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Abstract. We introduce a methodology for evaluating network intru-
sion detection systems using an observable attack space, which is a pa-
rameterized representation of a type of attack that can be observed in
a particular type of log data. Using the observable attack space for log
data that does not include payload (e.g., NetFlow data), we evaluate the
effectiveness of five proposed detectors for bot harvesting and scanning
attacks, in terms of their ability (even when used in conjunction) to de-
ter the attacker from reaching his goals. We demonstrate the ranges of
attack parameter values that would avoid detection, or rather that would
require an inordinately high number of false alarms in order to detect
them consistently.
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1 Introduction

We address the problem of evaluating network intrusion detection systems,
specifically against scan and harvesting attacks. In the context of this work,
a harvesting attack is a mass exploitation where an attacker initiates communi-
cations with multiple hosts in order to control and reconfigure them. This type
of automated exploitation is commonly associated with worms, however, modern
bot software often includes automated buffer-overflow and password exploitation
attacks against local networks1. In contrast, in a scanning attack, the attacker’s
communication with multiple hosts is an attempt to determine what services
they are running; i.e., the intent is reconnaissance.

While harvesting attacks and scanning may represent different forms of at-
tacker intent (i.e., reconnaissance vs. host takeover), they can appear to be sim-
ilar phenomena in traffic logs. More specifically, a single host, whether scanning
� This work was done while the author was affiliated with the CERT/NetSA group at

the Software Engineering Institute, Carnegie Mellon University.
1 A representative example of this class of bot is the Gaobot family, which uses a

variety of propagation methods including network shares, buffer overflows and pass-
word lists. A full description is available at http://www.trendmicro.com/vinfo/
virusencyclo/default5.asp?VName=WORM AGOBOT.GEN.
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or harvesting, will open communications to an unexpectedly large number of ad-
dresses within a limited timeframe. This behavior led to Northcutt’s observation
that in the absence of payload—either due to the form of log data, encryption
or simply a high connection failure rate—methods for detecting these attacks
tend to be threshold-based [19]. That is, they raise alarms after identifying some
phenomenon that exceeds a threshold for normal behavior.

Historically, such IDS have been evaluated purely as alarms. Lippmann et
al. [16] established the standard for IDS evaluation in their 1998 work on com-
paring IDS data. To compare intrusion detectors, they used ROC curves to
compare false positive and false negative rates among detectors. Since then, the
state of the practice for IDS evaluation and comparison has been to compare
IDS’ ROC curves [9].

The use of ROC curves for IDS evaluation has been criticized on several
grounds. For our purposes, the most relevant is the base rate fallacy described
by Axelsson [2]. Axelsson observes that a low relative false positive rate can result
in a high number of actual false positives when a test is frequently exercised. For
NIDS, where the test frequency may be thousands or tens of thousands of per
day, a false positive rate as low as 1% may still result in hundreds of alarms.

In this paper, we introduce an alternative method of evaluating IDS that
focuses on an IDS’ capacity to frustrate an attacker’s goals. In order to do
so, we develop a model for evaluating IDS that captures the attacker’s payoff
over an observable attack space. The observable attack space represents a set of
attacks an attacker can conduct as observed by a particular logging system. The
role of logging in the observable attack space is critical; for example, NetFlow,
the logging system used in this paper, does not record payload. As such, for
this paper, we define an observable attack space that classifies attacks by the
attacker’s aggressiveness (the number of addresses to which they communicate
in a sample period) and their success (the probability that a communication
opened to an address actually contacts something).

To evaluate the payoff, we construct a detection surface, which is the prob-
ability of detection over the observable attack space, and then apply a payoff
function to this detection surface. The payoff function is a function representing
the rate at which an attacker achieves the strategic goal of that attack, which is
either occupying hosts (in a harvesting attack) or scouting network composition
(in a scanning attack).

We use the payoff function to evaluate the impact of various IDS on attacker
strategy. We can model payoff as a function of the number of viable hosts in a
network that an attacking bot communicates with — the more hosts a bot can
contact without being detected, the higher his payoff. We show in this paper that
several methods which are good at raising alarms primarily identify low-payoff
attacks; with these detectors, an attacker can achieve a high payoff simply by
limiting his behavior.

By combining detection surfaces with a payoff function, we are able to com-
pare IDS with greater insight about their relative strengths and weaknesses. In
particular, we are able to focus on the relationship between detection capacity
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and attacker payoff. Instead of asking what kind of false positive rate we get for a
specific true positive rate, we are able to relate false positive rates to the attacker
goals. By doing so, we are able to determine how high a false positive rate we
must tolerate in order to prevent an attacker from, say, substantially compro-
mising a network via a harvesting attack. Our work therefore extends the ROC
framework into a model of the attacker’s own goals. By doing so, we can reframe
questions of IDS designs by evaluating their impact on attacker behavior, on the
grounds that a rational attacker will attempt to maximize payoff.

