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Abstract

In this article we describe a novel Particle Swarm Optimization (PSO) approach to multi-objective optimization
(MOO), called Time Variant Multi-Objective Particle Swarm Optimization (TV-MOPSO). TV-MOPSO is made adaptive
in nature by allowing its vital parameters (viz., inertia weight and acceleration coefficients) to change with iterations. This
adaptiveness helps the algorithm to explore the search space more efficiently. A new diversity parameter has been used to
ensure sufficient diversity amongst the solutions of the non-dominated fronts, while retaining at the same time the conver-
gence to the Pareto-optimal front. TV-MOPSO has been compared with some recently developed multi-objective PSO
techniques and evolutionary algorithms for 11 function optimization problems, using different performance measures.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The multi-objective optimization (MOQO) domain covers many real-life optimization problems. Often this
task becomes challenging due to the inherent conflicting nature of the objectives to be optimized. Several com-
putational intelligence based approaches, namely, evolutionary computation, swarm intelligence and artificial
immune systems have been used for solving MOO problems. PSO and ant colony optimization methods
belong to the swarm intelligence domain of computational intelligence. The population based nature of evo-
lutionary techniques captures the different compromising solutions in the population simultaneously at each
iteration. This fact has led to the considerable growth in multi-objective evolutionary algorithms (MOEA),
from VEGA in [27], to the most recent techniques like NSGA-II [10], SPEA-2 [37] and PESA-II [8]. A pop-
ulation based swarm intelligence heuristic called Particle Swarm Optimization (PSO) was proposed in 1995
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[16]. This is inspired by the flocking behavior of birds, which is very simple to simulate and has been found to
be quite efficient in handling the single objective optimization (SOO) problems [12,32]. The simplicity and effi-
ciency of PSO motivated researchers to apply it to the MOO problems since 2002. Some of these techniques
can be found in [5,6,14,15,18,22,24,36].

In the present article we describe a multi-objective PSO, called Time Variant Multi-Objective Particle
Swarm Optimization (TV-MOPSO), where the vital parameters of the PSO i.e., inertia and acceleration coef-
ficients, are allowed to change with the iterations, making it capable of effectively handling optimization prob-
lems of different characteristics. The concept of having time varying parameters has been used in earlier works
e.g., in genetic algorithms [23], PSO [2,3,34] etc, although most of these works dealt with SOO problems. In
this article we incorporate it into the proposed multi-objective PSO. It is known that PSO suffers from the
problem of premature convergence [20]. To overcome this problem, mutation operator similar to the ones sug-
gested in [13,19] has been incorporated in TV-MOPSO.

In order to improve the diversity in the Pareto-optimal solutions, a novel parameter exploiting the nearest
neighbor concept is used. This method for measuring diversity has an advantage that it needs no parameter
specification, unlike the one in [6]. Note that diversity has earlier been incorporated in PSO using different
approaches, namely the hyper-grid approach [6], o-method with clustering [22] and NSGA-II based approach
[18]. Both the hyper-grid and clustering based approaches for diversity are found to take significant compu-
tational time. In the former, the size of the hyper-grid needs to be specified a priori, and the performance
depends on its proper choice. The measure adopted in this article is similar to the one in [18], though the
way of computing the distance to the nearest neighbor is different. In order to demonstrate the effectiveness
of the proposed diversity measure, TV-MOPSO has also been implemented with both the hyper-grid approach
(TV-MOPSO-H) and the clustering approach (TV-MOPSO-C). Results indicate the superiority of the pro-
posed scheme. Comparative study of TV-MOPSO with other multi-objective PSOs viz., a-MOPSO [22],
NSPSO [18] and MOPSO [6] and also other multi-objective evolutionary methods viz., NSGA-II [10] and
PESA-II [8] has been conducted to establish its effectiveness for 11 test problems, using four qualitative mea-
sures and also visual displays of the Pareto front.

2. Multi-objective optimization

A general minimization problem of M objectives can be mathematically stated as: given ¥ = [x1,x2, . .. ,X4],
where d is the dimension of the decision variable space,

Minimize : f@) =0/, i=1,...,M]
subject to the constraints : g;(¥) <0, j=1,2,....J, (1)

(¥ =0, k=1,2,... K,

where f;(¥) is the ith objective function, g,(¥) is the jth inequality constraint and /() is the kth equality con-
straint. The MOO problem then reduces to finding an X such that f(X) is optimized. Since the notion of an
optimum solution in MOO is different compared to the SOO, the concept of Pareto dominance is used for
the evaluation of the solutions. This concept formulated by Vilfredo Pareto is defined as [7]:

A vector i = (uy,uy, ..., uy) is said to dominate a vector ¥ = (v, va, ..., vy) (denoted by # < ¥), for a multi-
objective minimization problem, if and only if

VlG{l,,M}, u,év,/\ﬂle{l,M}u,<v,, (2)

where M is the dimension of the objective space.

A solution i € U, where U is the universe, is said to be Pareto Optimal if and only if there exists no other
solution ¢ € U, such that # is dominated by ¥. Such solutions (i) are called non-dominated solutions. The set of
all such non-dominated solutions constitutes the Pareto-Optimal Set or non-dominated set.
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3. Particle Swarm Optimization (PSO)

The concept of PSO is inspired by the flocking behavior of the birds. It was first proposed by Kennedy
in 1995 [16]. Like evolutionary algorithms PSO is also a population based heuristic, where the population
of the potential solutions is called a swarm and each individual solution within the swarm, is called a par-
ticle. In order to simulate the behavior of the swarm, each particle is allowed to fly towards the optimum
solution.

