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Abstract The extreme variability in the structural
conformation of the human brain poses significant chal-
lenges for the creation of population-based atlases. The
ability to statistically and visually compare and contrast
brain image data from multiple individuals is essential to
understanding normal variability within a particular pop-
ulation as well as differentiating normal from diseased
populations. This paper introduces the application of
probabilistic atlases that describe specific subpopula-
tions, measures their variability and characterizes the
structural differences between them. Utilizing data from
structural MRI, we have built atlases with defined coor-
dinate systems creating a framework for mapping data
from functional, histological and other studies of the
same population. This paper describes the basic ap-
proach and a brief description of the underlying mathe-
matical constructs that enable the calculation of probabi-
listic atlases and examples of their results from several
different normal and diseased populations.

Keywords Brain imaging - Probabilistic brain atlases -
Normal and disease-specific brain variability

Introduction

An atlas of the brain allows us to define its spatial char-
acteristics. Where is a given structure; what is its shape
and how do we refer to it? How similar or different
is this brain compared to normals? An atlas alows us
to answer these and related questions quantitatively and
visualy.
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Comprehensive maps of brain structure have been de-
rived, at avariety of spatial scales, from 3D tomographic
images (Damasio 1995), anatomic specimens (Talairach
and Szikla 1967; Talairach and Tournoux 1988; Ono
et al. 1990; Duvernoy 1991) and a variety of histologic
preparations that reveal regional cytoarchitecture
(Brodmann 1909), myelination patterns (Smith 1907),
protein densities and mRNA distributions. Most early
atlases of the human brain, and other species (Paxinos
and Watson 1986), were derived from one, or at best a
few, individual post mortem specimens (Brodmann
1909; Schaltenbrand and Bailey 1959; Schaltenbrand
and Wahren 1977; Talairach and Szikla 1967; Matsui
and Hirano 1978; Talairach and Tournoux 1988; Ono
et a. 1990). Such atlases take the form of anatomical
references or represent a particular feature of the brain
(Van Buren and Maccubin 1962; Van Buren and Borke
1972), such as a specific neurochemical distribution
(Mansour et al. 1995) or the cellular architecture of the
cerebral cortex (Brodmann 1909). Other brain atlases
map function, quantified by positron emission tomogra-
phy (PET; Minoshima et a. 1994), functiona MRI
(Le Bihan 1996) or electrophysiology (Avoli et al. 1991;
Palovcik et al. 1992). Maps also have been developed to
represent neuronal connectivity and circuitry (Van Essen
and Maunsell 1983) based on compilations of empirical
evidence (Brodmann 1909; Berger 1929; Penfield and
Boldrey 1937).

Beyond the anatomic atlases based on post mortem
and histologic material mentioned above, the application
of magnetic resonance to acquire detailed descriptions of
anatomy in vivo is a driving force in brain mapping re-
search. MRI data have the advantage of intrinsic three-
axis registration and spatial coordinates (Damasio 1995),
but have relatively low resolution and lack anatomic
contrast in important subregions. Even high-resolution
MR atlases, with up to 100-150 slices, a section thick-
ness of 2 mm, and 2562 pixel imaging planes (Evans
et al. 1991; Lehmann et al. 1991) still result in resolu-
tions lower than the complexity of many neuroanatomic
structures. However, advances in the technology contin-
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ue to push improvements in spatial and contrast resolu-
tion. A recent innovation in the collection of atlas quality
MRI involves the averaging of multiple co-registered
scans (N=27) from a single subject to overcome the lack
of contrast and relatively poor signal to noise (Holmes
et al. 1998).

Unfortunately each of the brain maps contained in
these atlases (post mortem and in vivo) has a different
spatial scale and resolution, emphasizes different struc-
tural or functional characteristics, and is inherently in-
compatible with the others. Each mapping strategy clear-
ly has its place within a collective effort to map the
brain, but unless certain integrative approaches are im-
plemented (including spatial normalization), these brain
maps will remain as individual and independent efforts,
and the correlative potential of the many diverse map-
ping approaches will be underexploited.

A crucial element for integrating multiple brain mapsis
the construction of averages, templates and models to de-
scribe how the brain and its component parts are orga
nized. Design of appropriate reference systems for brain
data presents considerable challenges, since these systems
must capture how brain structure and function vary in large
populations, across age and gender, in different disease
states, across imaging modalities, and even across species.

Population-based brain atlases (the focus of this
paper) offer a powerful framework to synthesize the re-
sults of disparate imaging studies. These atlases use
novel analytical tools to fuse data across subjects,
modalities, and time. They detect group-specific features
not apparent in individual scans. Population based atlas-
es can be stratified into subpopulations to reflect a par-
ticular (clinical) subgroup (Toga and Mazziotta, 1996).

Imaging algorithms are aso significantly improving
the flexibility of digital brain atlases. Deformable brain
atlases are adaptable in that they can be individualized to
reflect the anatomy of new subjects, and probabilistic
atlases retain information on cross-subject variations in
brain structure and function. These atlases are powerful
new tools with broad clinical and research applications
(Roland and Zilles 1994; Kikinis et al. 1996; Toga and
Thompson 1998). Despite the significant challenges in
expanding the atlas concept to the time dimension, dy-
namic brain atlases are beginning to include probabilistic
information on growth rates that may assist research into
pediatric disorders (Thompson and Toga 1999).