Using this approach, we compare the efficacy of five different detection tech-
niques: client degree (i.e., number of addresses contacted); protocol graph size
and protocol graph largest component size [6]; server address entropy [15]; and
Threshold Random Walk [11]. We train these systems using traffic traces from a
large (larger than /8) network. Using this data, we demonstrate the configura-
tions of aggressiveness and success rate with which an attack will go undetected
by any of these techniques. Furthermore, we show that when configured to be
sufficiently sensitive to counter attackers’ goals, these anomaly detection systems
will result in more than ten false alarms per hour, even when alarms are limited
to occur only once per 30-second interval.

To summarize, the contributions of this paper are the following. First, we
introduce a new methodology for evaluating NIDS that do not utilize payload.
Second, we apply this methodology to evaluate several attack detection methods
previously proposed in the literature, using data from a very large network. And
third, we demonstrate via this evaluation the limits that these techniques face
in their ability to prevent attackers from reaching harvesting or scanning goals.

The remainder of this paper is structured as follows. §2 is a review of relevant
work in IDS evaluation and anomaly detection. §3 describes the IDS that we
evaluate in this paper, and how we configure them for analysis. §4 describes
the observable attack space and detection surface. §5 describes the first of our
two attack scenarios, in this case the acquisition of hosts by an attacker with a
hit list. §6 describes the second scenario: reconnaissance by attackers scanning
networks. §7 concludes this work.

2 Previous Work

Researchers have conducted comparative IDS evaluations in both the host-based
and network-based domains. In the host-based domain, Tan and Maxion [25,17]
developed an evaluation methodology for comparing the effectiveness of multiple
host-based IDS. Of particular importance in their methodology is the role of the
data that an IDS can actually analyze, an idea further extended in Killourhy et
al.’s work on a defense-centric taxonomy [13]. The methods of Tan and Maxion
and of Killourhy et al. informed our experimental methodology and the concept
of an observable attack space. However, their approach is focused on host-based
IDS and they consequently work with a richer dataset then we believe feasible
for NIDS.
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A general approach to evaluating IDS was proposed by Cárdenas et al. [4], who
developed a general cost-based model for evaluating IDS based on the work of
Gaffney and Ulvila [8] and Stolfo et al. [24]. However, these approaches all model
cost from a defender-centric viewpoint — the defensive mechanism is assumed
to have no impact on the attacker. In contrast, our models treat the attacker as
economically rational, meaning that the attacker attempts to maximize payoff
within the rules given by the model.

The general problem of NIDS evaluation was first systematically studied by
Lippmann et al. [16]. Lippmann’s comparison first used ROC curves to measure
the comparative effectiveness of IDS. The ROC-based approach has been cri-
tiqued on multiple grounds [18,9,2]. Our evaluation model is derived from these
critiques, specifically Axelsson’s [2] observations on the base-rate fallacy. Our
work uses a ROC-based approach (specifically, comparing Type I and Type II
errors) as a starting point to convert the relative error rates into payoffs.

3 IDS Construction and Training

In the context of this work, an IDS is an anomaly detection system that compares
the current state of a network against a model of that network’s state developed
from historical data. In this section, we describe our candidate IDS, and our
method for training and configuring them. This section is divided as follows: §3.1
describes the raw data, §3.2 describes the types of IDS used, and §3.3 describes
the detection thresholds used for our IDS.

3.1 Raw Data

Every IDS in this paper is trained using a common data source over a common
period of time. The source data used in this paper consists of unsampled NetFlow
records2 generated by internal routers in a large (in excess of 16 million distinct
IP address) network. For training and evaluation, we use SSH traffic.

NetFlow records approximate TCP sessions by grouping packets into flows,
sequences of identically addressed packets that occur within a timeout of each
other [5]. NetFlow records contain size and timing information, but no payload.
For the purposes of this paper, we treat NetFlow records as tuples of the form
(clntip, srvip, succ, stime).

The elements of this tuple are derived from the fields available in CISCO
NetFlow. The clntip, srvip, succ and stime fields refer, respectively, to the client
address, server address, whether a session was successful, and the start time for
the session. Since SSH is TCP based, we rely on the port numbers recorded in
the original flow record both for protocol identification and classifying the role
a particular address played in the flow. Any flow which is sent to or from TCP
port 22 is labeled an SSH flow, srvip is the address corresponding to that port
2 CISCO Systems, “CISCO IOS NetFlow Datasheet”, http://www.cisco.com/en/US/
products/ps6601/products data sheet0900aecd80173f71.html, last fetched Octo-
ber 8th, 2007.

http://www.cisco.com/en/US/
products/ps6601/products_data_sheet0900aecd80173f71.html
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and clntip the other address3. stime, the start time, is derived directly from the
corresponding value in the flow record, and is the time at which the recording
router observed the flow’s earliest packet.

The succ element is a binary-valued descriptor of whether the recorded flow
describes a legitimate TCP session. succ is 0 when the flow describes a TCP
communication that was not an actual session (e.g., the target communicated
with a nonexistent host), 1 when the flow describes a real exchange between a
client and a server.

succ is an inferred property in the sense that it can be truly determined only
by the receiving host — a sufficiently perverse attacker could generate one side
of a session without the others’ involvement. In situ, we can approximate succ
using other flow properties, such as the number of packets in the flow or TCP
flag combinations. In our work on IDS training [7], we approximate succ by
setting it to 1 when a flow has 4 or more packets, on the grounds that a TCP
session has at least 3 packets of overhead. Other methods for calculating succ
include looking for indicators such as total payload, the presence of ACK flags,
or aggregate measures such as Binkley and Singh’s TCP work weight [3].

