
Fluence Map Optimization in IMRT Cancer Treatment

Planning and A Geometric Approach

Yin Zhang∗ and Michael Merritt†

July, 2004 (Revised Oct., 2004 and May 2005)

Abstract

Intensity-modulated radiation therapy (IMRT) is a state-of-the-art technique for

administering radiation to cancer patients. The goal of a treatment is to deliver a pre-

scribed amount of radiation to the tumor, while limiting the amount absorbed by the

surrounding healthy and critical organs. Planning an IMRT treatment requires deter-

mining fluence maps, each consisting of hundreds or more beamlet intensities. Since it is

difficult or impossible to deliver a sufficient dose to a tumor without irradiating nearby

critical organs, radiation oncologists have developed guidelines to allow tradeoffs by in-

troducing so-called dose-volume constraints (DVCs), which specify a given percentage

of volume for each critical organ that can be sacrificed if necessary. Such constraints,

however, are of combinatorial nature and pose significant challenges to the fluence map

optimization problem.

The purpose of this paper is two-fold. We try to introduce the IMRT fluence map

optimization problem to a broad optimization audience, with the hope of attracting

more interests in this promising application area. We also propose a geometric approach

to the fluence map optimization problem. Contrary to the traditional view, we treat dose

distributions as primary independent variables and beamlet intensities as secondary. We

present theoretical and preliminary computational results for the proposed approach,

while omitting excessive technical details to maintain an expository nature of the paper.

Key words: Cancer radiation therapy, Optimal treatment planning, Fluence map op-

timization, A geometric Approach.
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1 Introduction

Using radiation to treat cancer requires careful planning. Bombarding malignant tumors

with high-energy X-rays can kill cancerous cells (or hinder their growth), but it is usually

impossible to deliver a terminal dose without damaging nearby healthy organs in the pro-

cess. Serious patient complications can occur when the surrounding healthy tissues receive

too much of this collateral radiation. On the other hand, sacrificing a modest number of

healthy cells may be tolerable since many organs are resilient enough to sustain a certain

degree of damage while still providing their anatomical function and can eventually recover.

Therefore, research in radiation therapy seeks methods of delivering a sufficient dose to the

tumor, while carefully controlling the dose received by neighboring critical organs and other

healthy tissues.

1.1 IMRT

Intensity-modulated radiation therapy (IMRT) is a state-of-the-art method which delivers

higher doses to tumors and allows more precise conformation than the conventional 3D

conformal radiotherapy. The primary delivery tool for IMRT is a linear accelerator that

rotates on a gantry around the patient, emitting “modulated” beams of X-rays. This

modulation is accomplished by means of a device known as a multileaf collimator (MLC)
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which is attached to the accelerator. Its adjustable heavy-metal leaves act as a filter,

blocking or allowing radiation through in a precise manner controlled by a computer, in

order to tailor the beam shape to the shape of the tumor volume while minimizing exposure

of the neighboring structures.

Several mathematical problems arise in order to optimally administer IMRT. Treatment

proceeds by rotating the accelerator around the patient and coordinating the leaf movements

in the MLC so that the radiation delivered conforms to some desirable dose distribution at

each gantry (beam) angle. We will assume in this paper that treatments are administered

by fixing the accelerator at a finite number of given gantry angles, rather than emitting

radiation while rotating through a continuous arc. We note that determining the number

and the values of the gantry angles constitutes a higher-level optimization problem of a com-

binatorial nature, often called the beam-angle optimization problem. Typically, increasing

the number of gantry angles would increase the quality and the cost of the treatments.

In addition to knowing the beam angles, one must also know how intense the beams

should be at each point (x, y) on the MLC aperture for all gantry angles. These intensity

profiles, or fluence maps, are represented by two-dimensional, nonnegative functions Ia(x, y)

for a = 1, 2, . . . , k, where k is the number of gantry angles in use. The process of determining

the functions Ia(x, y) is often called fluence map optimization.

Finally, once the fluence maps Ia(x, y) are determined, one must convert these into MLC

leaf sequences that attempt to realize them. The longer an MLC leaf is open at a certain

position (x, y), the more dose the tissue along a straight path from that position (plus

some surrounding tissue) absorbs. The process of converting fluence maps into the opening

and closing movements of leaves is called leaf-sequencing. There are many physical and

mathematical issues that affect how successful MLC leaf sequences are at approximating

the desired fluence maps.

In this paper, we will focus solely on the problem of computing the fluence maps Ia(x, y),

such that the tumor, or target, structures receive the prescribed doses and the healthy

critical structures receive as little as possible. These conflicting goals are the primary cause

of difficulty in fluence map optimization.

1.2 Dose-Volume Constraints

Besides some scattering, the radiation travels primarily in a straight line, so it must typically

pass next to or even directly go through critical organs in order to reach and irradiate

intended tumor targets. Since the doses that kill most cancers are much larger than those

that kill most healthy tissue in the body, even though multiple angles are used in an attempt

to focus radiation on the targets, more often than not one has no choice but to sacrifice

some healthy tissues. The next sensible objective is to control the volume of the healthy

tissues to be sacrificed. Toward this end, in standard practice oncologists prescribe dose-

volume constraints (DVCs) that allow a certain percentage of volume in healthy tissues to

be sacrificed in order to make sufficient progress in treating the cancer. A typical DVC
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has the form, for example, that no more than 30% volume of the right lung can exceed a

radiation dose of 20Gy, where “Gy” is the shorthand for “Gray” – the international unit for

radiation dose absorption. In addition, oncologists may specify another level of constraint

on the same organ, such as no more than 40% volume of the right lung can exceed 10Gy.