Anatomic variations severely hamper the integration
and comparison of data across subjects and groups
(Méeltzer and Frost 1994; Woods 1996). Motivated by
the need to standardize data across subjects, analytic
methods were developed to remove size and shape
differences that distinguish one brain from another
(Talairach and Tournoux 1988). Spatially transforming
individual brain maps onto a 3D digital brain atlas, re-
moves subject-specific shape variations, and allows sub-
sequent comparison of brain structure or function be-
tween individuals (Christensen et al. 1993; Ashburner
et al. 1997). Conversely, deformable brain atlases are
based on the idea that a digital brain atlas can be elasti-

cally deformed to fit a new subject’'s anatomy (Evans
et al. 1991; Gee et al. 1993; Christensen et al. 1993;
Sandor and Leahy 1995; Rizzo et al. 1995; Toga and
Thompson 1997; Haller et al. 1997). High-dimensional
brain warping algorithms (Christensen et al. 1993; 1996;
Collins et al. 1994a; Thirion 1995; Rabbitt et al. 1995;
Warfield et al. 1995; Davatzikos 1996; Thompson and
Toga 1996; Bro-Nielsen and Gramkow 1996; Gee and
Bajscy 1998; Grenander and Miller 1998) effect the
transfer of 3D maps of structure, function and other de-
scriptions such as information on cytoarchitecture, histo-
logic and neurochemical content (Mega et al. 1997) onto
the scan of any subject.

The coordinate system used to equate brain topology
with an index must include carefully selected features
common to al brains. Further, these features must be
readily identifiable and sufficiently distributed anatomi-
cally to avoid bias. Once defined, rigorous systems for
matching, or spatially normalizing a brain to this coordi-
nate system must be utilized. This allows individual data
to be transformed to match the space occupied by the
atlas. In the Talairach stereotaxic system (Talairach and
Szikla 1967; Talairach and Tournoux 1988), piecewise
affine transformations are applied to 12 rectangular re-
gions of brain, defined by vectors from the anterior and
posterior commissures to the extrema of the cortex.
These transformations re-position the anterior commis-
sure of the subject’s scan at the origin of the 3D coordi-
nate space, vertically align the interhemispheric plane,
and horizontally orient the line connecting the two com-
missures. Each point in the incoming brain image, after
it is registered into the atlas space, is labeled by an (X,
y, z) address indexed to the atlas brain. Although origi-
nally developed to help interpret brain stem and ventric-
ular studies acquired using pneumoencephal ography
(Talairach and Szikla 1967), the Talairach stereotaxic
system rapidly became an international standard for re-
porting functional activation sitesin PET studies, allow-
ing researchers to compare and contrast results from
different laboratories (Fox et al. 1985, 1988; Friston
et a. 1989, 1991).

Perhaps surprisingly, few atlases of neuropathology
use a standardized 3-dimensional coordinate system to in-
tegrate data across patients, techniques, and acquisitions.
Atlases with awell-defined coordinate space (Evans et al.
1992; Friston et al. 1995; Drury and van Essen 1997), to-
gether with algorithms to align data with them (Toga
1998), have enabled the pooling of brain mapping data
from multiple subjects and sources, including large pa-
tient populations. Automated algorithms can then capital-
ize on atlas descriptions of anatomical variance to guide
image segmentation (Le Goualher et al. 1999; Pitiot et a.
1999), tissue classification (Zijdenbos and Dawant 1994),
functional image analysis (Dinov et al. 1999), and pathol-
ogy detection (Thompson et a. 1997, 2000).

This paper not only discusses the construction and ap-
plication of normal population-based atlases but includes
descriptions of the concept of disease-specific atlases,
designed to reflect the unique anatomy and physiology



of a particular clinical subpopulation (Thompson et al.
1997, 1998, 2000c; Mega et a. 1997, 1998, 1999; Narr
et a. 1999; 2000). Based on well-characterized patient
groups, these atlases contain composite maps and visual-
izations of structural variability, asymmetry and group-
specific differences. This quantitative framework can be
used to recognize anomalies and label structures in new
patients. Because they retain information on group ana-
tomical variability, disease-specific atlases are a type of
probabilistic atlas specialized to represent a particular
clinical group. The resulting atlases can identify patterns
of altered structure or function, and can guide algorithms
for knowledge-based image analysis (Collins et al.
1994b; Pitiot et a. 1999; Dinov et al. 1999).

Modeling strategies currently used to represent brain
data have been motivated by the need to extract and ana-
lyze the complex shape of anatomical structures, for
high-resolution visualization and quantitative compari-
sons. Standard 3D modeling approaches can be used to
examine often-studied structures such as the ventricles,
and can provide a framework for mapping variation
within and between different populations. An underlying
3D coordinate system is central to al atlas systems,
since it supports the linkage of structure models and
associated image data with spatially-indexed neuroana-
tomic labels, preserving spatial information and adding
anatomical knowledge.

We present data from several on-going projects, whose
god is to create disease-specific atlases of the brain in
Alzheimer’s disease, schizophrenia, and several neurode-
velopmental disorders. Pathological change can be
tracked over time, and disease-specific features resolved.
Rather than simply fusing information from multiple sub-
jects and sources, we describe strategies used to resolve
group-specific features not apparent in individual scans.

Methods

To create atlases that contain detailed representations of anatomy,
rather than utilizing intensity criteria to define structures, we have
developed model-driven algorithms that deform them to match the
anatomy of new subjects (Thompson et al. 2000c, 1996, 1997,
2000a; Toga and Thompson 1997). Anatomic models provide an
explicit geometry for individua structures in each scan, such as
landmark points, curves or surfaces. Because the digital models
reside in the same stereotaxic space as the atlas data, surface and
volume models stored as lists of vector coordinates are amenable
to digital transformation, as well as geometric and statistical mea-
surement (Thompson et a. 1996a, 1998, 2000b; Mega et al. 1998;
Zhou et al. 1999; Narr et al. 2000). The underlying 3D coordinate
system is central to all atlas systems, since it supports the linkage
of structure models and associated image data with spatially-in-
dexed neuroanatomic labels, preserving spatial information and
adding anatomical knowledge (Fig. 1).