Considering a d-dimensional search space, an ith particle is associated with the position attribute
X, = (xi1,%i2,.-.,Xq), the velocity attribute V,= (vi1,0i2,...,0;4) and the individual experience attribute
B = (Pi1s P2y Pia)- The position attribute (X,) signifies the position of the particle in the search space, whereas
the velocity attribute (I7i) is responsible for imparting motion to it. The P; parameter stores the position (coor-
dinates) corresponding to the particle’s best individual performance. Similarly the experience of whole of the
swarm is captured in the index g, which corresponds to the particle with the best overall performance in the
swarm. The movement of the particle towards the optimum solution is governed by updating its position and
velocity attributes. The velocity and position update equations are given as

Uiy = Wi+ ari(p; — Xij) + cara(py; — i), (3)
X,‘J = X[,j —+ Ui,jv (4)
wherej=1,...,dand w, ¢1, ¢; = 0. w is the inertia weight, ¢; and ¢, the acceleration coefficients, and r; and r,

are random numbers, generated uniformly in the range [0, 1], responsible for providing randomness to the
flight of the swarm. The term c¢;r1(p;; — x;;) in Eq. (3) is called cognition term whereas the term cora(p,; — X, )
is called the social term. The cognition term takes into account only the particle’s individual experience,
whereas the social term signifies the interaction between the particles. The ¢; and ¢, values allow the particle
to tune the cognition and the social terms respectively in the velocity update equation (Eq. (3)). A larger value
of ¢, allows exploration, while a larger value of ¢, encourages exploitation.

In [4] the trajectories of the particles are theoretically analyzed and a constriction coefficient y is introduced.
This constriction coefficient limits the speed of the particles within bounds, without the need of any velocity
clamping.

4. Related study

The simplicity and efficiency of PSO in solving the SOO problems [12,32], inspired its extension to the MOO
problem domain. There have been several recent attempts to use PSO for MOO [5,6,14,15,18,22,24,36]. Some
of these concepts have been surveyed briefly in this section.

The dynamic neighborhood PSO [15] has been given for two objective MOO problems only. This concept
assumes a considerable degree of prior knowledge in terms of the test problem properties. Here instead of
a single gbest, a local lbest is obtained for each swarm member, that is selected from the closest two swarm
members. The closeness is considered in terms of one of the objectives, while the selection of the optimal solu-
tion from the closest two is based on the other objective. The selection of the objectives for obtaining the clos-
est neighbors and local optima is usually based on the knowledge of the problem being considered for
optimization. Usually the simpler objective is considered for closest members computation. A single pbest
solution is maintained for each member that gets replaced by the present solution only if the present solution
dominates the pbest solution.

In [24] two methods have been proposed to solve MOO using PSO. The first method uses weighted aggre-
gate approach, whereas the second one is inspired by VEGA [27] called Vector Evaluated Particle Swarm Opti-
mizer (VEPSO).

The Multi-Objective Particle Swarm Optimization Algorithm (M OPSO) in [5] maintains two archives, one
for storing the globally non-dominated solutions, while the other for storing the individual best solutions
attained by each particle. MOPSO uses method inspired by [17] for maintaining diversity. The fitness assigned



5036 P.K. Tripathi et al. | Information Sciences 177 (2007) 5033-5049

to each individual in the archive is computed on the basis of its density. This fitness is used in roulette wheel
selection, to pick the gbest solution in velocity and position update Egs. (3) and (4). In the local archive a solu-
tion gets replaced by the present solution, only if the former is dominated by the latter. In [6], authors
improved the aforementioned MOPSO by incorporating a mutation operator. The mutation operator boosts
the exploration capability of the MOPSO. The article also addressed the constraint handling problem with
MOO.

In [14] the authors suggested that for the gbest of a particle in the swarm, its nearest dominating solu-
tion from the archive should be used. For the efficient computation of the nearest dominating solution from
the global archive, the concept of domination tree has been given. The concept of turbulence was also
incorporated.

In [22] authors have introduced a concept of o, for selecting the best local guides. ¢ values are assigned to
the members of the archive as well as that of the swarm. For a particle in the swarm, a particle from the
archive with the closest value of ¢ is chosen as its local guide. The turbulence in the decision space has been
used and the size of the archive has been kept constant by using clustering based truncation method. Due to
the emphasis on the closeness in ¢ values, and hence even higher the selection pressure, premature convergence
may result.

In [18] author has proposed non-dominated sorting PSO (NSPSO) using the non-dominated sorting of [10]
in MOPSO. If the size of the swarm be /N, then a combined population of size 2N, comprising the swarm and
its personal bests is first obtained. Then the non-dominated sorting of this population determines the particles
of the next generation swarm. To ensure proper diversity amongst the solutions of the non-dominated solu-
tions, two approaches namely niche count and crowded distance [10] methods are used. An archive containing
the non-dominated solutions is also maintained, the best solutions from this archive in terms of diversity are
selected as the global best for a particle.

The details of the aforementioned algorithms can be obtained from the respective references.

5. Time Variant Multi-Objective Particle Swarm Optimization (TV-MOPSO)

This section describes the proposed PSO approach to MOO problem. The motivation behind this concept is
to attain better convergence to the Pareto-optimal front, while giving sufficient emphasis to the diversity con-
sideration. In TV-MOPSO a new parameter has been incorporated that ensures the diversity of the solutions
in the archive. The basic structure of TV-MOPSO is given in Algorithm TV-MOPSO. The different steps are
described below in detail.