These dose-volume constraints are natural for oncologists to specify and have become the

de facto standard way to prescribe radiation therapy treatment in practice.

Clearly, dose-volume constraints provide the much needed flexibility necessary for the

escalation of tumor doses. On the other hand, they also introduce a high degree of com-

plexity to the underlying optimization problem. In the above example, for instance, which

30% of the right lung volume should be allowed to absorb more that 20Gy? This brings

a combinatorial component to the optimization problem (once the problem is discretized).

Mathematically, finding the globally optimal combination of critical organ cells to sacrifice

in this way can be an extremely difficult problem.

2 Fluence Map Optimization

In this section, we provide details on the current practice of IMRT treatment planning, as

they are relevant to the fluence map optimization.

2.1 Discretizations

To determine the fluence map functions Ia(x, y), we first discretize the MLC aperture for

each angle by putting a rectangular grid {(xi, yj)} on it. As a result, the two-dimensional

function Ia(x, y) will be approximated by a set of discrete values {Ia(xi, yj)}. The actual

number of these small rectangular elements, or “bixels,” will depend not only on the physical

sizes of the MLC device (such as the width of the MLC leaves), but also on the gantry angles

and the geometry of the region under treatment. For instance, if a beam emitting from a

given grid point is determined not to have a significant intersection with or impact on

the region of treatment, then this particular grid point will be omitted from consideration.

With this discretization, each MLC aperture is broken into hundreds (or up to thousands) of

discrete “bixels” and, correspondingly, each radiation beam is broken into as many discrete

“beamlets.” The total number of beamlets in a given fluence map optimization problem is

the sum of the beamlets for all the beam angles.

Let n be the total number of beamlets for all beam angles and let us index the bixels

linearly. Instead of using the notation Ia(xi, yj) for the unknown beamlet intensities, we

denote the unknowns by a vector x ∈ R
n. In addition, since the intensity values are

nonnegative, we have x ∈ R
n
+ where R

n
+ denotes the nonnegative orthant of R

n.

Moreover, we also need to discretize the “region of interest” or “region of treatment.”

This is the three-dimensional volume of the patient’s anatomy containing the target struc-

tures and any nearby critical structures that might be adversely affected by the radiation.

Similarly, we will break this volume up into small three-dimensional rectangular elements
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known as “voxels”, each of which is associated with a point (xi, yj , zk) ∈ R
3. Let m be

the total number of voxels in the region of interest and let us index the voxels linearly.

During the treatment, each voxel will absorb a dose of radiation. We denote the dose values

absorbed by the voxels in the region of interest by a vector d ∈ R
m
+ . Furthermore, let mt

and mh be the number of target and healthy voxels, respectively, so that mt + mh = m.

Similarly, we will decompose the dose vector into two sub-vectors dt and dh, corresponding

to dose values absorbed by the target and healthy voxels, respectively.

2.2 Dose Calculation

The standard IMRT model for dose absorbed at the i-th voxel in the region of interest is

di =
n
∑

j=1

aijxj, (1)

where aij represents the amount of dose absorbed by the i-th voxel per unit intensity

emission from the j-th beamlet. The values aij for all the voxels and bixels form a matrix

A ∈ R
m×n
+ , known as the “influence matrix” (or kernel matrix). In the matrix notation, the

dose calculation formula (1) becomes

d = Ax. (2)

Figure 1 shows how each element aij relates to a beamlet emitted from the MLC and a

voxel in the discretized region of interest.

Figure 1: Influence Matrix Element
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Assume A has no zero rows or columns. This means, respectively, that all voxels receive

some nonzero amount of radiation and every beamlet influences at least one voxel’s dose.

These conditions can be easily met by pre-processing, if necessary. Typically, m � n with

m on the order of 105 or larger and n of 103 up to 104. Note the entries aij are necessarily

nonnegative. In fact, depending on how much scattering is included, the influence matrix

A can be very sparse or fairly dense.

The dose calculation model using the influence matrix A can be considered as a first-

order approximation. Radiation absorption as a function of the beamlet intensities can be

modeled with linear Boltzmann transport equations [12]. Solving these equations can be

complicated and computationally expensive, so many different approximation methods have

been proposed for computing A. Monte Carlo sampling techniques are, for example, among

the more popular methods because of their accuracy. However, Monte Carlo methods are

also very slow and expensive. Some commercial planning systems include dose calculation

engines with several levels of accuracy. In this way, dose calculations in early iterations,

which are usually not required to be highly accurate, can be made less expensive [26], while

more accurate (and more expensive) schemes can be used in later iterations.

Clearly, dose calculation is still an important research area on its own right. While

acknowledging its importance, for now we will assume that a constant influence matrix A

is provided to us a priori, and we will use it throughout our optimization process.

