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Abstract

There are many methods for measuring “similarity” of or
“distance” between two image pixels or image patches.
These methods generally involve computing some informa-
tive features of the image patches and then describing dis-
tances between patches based on simple functions of those
feature values, e.g., Euclidean distance. Unfortunately,
these measures are often frail and difficult to interpret. The
goal of this paper is to learn the “similarity” of two patches
as an approximation to the likelihood that two patches were
drawn from the same surface in the world. This measure
is well-defined and allows for a maximization of meaning-
ful values when it is combined with common segmentation
algorithms. We introduce a general approximation tech-
nique that involves learning a codebook, learning the like-
lihood function for pairs of codebook entries, and apply-
ing the resulting likelihood function in segmentation tasks.
These steps can be performed independently, even on differ-
ent data sets drawn from the same domain. The likelihood
can be learned from pre-segmented image set or heuristi-
cally approximated from an unsegmented image set. We
show examples of probabilistic segmentation of the code-
books themselves based on our similarity measure for multi-
ple types of codebooks including color codebooks and Epit-
ome codebooks. These segmentations illustrate the useful-
ness of our technique as an image patch similarity measure.

1. Introduction
Algorithms for segmentation using a pairwise similarity
measure is a growing field, but defining the similarity mea-
sure used for those algorithms receives comparatively lit-
tle focus. In the past few years, many new algorithms for
segmenting data points into one or more groups based on
pairwise “distances” or “affinities” have been introduced
[10, 6, 5]. Each of these algorithms attempts to maximize a
particular heuristic that is defined based on the affinity mea-
surements. For many non-synthetic data segmentation ap-
plications (e.g., image segmentation), the pixel-wise affini-
ties or distances are defined as simple functions of the Eu-
clidean distance in a simple feature space (e.g., RGB, HSV,

stacked Gabor filter coefficients). For such applications,
it is often difficult to interpret what optimization criterion
should be maximized and therefore what algorithm to em-
ploy for segmentation.

While this paper includes segmentation results, our fo-
cus is on learning the similarity measure rather than an ac-
tual segmentation algorithm. The pairwise similarity mea-
sure described in this paper is the Same Source Likelihood
Measure (SSLM), which for the case of image segmenta-
tion is an estimate of the likelihood that two image patches
were drawn from the same surface region in the real world.
The paper describes the interpretations of many common
segmentation algorithms when used in combination with an
estimate of the SSLM. Having used an SSLM to estimate
pairwise distances, a segmentation algorithm will be max-
imizing aggregate probability estimates rather than less in-
tuitive distances in an arbitrary feature space. This measure
is well-defined for any clustering task that allows one to es-
timate the likelihood that two observations did come from
the same source.

A general non-parametric model of the SSLM can be
learned from a segmented image set. Due to its genera-
tive nature, our non-parametric model can be approximated
from an unsegmented image set in the absence of a large
segmented image set. Learning the affinity measure from
the a segmented image set can be decoupled from segmen-
tation, allowing the affinity measure to be learned on a large
image set or a single image and applied to a different image.
Many examples of applications using this representation are
shown to illustrate the power of this representation, includ-
ing segmentation based on a color codebook and an Epito-
mic codebook.

1.1. Previous work

Our algorithm involves three components: codebook gen-
eration; pairwise likelihood estimation; and segmentation.
Though there has been significant work in codebook gen-
eration, it is not the focus of this paper. We use a simple
implementation of a greyscale codebook for one example
application. In our second example application, we employ
Epitomic analysis, a recent codebook generation technique
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developed by Jojic et al. [3] which has many desirable prop-
erties.

Image segmentation based on pairwise statistics involves
two coupled components– defining the pairwise affinity
measure and segmenting the pixels based on the pairwise
measure. Thus far, most attention has been focused on
the segmentation algorithms. For the purpose of general-
ity, most segmentation algorithms remain agnostic towards
the segmentation task and affinity measure. Results for the
same algorithm are often shown for many different types of
pairwise statistics (e.g., web links, citations, pixel distances,
handwritten character distances). This keeps the algorithms
general, but those that apply the algorithm are still left with
the problem of defining a good affinity measure. This pa-
per introduces a well-defined affinity measure that is widely
applicable.