In our simulations we generate the succ values as part of the process of gen-
erating attack flows. During the simulations, attackers choose their targets from
a hit list generated from the training data; the attack’s success rate determines
how many addresses come from this hit list, and how many addresses are cho-
sen from a pool of dark addresses. For flows communicating with the hit list,
succ = 1, and for flows communicating with the pool of dark addresses, succ = 0.

IDS properties are generated using 30 second (s) samples of traffic data. We
refer to a distinct sample as a log file, Λ, consisting of all the flows λ1 . . . λl whose
stime values occur in the same 30s period. The use of 30s periods comes from
our previous work on protocol graphs [6].

3.2 IDS State Variables

In the context of this paper, an IDS is a threshold-based alarm that triggers
if a value derived from a log file Λ exceeds a threshold derived from a set of
training data. Each IDS in this paper is based around a single state variable
which, when evaluated against a log file produces a scalar state value. For this
paper, we evaluate the state of a log file using five distinct state variables: g, c,
h, d and r. Each state variable is used by one IDS; we will refer to each IDS by
its state variable (e.g., “g is an IDS”).

g(Λ) and c(Λ) are, respectively, the total graph size and the largest component
size of a protocol graph constructed from Λ. A protocol graph, described in our
previous work on hit-list detection, is an undirected graph constructed from a log
of traffic for a single protocol over a limited observation period [6]. In a protocol
graph, the nodes represent hosts communicating using that protocol, and the
links represent that a communication between these two hosts happened during

3 We constrain the flows used in this paper to flows which used an ephemeral port
between 1024 and 5000.
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that time. In a protocol graph, the graph size is equivalent to the total number
of hosts communicating using a particular protocol. The largest component size
is the size of the largest connected component of the graph.

h(Λ) is the entropy of server addresses in Λ. This metric is derived from work
by Lakhina et al. [15] on mining traffic features. The entropy is defined as:

h(Λ) = −
∑

i∈srvs(Λ)

(
|{λ ∈ Λ|λ.srvip = i}|

|Λ|

)
log2

(
|{λ ∈ Λ|λ.srvip = i}|

|Λ|

)
(1)

where srvs(Λ) =
⋃

λ∈Λ λ.srvip is the set of all server addresses observed in the
log file. During a harvesting attack, an attacker will increase |srvs(Λ)|, which
reduces the probability of any one server being the target of a communication
and therefore increases the entropy.

d(Λ), the maximum degree of Λ, is the number of servers with which the
busiest client in Λ communicated. d(Λ) is arguably the simplest form of scan
detection and consequently has been used by a variety of anomaly detection
systems, notably GrIDS [23] and Bro [20].

r(Λ) is the maximum failed connection run observed in Λ. A failed connection
run is a sequence of flow records λ1 . . . λn where each λ in the run has the same
client address and λi.succ = 0. This method is used by TRW scan detection [11]
to determine if an address is actively scanning. We use the maximum failed
connection run measure to indicate whether TRW would have detected at least
one attack during the sample period.

3.3 IDS Thresholds

In order to calculate detection thresholds for four of the IDS we consider (g,
c, h and d), we first must train the IDS using log files of benign traffic from
the monitored network. However, SSH traffic is prone to constant scanning [1]
which, unless aggressively filtered, will result in artificially high thresholds.

To address the problem of constant clumsy scanning, we use a two-stage
filtering method developed in previous work [7]. This approach is based on our
previous observations that certain graph attributes of major protocols (graph
size and largest component size) can be modeled using a Gaussian distribution
when the traffic logs describing those attributes do not contain attacks [6]. Using
these results, we use a stateless filter that eliminates records where succ = 0.
The resulting log files are then tested using the Shapiro-Wilk normality test [22]
to identify those log files where the observed graph and largest component size
are outside the expected range for a Gaussian distribution.

The initial training data consisted of 7,200 log files for the five business
days between February 11–15, 2008. Source data was chosen exclusively from
1200GMT to 2359GMT for each day, a period corresponding to peak activity
for the network. After filtering, the resulting set consisted of 5,619 log files from
a source set of 7,200.
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Table 1. Summary of Gaussian state variables in SSH training set

State variable x Range μX ± σX

g 299.27±42.49

c 35.13±21.32

h 6.88±0.35

Applying this filtering technique in order to isolate benign traffic yields a
vector Λ1 . . . Λm of log files, each representing benign traffic in a 30s interval.
State values are calculated for each log file in this vector; we refer to the resulting
vector of state values using the same subscript notation, e.g., r(Λi) = ri. We
refer to the complete vector of values for a vector of log files by the corresponding
capital letter (e.g., G = {g(Λ1) . . . g(Λm)}).