5.1. Initialization

In the initialization phase of TV-MOPSO, the swarm of size N is randomly generated. The individuals of
the swarm are assigned random values for the coordinates, from the respective domains, for each dimension.
Similarly the velocity is initialized to zero in each dimension. Initial value for the parameter Pb; (pbest) is set to
X;, where X; is the ith particle.

Step 1 of TV-MOPSO takes care of the initialization. TV-MOPSO also maintains an archive for storing the
best non-dominated solutions found in the flight of the particles in the swarm. In Step 1 of TV-MOPSO, the
archive has been initialized to contain the non-dominated solutions from Sy (swarm at #y). The function
non_dominated(S) returns the non-dominated solutions from the swarm S.

5.2. Update

The update step of TV-MOPSO deals with the simulation of the flight of the particles. Movement of a par-
ticle in the search space is mainly governed by its individual experience and by the experience of the group,
with which it interacts directly. The flight of the particle is influenced by some vital parameters which are
explained below:
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Algorithm TV-MOPSO: O; = TV-MOPSO(N;, N,, C,d)
/* Ng: size of the swarm, N,: size of the archive, C: maximum number of iterations, d: the dimensions of
the search space, Oy: the final output */
(1) ¢t=0, randomly initialize Sy, /*S,: swarm at iteration 7 */
e initialize x;; Vi, i€ {1,...,Ns} and Vj, j e {1,...,d}
/* x;;: the jth coordinate of the ith particle */
e initialize v;;, Vi, i€ {1,...,Ns} and Vj, j € {1,...,d}
/* v; j: the velocity of ith particle in jth dimension */
L4 PbiJ‘Hxi’j, Vl, i€ {1,...,NS} and V],]G {1,,d}
[* Pb;;: the jth coordinate of the personal best of the ith particle */
o Ay« non_dominated(Sy), Iy = |Ao| /* returns the non-dominated solutions from the swarm*/
/* A,: archive at iteration ¢ */

(2) fort=1tot=C,
o fori=1 toi= N /* update the swarm S, */
/* updating the velocity of each particle */
Gb «— get_gbest() [* returns the global best */
Pb; — get_pbest() /* returns the personal best */
adjust_parameters(w,,c1,,C2;)
/* adjusts the parameters, w,: the inertia coefficient, ¢;,: the local acceleration coefficient,
and ¢, the global acceleration coefficient */
Vij = Wi T c1(Pbij — Xij) + cara( Gbj — X))
Vi, jell,...,d}
/* updating coordinates */
Xij=Xij T v
Vi, jel{l,...,d}
e /* updating the archive */
A; — non_dominated(S, U A4;)
Af (I, > N,) truncate_archive()
/*1,: size of the archive */
e mutate (S,) /* mutating the swarm */

(3) O;+« A, and stop. /* returns the Pareto optimal front */

5.3. Personal Best Performance (pbest)

In PSO the individual experience of the particle is captured in the pbest attribute, that corresponds to the
best performance attained so far by it in its flight. In TV-MOPSO, the present solution is compared with the
pbest solution, and it replaces the latter only if it dominates that solution [6]. The function get pbest() returns
the personal best solution in the algorithm TV-MOPSO, in Step 2.

5.4. Global Best Performance (gbest)

The term gbest represents the best solution obtained by the swarm. Often the conflicting nature of the mul-
tiple objectives involved in MOO problems make the choice of a single optimum solution difficult. To resolve
this problem, the concept of non-dominance is used and an archive of non-dominated solutions is maintained,
from which a solution is picked up as the ghest. TV-MOPSO maintains an archive that has its maximum size
limit. The selection of the gbest solution is done from the archive on the basis of the diversity of the solutions
as in [6]. In TV-MOPSO the diversity measurement has been done using a novel concept. This concept is sim-
ilar to the crowding-distance measure in [10]. The method is described below.
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Fig. 1. TV-MOPSO diversity measure.

The computation of the density parameter (den;) in TV-MOPSO is done amongst the solutions of the
archive. The parameter den; of a solution i is based on its distance to its nearest neighbor in the archive. It
may so happen that two solutions may end up with the same value, as they are the closest to each other.
As can be seen from Fig. 1 (representing two objective minimization problem), solutions ¢ and f are closest
to each other and hence will get the same value for the distance to their nearest neighbor, which may not reflect
the real situation. To overcome such a scenario the nearest neighbor distance calculation is done in some
order, such that the distance of a solution to its nearest neighbor which has not already been considered
(in distance to nearest neighbor computation), is taken. To illustrate this consider Fig. 1. If the nearest
neighbor distance is computed in the order a, b, ¢, d, e, f, g and h, then for the nearest neighbor of solution
f, solution g should be considered, as its distance to solution ¢ has been already considered (for nearest
neighbor distance of solutions ¢). To compute this measure efficiently the approach suggested in [10] is
used.

In order to compute den;, solutions are sorted in non-descending order on the basis of different function
values. In each such sorting, the normalized difference in function value to its immediate next neighbor is cal-
culated. Finally all these values computed for a solution are added. This gives an estimate of the solutions’
density on the front. Considering the scenario in Fig. 1, if the sorting is done on the basis of f1 then solution
e will have f'as its immediate next neighbor and d1 will be the corresponding distance along f1, while the solu-
tion f will have g as its immediate next neighbor and value d2 as the distance. Similarly considering 2 as a
basis of sorting the solution b will have «a as its neighbor with its distance d3 along f2, while the solution ¢
will have d4 as its distance along f2 to its immediate next neighbor b.