Early work in spectral clustering using Eigenvector anal-
ysis to determine the minimum cut of a graph has resulted
in a proliferation of similar techniques over recent years. A
common algorithm that has been shown to be more robust to
certain pairwise statistics is Normalized Cuts[10]. Recently,
Ng et al. proposed an alternative [6]. All these segmentation
algorithms have been shown to cluster effectively for appli-
cations ranging from gene expression data to handwritten
digits. For each such applications, a pairwise statistic is
derived and the segmentation algorithm is applied. Given
both a pairwise affinity measure and a particular segmen-
tation algorithm, one can evaluate what heuristic is being
maximized by the algorithm. Section 2 describes the inter-
pretation of common segmentation algorithms with respect
to our pairwise affinity measure.

Recently, there has been work on learning a discrimina-
tive affinity measures from purely supervised data. Shi and
Malik[9] and Bach and Jordan[1] estimate a kernel function
that is a low-dimensional approximation of the correlation
of features. Shental et al. [8] and Meila and Shi[4] esti-
mate the weighting values for a mixture of experts. Ren and
Malik[7] posed the problem as a binary classification task.

In contrast, this paper advocates a probabilistic affinity
measure that is well-defined and can be measured from data
for any particular domain. It describes the interpretation
of common segmentation algorithms applied to this mea-
sure. It also describes a non-parametric representation for
approximating this measure and a supervised and unsuper-
vised method for estimating the parameters of this represen-
tation. Multiple applications are shown for segmentation
of multiple types of images using multiple types of image
patch representations.

2. Same source likelihood measure

The same source likelihood measure (SSLM) describes the
likelihood that two data points are drawn from the same

source. For image segmentation, the SSLM describes the
likelihood that two image pixels (or image patches) are
drawn from the same region in the image, for some defi-
nition of image region.

It is not our goal to argue for a particular definition of
a “region”. In fact, we stress that this definition changes
for different applications and different contexts. In this pa-
per, we assume that there is a definition of a region that
would enable a well-defined segmentation of a set of im-
ages. Given a set of images segmented optimally with re-
gard to this definition, we define the likelihood that two ob-
served image patches, zi and zj , are drawn from a random
segmented region as

pR(zi, zj) ≡
K∑

k=1

p(zi|rk)p(zj |rk)p(rk) (1)

where p(zi|rk) is the distribution of observed patches in a
particular segmented image region, p(rk) is the likelihood
of drawing from that region, and K is the number of seg-
mented regions. Thus, pR(zi, zj) denotes the likelihood of
drawing both zi and zj independently from a randomly cho-
sen imaged world region. The value of pR(zi, zj) is higher
when regions in the images tend to exhibit both zi-patches
and zj-patches. For a sufficiently large value of K, values
of pR(zi, zj) depend on aggregate statistics over numerous
regions containing zi and zj observations1.

Each different definition of what constitutes a “region”
results in a different pR-function. Also, each domain or
context can result in a different PR-function. For instance,
if a “region” is any constant colored region in simple graph-
ics images, pR() is only non-zero when the colors of the
patches match exactly. If a “region” is any constant col-
ored region in a real image, pR() would have to character-
ize the noise introduced to each particular color by lighting
and imaging. As the examples get more complex, this func-
tion becomes more interesting. For example, segmenting
objects in outdoor scenes requires much more invariance
to lighting effects than the previous examples. Rather than
tweaking a measure to account for each of these situations,
the measure can be learned from data and then applied in
new circumstances.

Given an infinite set of segmented images, this function
could theoretically be estimated perfectly. Given a large
set of segmented images, the parameters that define the pR-
function can be approximated using any type of regression.
If the image set can be subdivided into contexts (e.g., sunny
and cloudy pictures), different pR functions can be learned
for each of these circumstances, each of which should per-
form better within its own context.