We examined the H and D distributions in the filtered data to see if they could
be modeled via a Gaussian distribution. (Our previous work already established
that G and C are Gaussian for the monitored network [6].) Using the Shapiro-
Wilk statistic (W ) [22], we found that H had W = 0.97 and negligible p-value,
and so we treated entropy as Gaussian. D had a Shapiro-Wilk statistic of W =
0.77 with negligible p-value, and consequently was not considered Gaussian.

Table 1 summarizes the Gaussian state variables, i.e., g, c, and h. This table
shows the summary data (left hand column), the mean and standard deviation
(right side) and a sparkline for each data set. The sparkline is a time series plot
of the activity over the training period. We plot the mean and shade an area
one standard deviation from the mean in each sparkline.

For these three state variables, we can use (2) to calculate the detection
threshold. For a given false positive rate, FPR, the corresponding threshold for
a Gaussian IDS x is given by:

θx = μX +
√

2erf−1(FPR)σX (2)

where erf is the error function [14], μX is the arithmetic mean of the vector of
observations X , and σX is the standard deviation of the same vector.

The detection threshold for d is computed differently since, as shown above, d
is not normally distributed over the sample space. We use d’s maximum observed
value over the benign log files as the detection threshold:

θd = max(D) (3)

The detection threshold for r is prescribed by Jung et al. to be

θr =
β ln β

α + (1 − β) ln 1−β
1−α

t1 ln t1
t0

+ (1 − t1) ln 1−t1
1−t0

(4)
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Here, α and β are user-configured thresholds for the maximum false positive rate
(α) and the minimum true positive rate (β). For this work, we set β = 1 − α,
and set α to our acceptable FPR (see below). t0 and t1 are, respectively, the
probabilities that a normal user will successfully communicate with a target, and
the probability that a randomly scanning attacker will successfully communicate
with a target. Per these definitions, t0 and t1 depend on a variety of factors
including the density of targets in the network, the type of protocol involved,
and dynamic addressing, some of which are difficult to accurately evaluate for
the monitored network due to our limited view of it. However, Jung’s simulation
analysis of TRW [10] suggest that choices of t0 and t1 have relatively little impact
on performance. As such, we generally adopt Jung’s original values of t0 = 0.8
and t1 = 0.2 and will examine the impact of alternative θr values in §5.2.

Recall that based on our previous work on graph-based anomaly detection [6],
we monitor traffic over 30s periods. This 30s period governs the effective response
time of the entire intrusion detection and response mechanism — an IDS sends
out at most one alert in a period, and defenders respond to changes at that time.
If we constrain the aggregate false positives for all of the detectors to one false
alarm per eight hours (i.e., the duration of a typical network analyst’s shift), this
yields a combined rate of 0.1% for the five IDS together. We solve for individual
false positive rates FPR using

0.001 = 1 − (1 − FPR)5 (5)

Plugging this value of FPR into (2) yields detection thresholds θg = 447, θc =
110, and θh = 8.105, and setting α = FPR in (4) yields θr = 6. We also use
the value θd = 150, computed directly from (3). These are the thresholds we
use in our evaluations in subsequent sections. Equation 5 treats each IDS as a
statistically independent. While not true, this simplifies our exploratory analysis.

4 Observable Attack Spaces and Detection Probability

In §3, we developed and configured a combined IDS based around five different
state variables: graph size g, largest component size c, server address entropy h,
maximum client degree d and maximum failed connection run r. In doing so, we
specifically configured these systems to yield a low false positive rate, resulting
in one false positive per eight-hours as predicted by our training data. Now that
we have developed this hybrid IDS, we can evaluate its efficacy for deterring
attackers.

In order to do this, we develop a method for describing attacker utility which
we call the observable attack space (OAS). An observable attack space describes
the range of attacks that an attacker can conduct as observed by a particular
logging mechanism. In this section, we develop an observable attack space com-
mon to our logging system (NetFlow) and our five candidate IDS. Using this
approach, we model the aggregate detection surface of the OAS and use this to
evaluate both our combined IDS and the constituent IDS individually.
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This section is structured as follows. §4.1 describes OAS, IDS and the es-
timation of detection surfaces. §4.2 then compares the effectiveness of our five
detection methods both in aggregate and as individual detection schemes.

4.1 OAS and Detection Surface

The type of log data that an IDS uses strongly impacts the types of attacks
that an IDS can detect. An example of this is the impact of choosing NetFlow.
NetFlow is a compact representation of traffic that is viable to collect on large
networks, but since it lacks payload, signature-matching techniques are not possi-
ble with this log format. An observable attack space is therefore a parameterized
representation of all possible forms of a particular attack, as observable using
a particular form of log data. For this work, the observable attack space has
two attributes: aggressiveness (a) and success (s). The aggressiveness is a nat-
ural number describing the number of distinct addresses with which the attacker
communicates in the observation period. The success of an attack is the fraction
of these communications that were successful, and is within the range [0, 1].