2.3 Prescriptions

A sample prescription for a lung cancer case is given below. As one can see, the prescription

consists of a set of dose-volume constraints. Currently, this is the standard practice in

prescribing radiation therapy treatments.

For each structure, tumorous or healthy, there is at least dose-volume constraint, spec-

ified by a percentage number on the left and a threshold value for dose on the right.

The first four lines of the prescription are for a tumor and a so-called extended area

around the tumor that is introduced to account for uncertainties about the boundary of

the tumor. The first two lines state that the target tumor dose should be higher than a

threshold value of 63Gy, although 5% of the target volume may be lower than that. On the

other hand, the target dose should be below 72Gy except for a portion of 1% of volume.

We can similarly interpret the specifications on the other structures.

It should be pointed out that the dose-volume constraints for the target structures are

very different in nature than those for the healthy structures. Obviously, they are not there

for the purpose of sacrificing a part for the good of the whole. They are there because it

is too difficult or impossible to achieve a uniform target dose, so some imperfections are

allowed. For example, we may very well regard the first two lines of the prescription as a

perturbation to a target dose specification of 65Gy. In the rest of the paper, that is precisely

the approach we will take; namely, we will assume that a single target dose value will be

given for each target structure, knowing that it is unlikely to be exactly satisfiable. This
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---------------------------------------

>= 95% of Tumor receives >= 63 Gy

<= 1% of Tumor receives >= 72 Gy

>= 95% of Ext_Tumor receives >= 60 Gy

<= 1% of Ext_Tumor receives >= 70 Gy

---------------------------------------

<= 1% of Cord receives >= 43 Gy

<= 15% of Heart receives >= 30 Gy

<= 20% of Esophagus receives >= 10 Gy

<= 2% of Lt_Lung receives >= 20 Gy

<= 8% of Lt_Lung receives >= 10 Gy

<= 30% of Rt_Lung receives >= 19 Gy

<= 40% of Rt_Lung receives >= 10 Gy

<= 50% of Norm_Tissue receives >= 54 Gy

---------------------------------------

Figure 2: A sample prescription

assumption will significantly simplify our presentation, even though our formulation, to be

introduced in the next section, can be extended to deal with dose-volume constraints for

target structures.

2.4 Current Practice and Research

The IMRT fluence map optimization problem has been extensively studied for a number of

years, mostly by medical physicists but more recently also by operations researchers and

applied mathematicians. A survey on this subject from a mathematical viewpoint can be

found in [20]. We now give a brief overview on the current practice and on-going research

in IMRT fluence map optimization. Intended for a non-expert audience, this overview is

by no means comprehensive. For a collection of recent survey papers on many aspects of

IMRT treatment planning, including one on mathematical optimization by Censor [4], we

refer the reader to the book [17] and the references thereof.

The fluence map optimization problem can be viewed as an inverse problem where one

designates a desirable dose distribution and attempts to determine a beamlet intensity

vector that best realizes the given distribution. There are different ways to formulate this

problem into optimization problems using different objective functions, some biological and

some physical. Biological models attempt to represent statistical knowledge of various

biological responses, such as tumor control probability (see [3], for example). At present,

however, the predominant formulation is the “weighted least squares” model as described

below, which is being used in most commercial IMRT systems on the market.

If an objective function is associated with each anatomical structure, then this problem
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can be naturally viewed as a multi-objective optimization problem (for example, see [7, 10]).

However, due to the difficulties in directly solving multi-objective optimization problems,

the prevalent approach in IMRT fluence map optimization is to use a weighted least squares

fitting strategy. Although many variations exist, a typical form of the weighted least squares

formulation is the following. For each voxel i, one tries to fit the calculated dose value di to

some “desirable” value bi. For a target voxel, this “desirable” value is just the prescribed

dose value for the tumor structure to which the voxel belongs. For a healthy voxel (for which

there is really no “desirable” dose other than zero), it is usually set to the threshold value

of the dose-volume constraint, though sometimes adaptive values are used. If a calculated

dose for a healthy voxel is less than its “desirable” value, then the corresponding error term

is set to zero. This way, only those doses higher than their “desirable” values are penalized.

Then to each target and critical structure, one attaches a weight parameter that repre-

sents the relative priority of fitting its calculated doses to the desired one. In fact, different

tradeoffs between structures can be made by adjusting these weights. To illustrate, suppose

there are four structures Sj, j = 0, 1, 2, 3, each consisting of a set of voxels, where S0 is a

target structure and the other three are healthy ones. Then the objective function in the

weighted least squares formulation takes the form

f(x) =
3
∑

j=0

wjfj(d(x)), (3)

where d(x) = Ax is the calculated dose vector corresponding to a beamlet intensity vector

x ≥ 0 (see (2)), wj are the weights,

f0(d) =
∑

i∈S0

(di − bi)
2, fj(d) =

∑

i∈Sj

max(0, di − bi)
2, j = 1, 2, 3,

and b is the vector of “desirable values” for all voxels. In this case, the resulting error

function f(x) in (3) is a convex, piece-wise quadratic function of x. One seeks to minimize

f(x) subject to the nonnegativity of the beamlet intensities in x. Obviously, solutions to

this weighted least squares problem vary with the a priori choice of the weights.