1The terms likelihood and probability are used somewhat interchange-
ably in this work. Note, pR(zi, zj) defines a likelihood in a continuous
space and a probability in a discrete space
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2.1. Interpretation of spectral methods applied
to SSLM affinities

As stated earlier, many commonly-used pairwise segmen-
tation algorithms remain agnostic as to the affinity mea-
sure. The difficulty often lies in defining the right affinity
measure in combination with the right graph cutting algo-
rithm. The SSLM is a well-behaved, well-defined, widely-
applicable affinity measure that can be interpreted regard-
less of the input space in which the measurements lie.

Given a graph in which each observation is a node and
the edges have weights that correspond to the affinity mea-
sure between the corresponding two observations, there are
numerous partitioning algorithms. The graph can be repre-
sented as an NxN matrix S containing the edge weights.
The Minimal Cut algorithm finds a binary cut of a graph
that minimizes the mean cut affinity while maximizing the
mean uncut affinity. Normalized Cuts [10] and NJW [6]
alter the original affinity matrix before performing Eigen-
analysis. Little more can be said about the function of these
algorithms without a well-defined affinity measure.

On the other hand, if the similarity matrix S contains es-
timates of the joint probability estimate in Equation 1, these
common algorithms have intuitive explanations. The Min-
Cut algorithm applied to the matrix itself minimizes the cut
likelihood. Applying the same algorithm to log(S) min-
imizes the product of the cut likelihoods (assuming each
pairing is independent).

Normalized Cuts is the same process applied to

D−1S, (2)

where D is a diagonal matrix containing the sum2 of each
row in the original symmetric matrix, S. In the case of
SSLM values, this is exactly the marginal probability. This
normalization simply makes our measure pR(zi|zj) rather
than pR(zi, zj). The NJW algorithm performs a qualita-
tively similar normalization

D− 1
2 SD− 1

2 . (3)

This corresponds to an approximate normalization using the
geometric mean of the ith and jth marginal probabilities.
This normalization results in an S that is still symmetric.
Another measure we have found useful in some circum-
stances is

D−1SD−1, (4)

which corresponds to the likelihood ratio

Lij =
pR(zi, zj)

pR(zi)pR(yi)
(5)

≈ pR(zi, zj)
p(zi)p(yi)

(6)

(7)
2This sum is often referred to as the degree or volume in the spectral

clustering literature.

where the marginal probability of a patch zi drawn from
the sampled pairs is approximately equal to the marginal
probability of the patch begin drawn at random. Thus, Lij

approximates the likelihood ratio of the probability that two
codebook image patches appeared in the same region to the
likelihood that those two patches would have occurred in-
dependently.

3. Non-parametric SSLM
It is much easier to explain why this measure is desirable
and how it can be interpreted than to actually estimate it in
practice. Given image patches defined on a large or con-
tinuous input space, an extremely high-capacity representa-
tion of pR may be required. Unfortunately, the amount of
data required to effectively estimate the parameters of such
a pR-function would be prohibitive. To make this method
effective we chose a representation for pR that has limited
capacity and we also introduce mechanisms for augmenting
the training data without supervision.

3.1. Codebook SSLM
The description of an image patch zi includes both spatial
information and appearance information,

zi = {xi, ai} (8)

where xi is the spatial description of a patch and ai is the
appearance description of the patch. To allow for reliable
estimation of pR(zi, zj) that is largely independent of spa-
tial configurations of particular training images we assume
these factors are independent, i.e.

pR(zi, zj) ∝ pR(xi, xj)pR(ai, aj). (9)

This assumption is extremely common, although not en-
tirely necessary. For instance, it is possible to learn repre-
sentations of pR(xi, xj |ai, aj , R). For example, one could
estimate a zero-mean Gaussian distribution on inter-patch
distance that is estimated conditionally on the patch appear-
ance. E.g., blue patches may have a larger spatial prior. We
currently use an unconditioned zero-mean gaussian prior on
inter-patch distance for pR(xi, xj), where the variance is ei-
ther assumed or learned from segmented data.