When conducting simulations, we limit a to the range of (0, θd) because we
treat the d IDS as deterministic — it will trigger if and only if a ≥ θd. In doing so,
we ignore the possibility that during an attack, a benign host contacts more than
θd addresses, thus “accidentally” causing a true detection even though a < θd.
This treatment also presumes that the attack is launched from a bot that is not
also contributing benign traffic at the same time, i.e., a < θd implies that the bot
host does, in fact, contact fewer than θd addresses in a 30s interval. The other
IDS’ chances of detecting attacks are not so directly dependent on an attack’s
characteristics within the OAS.

Consider a particular IDS x ∈ {g, c, h, r}. Given an arbitrary log file of control
data Λctl that we are confident does not contain an attack, Px

det(a, s) is the
probability that the IDS x raises an alarm for the log file resulting from Λctl

merged with an attack Λatk with aggressiveness a and success s. That is,

Px
det(a, s) = P

[
x(Λatk ∪ Λctl) ≥ θx

]
(6)

where the probability is taken with respect to the selection of Λctl and the gen-
eration of Λatk with aggressiveness a and success rate s. For a particular IDS x,
the detection surface of x is the surface of values Px

det(a, s) for a ∈ (0, θd) and
s ∈ [0, 1].

More specifically, to estimate the probability of detection and the corre-
sponding detection surface, we evaluate the distribution of state variables for
normal behavior merged with randomly generated attacks meeting the aggres-
siveness and success requirements specified by a and s. For this paper, we
limit our simulations to a ∈ {10, 20, 30, 40, . . . , 140} (recall θd = 150) and
s ∈ {0.1, 0.2, 0.3, . . . , 1.0}. At each point, we conduct 100 simulations, each us-
ing one of fifty randomly selected 30s periods from the week of February 18–22
(the week following that used for training) for Λctl. Λatk is randomly generated for



260 M.P. Collins and M.K. Reiter

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 0
 20

 40
 60

 80
 100

 120
 140

 10
 20

 30
 40

 50
 60

 70
 80

 90

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Detection

AggressivenessSuccess

Detection

Fig. 1. Detection surface (Pall
det(a, s), as a percentage) for combined IDS

each simulation. Λatk contains a unique records, where each record has the same
client address, and a different server address. The composition of the server
addresses is a function of s: a · s addresses are chosen from a hit list of internal
SSH servers identified in the training data4 in order to approximate hit-list
attacks; the remainder are sent to addresses with no listening server. We then
merge Λatk with a randomly selected control log Λctl and then calculate the state
variables.

Four of the IDS examined by this paper (g, c, h, and d) are unaffected by
the order of log records within the monitored 30s period. The fifth, r, is order-
sensitive, however, in that TRW triggers an alert if any host is observed making
more than θr failed connections in a row. This order sensitivity is a weakness,
since an attacker can interleave scanning with connections to known hosts in
order to avoid a failed connection run greater than θr [12]. To address this
particular exploit, we randomly permute the records originating in each 30s
interval. After this permutation, r is calculated for each host in the network.

Figure 1 plots the detection surface for all the IDS combined. As this figure
shows, the combined detection mechanism generally increases proportionally to
the aggressiveness of the attack and inversely relative to the success of the attack.
Furthermore, the detection mechanisms tend to vary more as a function of the
aggressiveness than due to the success rate.

The effectiveness of the aggregate IDS may be considered low, in the sense that
an attacker with a relatively small hit list (a = 40, s = 0.5) can communicate with
the network with little fear of detection. However, we should note that the attacks
represented by this OAS are the most subtle space of attacks available. Our
own experience indicates that the majority of attacks are orders of magnitude
more aggressive than these hypothetical SSH scans, at which point any IDS will
identify them. This latter point is particularly critical. As Figure 1 shows, once
a ≥ 100, the combined IDS will raise an alarm.

4 This hit list is composed of all internal addresses in the training data which had one
flow originating from them on port 22 and with a payload of greater than 1kB.
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4.2 Detection Surface Comparison

In addition to the detection surface for the aggregate IDS, we have also calculated
the detection surfaces for each component IDS in this system. We can use these
results to evaluate the comparative effectiveness of each IDS.

Figure 2 plots detection surfaces for each IDS x ∈ {g, c, h, r} as contour plots.
A contour plot maps a 3-dimensional surface into a 2-dimensional representation
using contour lines. Each contour line represents the axis coordinates where the
surface takes on its labeled value.

These plots show that the most successful individual IDS are c and r : these
IDS are the only ones to have significant (≥ 10%) detection rates over the
majority of the OAS. In contrast, the h IDS has a very low detection rate,
less than 6% over the entire OAS. Of particular interest with c and r is their
relative disconnectedness to each other: r’s detection rate is dependent on s and
less dependent on a. Conversely, c is largely independent of s, while a plays
larger role in detection.

These IDS are calibrated to have an effective false positive rate of zero. As a
result, they are largely insensitive to anomalies and have a relatively low detec-
tion rate. In addition, as noted above, the attacks represented here are extremely
subtle. More aggressive attackers would be identified and eliminated regardless
of the detection strategy used — by the time an attacker communicates with
θd = 150 addresses, the d IDS will raise an alarm, making other approaches
effectively moot.