Using the aforementioned method the density for all the solutions in the archive is obtained. Based on the
density values as fitness, roulette wheel selection is done to pick a solution as the gbest. The higher fitness value
signifies better solution. In TV-MOPSO the function get_gbest(), returns the gbest solution in Step 2, for the
velocity update equation.

5.5. Inertia weight (w)

In order to improve the convergence of PSO, a strategy for the incorporation of inertia weight w is sug-
gested in [28]. The parameter w, controls the influence of the previous velocity on the present velocity [29].
The higher values of w help in the global search for the optimal solution, while lower values help in the local
search around the current search area. All the population based search techniques rely on global exploration
and local exploitation in order to achieve good performance. Generally more exploration should be carried
out in the initial stages when the algorithm has very little knowledge about the search space. In contrast more
exploitation is needed in the later stages so that the algorithm is able to exploit the information it has gained so
far.

Since the MOO problems often involve complex search space, the parameter w becomes very vital in multi-
objective PSO algorithms. Therefore TV-MOPSO uses a time variant w as in [30]. The issue of adapting the
PSO parameters has also been addressed in [2,3,34], for SOO problems. Here adaptation of w is introduced in
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multi-objective PSO. The value of w, is allowed to decrease linearly with iteration from w; to w,. The value of
inertia weight at iteration ¢, w, is obtained as

max _t —t
wy = (w; — Wz)WJrWL (5)

where max_¢ is the maximum number of iterations and ¢ is the iteration number. The function adjust_param-
eters() in Step 2 of TV-MOPSO algorithm performs this task.

5.6. Acceleration coefficients (c; and c¢>) and random parameters (r; and r»)

In the velocity update Eq. (3) there are two important parameters ¢; and ¢, called the acceleration coeffi-
cients. ¢y 1s called the cognitive acceleration coefficient, while ¢, the social acceleration coefficient. Higher values
of ¢ ensure larger deviation of the particle in the search space, while the higher values of ¢, signify the con-
vergence to the present global best (ghest). To incorporate better compromise between the exploration and
exploitation of the search space in PSO, time variant acceleration coefficients have been introduced in [26].
TV-MOPSO exploits this concept, ensuring better search for the Pareto-optimal solutions. ¢, has been allowed
to decrease from its initial value of ¢;; to ¢;, while ¢, has been increased from ¢,; to c», using the following
equations as in [26]. The values of ¢, and ¢, are evaluated as follows:

¢y = (c1y — i) + ¢, (6)

max _t

t
Cy = (sz — C2i) m + Cy;. (7)

The values of ¢; and ¢, gets updated with iterations in TV-MOPSO in the adjust_parameters() function at
Step 2.

The random numbers r; and r, in Eq. (3) are generated independently for each dimension and for each
particle.

5.7. Update archive

Since the selection of the gbest solution is done from the archive in TV-MOPSO, it plays a very vital role.
At each iteration, the archive gets updated with the inclusion of the non-dominated solutions from the com-
bined population of the swarm and the archive. If the size of the archive exceeds the maximum size limit (V,),
it is truncated using the diversity consideration. Thus the most sparsely spread N, solutions are retained in the
archive. The archive gets updated in TV-MOPSO at Step 2 using function non_dominated(S,U A,). The func-
tion truncate_archive() is used to truncate the archive, if it exceeds the maximum limit.

5.8. Mutation

The single objective PSO algorithms have been found to show good convergence properties. However, for
the multi-objective PSOs, this convergence is usually achieved at the cost of the diversity [6]. To allow the
multi-objective PSO algorithm to explore the search space to a greater extent, while obtaining better diversity,
a mutation operator has been used in TV-MOPSO, that is based on the one found in [19]. Similar mutation
operator has been used in PSO for multi-modal function optimization in [13]. Given a particle, a randomly
chosen variable (one of the coordinate of the particle), say g, is mutated as given below:

/ {gk+A(taUB_gk) lffllp:()a

: 8
g — A(t,8, — LB) if flip=1. ®)

8-

where flip denotes the random event of returning 0 or 1. UB denotes the upper limit of the variable g, while
LB denotes the lower limit. The function 4 is defined as

At ) = (1 -, 9)
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where r is a random number generated in the range [0, 1], max_¢ is the maximum number of iterations and ¢ is
the iteration number. The parameter b determines the degree of dependence of mutation on the iteration num-
ber. Mutation operation on the swarm is done by the function mutate(S;) in TV-MOPSO at Step 2.

5.9. Termination

The algorithm terminates after executing a specified number of iterations. After termination, the archive
contains the final non-dominated front. This is mentioned in Step 3 of TV-MOPSO.

5.10. Complexity consideration

Let the number of functions to be optimized be M, and the size of the archive and swarm be N and n,
respectively. In TV-MOPSO the complexity is mainly influenced by the non_dominated() function and the
diversity computation operation. Considering the archive update process involving non_dominated(S, U A,),
for checking a particle for its non dominance within N + n particles, M(N + n) comparisons are needed.
Therefore the worst case complexity of this function will be O(M(n + N)?). Since the computation of density
involves, sorting on the basis of each objective, it will have a complexity of O(MNlog(N)) (for archive only).
Similarly the archive truncation that involves density consideration will have O(M(n + N)log(n + N)) as its
worst case complexity (considering the worst case with n + N elements in the archive). Thus the overall worst
case complexity of TV-MOPSO will be O(M(n + N)*). The computational complexities corresponding to
NSGA-II, NSPSO, MOPSO, ¢-MOPSO and PESA-II are O(Mn?), O(Mn?), O(Mn?), O(M(n+ N)?) and
O(M(n + N)?), respectively.