The weighted least squares model in (3) does not directly enforce the dose-volume con-

straints in a given prescription, which represent the most challenging aspect of the fluence

map optimization problem. One approach to enforcing the dose-volume constraints is to

try out different choices of the weights while using the dose-volume constraints as evalua-

tion criteria for solutions. The fundamental difficulty in this approach is that there does

not seem to exist any transparent relationships between weights and prescriptions. Hence,

weight selection basically reduces to a trial-and-error process, which too often becomes

overly time-consuming in terms of both human and computer times.

In addition to manipulating the weights, some formulations (e.g. [23]) add penalty terms

to the weighted least squares objective to “encourage,” but not impose, dose-volume con-

straint feasibility. These penalty terms are inevitably non-convex, thus introducing the

complexity of having to deal with local minima. To address this problem, some systems
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include the option of using stochastic global optimization techniques such as simulated

annealing and genetic algorithms to help escape from unsatisfactory local minima.

Since weighted least squares problems are usually quite large, gradient-type algorithms

are often the methods of choice. Some implementations also employ conjugate gradient

[21] or secant methods [10]. The nonnegativity of beamlet intensities are enforced either by

projection [23] or some other means [10].

With all its shortcomings, the conceptual and algorithmic simplicity of the weighted least

squares approach is still attractive to the practitioners. Indeed, this current state of IMRT

treatment planning does represent a remarkable progress in cancer radiotherapy. On the

other hand, many issues remain, ample room for improvement exists, and intensive research

activities are still on-going. One of the research directions in this field is so-called weight

optimization (see [28], for example), aimed at automating the weight selection process.

The IMRT fluence map optimization problem has attracted considerable attention from

researchers in mathematical programming community who tend to formulate the problem

into linear or mixed-integer linear programs (see [13, 8, 19, 18] for a sample of some re-

cent works). Linear programming techniques for radiation therapy have been proposed and

studied since the early days [1] and have also been considered for treating dose-volume con-

straints [11]. On the other hand, the introduction of mixed-integer programming techniques

into radiotherapy planning for treating dose-volume constraints was a more recent event.

Many contributions from the mathematical programming community seem encouraging and

promising. Their impact on the clinical practice of radiotherapy, even though limited at

this point, will hopefully be felt over time.

Finally, we reiterate that the above short overview is by no means comprehensive. Given

the vast literature on this subject, many omissions have inevitably occurred, most notably

works based on biological objective functions and works connecting the fluence map opti-

mization to the beam angle optimization as well as to the multileaf sequencing.

3 A Proposed Approach

In our view, there are two levels of difficulties in IMRT fluence map optimization, as outlined

below. Our focus in this paper will be on the first issue.

1. Given a prescription, one needs to find a beamlet intensity vector so that the calculated

dose from it will satisfy the prescription as closely as possible. The difficulty for this

problem lies in the fact that dose-volume constraints define a complicated non-convex

feasibility set. This leads to a non-convex global optimization problem that is difficult

to solve exactly. The traditional weighted least squares approach relies, to a large

degree, on a trial-and-error weight-selection process to search for a good plan.

2. Due to variations from patient to patient even for the same kind of cancer, more

often than not, oncologists themselves do not know a priori a “good and achievable”

prescription for a particular patient. A highly desirable prescription could be too
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good to be achievable, while an achievable one might not be close enough to the best

possible. Development of procedures to assist oncologists in their decision-making is

of paramount importance.

In this section we propose a geometric approach that is entirely prescription-driven and

does not require any artificial weights. At the same time, we will retain the least squares

framework. As such, one can consider our formulation as a “weightless least squares” ap-

proach. We consider two sets in the dose space: (i) the physical set consisting of physically

realizable dose distributions, and (ii) the prescription set consisting of dose distributions

meeting the prescribed tumor doses and satisfying the given dose-volume constraints. In

the case where a prescription is given, we seek a suitable dose distribution by successively

projecting between these two sets. A crucial observation is that the projection onto the

prescription set, which is non-convex, can be properly defined and easily computed. The

projection onto the physical set, on the other hand, requires solving a nonnegative least

squares problem. We show that this alternating projection algorithm is actually equiva-

lent to a greedy algorithm driven by local sensitivity information readily available in our

formulation. Moreover, the availability of such local sensitivity information offers an op-

portunity to devise greedy algorithms to search for a desirable plan even when a “good and

achievable” prescription is unknown.

To keep the expository flavor of the paper, we will not include long and overly tech-

nical proofs for some mathematical results stated. A more complete treatment, including

extensive numerical results, will be presented in a subsequent paper in preparation.

3.1 Prescription and Physical Sets

We partition the rows of the influence matrix A into two groups: those for target voxels

and those for healthy ones; that is,

A =

[

At

Ah

]

, (4)

where At is the submatrix consisting of the rows for target voxels and likewise Ah of those

for healthy voxels. Recall that A ∈ R
m×n
+ where m = mt + mh is the number of voxels, and

n the number of bixels. Thus At ∈ R
mt×n
+ and Ah ∈ R

mh×n
+ . With this notation, Atx gives

the calculated doses for the target voxels and Ahx those for the healthy ones. We start by

defining two sets in the dose space.