Our approach to representing joint appearance likeli-
hoods involves first determining a codebook to represent the
potentially continuous-valued data vectors with a discrete
set of representative codebook entries. By representing each
image patch appearance ai by its most representative code-
book entry ȧi, it is possible to a aggregate frequentist esti-
mate of pR(ȧi, ȧj) using an NxN matrix. This is done by
counting each pair that could be produced by every region
without replacement and weighing each region’s joint prob-
ability estimates equally. Given enough data, an estimate of
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pR(ȧi, ȧj) can be approximated effectively. This estimated
p̂R(ȧi, ȧj) is then employed as a surrogate for pR(ai, aj).

This paper includes appearance codebooks based on
gray-level image values for MRI images and based on an
Epitomic [3] codebook of image patches with some local
redundancy in the patches. But, this approach is useful in
any situation where the codebook elements produce useful
pR(żi, żj) estimates.

3.2. Overcoming sparsity of training data

Even with a representation with a limited number of pa-
rameters, obtaining a large enough set of segmented im-
ages to effectively estimate pR(zi, zj) may be prohibitive.
In many cases, some low likelihood estimates will be ex-
tremely noisy. For instance the matrix may contain many
zeros, which can have an extreme interpretation for proba-
bilities and may adversely affect some segmentation algo-
rithms.

There are two mechanisms that can aid in effective es-
timation despite sparse training data. The first method is
to introduce a prior that biases the estimation for elements
of p̂R(zi, zj) that do not have much support in the train-
ing set. For instance, the prior could be that there is some
likelihood that all patches are initially associated only with
themselves, that ANY patch is associated with ANY other
patch with equal likelihood, that patches with similar code-
book entries are more likely to be associated, or that the
associations from another training regime are appropriate
until sufficient training has occurred in the new domain.
This prior is given a constant weight. Thus, for values
of p̂R(zi, zj) for which significant numbers of zi- or zj-
patches have been observed, the prior will have a negligible
effect. But, for values that have little or no pertinent data,
the prior is weighed heavily.

A second method to avoid the problem of sparsity of
training data is to use unsegmented images using an image
region prior. By using small randomly-sampled weighted
windows, one can obtain weighted sets of image patches
that tend to be drawn from the same region in the image.
The size of the sample window should be large enough that
the sets of patches show significant patch variability within
a region but not so large that the window will often contain
multiple regions. When the small weighted window does
happen to fall on object boundaries, spurious associations
will be introduced. But given a large unsupervised training
set, our generative model is relatively robust to those spu-
rious associations from neighboring regions because they
are independent. The exception is cases where two types of
regions always tend to border each other and never occur
alone. In such a case, this similarity measure advocates that
those regions should tend to be segmented together at some
level.

(a) (b)

Figure 1: This figure shows a magnetic resonance image
(MRI) (a) and the corresponding pixel-value p̂R-matrix es-
timated directly from Gaussian weighted image patches (b).

4. Results
To illustrate the generality of this approach, this paper in-
cludes results from two different types of images using two
different types of appearance codebooks. The first example
is for grey-level values in an MRI. The second example is
for Epitomic codebook entries in real color images.

4.1. MRI similarity estimation
Given a reasonably calibrated MRI, the gray-level value of
a pixel is very informative on the tissue class. If one had
a large set of MRIs segmented and labeled by tissue type,
one could learn tissue-type models for each major type of
tissue, which could be used to define a very effective affinity
measure. This subsection illustrates that even without such
a training set, a useful SSLM can be automatically learned
from a set of unsegmented MRI images.