6. Experimental results

The effectiveness of TV-MOPSO has been demonstrated on various standard test problems. These prob-
lems have a known set of Pareto-optimal solutions and are characterized to test the algorithms on different
aspects of their performance. TV-MOPSO has been compared with some MOEAs and MOPSOs. The
MOEAs include NSGA-II and PESA-II, whereas the MOPSOs are MOPSO, ¢-MOPSO and NSPSO. All
these algorithms have been evaluated using the same test problems. The parameters used are given below:

¢ Population/swarm size 100 for NSGA-IT and NSPSO, 10 for PESA-II (as suggested in [8]), 50 for MOPSO,
a-MOPSO and TV-MOPSO.

e Archive size 100 for PESA-II, c-MOPSO, MOPSO and TV-MOPSO.

e Number of iterations 250 for NSGA-II and NSPSO, 2500 for PESA-II, and 500 for MOPSO, ¢-MOPSO
and TV-MOPSO (to keep the number of fitness function evaluations to 25000 for all the algorithms).

e Cross-over probability 0.9 (as suggested in [10]) for NSGA-II and PESA-II, no cross-over for MOPSOs.

e Hyper-grid size 32 x 32 for PESA-II (as suggested in [8]), TV-MOPSO-H.

e Mutation probability inversely proportional to the chromosome length (as suggested in [10]).

¢ Coding strategy binary for NSGA-II and PESA-II, while real encoding for MOPSO and TV-MOPSO (PSO
naturally operates on real numbers).

® ¢;; =25, ciy=0.5, ;= 0.5, coy=2.5 (as suggested in [26]) (for TV-MOPSO).

e w; =0.7 and w, = 0.4 (as suggested in [31]) (for TV-MOPSO).

e b =15 (as suggested in [19]).

For the evaluation of the performance of MOEAs, researchers have proposed many test problems. Veldhuizen
[33], in his doctoral thesis has explored many such test problems. In this article 11 standard test problems have
been used. Nine of these test problems (SCH1, SCH2, FON, KUR, POL, ZDT1, ZDT2, ZDT3, ZDT4 [9))
have two objectives, while the other two (DLTZ2 and DLTZ7 [11]) have three objectives. The performance
of the algorithms is evaluated with respect to one or more of the four performance measures: the convergence
measure 1" [10], diversity measure A4 [10], purity [1] and minimal-spacing (.S,,), [1]. Results reported are the
mean and the variance values over 20 simulations of the algorithms. It should be noted that 7" and purity eval-
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uate the convergence of the non-dominated set to the true Pareto-front, whereas A4 and S,,, measures reflect the
diversity amongst the non-dominated solutions. Larger values of the purity measure, whereas smaller values of
T, A4 and minimal spacing parameters signify better performance. The details of these measures may be found
in the respective references.

7. Results

The proposed TV-MOPSO has been implemented with three different concepts of diversity namely, cluster-
ing, hyper-grid and proposed nearest neighbor based diversity concept, hence called TV-MOPSO-C, TV-
MOPSO-H and TV-MOPSO, respectively. These different versions of TV-MOPSO, have been evaluated on
some test problems, and their performance has been assessed using 7" and 4 measures. However, other per-
formance measures may also be used. The results are reported in terms of the mean and variance of the per-
formance measures in Table 1.

As can be clearly seen from the Table 1, 7" values signify that TV-MOPSO has resulted in better conver-
gence, compared to its other versions (i.e., clustering and hyper-grid), for all the test problems. Similarly,
the 4 measure values also highlight that TV-MOPSO is better in terms of diversity, when compared with
its other versions, on all the test problems except DLTZ2 and DLTZ7. Although TV-MOPSO has not given

Table 1
Mean (M) and variance (Var) of 7" and 4 measures for the test problems
Algorithm SCHI SCH2 FON ZDTI ZDT2 ZDT3 ZDT4 DLTZ2 DLTZ7

Convergence measure T
TV-MOPSO-C(M) 0.01718 0.01697 0.00238 0.00176 0.00134 0.00436 0.72587 0.04550 0.13705

(VAR) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00107
TV-MOPSO-H(M) 0.01503 0.01087 0.00331 0.00171 0.00119 0.00436 0.98700 0.03681 0.10723
(VAR) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.07830 0.00000 0. 00000
TV-MOPSO(M) 0.00858 0.00672 0.00142 0.00099 0.00083 0.00404 0.47240 0.03312 0.04953
(VAR) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Diversity measure A
TV-MOPSO-C(M) 0.57957 1.52472 0.72652 0.43634 0.38876 0.63368 0.71070 0.52004 0.68734

(VAR) 0.02079 0.00253 0.00000 0.00257 0.00140 0.00243 0.00378 0.00205 0.02582
TV-MOPSO-H(M) 0.82414 1.45810 0.80070 0.68897 0.69676 0.79929 0.88009 0.70776 0.64902
(VAR) 0.01448 0.02623 0.00014 0.00426 0.00415 0.00148 0.00219 0.00051 0.04192
TV-MOPSO(M) 0.32935 1.00305 0.72401 0.33194 0.32565 0.54302 0.69551 0.60364 0.68486
(VAR) 0.00055 0.00105 0.00000 0.00066 0.00058 0.00022 0.01063 0.00072 0.00035
Table 2