Definition 1 (Prescription Set). Let bt ∈ R
mt
+ be the dose vector for target voxels in a

given prescription, and Dv ⊂ R
mh
+ be the set of dose vectors for healthy voxels that satisfy

all the dose-volume constraints in the given prescription. We call the following set the

prescription set

H =

{[

bt

u

]

: u ∈ Dv

}

⊂ R
m
+ . (5)
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Clearly, any dose vector d ∈ H precisely meets the prescribed target doses and at the

same time satisfies all the dose-volume constraints given in the prescription. If healthy

tissue doses calculated from a beamlet intensity vector x ∈ R
n
+ satisfy the dose-volume

constraints, then we must have Ahx ≤ u; or equivalently, Ahx+s = u for some nonnegative

slack variable s ∈ R
mh
+ .

Definition 2 (Physical Set). Let A be defined as in (4). We call the following set the

physical set

K =

{[

Atx

Ahx + s

]

: (x, s) ≥ 0

}

⊂ R
m
+ . (6)

Clearly, the physical set contains all the dose vectors that can be physically realized

(disregarding the slack variable) under the standard dose calculation model.

Both H and K are closed sets in R
m
+ , and K is a convex cone but H is non-convex. In fact,

Dv is a non-convex union of convex “boxes.” For example, suppose we have only two healthy

tissue voxels in the region of interest and one dose-volume constraint: at least 50% of voxel

doses must be less than or equal to 1Gy. Then Dv = {u ∈ R
2
+ : u1 ≤ 1}∪{u ∈ R

2
+ : u2 ≤ 1};

i.e., either u1 can be greater than one or u2, but not both. Clearly, this is the L-shaped

(hence non-convex) region in the first quadrant along the two coordinate axes. Figure 3

shows the relation of Dv to H and K for this case when there is one target voxel. Note the

L-shaped region is elevated to a height corresponding to a given target dose value bt. In

this figure, the two sets H and K do not intersect.

Figure 3: Prescription set H and physical set K in dose space R
3
+

It is easy to imagine that with more voxels and more dose-volume constraints, the

complexity of the geometry for Dv grows quickly out of hand. However, Dv always enjoys
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a very nice geometric property. That is, despite its non-convexity, Dv permits a trivial

projection onto it once the issue of non-uniqueness is resolved (see below). For example,

suppose that Dv ⊂ R
10
+ specifies only one dose-volume constraint: at least 70% of the voxels

must have doses of no more than 5Gy. Then

ProjDv
((1, 2, 3, 4, 5, 6, 7, 8, 9, 10)T ) = (1, 2, 3, 4, 5, 5, 5, 8, 9, 10)T .

where ProjDv
is the projection onto Dv. That is, we set the smallest two numbers greater

than 5 equal to 5. Clearly, this is the closest point in Dv as it affects the least change on the

original point in R
10
+ . Since Dv is non-convex, such a projection will not always be unique,

but this issue can be resolved by setting some priority rules. It is not difficult to see that

dose-volume constraints (DVCs) for multiple structures, and multi-level DVCs for the same

structure, can be treated in a similar fashion.

Moreover, it is worth noting that projecting a point d ∈ R
m
+ onto H is tantamount to

setting the first mt components of d (the target voxel dose values) to bt and projecting

the last mh components of d (the healthy voxel dose values) onto Dv. On the other hand,

projecting onto K is substantially more difficult and will be discussed next.

3.2 Optimization Formulations

Given a prescription, ideally we would like to find x ∈ R
n
+, s ∈ R

mh
+ and u ∈ Dv such that

Atx = bt, Ahx + s = u,

but this system is generally over-determined and does not permit a solution. To see this, it

suffices to examine the first equation Atx = bt which has mt equations with n unknowns. In

practice, there are usually more target voxels than the total number of bixels, i.e., mt > n.

The reality of the IMRT fluence map problem is that there may be no physically achievable

dose that both satisfies the DVCs and meets the target prescription. That is, H ∩ K = ∅;

or equivalently, dist(H,K) > 0 where dist(·, ·) is the Euclidean distance between two sets.

Thus, we are motivated to find a prescription dose vector dT = [bT
t uT ], u ∈ Dv, that is

closest to the physical set K (or vice versa). In this view, we have an optimization problem

with a variable u ∈ Dv (because bt is fixed):

min
u∈Dv

dist

([

bt

u

]

,K

)

. (7)

The objective in the problem (7) describes the distance from a given prescription dose vector

to the physical set K which can be written as

dist

([

bt

u

]

,K

)

= min
x,s≥0

∥

∥

∥

∥

∥

[

bt

u

]

−

[

Atx

Ahx + s

]
∥

∥

∥

∥

∥

,
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where ‖ · ‖ is the Euclidean norm by default (though any other fixed, weighted norms can

be used as well). Equivalently, we can replace the norm above by one half times the square

of the norm and define the following objective function

f(u) = min
x,s≥0

1

2
‖Atx − bt‖

2 +
1

2
‖Ahx + s − u‖2 . (8)

Namely, f(u) is itself the optimal value of a linear least squares problem with nonnegativity

constraints. Using this notation, we can rewrite the problem (7) into the following equivalent

form

min
u∈Dv

f(u). (9)

It is not difficult to show that f(u) decreases monotonically as u increases. Let (x(u), s(u))

be the solution of the optimization problem defined in the right-hand side of (8) for a given

u ∈ Dv. Then under suitable conditions, it can be proved that f(u) is differentiable and

∇f(u) = −max(0, Ahx(u) − u) ≤ 0, (10)

where the maximum is taken component-wise. The derivation of this formula is rather long

and we omit it here for the sake of space.