Using a gray-scale prototype for each of 128 different
gray-levels, we can estimate the likelihood that a two gray-
level observations are produced by the same tissue class
given segmented data, or pR(ȧi, ȧj). Even without a seg-
mented image set, we can approximate the likelihood that
two gray-levels are produced by the same tissue class by
drawing random Gaussian sample regions under the as-
sumption that most of the regions are likely to be homo-
geneous in tissue type. Using a Gaussian weighted window
with standard deviation of five pixels on the MRI in Figure
1(a), the pR-matrix in Figure 1(b) is computed.

Though it may appear that the ȧi and ȧj measurements
are mostly independent, on closer inspection it is apparent
that certain gray values are much more likely to be within
the same random image patch. Using a method similar to
Hoffman’s LSA [2], previously adapted to co-occurrence
measurements in [11] and [12] we can estimate the latent
tissue classes (p(ai|ck)) and latent tissue priors (p(ck)) that
best approximate the joint co-occurrence statistics exhibited
in pR(ai, aj). This is done by minimizing the kl-divergence
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(a) (b)

Figure 2: This figure shows the derived latent class mod-
els (a) and resulting tissue segmentation for four, five, and
six latent tissue class models (b). The latent class models
are the likelihood (vertical axis) of each tissue-class given
an observation of a particular gray-level pixel (horizontal
axis). The segmentation shows the maximum a posteriori
assignment of each pixel to the 4, 5, and 6 latent class mod-
els. Each class is shown as a different gray-level.

between pR(ai, aj) and the latent class similarity likeli-
hoods,

pl(ai, aj) =
K∑

k=1

p(ai|ck)p(aj |ck)p(ck). (10)

for a given number of latent classes K. In this example, the
conditional p(ai|ck) estimates are multinomial estimates
over the 128 discrete values.

Simply fitting a mixture of Gaussians to the set of gray-
level pixel values is generally not useful beyond telling tis-
sue from air. In contrast, Figure 2 shows the latent tissue
classes estimated for K = 4, K = 5, and K = 6. In the
four class model, the tissue classes roughly correspond to
air, cerebral spinal fluid, gray/white matter, and skin. The
addition of another latent tissue model splits the gray/white
matter tissue classes and has little effect on remaining three
tissue classes. Addition of another latent tissue class model
splits the air class similarly.

These results may be somewhat surprising given that no
segmentation was given to train the system. They show that
the assumption of local uniformity in latent class is reason-
able in this case. Since the model is non-parametric and de-
pends only on same source likelihoods, no scaling or warp-
ing of the gray-scale values would affect these results. In
fact, gray-scale pixel values could be replaced by color val-
ues or texture values as shown in the next subsection.

4.2. Epitome similarity function
The previous example involved a simple codebook. Fur-
ther, a very simple model of the regions could be defined
on that codebook. In real imagery, a more complex code-
book is required to effectively model the complexity of im-
age patches. Estimating a codebook to efficiently represent
image patches from an image or set of images is difficult.
Often some codebook entries are extremely redundant while
some codebook entries represent only a handful of outlier
image patches. Also, the codebooks themselves are often
large and difficult to store.

Rather than making codebook estimation a focus of this
paper, we have chosen to use an existing algorithm for gen-
erating an image codebook that has many desirable prop-
erties. We are using the textural component of Epitomes
(see [3]) as our codebook. First and foremost, Epitomes are
compact. An NxN Epitome contains N2 kxk codebook
patches. Second, a method for reliable, hierarchical estima-
tion of Epitomes has been made available by the original
authors of this work. This procedure estimates Epitomes at
increasing scales resulting in Epitomes with more local reg-
ularity and redundancy. Finally, Epitomes are analogous to
images, which enables the analysis and visualization used in
the paper to convey further understanding of this technique.
We have chosen Epitomes for these reasons, although any
discrete representation of image patches could be used.