When deforming an atlas to match a patient’s anatomy, mesh-
based models of anatomic systems help guide the mapping of one
brain to another. Anatomically driven algorithms guarantee bio-
logical as well as computational validity, generating meaningful
object-to-object correspondences, especialy at the cortex. In this
model-based approach (Thompson and Toga 1996, 1997, 1998),
systems of surfaces are first extracted from each dataset, to guide
the volumetric mapping. The model surfaces include many func-
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tional, cytoarchitectonic and lobar boundaries in three dimensions.
Both the surfaces and the landmark curves within them are recon-
figured to match their counterpartsin the target datasets exactly.

Anatomical models

Since much of the functional territory of the human cortex is bur-
ied in sulci, a generic structure is built to model them (Thompson
and Toga 1996). The underlying data structure is a connected
system of surface meshes, in which the individua meshes are
parametric. These surfaces are 3D sheets that divide and join at
curved junctions to form a connected network of models. With the
help of these meshes, each patient’s anatomy is modeled in suffi-
cient detail to be sensitive to subtle differences in disease. Sepa-
rate surfaces model the deep internal trgjectories of features such
as the parieto-occipital sulcus, the anterior and posterior calcarine
sulcus, the Sylvian fissure, and the cingulate, marginal and supra-
callosal sulci in both hemispheres. Additional gyral boundaries are
represented by parameterized curves lying in the cortical surface.
The ventricular system is modeled as a closed system of 14 con-
nected surface elements whose junctions reflect cytoarchitectonic
boundaries of the adjacent tissue (Thompson and Toga 1998). In-
formation on the meshes' spatial relations, including their surface
topology (closed or open), anatomical names, mutual connections,
directions of parameterization, and common 3D junctions and
boundaries is stored in a hierarchical graph structure. This ensures
the continuity of displacement vector fields defined at mesh junc-
tions.

Surface parameterization

After imposing an identical regular grid structure on anatomic sur-
faces from different subjects, the explicit geometry can be exploit-
ed to drive and constrain correspondence maps that associate ana-
tomic points in different subjects. Structures that can be extracted
automatically in parametric form include the external cortical sur-
face, ventricular surfaces, and several deep sulcal surfaces. Recent
success of sulcal extraction approaches based on deformable sur-
faces (Vaillant and Davatzikos 1999) led us to combine a 3D skel-
etonization algorithm with deformable curve and surface govern-
ing equations to automatically produce parameterized models of
cingulate, parieto-occipital, and calcarine sulci, without manual
initialization (Zhou et al. 1999). Additional, manually-segmented
surfaces can also be given a uniform rectilinear parameterization
using algorithms described in (Thompson et al. 1996a,b), and used
to drive the warping algorithm. Each resultant surface mesh is
analogous in form to a uniform rectangular grid, drawn on a rub-
ber sheet, which is subsequently stretched to match all data points.
Association of points on each surface with the same mesh coordi-
nate produces a dense correspondence vector field between sur-
face points in different subjects; Fig. 1. This procedure is carried
out under stringent conditions to ensure that landmark curves and
points known to the anatomist appear in corresponding locations
in each parametric grid.

Maps of the cortical parameter space

Detailed models of cortical anatomy are also created by driving a
tiled, spherical mesh into the configuration of each subject’s cor-
tex (Thompson and Toga 1996; MacDonald 1998). Because these
cortical models are obtained by deforming a spherical mesh, any
point on the cortical surface must map to exactly one point on the
sphere and vice versa. Each cortical surface is parameterized with
an invertible mapping, so sulcal curves and landmarks in the
folded brain surface can be reidentified in the spherical map
(cf. Sereno et al. 1996, Fischl et al. 1999, for a similar approach).
To retain relevant 3D information, cortical surface point position
vectors in 3D stereotaxic space are color-coded, so that a unique
color isplaced at each position on the spherical map indicating the
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Fig. la—f Anatomical mesh construction and averaging. The deri-
vation of a standard surface representation for each structure
makes it easier to compare anatomical models from multiple sub-
jects. An agorithm converts a set of digitized points on an ana-
tomical structure boundary (e.g., deep sulci (a)) into a parametric
grid of uniformly spaced points in a regular rectangular mesh
stretched over the surface (b); Thompson et al. 1996). By averag-
ing nodes with the same grid coordinates across subjects (c), an
average surface is produced for the group. However, information
on each subject’s individual differencesis retained as a vector-val-
ued displacement map (d, €). This map indicates how that subject
deviates locally from the average anatomy. The root mean sgquare
magnitude (e) of these deviations provides a variability measure
whose values can be visualized using a color code (f). These maps
can be stored to measure variability in different anatomic systems,
including ventricular and deep sulcal (Thompson et al. 1998) sur-
faces. A more complex method measures cross-subject variations
in gyra patterns, with a surface matching procedure that better re-
flects anatomical variations at the cortex. These maps can be
stored to measure variability (f) and detect abnormalities in differ-
ent anatomic systems. (Adapted from Thompson et al. 2000b)

3D position of the cortical point that maps to it. In other words,
the colors represent 3D locations, and the entire set of colors
forms an image on the sphere in a color image format. To find
good matches between cortical regions in different subjects, we
first derive a spherical map for each respective cortical surface
model and then perform a matching process in the spherical para-
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metric space. A flow field is calculated on the sphere that brings
corresponding gyral and sulcal regions into the same spherical 1o-
cations across subjects (Davatzikos 1996; Drury et al. 1996; Van
Essen et al. 1997; Fischl et al. 1999). This warp can be set up in a
variety of ways. Spherical harmonic functions are an orthonormal
basis on the sphere, which means that any smooth flow on the
sphere can be represented with arbitrarily high accuracy using a
linear combination of these functions, so long as a sufficient num-
ber of functions is used. The resulting flow field can align struc-
tural or functional information across subjects, bringing curve and
surface interfaces into exact register in the process (Thompson and
Toga 1996). Alternatively, an approach based on covariant partial
differential equations can be used for matching cortical surfaces
(Thompson et al. 2000€). This precisely matches cortical landmarks
across subjects, and creates maps that are independent of the sur-
face metrics. The approach ensures that the way cortical structures
are matched in 3D isindependent of the way the surfaces are com-
putationally represented (irrespective of their tile density and
parameterizations).