Formulation (9) readily provides the sensitivity of a planning quality measure, f(u) in

(8), with respect to the dose upper bounds u. This information can potentially be utilized

to search the “prescription space” in the more realistic case where a definitive “optimal”

prescription is not available, but a set of guidelines are.

3.3 Alternating Projection Algorithm

The method of alternating (or successive) projections is well known in convex optimization.

It is simple and effective, though it can be quite slow. Given two closed convex sets E and

F with a nonempty intersection, one can obtain a point in E ∩F by successively projecting

points in E and F onto each other. The convergence of this procedure when E ∩ F 6= ∅

was first proven by von Neumann for closed convex sets in Hilbert space satisfying certain

properties [22]. In finite dimensional cases, convergence is guaranteed (see [2, 5]). One

can further show that if the intersection is empty, the algorithm still converges to a pair of

points (x̂, ŷ) ∈ E × F such that ‖x̂ − ŷ‖ = dist(E,F ) > 0. For our problem, it is usually

the case that dist(H,K) > 0.

Successive or simultaneous projection algorithms have been applied to different formu-

lations of the IMRT flucence map optimization problem, see [6, 24, 27] for example, where

the sets involved in projections are all convex sets (in some cases convex approximations

to non-convex sets). To our best knowledge, projections have not been directly applied to

the non-convex DVC feasibility set Dv defined in (9). The set Dv in (9) consists of a large

number of “branches,” where one or more of the voxels has a dose that exceeds its threshold

dose. Obtaining or verifying a global minimum on such a set can be excessively difficult.

We will instead seek a local minimum in one of the branches.
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We propose to apply an alternating projection algorithm to find a local minimum of (7)

by successively projecting iterates in dose space back and forth between the prescription

set H and the physical set K. Specifically, given d0 ∈ H and for k = 0, 1, 2, . . ., do

dk+1/2 = ProjK(dk), dk+1 = ProjH(dk+1/2). (11)

In this algorithm, the iterates are in the prescription set, while the intermediate iterates are

in the physical set corresponding to a sequence of beamlet intensity vectors {xk+1/2 : k =

0, 1, 2, . . .}. As mentioned earlier, the projection onto H is easy, and the projection onto K

requires solving a nonnegative linear least squares problem as defined in the right-hand of

(8).

We emphasize that the starting point d0 ∈ H should be chosen to satisfy threshold

values of all the dose-volume constraints; i.e., d0 should be in the intersection of all the

“branches” (or “boxes”). For example, if a dose-volume constraint for a given structure is

“no more than 30% of voxels can have dose values greater than or equal to 20Gy,” then we

should require that every component of d0 corresponding to a voxel of that structure to be

set to the threshold value 20 (or possibly lower). As the iterations progress, the algorithm

will then automatically select voxels where the threshold value of 20 will be exceeded. This

way we avoid arbitrarily selecting which “branch” to enter at the outset.

3.4 Equivalence to a Greedy Algorithm

We now consider a gradient projection algorithm directly applied to the problem (9): given

u0 ∈ Dv,

uk+1 = ProjDv
(uk − αk∇f(uk)), k = 0, 1, 2, . . . . (12)

This is a steepest-descent type algorithm, or a greedy algorithm. At each step, the movement

is based on the local sensitivity information – the gradient of f(u). Likewise, we select the

initial iterate u0 to be at or below the threshold values of all the dose-volume constraints,

ensuring u ∈ Dv. Then the algorithm will automatically increase u (recall that ∇f(u) ≤ 0)

in proportion to the sensitivity of the objective function at the current iterate. Moreover,

the projection ProjDv
that follows each move will keep the iterate within the feasibility set

Dv. Thus, this algorithm can be considered as a sensitivity-driven greedy algorithm for

solving (9).

We note that f(u) is monotone in the direction −∇f(u) ≥ 0. Hence the step length

selection in (12) seems not as critical as in general situations. We now show that the

constant step length αk ≡ 1 will lead to an algorithm that is equivalent to the alternating

projection algorithm (11).

Theorem 1. Let {dk} and {uk} be generated by algorithms (11) and (12), respectively,

where dT
0 = [bT

t uT
0 ] and αk ≡ 1 in (12). Then

dk =

[

bt

uk

]

, k = 1, 2, 3, . . . . (13)
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Proof. Let us drop the iteration subscript k. Define x(u) and s(u) as the solutions associ-

ated with the subproblem in the right-hand side of (8). By the definitions of the relevant

projections,

ProjH

(

ProjK

(

bt

u

))

= ProjH

(

Atx(u)

Ahx(u) + s(u)

)

=

(

bt

ProjDv
(Ahx(u) + s(u))

)

.