This phenomenon is partly observable in our models in Table 1. Recall that,
for example, the model of graph size g, was 299 ± 42.47 hosts. If g(Λ) = 299
for some log file Λ, then an attacker will not trigger an anomaly until he has
communicated with at least 149 hosts, at which point he is close to triggering d
as well as g.

5 Modeling Acquisition

In §4.2 we examined the efficacy of the detection mechanisms purely as detectors:
for a fixed false positive rate, we calculated the effective true positive rate. In this
section, we use the detection surface in Figure 1 to examine the impact of IDS on
acquisition attacks. We evaluate the efficacy of the detection surface by building a
mathematical model for attacker payoff during an acquisition attack. Applying
this model to the surface, we can determine how many hosts an attacker can
expect to take over, and from these results determine how effective an IDS has
to be in order to keep attackers from taking over hosts.

This section is divided as follows: §5.1 describes our model for acquisition
attacks. §5.2 compares IDS efficiency using our payoff function. §5.3 considers the
problem of IDS evaluation from a different perspective — instead of calculating
efficiency in terms of true and false positives, we determine the minimum false
positive rate required to counter an attacker.
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Fig. 2. Detection surfaces (Px
det(a, s), as a percentage) for individual IDS

5.1 Acquisition Payoff Model

We define an acquisition attack as a game between two parties who are com-
peting for ownership of a single network. The two parties in the game are the
attacker, who attempts to take over hosts on the network, and the defender, who
attempts to prevent takeover of hosts on the network. In this game, the attacker
uses a single bot to perform a series of attempts, during each of which the bot
communicates with multiple hosts within the network using a hit list acquired
previous to the attack.

In each attempt, the attacker communicates with some number of addresses
(specified by the attacker’s a), each of which has s chance of succeeding. For the
purposes of the simulations, a successful attack is one that communicates with a
real host, and a failed attack is one that communicates with a nonexistent host.
That is, we assume that if an attacker talks with a host, the attacker takes the
host over. The payoff of an attempt, Hacq, is the expected number of hosts with
which the attacker communicates during an attempt.

The goal of the defender is to minimize Hacq, and the goal of the attacker
to maximize the same. To do so, the defender deploys an IDS x, and so the
probability of detecting a particular attempt with aggressiveness a and success
rate s is Px

det(a, s). We assume that once the defender successfully identifies an
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max(a, s)) for acquisition attacks for combined IDS

attacker, it will block the attacker’s bot, ending all further acquisition attempts
by that bot. Furthermore, the defender will then recover all of the hosts that the
bot communicated with during the game.

We note that this model assumes that the attacker and defender are perfect.
That is, the probability that an attacker takes over a host that it contacts, and
the probability that a defender correctly identifies an occupied host after being
notified of an attack, are both one. The model can be modified by incorporating
additional probabilities for measuring the attacker’s takeover success per host
contact and the defender’s vigilance.

Let owned be a random variable indicating the number of hosts taken over,
and let alarmed be the event that the bot is detected. Below, we assume that
the probability of detection in each attempt is independent. If such is the case,
then we can derive the payoff for an attack comprised of k attempts and for an
IDS x as:

Hx
acq(a, s, k) = E [owned]

= P [alarmed] E [owned | alarmed] + P [¬alarmed] E [owned | ¬alarmed]
= (1 − Px

det(a, s))k(ask) (7)

The last step follows by taking E [owned | alarmed] = 0, since we presume that if
the defender detects an attacker during an attempt, then the defender recovers all
of the hosts the attacker has communicated with using that particular bot. Note
that the attacker maximizes his payoff by maximizing k subject to Hacq(a, s, k)−
Hacq(a, s, k − 1) > 0 or, in other words,

k <
1 − Px

det(a, s)
Px

det(a, s)
(8)

We denote this value of k by kx
max(a, s).

Figure 3 plots the payoff over the observed attack space using (7) with the max-
imum k satisfying (8). As this figure shows, aggressive attacks have a minimal
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payoff, a result that can be expected based on Figure 1. Above approximately a ≥
80, the attacker is consistently identified and stopped regardless of their success
rate.

This behavior is the result of the interaction of two detectors: c and r. As s
increases, the probability of the attacker combining previously separate compo-
nents of the protocol graph increases, increasing the likelihood of detection by
the c IDS. As the attacker’s success rate decreases, he is more likely to generate
a sufficiently long failed connection run to trigger the r detector. The other de-
tectors will identify attackers, however their effectiveness is limited for attacks
that are this subtle — an attacker who does disrupt g or h will typically already
have disrupted d.

5.2 Calculating IDS Efficiency

We can use (7) to also calculate a comparative efficiency metric for IDS. The
volume under the surface specified by (7) is the ability of the attacker to take over
hosts in the presence of a particular IDS. The efficiency of an IDS x is therefore
the indicator of how much x reduces an attacker’s payoff. We can express IDS
efficiency as the ratio between the number of hosts an attacker expects to take
over in the presence of an IDS x and the number of hosts the attacker can take
over (in the same number of attempts) in that IDS’ absence.