Tensor maps of directional variation

Structures do not vary to the same degree in every coordinate di-
rection (Thompson et al. 1996), and even these directional biases
vary by cortical system. The principal directions of anatomic vari-
ability in a group can be shown in atensor map (Thompson et al.
2000a,b). The maps have two uses. First, they make it easier to
detect anomalies, which may be small in magnitude but in an un-
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Fig. 2a, b Matching an individual’s cortex to the average cortex.
3D variability patterns across the cortex are measured by driving
individual cortical patterns into local correspondence with the av-
erage cortical model. a Shows how the anatomy of one subject
(brown surface mesh) deviates from an average cortical model
(white), after affine alignment of the individual data. b shows the
deformation vector field required to reconfigure the gyral pattern
of the subject into the exact configuration of the average cortex.
The transformation is shown as a flow field that takes the individ-
ua’s anatomy onto the right hemisphere of the average cortex
(shown as a blue surface mesh). The largest amount of deforma-
tion is required in the temporal and parietal cortex (pink colors,
large deformation). Details of the 3D vector deformation field
((b), inset) show the local complexity of the mapping. Storage of
these mappings allows quantification of local anatomic variability.
(Adapted from Thompson et al. 2000b)

usual direction. Second, they significantly increase the informa-
tion content of Bayesian priors used for automated structure ex-
traction and identification (Gee et al. 1993; Mangin et al. 1994;
Royackkers et al. 1996; Pitiot et al. 1999).

Results

Using a variety of populations with imaging data collect-
ed in the same fashion, we have created a series of proba-
bilistic atlases that retain information on anatomic and
functional variability (Mazziotta et al. 1995; Thompson
et al. 1997). Descriptions of several of these follow. As
the subject database increases in size and content, the dig-
ital form of these atlases allows efficient statistical com-
parisons of individuals or groups. In addition, the popula-
tion that an atlas represents can be stratified into subpop-
ulations to represent specific disease types, and subse-
quently by age, gender, handedness, or genetic factors.

Pathology detection
Normal anatomic complexity makes it difficult to design

automated strategies that detect abnormal brain structure.
At the same time, brain structure is so variable that

group-specific patterns of anatomy and function are of-
ten obscured. Reports of structural differences in the
brain linked to gender, 1Q, and handedness are a topic of
intense controversy, and it is even less clear how these
factors affect disease-specific abnormalities (Thompson
and Toga 1999). The importance of these linkages has
propelled computational anatomy to the forefront of
brain imaging investigations. To distinguish abnormali-
ties from normal variants, arealistically complex mathe-
matical framework is required to encode information
on anatomic variability in homogeneous populations
(Grenander and Miller 1998). We employed elastic regis-
tration or warping algorithms to achieve distinct advan-
tages for encoding patterns of anatomic variation and
detecting pathology. Cortical patterns are atered in
schizophrenia (Narr et al. 2000), Alzheimer’s Disease
(Thompson et al. 1998, 2000c) and a wide variety of de-
velopmental disorders. By using specialized strategies
for group averaging of anatomy, specific features of
anatomy emerge which are not observed in individual
representations due to their considerable variability.
Group-specific patterns of cortical organization or asym-
metry can then be mapped out and visualized (Thompson
and Toga 1999; Narr et al. 1999).

Deformable probabilistic atlases

Warping algorithms create deformation maps (Fig. 2) that
indicate 3D patterns of anatomic differences between
any pair of subjects. By defining probability distributions
on the space of deformation transformations that drive
the anatomy of different subjects into correspondence
(Thompson and Toga 1997), dtatistical parameters of
these distributions can be estimated from databased ana
tomic data to determine the magnitude and directional bi-
ases of anatomic variation. Encoding of local variation
can then be used to assess the severity of structural vari-
ants outside of the normal range, which, in brain data,
may be asign of disease (Thompson et al. 1997).
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Fig. 3 Pathology detection in Alzheimer’s disease. A color-coded
probability map (left), shown on a 3D graphical surface model of
an Alzheimer’s patient’'s cortex, provides probability statements
about the deviation of cortical regions from the norm. The inher-
ent variability in normal cortical anatomy is encoded in the form
of a surface-based probability field, known as an anisotropic lat-

tice process, or a random vector field. The resulting map exhibits
regions of severely depressed probability values (P<0.00001), par-
ticularly ininferior frontal cortex. A probability map is aso shown
(right) for a normal control subject. The system is refined as the
underlying database of subjects increases in size and content.
(Adapted from Thompson et a. 1997)

Fig. 4 Tensor maps revea directional biases in normal cortical
variability yielding probabilistic confidence limits on normal ana-
tomic variation (n=20). Tensor maps can be used to visualize com-
plex patterns of gyral pattern variation at the cortex. The maps are
based on the group of 20 elderly normal subjects. Color distin-
guishes regions of high variability (pink colors) from areas of low
variability (blue). Ellipsoidal glyphs indicate the principal direc-
tions of variation —they are most elongated along directions where
there is greatest anatomic variation across subjects. Each glyph
represents the covariance tensor of the vector fields that map indi-
vidual subjects onto their group average anatomic representation.

