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ABSTRACT

This paper surveys the significance of recent work on
emulative neural networks (ENNs) by researchers across many
disciplines in the light of issues of indeterminacy.  Financial
and economic forecasters have witnessed the recent development
of a number of new forecasting models.  Traditionally, popular
forecasting techniques include regression analysis, time-series
analysis, moving averages and smoothing methods, and numerous
judgmental methods.  However, all of these have the same
drawback insofar as they require assumptions about the form of
population distribution.  Regression models, for example, assume
that the underlying population is normally distributed.

ENNs are members of a family of statistical techniques, as
are flexible nonlinear regression models, discriminant models,
data reduction models, and nonlinear dynamic systems.  They are
trainable analytic tools that attempt to mimic information
processing patterns in the brain.  Because they do not
necessarily require assumptions about population distribution,
economists, mathematicians and statisticians are increasingly
using ENNs for data analysis.
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1. INTRODUCTION

This paper surveys the significance of recent work on

emulative neural networks (ENNs) by researchers across many

disciplines in the light of issues of indeterminacy.  Financial

and economic forecasters have witnessed the recent development

of a number of new forecasting models.  Traditionally, popular

forecasting techniques include regression analysis, time-series

analysis, moving averages and smoothing methods, and numerous

judgmental methods.  However, all of these have the same

drawback insofar as they require assumptions about the form of

population distribution.  Regression models, for example, assume

that the underlying population is normally distributed.

ENNs are members of a family of statistical techniques, as

are flexible nonlinear regression models, discriminant models,

data reduction models, and nonlinear dynamic systems (Sarle,

1994; Cheng and Tetterington, 1994).  They are trainable

analytic tools that attempt to mimic information processing

patterns in the brain (Krishnaswamy, Gilbert, Pashley, 2000).

 Because they do not necessarily require assumptions about

population distribution, economists, mathematicians and

statisticians are increasingly using ENNs for data analysis. 

Not only do they not require assumptions about the underlying

population but are also powerful forecasting tools that draw on
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the most recent developments in artificial intelligence

research.

As Hardin (2002) observes in his essay, “Indeterminacy and

Basic Rationality,” statistical methods, such as neural

networks, were developed partly as the product of the ordinal

revolution in economics and choice theory.  As he points out,

because our choices have social and interactive contexts, it

would be extremely difficult to construct a theoretical model

that is capable of tracing out all of these potential and actual

responses and interactions.  Such models are bound to exhibit

fundamental indeterminacy.  These interdeterminacies are the

inevitable product of strategic interactions among rational

individuals who understand that their actions, or inactions, are

going to be followed by reactions - those of the other

participants in the strategic game and those of the environment.

 In such circumstances, one may find that responses are not

similar, let alone unique.

This is especially true when we add the time dimension to

the discussion.  A player may react in ways very different to

what was presupposed in response to an unexpected reaction by

one’s opponent.  Such models are inherently dependent upon, and

sensitive to, initial conditions, which may not permit accurate

predictions even for very near-future states (Brown and Chua,
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1998; Smith, 1998; Stone, 1989; Bau and Shachmurove, 2002).  As

Domotor and Batitsky (2002) point out, a creeping amplification

of error will eventually wipe out all predictive accuracy.  Even

the solar system, reported to be the oldest paradigm of a

regular, predictable dynamical system, is unpredictable on the

time scale of millions of years.

Supposing such a complex model could be constructed, once

the model is subject to empirical testing, the problem of

aggregation arises.  Although ENNs perform well in the presence

of missing data, large data sets are required to train them

(Gilbert, Krishnaswamy, and Pashley, 2000).  This in turn leads

to Arrow’s impossibility theorem because of the central

difficulty with focusing on individual preferences due to the

aggregation of those preferences into a general choice rule,

where it may be impossible to determine an optimal allocation of

resources in the face of disagreement.

For example, in the case of an election, Arrow's theorem

starts with a finite set of outcomes (candidates for office), a

finite set of voters and their individual preferences over

outcomes.  The individual preferences are an unrestricted

domain, satisfying the Pareto principle, and they are

independent of irrelevant alternatives (independence from other

influences).  Thus, Arrow’s Impossibility Theorem states that it



6

is not possible to derive a complete and consistent social

choice rule exclusively from individual preferences, except in

dictatorships, which are characterized by an inability to

determine the intensity of preference (Arrow, 1963; see also

Hardin, 2000).