Therefore, it suffices to show that u − ∇f(u) = Ahx(u) + s(u). By the gradient formula

(10) of ∇f(u),

u −∇f(u) = u + max(0, Ahx(u) − u) = max(u,Ahx(u)).

So, it remains to show that Ahx(u) + s(u) = max(u,Ahx(u)) for all u ∈ Dv.

In the following, we use subscripts to denote components of vectors. If [Ahx(u)]i ≤ ui,

then necessarily the slack variable s(u)i ≥ 0 must satisfy

[Ahx(u) + s(u)]i = ui = max(ui, [Ahx(u)]i).

On the other hand, if [Ahx(u)]i > ui, then necessarily the slack variable s(u)i = 0 and

[Ahx(u) + s(u)]i = [Ahx(u)]i = max(ui, [Ahx(u)]i).

This completes the proof.

The equivalence between these two algorithms allows us to view the problem geometri-

cally and apply the alternating projection algorithm (11) with the confidence that locally,

reasonable choices are being made as to which dose bounds to relax to take advantage of

the flexibility in the dose-volume constraints.

3.5 Convergence to Local Minimum

Since the prescription set H is non-convex, the classic convergence theory for alternating

projection algorithm is not directly applicable. In our limited computational experience,

the algorithm has never failed to converge so far. We observe that despite H being non-

convex, it is the union of finitely many (simple) convex sets. This “local convexity” of H

seems to likely allow a modified convergence proof for the alternating projection algorithm

in our case, which remains to be a further research topic.

In the meantime, if we introduce a minor modification to the alternating projection

algorithm, then the convergence of the algorithm to a local minimum will be guaranteed.

For simplicity, let us assume that there is only one healthy structure with a single dose-

volume constraint that defines the feasibility set Dv:

“No more than P -percent of the healthy voxels can receive doses exceeding a

given threshold value γ > 0.”
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Let us work with the simpler algorithmic form (12). Suppose that at iteration k, the

dose vector uk ∈ Dv is such that (τkP )-percent of the voxels have already exceeded the

threshold value γ for some τk ∈ [0, 1]. Then we define Dk
v to be the set of dose vectors for

the healthy structure that satisfy the following dose-volume constraint:

“No more than (1−τk)P -percent of the healthy voxels corresponding to [uk]i ≤ γ

can receive doses exceeding the threshold value γ.”

In this setting, once a voxel has taken a dose value [uk]i > γ at some iteration k, it will be

allowed to take dose values greater than γ for all the subsequent iterations. Moreover, once

τk = 1 at some iteration k, then in all subsequent iterations no more dose upper-bounds

will be allowed to exceed γ except those already having been allowed.

The modified algorithm will take a projection at iteration k onto the set Dk
v instead of

onto Dv; that is,

uk+1 = ProjDk
v
(uk −∇f(uk)), k = 0, 1, 2, . . . . (14)

In essence, this algorithm provides a greedy scheme to select a set of healthy voxels that

are allowed to receive higher doses. We now state the following convergence result for this

algorithm without a proof.

Theorem 2. Let the iteration sequence {uk} be generated by the algorithm (14) with u0 ≤ γ.

Then {uk} ⊂ Dv and satisfies that (i) uk+1 ≥ uk component-wise, (ii) f(uk+1) ≤ f(uk),

and (iii) {uk} converges to a local minimum u∗ of f(u) in Dv.

We emphasize that the proposed algorithms in this paper are designed for quickly finding

a good local optimum instead of locating a global optimum. A number of studies [25, 14, 9]

indicate that the existence of multiple local minima due to dose-volume constraints does

not appear to notably affect the quality of treatment plans obtained by the weighted least

squares approach. A plausible interpretation of this phenomenon is that there exist many

easily reachable local minima with function values very close to the global minimum value.

Given the presence of various errors in mathematical models (such as dose calculation

models) and in data measurements, finding a global optimum for the underlying non-convex

optimization problem does not seem necessary nor practically meaningful, as long as a good

local minimum is found. Of course, it is still important to carefully assess the quality of

obtained solutions from a clinical viewpoint.

Let us examine the dose values calculated at the solution u∗. Clearly, u∗ ∈ Dv and

Ax(u∗) ∈ K (corresponding to s = 0). However, in general one should not expect that

Ahx(u∗) ∈ Dv. That is, the locally optimal physical dose calculated by the algorithm

generally does not satisfy the dose-volume constraints, because such constraints are not

explicitly imposed in our “weightless least-squares” formulation, just as in weighted least-

squares formulations. While this lack of a direct control over the dose-volume constraint

satisfaction could be viewed as a potential disadvantage on one hand, it does usually allow

fast solution times on the other hand.
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3.6 Preliminary Numerical Results

In this section, we demonstrate the potential of our algorithm on some two-dimensional

phantom cases. The region of interest is a 101 × 101 voxel cross section of a simulated

treatment area. Each of the three test cases have different geometries for the “tumor” and

“critical organ”, or organ at risk (OAR). The simplest involves a C-shaped tumor that has

grown around a small OAR. More challenging is a small OAR completely surrounded by an

“O”-shaped tumor. In the third case, we add further complication to the “O” configuration

by having the OAR also include a rectangular region just outside the tumor. The geometries

of these cases, as outlined in the left-side pictures of Figures 4-6, are nontrivial and, in our

view, sufficient for preliminary proof-of-principle studies.