Variability is greatest in temporo-parietal cortex. Since cortical
variations are modeled as vector field displacements of an average
cortical model, ellipsoids of constant probability density can be
computed for specific gyral and sulcal regions (relative to an aver-
age cortex). These probability fields are obtained by singular
value decomposition, or Cholesky factorization, of the local cova-
riance tensor (Thompson et al. 1996a). Confidence ellipsoids are
shown, colored by the determinant of the covariance tensor, which
measures the magnitude of anatomic variability at each location.
(Adapted from Thompson et al. 2000c)
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Fig. 5 Population-based maps of cortical pattern asymmetry. Av-
eraging of cortical patterns across subjects (N=20, normal sub-
jects) reveals fundamental features in the profile of asymmetry
across the normal human cortex. Asymmetry is measured by glob-
ally mapping all brains into a standard 3D space with the average
size and shape for the group. Curves representing elements of the
gyral pattern are averaged together across subjects, and these aver-
aged models can be reflected in the interhemispheric plane for
comparison with their homologues in the opposite brain hemi-
sphere. The asymmetry shown locally is the amount of deforma-
tion required, in mm, to match points on one curve with corre-
sponding points on the reflected contralateral curve. Highest
asymmetry is found at the posterior limits of the Sylvian fissures,
which overly language cortices that are structurally and function-
aly different in each brain hemisphere. The marked shape asym-
metries in the gyral patterns of the temporo-parietal cortices and
the postcentral sulci are clearly apparent, and their average magni-
tude can be charted in a population. Based on the average models
for each cortical sulcus, asymmetry can be quantified localy, in
3D, revealing general trends not apparent in the cortical anatomy
of an individual. (Adapted from Thompson et al. 2000b)

Encoding brain variation

To see if disease-specific features could be detected in
individual patients, we developed a random vector field
approach to construct a population-based brain atlas
(Thompson and Toga 1997). Briefly, given a3D MR im-
age of a new subject, a warping algorithm calculates a
set of high-dimensional volumetric maps, elastically
matching this image with other scans from an anatomic
image database. Target scans are selected from subjects
matched for age, handedness, gender, and other demo-
graphic factors (Thompson et al. 1997, 1998). The re-
sulting family of volumetric warps provides empirical
information on local variability patterns. A probability
space of random transformations, based on the theory of
anisotropic Gaussian random fields (Thompson et al.
1997), with statistical flattening corrections (Worsley

10

~ 8

e

0
Average
| 3D
Asymmetry
(N=20)

et al. 1999; Thompson et al. 2000b) is then used to en-
code the variations. For the cortex, specialized approaches
are needed to represent variations in gyral patterns
(Thompson et a. 1997; Thompson and Toga 1998). Con-
fidence limits in stereotaxic space are determined, for
points in the new subject’s brain, enabling the creation of
probability maps to highlight and quantify regional pat-
terns of deformity (Fig. 3).

Fig. 4 shows a tensor map of variability for normal
subjects, after mapping 20 elderly subjects’ data into
Talairach space (al right handed, 10 males, 10 females).
Ellipsoidal glyphs indicate the principal directions of
variation — they are most elongated along directions
where anatomic variation is greatest across subjects.
Each glyph represents the covariance tensor of the vector
fields that map individual subjects onto their group aver-
age. Because gyral patterns constrain the mappings, the
fields reflect variations in cortical organization at a more
local level than can be achieved by only matching global
cortical geometry. Note the elongated glyphs in anterior
temporal cortex, and the very low variability (in any di-
rection) in entorhinal and inferior frontal areas. By better
defining the parameters of allowable normal variations,
the resulting information can be leveraged to distinguish
normal from abnormal anatomical variants.

Brain asymmetry

A feature observable from the average anatomical mod-
elsis that consistent patterns of brain asymmetry can be
mapped, despite wide variations in asymmetry in indi-
vidual subjects (Fig. 5). In dementia, the increased corti-
cal asymmetry probably reflects asymmetric progression
of the disease. Fig. 6 shows average maps of the lateral
ventricles, again from Alzheimer’s disease and matched
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Fig. 6 Population-based maps of average ventricular anatomy in
normal aging and Alzheimer’s disease. In patients and controls, 3D
parametric surface meshes (Thompson et a. 1996a) were used to
model 14 ventricular elements, and meshes representing each sur-
face element were averaged by hemisphere in each group. An aver-
age model for Alzheimer’s patients (red; AD) is superimposed on
an average model for matched normal controls (blue; NC). Mesh
averaging reveals enlarged occipital horns in the Alzheimer's
patients, and high stereotaxic variability in both groups. Extreme
variability at the occipital horn tips also contrasts sharply with the
stability of septal and temporal ventricular regions. A top view of
these averaged surface meshes reveals localized asymmetry, vari-
ability, and displacement within and between groups. These subcor-
tical asymmetries emerge only after averaging of anatomical maps
in large groups of subjects. (Adapted from Thompson et a. 2000c)

elderly normal populations. As expected, the ventricles
are significantly enlarged in dementia. Notice, however,
that a pronounced asymmetry is observed in both groups
(left volume larger than right, P< 0.05). Thisis an exam-
ple of an effect that becomes clear after group averaging
of anatomy, and is not universally apparent in individual
subjects. It is, however, consistent with prior volumetric
measurements (Shenton et al. 1992; Aso et al. 1995).
Anatomical averaging can also be cross-validated with
a traditional volumetric approach. Occipital horns
were on average 17.1% larger on the left in the normal
group (4070.1£479.9 mms3) than on the right (3475.3t
334.0 mm3; P< 0.05), but no significant asymmetry was
found for the superior horns (left: 8658.0+976.7 mms3;
right: 8086.4+1068.2 mm3; P>0.19) or for the inferior
horns (left: 620.6:£102.6 mm3; right: 573.7+85.2 mm3;
P>0.37). The asymmetry is clearly localized in the 3D
group average anatomic representations. In particular,
the occipital horn extends (on average) 5.1 mm more
posteriorly on the left than the right. The capacity to re-
solve asymmetries in a group atlas can assist in studies
of disease-specific cortical organization (Thompson
et al. 1997, 2000a,b; Mega et al. 1998; Zoumalan et al.
1999; Narr et al. 1998, 1999, 2000).