Figure 3 shows four images and example Epitomes de-
rived from them. The Epitomes are a relatively compact
representations of the images from which they are derived.
In these four cases, the Epitomes are 6% to 25% of the orig-
inal image size. The Epitomes are estimated by taking every
kxk patch from the image, finding the maximum likelihood
match location, and using them to re-estimate the Epitome.
This process can be done iteratively even at different scales
until Epitome’s like those seen in Figure 3 are obtained.

The Epitome serves as an appearance codebook in the
following sense. Each kxk patch in the Epitome represents
one of N2 elements of the codebook, ȧi. Every patch in
the image ai has a single maximum likelihood match in the
Epitome to which it corresponds ȧi. We use our estimate
of pR(ȧi, ȧj) as a surrogate of pR(ai, aj). The Epitomes
are an effective representation of the textural information
but not the spatial information from the corresponding im-
ages. Although multiple image patches necessarily map to
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(a) (b)

Figure 3: This figure shows images (a) and corresponding
Epitomes (b) for a synthetic texture image, an image of a
stained tissue cross-section, an image of different types of
ears of corn, and a gray-scale image of a cheetah.

the same or overlapping Epitome codebook entries, Jojic
et al. have shown effective reconstruction using Epitome
patches.

In most cases, similar colored or textured regions are
grouped near each other on the toroidal Epitome. Because
the Epitome is defined on a torus, many regions wrap from
top to bottom or from left to right. For this reason, one
may be tempted to use some function of the toroidal Eu-
clidean distance as a affinity measure for appearance. Un-
fortunately, there are often distant regions in the Epitome
that represent similar textures, and conversely, nearby re-
gions in the epitome often represent very different textures.

Fortunately, our representation has the capacity to repre-
sent such similarities. This estimation is independent of the
location of each patch in the Epitome, except that local de-
pendencies exist in that nearby patches share common pix-
els. In a codebook where this implicit embedding of patches
does not exist, this technique still applies.

As in the previous example, we can learn the estimate of
pR(ȧi, ȧj) using randomly sampled windows from the im-
age. Thus, pR(ȧi, ȧj) will have high probabilities for Epit-
ome patches that often occur near each other in the original
image and low probabilities for Epitome patches that rarely
occur near each other regardless of the location of ȧi and
ȧj in the Epitome. This implicitly defines a topology of the
Epitome codebook.

It is reasonable to store the O(N4) pairwise probability
estimate, but it is difficult to view that representation for an
Epitome. Thus, we have used the same method of estimat-
ing latent classes on the codebook as in our previous ex-
ample to probabilistically segment the Epitome codebook.
Each latent class contains a group of Epitome codebook el-
ements that tend to occur near each other within the image
set on which it was trained.

Figure 4 shows the Epitome of a synthetically generated
texture example segmented into eight latent classes (three
more than the actual number of regions) and the induced
segmentation of the original image without incorporating
any spatial information. Some of the Epitome classes are
well localized, like the first region labeled black. Some of
the Epitome classes are not local, like the last region la-
beled white. By looking at the pixels that are most likely
under these two classes in Figure 4(c), it is apparent that
these Epitome classes represent uniform textured regions in
the image. This illustrates the need for more than a simple
distance metric defined on the Epitome.

The second example shown in Figure 5 shows a stained
tissue cross section. The Epitome contains many repre-
sentative texture regions corresponding to different tissue
types. The six representative clusters correspond to differ-
ent tissues classes. As in the previous example, many of
the Epitome classes correspond to multiple regions of the
Epitome.
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(a)

(b)

(c)

(d)

Figure 4: This figure shows the Epitome and resulting seg-
mentation (a), the likelihoods of each given latent class (b),
the image and induced segmentation without incorporating
spatial information (c), and the likelihoods of each latent
class in the original image.

(a)

(b)

(c)

(d)

Figure 5: This figure shows the Epitome and resulting seg-
mentation (a), the likelihoods of each given latent class (b),
the image and induced segmentation without incorporating
spatial information (c), and the likelihoods of each latent
class in the original image.