In all the test cases, we specify the prescribed target dose to be 80Gy for all the tumors,

and consider the dose-volume constraint: “at most 30% of the critical organ voxels can

have doses greater than 25Gy.” We label as “normal” all the tissue which is neither the

tumor nor the organ at risk. Although not as concerning as injury to the critical organ, we

would always like to prevent this normal tissue from receiving too high a dose. Therefore,

we also specify an upper bound of 75Gy for the normal tissue, equivalent to a dose-volume

constraint: “0% of the normal tissue can have doses greater than 75Gy.” Additionally, each

plan uses 9 coplanar beams with dose absorption governed by an influence matrix (i.e.,

A in (2)) that we have obtained from The University of Wisconsin-Madison Tomotherapy

Research Group.

We implemented the algorithm (14) in Matlab. To perform the minimization in (8)

(projection onto K) at each iteration, we used an interior-point scaled gradient algorithm

[16]. In anticipation that least squares solutions will allow calculated doses to vary both

above and below their desired values, to be on the safer side we adjust bt to be 5% higher

than the desired tumor dose 80Gy, and similarly the OAR threshold value to be 15% lower

than the desired 25Gy. We stop the algorithm once the relative change from uk to uk+1

becomes less than 1%. In our experiments, we have observed that the algorithm took very

few (usually two) iterations to terminate in all the tested cases.

Our computational results are presented in Figures 4-6 corresponding to the three test

cases. In each figure, we have included a dose distribution on the left, and a dose-volume

histogram (DVH) on the right. The dose distribution indicates the level of calculated

radiation intensity (in gray scale) deposited in the region of interest. As can be seen, the

calculated doses are well focused on the tumors while more or less sparing the critical organs.

The dose-volume histograms show the relationship between a given dose value (in x-axis)

and the volume percentage (in y-axis) of an anatomical structure receiving that level of

radiation or higher. For instance, in Figure 4 or 5 the point (40, 0.1) on the “Normal” curve

means that 10% of the normal tissue has received a radiation 40Gy or higher.

We have previously performed computational experiments on the same set of phantom

cases with a weighted least squares (WLS) approach and a successive linear programming

(SLP) approach [15]. Given these experiences, drawing some comparison would be useful.
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The weighted least squares approach requires trying out multiple sets of weights and

solving a non-negative least squares problem for each set of weights. As such, it generally

requires considerably more computation than the new approach. In [15], we used an ex-

haustive search, designed only for cases with one critical organ and one tumor, to find a set

of optimal weights. With such optimal weights, the WLS approach produced solutions of a

quality similar to that of the new approach. The SLP approach enforces the exact satisfac-

tion of the dose-volume constraints and solves a sequence of linear programs. It obtained

slightly better quality solutions than the new approach, but required far more computation

than the new approach. In addition, the beamlet intensity distributions generated by the

SLP approach are generally less smooth, creating difficulties for the later leaf-sequencing

stage. For more details on the WLS and SLP approaches, we refer interested readers to

[15]. These preliminary numerical results, as encouraging as they may appear, constitute

only a first step towards validating the viability of the proposed approach.

4 Final Remarks

The IMRT fluence map optimization problem arises, along with a few other optimization

problems, from the state-of-the-art technologies of radiation therapy for cancer treatment.

The problem has been extensively studied by medical physicists, and has also attracted

considerable on-going research from the operations research and optimization communities.

Currently, the predominant methodology in practice is the “classic” weighted least squares

(WLS) approach, which focuses on determining an optimal beamlet intensity vector.

In this paper, we take a different view to treat dose distributions as the primary vari-

ables, resulting in a formulation based on the geometry in “dose space.” It is our purpose

to retain the popular “least squares” framework, while doing away with the burden of hav-

ing to select weights in the classic WLS approach. The proposed formulation is free of

weights, prescription-driven, sensitivity guided, and still shares basic characteristics of a

least-squares approach such as not having a precise control over the dose-volume constraint

satisfaction and, at the same time, being much less computationally demanding. It is de-

signed for quickly finding a good locally optimal plan associated with a given prescription.

Preliminary computational results indicate that the approach is potentially capable of pro-

ducing solutions of a quality at least comparable to that obtainable by the classic WLS

approach. Encouraged by these proof-of-principle results, we are currently working towards

more realistic testings on three-dimensional clinical cases.

The approach presented in this paper is only one of many on-going research efforts in

helping optimize IMRT cancer treatment planning. It is hopeful that an active participation

of the operations research and optimization communities in this important application field

will bring about an advancement to cancer treatment planning.
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Figure 4: C-Shape Dose Distribution and DVH
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Figure 5: O-Shape Dose Distribution and DVH
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