To see if cortical asymmetries were lost in schizo-
phrenia, we made average cortical representations for

schizophrenic patients (n=25; 15 males, 10 females; all
right-handed) and matched controls (n=28; 15 males,
13 females). As described in the Methods section, thirty-
six major sulcal curves were used to drive each subject’s
gyral pattern into a group mean configuration (Fig. 7).
The magnitude of anatomic variation in each brain re-
gion was also computed from the deformation vector
fields, and shown in color as a variability map. Perhaps
surprisingly, asymmetry was not attenuated in the patient
group. Marked asymmetries were observed in the sagittal
projections of average anatomy for each group. Signifi-
cant asymmetries were confirmed by calculating curva-
ture and extent measures from the parametric mesh mod-
els (Narr et al. 1999). In frontal cortex, the patients also
displayed greater variability than controls.

Corpus callosum differences

We dso attempted to identify regionally selective
patterns of callosal change in patient groups with Alz-
heimer’s disease and schizophrenia (Thompson et al.
1998; Narr et al. 1999). The mid-sagittal callosum
was first partitioned into 5 sectors (Duara et al. 1991;
Larsen et al. 1992). This roughly segregates callosal
fibers from distinct cortical regions. In AD, focal fiber
loss was expected at the callosal isthmus (sector 2)
whose fibers selectively innervate the temporo-parieta
regions with early neurona loss and perfusion deficits
(Brun and Englund 1981). Consistent with this hypothe-
sis, asignificant areareduction at the isthmus was found,
reflecting a dramatic 24.5% decrease from 98.0+
8.6 mm2 in controls to 74.0+5.3 mm?2 in AD (P< 0.025).
Terminal sectors (1 and 5) were not significantly atro-
phied, and the central midbody sector showed only
a trend toward significance (16.6% mean area loss;
P< 0.1), due to substantial inter-group overlap. Average
boundary representations, however, localized these find-
ings directly (cf. Fig. 8).



Fig. 7 Profiles of anatomical
variability across the cortex in
schizophrenia. In schizophre-
nig, thereisaregion of greater
anatomical variability in frontal
cortex, which is found in both
male and female patients (S2)
but not in normal controls
(NC). In diseases such as
schizophrenia (Narr et al. 2000)
and Alzheimer’s disease
(Thompson et al. 1998), ana-
tomical variability may bein-
creased, and normal variations
may be compounded by addi-
tional pathologic change. (Data
from Narr et a. 2000)
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Fig. 8 1-4 Average corpus callosum shapes in schizophrenia. Mid-
sagittal corpus callosum boundaries were averaged from 25 patients
with chronic schizophrenia (DSM-I11-R criteria; 15 males, 10 fe-
males; age: 31.1 +/— 5.6 yrs.) and from 28 control subjects matched
for age (30.5 +/— 8.7 yrs.), gender (15 males, 13 females) and hand-
edness (1 left-handed subject per group). Profiles of anatomic vari-
ability around the group averages are also shown (in color) as an
r.m.s. deviation from the mean. Anatomical averaging reveals a pro-
nounced and significant bowing effect in the schizophrenic patients
relative to normal controls. Male patients show a significant in-
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creasse in curvature for superior and inferior callosal boundaries
(P< 0.001), with a highly significant sex by diagnosis interaction
(P< 0.004). The sample was stratified by sex and diagnosis and sep-
arate group averages show that the disease induces less bowing in
females (1) than in males (2). While gender differences are not ap-
parent in controls (3), a clear gender difference is seen in the schizo-
phrenic patients (4). Abnormalities localized in a disease-specific
atlas can therefore be analyzed to reveal interactions between dis-
ease and demographic parameters. (Datafrom Narr et a. 2000)
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Population Anatomic Averages

Partitioned

Probability
Clouds

Affine Intensity
Atlas

ICBM-305

Fig. 9a—c Average brain templates. a In a widely-used average
brain image template (ICBM305) based on voxel-wise intensity
averaging of 305 young normal subjects’ scans (Evans et al.
1994), anatomical features are not well-resolved at the cortex.
Cortical variability is represented using probability clouds (top
left) that describe the frequency of incidence for each gyrus at
each stereotaxic voxel, after linear registration and voxel-by-voxel
comparison. In an affine brain template (b), similarly constructed
from Alzheimer’s disease patients' scans, the cortical average is
also poorly resolved. By contrast, anatomical features are highly
resolved, even at the cortex, in the Continuum-mechanical brain
template (c), which applies a continuum-mechanical transforma-
tion to each brain before intensity averaging. Scans are elastically
reconfigured into a group mean configuration, using surface-based
warping to match 84 surface models (including gyral pattern ele-
ments) across all subjects. Reconfigured scans are then averaged
voxel-by-voxel, after intensity normalization, to produce a group
image template with the average geometry and average image in-
tensity for the group. Vector field transformations of extremely
high spatial dimension are required to resolve cortical features, in
their mean configuration, after scans are averaged together (c).
(Adapted from Thompson et al. 2000e)

Gender in schizophrenia

Different shape alterations were observed in schizophre-
nia (Narr et al. 1999). A significant bowing effect was
observed, reflecting enlargement of the underlying 3rd
ventricle. By creating separate average models for male
and female patients, significant gender effects also
emerged. The greater bowing effect in male than female
patients was confirmed by multivariate analysis of vari-
ance, and is highlighted in the average anatomic tem-
plates. As emphasized by this example, even if no sex
difference is present in normal callosal morphology (see