Ex
acq = 1 −

∑
a∈(0,θd)

∑
s∈(0,1] Hx

acq(a, s, kx
max(a, s))

∑
a∈(0,θd)

∑
s∈(0,1] askx

max(a, s)
(9)

The subtraction in (9) is included simply to provide an intuitive progression
for efficiency: if E is greater for IDS A than IDS B, then A is a better IDS than
B. Based on (9), we can calculate an efficiency of 0.14 for g, 0.0099 for h, 0.73
for c and 0.22 for r. The effectiveness of the combined detector is 0.80.

Using Equation 9 we can examine the impact of alternative values for θr.
Recall from §3.3 that θr is based on models of normal behavior and attacker
behavior that can vary as a function of the protocol, the density of the ob-
served network and other behaviors. Without revisiting the model, we can sim-
ply change the values of θr and examine how that changes the efficiency. In this
case, we find that for θr = 3, 4, and 5, Ex

acq = 0.50, 0.37, and 0.29, respectively.
The most interesting result from these calculations is the relatively low efficiency
of r as an IDS for acquisition attacks, despite its relatively good true positive
rates (Figure 2). Because the detection mechanism relies on attacker failures, it
is better at detecting attacks which have a relatively low s. IDS r is therefore
very good at detecting attacks with low payoff.

We expect that the comparative efficiency of these IDS will differ from one
protocol to the next. g and h are affected by the aggregate traffic for one protocol,
e.g., the total number of hosts using a particular protocol. Conversely, r relies
exclusively on per-host behavior. Consequently, using protocols with more clients
or servers (such as HTTP) should result in less g and h efficiency, while r should
have the same efficiency regardless of protocol.
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Fig. 4. False positive rates required to limit Hx
acq(a, s, k) = 1

5.3 Determining a Minimum False Positive Rate

As Figure 3 implies, even with all the detection mechanisms operating, attackers
can still acquire a high rate of return with a sufficiently subtle hit-list attack.
In this section, we will now address the question of detection from a different
perspective: how high a false positive rate do we have to tolerate in order to
prevent the attacker from seriously compromising the monitored network?

To do so, we invert (7) so that instead of calculating the attacker’s payoff as a
function of detectability, we calculate the probability of detection as a function
of payoff. Solving for Px

det(a, s) in (7) yields

Px
det(a, s) = 1 − k

√
Hx

acq(a, s, k)
ask

(10)

Suppose the defender wishes to minimize Px
det(a, s) (and hence also the false

alarm rate) while restricting Hx
acq(a, s, k) ≤ 1, and so the attacker wishes to

maximize Px
det(a, s) in order to achieve Hx

acq(a, s, k) = 1. The attacker does so
by choosing k so as to minimize (ask)−1/k, for any a and s.
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can be limited to at most the specified value,
using a threshold θc = μC + 3.5σC

Using this strategy, we calculate
the detection probability required
to identify and stop attackers at
points within the OAS. To calcu-
late the resulting detection thresh-
olds for each IDS, we use our sim-
ulated attacks with parameters a
and s to calculate the threshold
needed to filter off Px

det(a, s) of the
attacks when overlaid on our train-
ing data.

The results of these runs are
given in Figure 4. These figures are
contour plots over the OAS as be-
fore. However, the contours for the
figure are the false positive rates
that would result from this analy-
sis. For the g, c and h detectors, these values are calculated using (2). For r, this
value is calculated by using (4).

As Figure 4 indicates, anomaly detection systems that are capable of defending
against subtle attacks will require extremely high false positive rates. Recall that
our measurement system conducts a test every 30s; for every 1% false positive
rate we accept, we pay 10 alerts per eight-hour shift. As such, this figure indicates
that the false positive rates for building systems that can limit the attacker to
Hx

acq(a, s, k) ≤ 1 are much higher than we can consider accepting.
One way to avoid such high false positive rates would be to not place such

a stringent limit of Hx
acq(a, s, k) ≤ 1. For example, if the defender insists on a

near-zero false positive rate, we can determine if there is a higher threshold for
the payoff that can accommodate this rate, such as Hx

acq(a, s, k) ≤ 5. Figure 5
shows this for the c IDS, for Hc

acq(a, s, k) ∈ {5, 10, 15}. Specifically, each contour
line shows the values of a and s for which Hc

acq(a, s, k) can be limited to at most
the specified value, using a threshold θc = μC + 3.5σC , which is large enough to
ensure a false positive rate very close to zero. As this figure shows, the defender
can effectively impose an upper limit on the attacker’s payoff, but unfortunately
this limit must be rather large (Hc

acq(a, s, k) = 15) in order to cover the majority
of the attack space.

From Figures 4 and 5, we conclude that in order for an anomaly detection
system to be a viable deterrent to host compromise, it must either use finer
resolution data than NetFlow, develop mechanisms for coping with a high false
positive rate, or permit higher attacker payoff than would be ideal.