Mean (M) and variance (Var) of 7" measure for the test problems

Algorithm SCH1 SCH2 FON ZDTI1 ZDT2 ZDT3 ZDT4 DLTZ2 DLTZ7
NSGA-II(M) 0.01276 0.01644 0.00260 0.00430 0.00480 0.00900 2.76292 0.72775 0.04976
(VAR) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.33900 0.20400 0.00000
PESA-II(M) 0.01687 0.00962 0.02002 0.00105 0.00074 0.00789 9.98254 0.03219 0.05139
(VAR) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00011 20.13400 0.00000 0.00000
a-MOPSO(M) 0.01364 0.01516 0.00125 0.01638 0.00584 0.10205 3.83344 0.03167 0.24494
(VAR) 0.00000 0.00000 0.00000 0.00048 0.00000 0.00238 1.87129 0.00000 0.01126
NSPSO(M) 0.01002 0.00854 0.00255 0.00642 0.00951 0.00491 4.95775 0.04938 0.05618
(VAR) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 7.43601 0.00000 0.00019
MOPSO(M) 0.01148 0.01405 0.00122 0.00133 0.00089 0.00418 7.37429 0.82799 0.04986
(VAR) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 5.48286 0.01133 0.00000
TV-MOPSO(M) 0.00858 0.00672 0.00142 0.00099 0.00083 0.00404 0.47240 0.03312 0.04953

(VAR) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
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Table 3

Mean (M) and variance (Var) of 4 measure for the test problems

Algorithm SCH1 SCH2 FON ZDTI ZDT2 ZDT3 ZDT4 DLTZ2 DLTZ7
NSGA-II(M) 0.52329 1.22823 0.76540 0.56931 0.59744 0.73817 0.83973 0.97599 0.89149
(VAR) 0.00738 0.06216 0.00023 0.00068 0.00254 0.00455 0.04149 0.00738 0.00052
PESA-II(M) 0.65025 1.24480 0.85217 0.84816 0.89292 1.22731 1.01136 0.74808 0.74791
(VAR) 0.01298 0.06092 0.00032 0.00287 0.00574 0.02925 0.00072 0.00093 0.00106
a-MOPSO(M) 0.60937 1.47054 0.85813 0.39856 0.38927 0.76016 0.82842 0.60405 0.94113
(VAR) 0.02237 0.03025 0.00172 0.00731 0.00458 0.00349 0.00054 0.00194 0.00640
NSPSO(M) 0.39165 1.07167 0.78024 0.90695 0.92156 0.62072 0.96462 0.72988 0.73812
(VAR) 0.00494 0.04239 0.00013 0.00000 0.00012 0.00069 0.00156 0.00091 0.01002
MOPSO(M) 0.76097 1.43353 0.84943 0.68132 0.63922 0.83195 0.96194 0.74808 0.87375
(VAR) 0.016427 0.03504 0.00016 0.01335 0.00114 0.00892 0.00114 0.00093 0.08186
TV-MOPSO(M) 0.32935 1.00305 0.72401 0.33194 0.32565 0.54302 0.69551 0.60364 0.68486
(VAR) 0.00055 0.00105 0.00000 0.00066 0.00058 0.00022 0.01063 0.00072 0.00035
Table 4

Mean (M) and variance (Var) of Purity measure for the test problems

Algorithm SCH1 SCH2 KUR POL FON ZDT1 ZDT2 ZDT3 ZDT4 DLTZ2 DLTZ7
NSGA-II(M) 0.910 0.960 0.566 0.591 0.562 0.110 0.081 0.301 0.033 0.321 0.872
(VAR) 0.00000  0.00000 0.00223  0.00372  0.00324 0.01095 0.00296 0.01512 0.00439  0.00103  0.00187
PESA-II(M) 0.980 0.980 0.508 0.792 0.379 0.426 0.817 0.339 0.000 0.994 0.990
(VAR) 0.00600 0.00031 0.00424  0.00830 0.74566 0.01507 0.00518 0.04363 0. 00000 0.00000  0.00000
a-MOPSO(M) 0.980 0.980 0.560 0.864 0.509 0.279 0.182 0.002 0.198 0.948 0.194
(VAR) 0.00000 0.00000 0.00142  0.00074 0.00234 0.07592 0.02609 0.00000 0. 17394 0.00053 0.18338
NSPSO(M) 0.980 0.910 0.571 0.646 0.494 0.891 0.550 0.609 0.048 0.576 0.802
(VAR) 0.00000  0.00790  0.00037  0.01609 0.00463 0.01234 0.05180 0.00470 0. 00640 0.06074 0.01247
MOPSO(M) 0.970 0.982 0.535 0.912 0.842 0.980 0.987 0.941 0.000 0.000 0.760
(VAR) 0.00000 0.00011 0.00222  0.00055 0.00111 0.00000 0.00000 0.00134 0. 00000 0.00000 0.01625
TV-MOPSO(M) 0.980 0.991 0.634 0.924 0.868 0.990 0.950 0.961 1.000 0.960 0.966
(VAR) 0.00000  0.00000 0.000716 0.00036  0.00053  0.00000 0.00165 0.00021 0. 00000 0.00018 0.00043
Table 5