ENNs assume that we do not know that we are incapable of

conceiving, designing, or constructing such a complicated

interactive model of human behavior.  The remaining option is to

try to learn from past observations, to deduce the main patterns

of future events by tracing painstakingly similar interactions

found in historical data.  Rather than seeking, or imposing,

some determinate principle, or even attributing uniqueness to

the solutions generated for the complex makings of an

indeterminate world, we let historical data conveniently guide

us through the indeterminable maze being confronted (see

Krippendorff, 2002).

In such cases, one proceeds under the assumption that it

should be more helpful to imitate the past rather than

estimating the proximity of the initial conditions to their

putative later effects.  This is because in economics and

finance, as in any human behavior, initial conditions or past

observations depend on future values owing to expectations;

hence, the price of a house today does not depend solely on its
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price yesterday or ten years ago but also on the expectations of

future demand for, and supply of, such assets in general and

this house in particular.

ENNs are capable of processing data and performing

calculations that humans are not adept at performing mentally.

 Their answers, therefore, must be accepted on faith, yet ENNs

themselves are at the mercy of the sample data and the quality

of their features (Weiss and Kulikowski, 1991; Hinton, 1992;

Ripley, 1993; Sarle, 1994).  And they process data and make

forecasts much in the same way as statistical algorithms perform

estimations.

In applications specific to the financial and economic

fields, the main focus for ENN technology so far has been with

data involving variables in non-linear relations.  Granger

(1991) maintains that in financial and economic data, non-linear

relationships are more likely to occur than linear

relationships. This claim is supported by tests such as the

regression test and the neural network test, which confirms this

non-linearity through the rejection of linearity and chaos where

justifiable.

Consequently, new tests based on ENN systems have increased

in popularity among economists.  Researchers have examined the

application of ENNs to financial markets, where the non-linear
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properties of financial data create too many difficulties for

traditional methods of analysis (see Omerod, Taylor, and Walker,

1991; Grudnitski and Osburn 1993; Altman, Marco, and Varetto

1994; Michie, Spiegelhalter and Taylor, 1994; Kaastra and Boyd

1995; and Swanson and White, 1995).

The remainder of my paper is organized as follows.  Section

2 explains the background and principles behind emulative neural

networks in general.  Section 3 more specifically looks into the

multilayer perceptron model.  Section 4 discusses some of the

advantages and disadvantages to using ENNs.  Section 5 presents

some of the recent applications of ENNs to business, economics,

and finance.  Section 6 concludes.

2. BACKGROUND AND PRINCIPLES

A. BACKGROUND

ENNs are information processing systems whose structure and

function are modeled after the cognitive processes and

organizational structure of neuro-biological systems.  They are

a class of models developed by cognitive scientists interested

in understanding the biological nervous system and simulating

the computational methods of the brain.

ENNs are generally used as models for intelligence,

learning, and data analysis.  For data analysis, ENNs are used

in numerous fields of inquiry, ranging from airport noise and
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property values (Collins and Evans, 1994) to student grade point

average movements (Gorr, Nagin, and Szczypula, 1994) and

agricultural crop yields (Joerding, Li, and Young, 1994; Wang,

1994).

ENNs have been applied in modeling market response

(Dasgupta, Dispensa, and Ghose, 1994), collective behavior

(Artyushkin, 1990), telecommunication flows (Fisher and Gopal,

1994), real estate valuation (Worzala, Lenk, and Silva, 1995),

and even the determinants of military expenditure (Refenes,

Kollias, and Zapranis, 1995).  They are also used for analyzing

relations among economic and financial phenomena, forecasting,

data filtration, generating time-series, and optimization

(Hawley, Johnson, and Raina, 1990; Refenes, 1995; Gately, 1996;

White, 1988; White 1996).