6 Modeling Reconnaissance

In this section, we develop an alternative attack scenario, reconnaissance, where
the attacker scouts out the network with his bots. In each attack, he communicates
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with addresses to simply determine the presence of hosts at certain addresses.
The reconnaissance scenario differs from the acquisition scenario by the attacker’s
knowledge and goals. Specifically, the attacker’s goal is to contact as many ad-
dresses as possible within a short period. To do so, the attacker uses a chaff hit list
consisting of hosts that the attacker already knows about, and a target space of
addresses to probe. The chaff hit list reduces the attacker’s probability of detec-
tion by lowering his failure rate. However, it also reduces the attacker’s payoff by
requiring him to “sacrifice” a certain number of targets every round.

Let alarmed = i be the event that the bot is detected at the end of attempt
i (and before attempt i + 1); as before, an attempt is comprised of contacting
a addresses with success rate of s (in this case, owing to the chaff hit list).
Let scanned denote a random variable indicating the number of scans that one
bot performs successfully (i.e., determines whether the scanned address has a
listening service or not), not counting the “chaff” that it introduces to avoid
detection. Note that we suppose that the number of listening services the bot
finds is sufficiently small that it does not relieve the bot from introducing a
fraction s of chaff scans. We also presume that the probability the bot is detected
in each attempt is independent.

Hx
rec(a, s) = E [scanned]

=
∞∑

i=1

P [alarmed = i]E [scanned | alarmed = i]

=
∞∑

i=1

(
(1 − Px

det(a, s))i−1Px
det(a, s)

)
(ia(1 − s))

= a(1 − s)
Px

det(a, s)
1 − Px

det(a, s)

∞∑

i=1

i(1 − Px
det(a, s))i

= a(1 − s)
Px

det(a, s)
1 − Px

det(a, s)
1 − Px

det(a, s)
Px

det(a, s)2

= a(1 − s)
1

Px
det(a, s)

(11)

Applying (11) to the detection matrix over our OAS results in the payoff
plot shown in Figure 6. This figure plots the aggregate payoff over the OAS
for reconnaissance. Of particular note with this result is that it demonstrates
that a sufficiently motivated and subtle attacker can scan a network by subtly
exploiting attacks with high s rates. In this case, the attacker can slowly scan the
network for an extended period — the observed peak at the a = 20 segment of
the graph implies that the attacker scans for 25 minutes before being detected.

However, the attacker can achieve just as effective results by aggressively scan-
ning the network. Recall that the effective aggressiveness of the attacker is bound
by θd to less than 150 nodes. In the reconnaissance scenario, the attacker faces
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Fig. 6. Payoff Hall
rec(a, s) for reconnaissance attacks for combined IDS

no penalty for scanning at a higher aggressiveness rate, since the defender can
only block an address. Consequently, this plot can continue out to whatever the
practical upper limit for a is, a result which would correspond to the aggressive
scanning we observe right now.

7 Conclusion

In this paper we have developed a new method for evaluating the performance
of IDS based on an observable attack space, specifically the view of a harvesting
or scanning attack that is available in flow logs that lack payload data. Our
approach complements ROC-based analysis by enabling the creation of detection
surfaces — models of an IDS’ ability to detect different attacks. Moreover, we
augment this analysis with a payoff-based metric. By incorporating payoffs, we
are better able to characterize the deterrence offered by an IDS. In particular,
instead of describing the detection of a system in terms of pure false positive
and false negative rates, we are able to use payoff functions to calculate the gain
that an attacker can expect from a certain type of attack. This also enables us
to determine how high a false positive rate we must endure in order to limit the
attacker’s payoff to a target value.

Future work will focus on expanding the OAS approach to address different
scenarios and parameters. First, our previous work on graph-based intrusion
detection [6] considered the possibility of multiple bots being active simulta-
neously, and extending our OAS to account for this is a natural direction of
future work. Second, generalizing from 30-second traffic samples to an approach
considering multiple sample durations may provide additional detection capa-
bility [21]. Third, this work outlines two initial attack scenarios: harvesting and
reconnaissance. However, a variety of other attacks may be considered and eval-
uated. In particular, different scanning strategies (such as topological scanning),
bot command-and-control, and DDoS attacks all merit further investigation and
similar payoff-based evaluation.
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Several useful and, in some cases, discouraging results fall out of our analy-
sis techniques as applied to SSH traffic observed on a very large network. For
example, in §4.2 our analysis elucidated the complementary capabilities of de-
tection using the size c of the largest component of a protocol graph [6] and
the TRW scan detector r [11]. Consequently, there is good reason to use both
simultaneously. Moreover, we showed that these detectors significantly outper-
form the server address entropy detector h, the graph-size detector g, and the
degree-based detector d, for the stealthy attacks that form our observable attack
space. That said, using our payoff analysis for acquisition attacks, we showed
in §5.2 that r detection is primarily effective at detecting acquisition attacks
with low payoff for the attacker, and so its utility for acquisition attacks is less
compelling. In addition, we showed in §5.3 that to severely limit the attacker’s
acquisitions, the false positive rates that would need to be endured by any of the
detectors we considered would be significant and, for a network of the size we
studied, impractical. We showed how to derive more relaxed payoff limits that
would enable near-zero false positive rates for an IDS.
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