-

."I{ i\’/-;‘ - 4

Continuum-Mechanical
Atlas

Thompson et al. 2000d, for areview of this controversy),
this does not preclude sex effects from interacting with
morphometric abnormalities in diseased populations. In
schizophrenia, there is typically a later age of onset in
female schizophrenics, and hereditary factors may be
unevenly distributed between the sexes (De Lisi et al.
1989; Waddington, 1993; Colombo et al. 1993). Stratifi-
cation of probabilistic atlases by gender and other genet-
ic factors provides a computationally fast way to visual-
ize these effects and relate them to epidemiologic data
(Mazziotta et al. 1995; Mega et al. 1998; Zoumalan et al.
1999; Blanton et al. 1999; Le Goualher et al. 1999).

Comparing a subject with an atlas

In one validation experiment (Thompson et a. 1997),
probability maps were created to highlight abnormal de-
viations in the callosal and midline anatomy of a tumor
patient. The two regions of metastatic tissue induced
marked distortions in the normal architecture of the
brain. After storing variations in deep surface anatomy
as a spatially-adaptive covariance tensor field, probabili-
ty maps were generated for the tumor patient. In the tu-
mor patient, the herniation effects apparent in the block-
face imagery were detected in the probability maps of
structures near the lesion sites.

In one experiment mappings that deform one cortex in-
to gyra correspondence with another were used to create
an average cortex for patients with mild to moderate
Alzheimer's disease (AD). Thirty-six gyra curves for
9 AD patients were transferred to the cortical parameter



space uniformly re-parameterized, and a set of 36 average
gyral curves for the group was created by vector
averaging of point locations on each curve. Each individu-
al cortical pattern was then aligned with the average curve
set using a spherical flow field. These 9 flow fields were
then used to create an average cortex in 3D space, as fol-
lows. By carrying a code (that indexes 3D locations) along
with the flow that aligns each individual with the average
folding pattern, information can then be recovered a a
particular location in the average folding pattern, specify-
ing the 3D cortical points that map to it in each subject.
By ruling aregular grid over the warped coded map, and
reading off 3D position values for each subject, cortical
positions in any subject’s original 3D anatomy can be re-
covered. This produces a new coordinate grid on a given
subject’s cortex, in which particular grid-points appear in
the same location relative to the primary gyra pattern
across all subjects (see Fischl et a. 1999, for asimilar ap-
proach). By averaging these 3D positions across subjects,
an average 3D cortical model was constructed for the
group (Fig. 9). The resulting mapping is guaranteed to
average together al points faling on the same cortical
locations across the set of brains, and ensures that corre-
sponding cortical features are averaged together.

Discussion

The mathematical strategies employed in the construc-
tion of these atlases were needed to encode comprehen-
sive information on structural variability in human popu-
lations. Particularly relevant is 3-dimensional statistical
information on group-specific patterns of variation, and
how these patterns are altered in disease. This informa-
tion can be exploited by expert diagnostic systems,
whose goal is to detect subtle or diffuse structural altera-
tionsin disease.

Pathology detection in image databases

Pattern recognition algorithms for automated identifica-
tion of brain structures can aso benefit greatly from
encoded information on anatomic variability. We recent-
ly developed a Bayesian approach to identify the corpus
callosum in each image in an MRI database (Pitiot et al.
1999). The shape of a deformable curve is progressively
tuned to optimize a mathematical criterion measuring
how likely it is that it has found the corpus calosum.
The measure includes terms that reward contours based
on their agreement with a diffused edge map, their geo-
metric regularity, and their statistical abnormality when
compared with a distribution of normal shapes. By aver-
aging contours derived from an image database, structur-
al abnormalities associated with Alzheimer’'s Disease
and schizophrenia were identified (Thompson et al.
1998; Narr et a. 1999). Automated parameterization of
structures will accelerate the identification and analysis
of disease-specific structural patterns.
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Disease progression

The atlases so far described, for the dementia and
schizophrenia populations, have been based on homoge-
neous patient groups, matched for age, gender, handed-
ness, and educational level. Since AD, in particular, is
a progressive disease, the initial atlas was created to re-
flect a particular stage in the disease (MMSE score:
19.3+2.0). At this stage, patients often present for initial
evaluation, and MR, PET and SPECT scans have maxi-
mal diagnostic value. Nonetheless, by expanding the un-
derlying patient database, atlases are under construction
to represent the more advanced stages of Alzheimer’s
disease. By stratifying the population according to differ-
ent criteria, different atlases can be synthesized to re-
present other clinically defined groups.

4D Coordinate systems

Atlasing of data from the developing or degenerating
brain presents unique challenges (Toga and Thompson
1998). However, warping agorithms can be applied to
serial scan data to track disease and growth processes in
their full spatial and temporal complexity. Maps of ana-
tomical change can be generated by warping scans ac-
quired from the same subject over time (Thirion and
Calmon 1997; Thompson et a. 2000a). Seria scanning
of human subjects (Fox et al. 1996; Freeborough et al.
1996; Subsol et al. 1997; Thompson et al. 1998) or ex-
perimental animals (Jacobs and Fraser 1994) in a dynam-
ic state of disease or development offers the potential to
create 4D models of brain structure. These models incor-
porate dynamic descriptors of how the brain changes
during maturation or disease. They are therefore of inter-
est for investigating and staging brain development. In
an atlas setting, these 4-dimensional maps can act as nor-
mative data to define aberrant growth rates and their
modulation by therapy (Haney et a. 20004, b, c).