Mean (M) and variance (Var) of S, measure for the test problems

Algorithm SCHI1 SCH2 KUR POL FON ZDTI ZDT2 ZDT3 ZDT4 DLTZ2 DLTZ7
NSGA-II(M) 0.00983  0.05029  0.02430 0.07024 0.00870  0.01201 0.01169 0.04239 0.03570  0.11332  0.10489
(VAR) 0.00000  0.00000  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00257 0.00019 0.00013
PESA-II(M) 0.02762  0.05629  0.02656 0.07392  0.01795 0.01562 0.01727 0.04233  0.06382  0.09117  0.10702
(VAR) 0.00000  0.00000  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00773 0.00022  0.00000
a-MOPSO(M) 0.01283  0.05194 0.02432  0.06957 0.02149 0.00985 0.01053 0.03635 0.01606  0.09378  0.25459
(VAR) 0.00000  0.00000  0.00000  0.00000 0.00000 0.00000 0.00000 0.00000 0.00015 0.00047 0.12227
NSPSO(M) 0.02174  0.05468  0.02634 0.06863 0.01171 0.01045 0.00975 0.03545 0.04789  0.10983  0.23935
(VAR) 0.00000  0.00012  0.00000  0.00000 0.00000 0.00000 0.00000 0.00000 0.00639 0.00079 0.09152
MOPSO(M) 0.01573  0.05086 0.02540 0.06498 0.01469 0.01691 0.01606 0.03536  0.04762  0.09080 0.10787
(VAR) 0.00000  0.00000  0.00000 0.00035 0.00000 0.00000 0.00000 0.00000 0.00385 0.00020 0.00028
TV-MOPSO(M) 0.00757 0.04989  0.00072  0.06807  0.00660 0.00852 0.00811 0.03522 0.02142  0.09203  0.10422
(VAR) 0.00000  0.00000  0.00000  0.00000 0.00000 0.00000 0.00000 0.00000 0.00061 0.00018 0.00000
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the best results in terms of diversity for all the test problems, it has given best performance in terms of
convergence.

Tables 2 and 3 represent the 7" and 4 measures for the algorithms on nine test problems, respectively. These
problems include seven two-objective problems and two three-objective problems. It can be seen that TV-
MOPSO has better convergence on test problems SCH1, SCH2, ZDT1, ZDT3, ZDT4 and DLTZ7, whereas
PESA-II, MOPSO and o-MOPSO, have better convergence on ZDT2, FON and DLTZ2 test problems,
respectively. Interestingly the values of the A4 measure in Table 3, show that TV-MOPSO is able to attain
the best distribution of the solutions on the non-dominated front, consistently for all the test problems
considered.

Tables 4 and 5 represent the purity (P;) and minimal-spacing parameter (S,,), respectively, for the algo-
rithms on the 11 test problems. The P; values indicates that TV-MOPSO has better convergence on all the test
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problems except ZDT2, DLTZ?2 and DLTZ7. However, it is second for ZDT2, DLTZ2 and DLTZ7 test prob-
lems, as compared to MOPSO and PESA-II, respectively. The minimal spacing parameter values, as shown in
Table 5, indicate that TV-MOPSO has obtained better spread of the solutions on the Pareto-front for all the
test problems except POL, ZDT4 and DLTZ2. However, it is second to MOPSO and ¢-MOPSO on POL and
ZDT4, respectively.

In order to demonstrate the distribution of the solutions on the final non-dominated front, we have con-
sidered FON, ZDT3 and DLTZ2 test problems as typical illustrations. Figs. 2-4 show the resultant non-dom-
inated fronts corresponding to these test problems. Fig. 2 provides the non-dominated solutions returned by
the six algorithms for the FON test problem. The poor performance of PESA-II and -MOPSO is clearly evi-
dent. Fig. 2b shows that the convergence obtained by PESA-II is not proper, as it has resulted in a different
shape of the front compared to the original Pareto front. Similarly Fig. 2f shows that ¢-MOPSO has resulted
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in poor diversity amongst the solutions of the non-dominated set. Although, the results in Fig. 2a, d and e are
better than the aforementioned results, the best result has been obtained by TV-MOPSO in Fig. 2¢c, in terms of
convergence as well as diversity.

Similarly, Fig. 3 represents the final fronts obtained by the six algorithms for ZDT3 function. It can be seen
that 0-MOPSO in Fig. 3f, has failed to converge to the true Pareto-front properly, as the highest value for
function £, is found to be 2, whereas for the results obtained by the other algorithms this value is close to
1 (i.e., the desirable value). It should be noted that PESA-II in Fig. 3b has failed to obtain all the five discon-
nected Pareto-optimal fronts. Although, NSGA-II has been successful in obtaining these five fronts, one of
those did not come out properly in Fig. 3a. MOPSO is found to be better than PESA-II and NSGA-II in this
regard, but its solutions have poor spread on the front as clearly evident from Fig. 3(d). Moreover MOPSO is
often found to converge to a local optimal front for this test function. Such an instance is shown in Fig. 3g,
where MOPSO has been able to obtain only one front (not all the five) because of local optima problem.
NSPSO has resulted in a very good convergence, as evident in Fig. 3e, but its diversity is not as good as that
of TV-MOPSO. Compared to all these algorithms, TV-MOPSO in Fig. 3c has given better convergence and
spread of the solutions on this test function.

The comparative performance of the above algorithms in terms of their performance in a three objective
test problem, DLTZ2, can be seen in Fig. 4 which shows the final non-dominated fronts obtained by the algo-
rithms. From Fig. 4a it can be seen that NSGA-II has failed considerably in attaining the non-dominated set
properly in terms of both the convergence as well as diversity. MOPSO in Fig. 4(d) has failed to attain the full
non-dominated set. Similarly ¢-MOPSO in Fig. 4f could not attain the non-dominated set properly. Although
NSPSO has resulted in better shape in Fig. 4e, its convergence is not as good as that of TV-MOPSO and
PESA-II (Figs. 4c and b, respectively). Table 6 summarizes the relative performance of the six algorithms
in terms of their ranks, that have been attributed to them, based on their performance with respect to 1°
and 4 measures. The table has been derived from the performance in Tables 2 and 3. The entries in Table
6 signify the number of times an algorithm attained a particular rank on nine test functions, in terms of
the 7" and 4 measures. As can be seen, TV-MOPSO performed the best in terms of 7" in six of the test prob-
lems, whereas PESA-II and MOPSO have performed best in one test problem each. Interestingly, TV-MOPSO
has performed the best in terms of A4 measure for all the test problems considered. Similarly the summarized
result corresponding to the Purity and S,, measures, as shown in Table 7, has been obtained from Tables 4 and
5, respectively. It is evident that TV-MOPSO has given the best convergence results, in terms of purity param-
eter, for eight of the 11 test problems considered. PESA-II has the best results in terms of purity for three test
problems, whereas a-MOPSO, NSPSO and MOPSO have the best result for one test problem each. Interest-
ingly, for the test problem SCHI1, TV-MOPSO, NSPSO, PESA-II and ¢-MOPSO have attained the same
value of purity, signifying the same extent of convergence. Similarly for diversity in terms of S,,, measure also,

