Note:
1.) The "base” dictionary makes use of ASCII character encoding.
2.) LZW compression replaces strings of characters with single codes. It doesn't do any analysis of the incoming text. Instead, it just adds any new
character it sees to a table of strings. Compression occurs when a single code is output instead of a string of characters.
3.) It takes the stream of codes output from the compression algorithm and uses them to exactly recreate the input stream. The table can be built exactly
as it was during compression using the input stream as data.

LZW compression is commonly used for (lossless)
image compression. High compression ratios are achieved
when LZW compression is used for images with plain
solid colors. Compression ratios are lesser when the image
has different gradients or layers. It is efficient in saving
disk space while working and handling image files, it is
also applied in Photoshop for saving images: a user has
the option of saving as tiff (image) files with or without
LZW compression.

3.3. Image Smoothening
A low pass filter is the basis for most smoothening

methods. An image is smoothed by decreasing the
disparity between pixel values by averaging nearby pixels.
The algorithm makes an attempt to determine whether the
actual differences in pixel values constitute noise or real
photographic details and whether to average out the noise,
or to preserve the photographic details [6].

One goal in image smoothening is to reduce the noise in
such a way that the final image is still discernible. The
simplest approach to image smoothening is by replacing
each pixel by the average of the neighboring pixel values.
From the Figure 2 below, we have a noisy image, if we

smooth the pixels, we get Figure 3. Further smoothening
will give us what we have in Figure 3.

Figure 2.

Figure 3.

Figure 4.

Source: [11]

From Figure 4, much of the spotty noise has been
muted out. On the downside, the sharp boundaries that

 Digital Technologies 13

make up the letters have been smeared due to excess
averaging. While other sophisticated approaches exist, the
goal is to minimize the noise, and to keep the real images
sharp. The trick is not to do much, and also to know when
to stop.

4. Result
Combining image quantization of lossy compression &

image smoothening in one code, we can successfully
compress an image file and smoothen it. The smoothening
makes the noise less visible. This method of smoothening
(unweight sliding - average smooth) replaces each pixel in
the image with the average of ‘m’ adjacent pixels where
‘m’ is a positive integer called smooth width and it is
always an odd number.

Below is a typical algorithm for smoothening images
for compression:

001- Import the image.
002- Create a window and display original image.
003- Create another window and display the image as a

surface.
004- Smooth the image with the SMOOTH function,

which uses the average value of each group of pixels
affected by any specified kernel (or smooth width e.g. 3×3,
5×5) applied to the image.

005- Create another window to display the smoothed
image as a surface.

006- Create another window and display the smoothed
image.

007- GO TO 002
008- ELSE end.

5. Conclusion
Noise reduction in communication and data compression

are two different concepts, but could be complementary in
data communication as data compression techniques have
been shown to reduce noise. Noise reduction algorithms
have been imbibed into data compression techniques such
that as data (image or sound) is compressed, to be encoded,
the noise reduction scheme is applied before it is sent
through the communication channel.

Quantization Lossy compression technique and
Smoothening of images can strip off unnecessary features
(including noise from images and sound clips respectively)
from data files, lowering the file sizes & bandwidth it
would have consumed. This algorithm is set to perform
the double functions of compressing specific data type
(image or sound) and subsequently reduce traces of noise
found in the data. This algorithm is a model that can be
applied in multimedia studios, telecommunication industries,
etc.

References
[1] Belloch, E.G. (2013). Introduction to Data Compression.

Computer Science Department, Carnegie Mellon University.
[Online]. Available: http://blellochcs.cmu.edu. [2013 , August 17].

[2] Haas, J (2013). Lossy Compression: About.com Guide. [Online].
Available:http://linux.about.com/cs/linux101/g/Lossy_Compressio
n.htm. [2013, August 15].

[3] Hodgson, J. (2010). Understanding Records: A Field to Recording
Practice. p.86.

[4] Karla, K.P. Data Compression Techniques for E-Learning. E-
Learning Division, Department Of Information. Technology,
Ministry of Communications & Information Technology,
Government of India [cited 2013 June 20].

[5] Khalid, S. (2005). Introduction to Data Compression, Third
Edition. Morgan Kaufmann Series: Pg 432.

[6] Leslie S., D. Z .Richard (1995). The Focal Encyclopedia of
Photography. Focal Press: Pg 507.

[7] Nelson, M. (1989). LZW Data Compression. [Online]. Available:
http://www.eg.bucknell.edu/~cs379/Algorithms/S01/lzw.html.
[2013, August 13].

[8] Niknejad, A.M. Noise in Communication Systems. UC Berkeley
2013.

[9] Rouse, M. (2005) What is audio noise? [Online]; Available from
URL: http://whatis.techtarget.com/definition/audio-noise. (2013,
July 22).

[10] Salomon, D. and Bryant, D., G. Motta.(2009) Handbook of Data
Compression. 5th Edition. Springer. Pg 16-18

[11] Sethian, J.A. (2010). Noise Removal in Images. [Online].
Available:
http://math.berkeley.edu/~sethian/2006/Applications/ImageProces
sing/noiseremoval.html. [2013 , Feb 15].

[12] Wolfram, S.: A New Kind of Science (Wolfram Media 2002) Pg.
1069 Retrieved from
http://www.wolframscience.com/refrences/1069b

[13] Zelenski, J. (2012). Data Compression and Huffman Encoding.
Handout 31: Pg 3-9.