In our initial human studies (Thompson et al. 1998,
2000a), we developed several algorithms to create 4D
guantitative maps of growth patterns in the developing
human brain. Time-series of high-resolution pediatric
MRI scans were analyzed. The resulting tensor maps of
growth provided spatially-detailed information on local
growth patterns, quantifying rates of tissue maturation,
atrophy, shearing and dilation in the dynamically chang-
ing brain architecture. Pairs of scans were selected to de-
termine patterns of structural change across the inter-
scan interval. Deformation processes recovered by a
high-dimensional warping algorithm were then analyzed
using vector field operators to produce a variety of ten-
sor maps. These maps were designed to reflect the mag-
nitude and principal directions of dilation or contraction,
the rate of strain, and the local curl, divergence and gra-
dient of flow fields representing the growth processes re-
covered by the transformation.

The growth maps obtained in these studies exhibit
several striking characteristics. First, foci of rapid
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Fig. 10 Patterns of deep nucle-
ar tissue loss. In the 4-year pe-
riod from 7 to 11 years of age,
ayoung normal male subject
exhibits alocal 50% tissue loss
at the caudate head, aswell asa
20-30% growth of the internal
capsule and a 5-10% dilation
of the superior ventricular horn
(Thompson et a. 2000a).
Graphical visualizations of
growth rates indicate the re-
gional complexity of the
growth processes between the
two scans. (Adapted from
Thompson et al. 2000a)

growth at the callosal isthmus appeared consistently
across puberty. These rates appeared to attenuate as sub-
jects progressed into adolescence (Thompson et al.
2000d). Rapid rates of tissue loss were also revealed at
the head of the caudate, in an earlier phase of develop-
ment (Fig. 10).

In the near future, 4D atlases will be able to map
growth and degeneration in their full spatial and tempo-
ral complexity. Despite the logistic and technical chal-
lenges, these mapping approaches hold tremendous
promise in analyzing the dynamics of degenerative or
neoplastic diseases (Haney et al. 2000a,b,c). They will
ultimately play a role in detecting how different thera-
peutic approaches modul ate the course of disease.

Multi-modality atlases

Combining data derived from multiple subjects with data
from multiple modalities enable can result in compre-
hensive representations of structure/function relation-
ships and help elucidate subtle results difficult to appre-
ciate in isolation. In the construction of anatomic atlases,
the in vivo resolution available from MR is incapable of
characterizing the cytoarchitectural detail available from
post mortem material. Because of the superior anatomic
resolution, several digital atlases have been created using
cryosection imaging. This technique alows the seria
collection of photographic images from a cryoplaned
specimen blockface (Bohm et a. 1983; Greitz et al.
1991; Toga et al. 1994). Using 10242, 24-bits/pixel digi-
tal color cameras, cryosection imaging offers a spatial
resolution as high as 100 microns/voxel for whole
human head cadaver preparations, or higher for isolated
brain regions (Toga et a. 1997). In the Visible Human
Project (Spitzer et a. 1996), two (male and female)
cadavers were cryoplaned and imaged at 1.0 mm inter-
vals (0.33 mm for the female data), and the entire bodies
were also reconstructed via 5,000 post mortem CT and
MRI images. The resulting digital datasets consist of
over 15 gigabytes of image data. While not an atlas per

Local
Tissue Growth
+50 9%
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+0 %
-10%
-20%
-30%
-40 %%
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Local
Tissue Loss

se, the Misible Human data has served as the foundation
for developing related atlases of regions of the cerebral
cortex (Drury and Van Essen 1997), and high-quality
brain models and visualizations (Schiemann et a. 1996;
Stewart et a. 1996). Using multi-modality data from a
patient with alocalized pathology, and more recently the
\Visible Human data, H6hne and co-workers developed a
commercialy available brain atlas designed for teaching
neuroanatomy (VOXEL-MAN; Hohne et al. 1990, 1992;
Tiede et al. 1993; Pommert et al. 1994).

Using 10242, 24-bits/pixel digital color cameras, spa-
tial resolution can be as high as 50 microns/voxel for
whole human head cadaver preparations, or higher for
isolated brain regions (Toga et al. 1994). Cryosectioning
in micron increments permits data collection with high
spatial resolution in the axis orthogonal to the sectioning
plane.

Integration of metabolic and functional images ac-
quired in vivo with post mortem biochemical maps pro-
vides a unique view of the relationship between brain
function and pathology. Mega et a. (1997) scanned
Alzheimer’s patients in the terminal stages of their dis-
ease using both MRI and PET. Using elastic registration
techniques (Thompson et a. 1996d), these data were
combined with post mortem histologic images showing
the gross anatomy (Toga et al. 1994), a Gallyas stain of
neurofibrillary tangles, and a variety of spatially indexed
biochemical assays. The resulting multimodality maps of
the Alzheimer’s disease brain relate the anatomic and
histopathologic underpinnings of the disease in a stan-
dardized coordinate space. These data are further corre-
lated with in vivo metabolic and perfusion maps of this
disease. The resulting maps are key components of a
growing disease-specific atlas (Mega et al. 2000).

Conclusion

The uses of brain atlases are as varied as their construc-
tion. They provide the ability to measure, visualize, com-
pare and summarize brain images. They encompass de-



scriptions of structure or function of the whole brain to
maps of groups or populations. Individual systems of the
brain can be mapped as can changes over time, as in de-
velopment or degeneration. An atlas enables comparison
across individuals, modalities or states. But in most
cases, the value added by brain atlases is the unique and
critical ability to integrate information from multiple
sources. The utility of an atlas is dependent upon appro-
priate coordinate systems, registration and deformation
methods along with useful visualization strategies. The
probabilistic systems described here show promise for
encoding patterns of anatomic variation in large image
databases, for pathology detection in individuals and
groups, and for determining effects in space and time on
brain structure of age, gender, handedness and other
demographic or genetic factors.
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