Table 6

Y and 4 ranking table for the test problemsz

Algorithm Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6
T Ranking

NSGA-II 0 2 0 3 3 1
PESA-II 1 2 1 2 0 3
a-MOPSO 1 1 1 0 3 3
NSPSO 0 2 1 3 2 1
MOPSO 1 1 4 1 1 1
TV-MOPSO 6 1 2 0 0 0
A Ranking

NSGA-II 0 1 6 0 2 0
PESA-II 0 0 1 2 4 2
a-MOPSO 0 4 0 2 0 3
NSPSO 0 4 2 0 1 2
MOPSO 0 1 0 5 2 1
TV-MOPSO 9 0 0 0 0 0
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Table 7

Purity and S,, ranking table for the test problems

Algorithm Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6
Purity ranking

NSGA-II 0 0 4 2 2 3
PESA-II 3 0 2 3 1 2
a-MOPSO 1 1 3 2 2 2
NSPSO 1 1 3 3 3 0
MOPSO 1 6 0 0 3 1
TV-MOPSO 8 3 0 0 0 0
S, ranking

NSGA-II 0 5 1 2 1 2
PESA-II 0 1 1 0 3 6
a-MOPSO 1 1 3 4 0 2
NSPSO 0 1 4 0 6 0
MOPSO 2 1 1 5 1 1
TV-MOPSO 8 2 1 0 0 0

TV-MOPSO has performed the best in eight of the eleven test problems. MOPSO has given the best results in
terms of S, for two problems, while 6-MOPSO has that for one problem only.

In summary, TV-MOPSO has been consistently found to perform the best amongst all the multi-objective
PSOs considered. Considering NSGA-II and PESA-II, it is found that PESA-II performs well in terms of 7",
purity and S,,,. However, the performance of TV-MOPSO is similar to, sometimes better than, that of PESA-
I1, for the test problems considered in this study. Considering the computational complexity, it has been
shown in Section 5.10 that TV-MOPSO is comparable with the algorithms studied in this article.

The better performance of the proposed algorithm TV-MOPSO may be attributed to all of its features i.e.,
mutation operator, diversity measure and the adaptive control parameters. Mutation operator has the role of
better exploration of the search space that has been used in earlier works also [6]. It is well established that the
performance of the PSO is dependent on the proper choice of the control parameters, which is usually problem
specific. Our attempt in this article has been to let the parameters change with the iterations, emphasizing
exploration in the initial stages whereas exploitation in the later stages, to overcome this problem. Similarly
the better performance of the TV-MOPSO in terms of diversity can be attributed to the novel diversity mea-
sure and this has been established empirically with different versions of TV-MOPSO. In future, an exhaustive
study regarding the relative contribution of each of the aforementioned features of TV-MOPSO needs to be
conducted.

8. Conclusions and discussion

In the present article, a novel multi-objective PSO algorithm, called TV-MOPSO, has been presented. TV-
MOPSO is adaptive in nature with respect to its inertia weight and acceleration coefficients. This adaptiveness
enables it to attain a good balance between the exploration and the exploitation of the search space. A muta-
tion operator has been incorporated in TV-MOPSO to resolve the problem of premature convergence to the
local Pareto-optimal front (often observed in the multi-objective PSOs). An archive has been maintained to
store the non-dominated solutions found during TV-MOPSO execution. The selection of the ghest solution
is done from this archive, using the diversity consideration. The method for computing diversity of the solu-
tions is based on a nearest neighbor concept. In order to evaluate the comparative performance of the afore-
mentioned diversity measure, two other versions of TV-MOPSO, using clustering and hyper-grid for diversity
incorporation, are also developed. The results have shown that the proposed approach for diversity preserva-
tion, is superior to the other two in terms of convergence and diversity.

The performance of TV-MOPSO is compared with some recently developed multi-objective PSO tech-
niques and evolutionary algorithms, for 11 function optimization problems of two and three objectives.
The results have been evaluated on the basis of several performance measures, characterizing the convergence
to the Pareto-optimal front and the diversity in the non-dominated set of solutions. TV-MOPSO is found to be
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good not only in approximating the Pareto-optimal front, but also in terms of diversity of the solutions on the
front.

In future, the problem of MOO in uncertain environment [35] will be explored. Recently some novel con-
cepts have been given for evolutionary computation in [21,25]. We intend to do the comparative evaluation of
the proposed algorithm with these algorithms for MOO.

It may be noted that all the algorithms considered here need proper tuning of several parameters. Although
in the present article these values have been set in accordance with the suggestions of the authors of the respec-
tive algorithms, an exhaustive study regarding the sensitivity of the algorithms to different parameters needs to
be undertaken.
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