(a)

(b)

(c)

(d)

Figure 6: This figure shows the Epitome and resulting seg-
mentation (a), the likelihoods of each given latent class (b),
the image and induced segmentation without incorporating
spatial information (c), and the likelihoods of each latent
class in the original image.

Figure 6 shows an real image of different types of corn.
The Epitome contains blurry patches of random sections of
corn. In this example, there are patches that correspond to
different types of corn. The resulting segmentation into six
Epitome classes shows promise for segmenting the different
ears of corn based on their texture.

The goal of this representation is to effectively estimate
pR(ai, aj). Segmenting the Epitome itself illustrates that
this representation can be useful in segmenting similar tex-
tured regions even without exploiting any spatial informa-
tion. To segment images using the full description of a patch
zi, we must employ the definition of pR(zi, zj) in Equation
9, which includes the spatial component.

One can employ the same spatial prior in the image space
that was used to induce our same source likelihood measure
or learn an estimate of pR(xi, xj) given a segmented image
set. Segmenting images without including the spatial com-
ponent of pR(zi, zj) results in a segmentation without any
sense of locality. Thus, two similarly textured regions will
be segmented together regardless of how far apart they are
in the image. This is generally undesirable because differ-
ent objects that appear the same will be segmented together
regardless of their relative location, and unconnected pixels
can be segmented as part of larger objects. We are currently
investigating the effect of different spatial priors on image
segmentation.
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5. Future Work

The technique introduced in this paper is applicable to tasks
other than image segmentation. The SSLM defined in this
paper can be applied in any domain where sets of measure-
ments from the same source are available or where they
can be reasonably sampled and represented given a discrete
codebook. For image segmentation, this work shows signif-
icant promise on a wide variety of different types of images
using multiple codebook representations.

Further investigation into the performance of this mea-
sure (or functions of this measure) using different segmenta-
tion algorithms will be the subject of future work. While the
interpretation of the heuristics of many spectral clustering
algorithms is intuitive, exactly what function of pR(zi, zj)
should be maximized to optimize performance for image
segmentation requires further investigation. We also intend
to investigate the effect of learning the codebook, estimat-
ing pR(żi, żj), and performing the segmentation on differ-
ent sets of similar images.

The general non-parametric technique introduced here
could even be used to learn a discriminant distance measure,
d(zi, zj). By estimating the d(zi, zj) function that maxi-
mize the heuristic of the segmentation algorithm, one may
be able to achieve better segmentation than is possible from
effective estimates of pR(zi, zj).

It may also be possible to find more effective measures
of pR(zi, zj) by using functional approximations or higher-
order models for certain input spaces. The latent class mod-
els can also provide a useful estimate of the context of a
particular patch. For instance, using an over-complete set
of latent contexts the spatial component of pR(zi, zj) could
be conditioned on that context allowing for a different spa-
tial similarity prior (pR(xi, xj)) for each type of texture.

6. Summary and Conclusions

This paper defines a probabilistic measure of pairwise affin-
ity called the Same Source Likelihood Measure (SSLM). It
is the first probabilistic pairwise similarity measure for im-
age segmentation that is learned directly from data. This
measure is well-defined and has an intuitive interpretation
when used with common segmentation algorithms. Though
the SSLM is difficult to estimate for large or continuous ob-
servation spaces, we introduced a non-parametric estima-
tion technique that effectively approximates the SSLM.

This non-parametric representation was used for colors
and textures of two different types of images using two dif-
ferent types of codebooks. A technique to estimate latent
classes on the codebook was used to illustrate which code-
book entries are likely to fall within the same region. This
analysis provides insight into the codebook topology that is
implicitly defined by this measure.

The segmentation of the appearance space was shown to
be very effective in representing textured regions that are
learned from a particular image. This method is made more
interesting by the fact that the codebook generation, affin-
ity measure estimation, and segmentation can be decoupled
and estimated from different sources. While significant fu-
ture investigation is required, this work shows the promise
of this measure for a wide variety of situations. We look
forward to the further applications enabled by this work.
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