The most basic components of ENNs are highly interconnected

processing elements, called neurons, which work independently in

parallel (Hush and Horn, 1993; Luger and Stubblefield, 1993;

Corsten and May, 1996; Jain and Mao, 1996).  It is anticipated

that self-organization of the neural interconnections will

result in an artificial intelligence akin to human learning.

However, the intelligence and value of ENNs are still

highly debated (see Chatfield, 1993; Refenes, 1994; Levine,

2000).  On the one hand, neural networks are capable of
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processing vast amounts of data and making extremely accurate

forecasts, but on the other hand, many authors argue that

despite their accurate forecasting capacities, neural networks

are not intelligent in the human sense, too incapable of

insightful imagination (Weiss and Kulikowski, 1991; Hinton,

1992; Ripley, 1993; Sarle, 1994; Abdi and Edelman, 1999).

Furthermore, a difference in terminology raises a barrier

to communication between economists and ENNs practitioners. 

What economists and statisticians call independent variables are

called inputs in the neural network literature; dependent

variables are known as training values; estimated values are

called outputs; residuals are the same as errors; estimation is

interchangeably represented by training, learning, adaptation,

and self-organization; the neural network counterpart to an

estimation criterion is called either an error, cost, or

Lyapunov function; training patterns or training pairs are

observations in the statistical literature; transformations are

known as functional links; interpolation and extrapolation are

called generalization (Hinton, 1992; White, 1992; Sarle, 1994;

Bishop, 1995; Devroye, Gyorfi and Lugosi, 1996; Ripley, 1996).

 In the neural network literature, training sets are commonly

used in a manner that corresponds to the sample in statistics.
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B. PRINCIPLES

The neuron is a basic functional element of the brain (see

Paper by Gur et al. 2002).  An individual neuron consists of a

cell body, dendrites, and an axon.  Every individual neuron

receives electrical stimuli from other neurons through the

dendrites, which is then amplified or de-amplified by the

synapse and summated.  If the sum of all stimuli is greater than

the neuron’s resistance threshold, provided by the cell body,

then the neuron fires, producing a stimulus that passes through

the axon to another neuron (Gleitman, 1991).

These synaptic connections are used to carry messages from

one neuron to another.  The strength of these connections

varies.  Neurons store information and learn meaningful patterns

by strengthening their inter-connections.  The synaptic process,

modeled mathematically, serves as the theoretical basis for

artificial neural networks.

This section demonstrates the basic structure and

behavior of artificial neurons.  These neurons, on their own,

are very simple structures and are generally more useful when

connected together as part of a larger network.

A set of inputs xi, a set of weights wi, a threshold, u, an

activation function, f, and a signal neuron output, y, where i

is the degree (number of inputs) of the neuron.  The weights
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represent the amplification or de-amplification of the process.

Typically, the values of the inputs, xi, are external and

are stimuli from the environment.  Alternatively, they may be

generated from the outputs of other artificial neurons.  They

can be discrete values from a set, such as {0,1}, or real-

valued numbers.

The weights, wi are real-valued numbers that determine the

contribution of each input to the neuron's weighted sum and

eventually its output.  The goal of neural network training

algorithms is to determine the best possible set of weight

values for the problem under consideration.  Finding the

optimal set is often a trade-off between computation time and

minimizing the network error.

The threshold, u, is a real number that is subtracted

from the weighted sum of the input values.  Sometimes the

threshold is referred to as a bias value.  In this case, the

real number is added to the weighted sum.  For simplicity, the

threshold can be regarded as another input / weight pair,

where w0 = u and x0 = -1.

The activation function, f, can be very simple; for

example, there is the unit step function (see below). 

However, the artificial neuron model has been expanded to

include other functions such as the sigmoid, piecewise linear,
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and Gaussian functions.  The activation functions that are

often considered are shown below.

A possible representation of the Unit Step equation is:

f(x) = {0 if x <0

{1 if x = 0

The Sigmoid equation is:

f(x) = 1/ (1 + e-ßx)

Sigmoid

The piecewise equation is:

f(x) = {0 if x < xmin

{mx + b if xmax > x < xmin

Unit
Step
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{1 if x = xmax

The Gaussian equation is:

f(x) = [1/(2?s)0.5] e[-(x-µ)(x- µ)/2ss]

Gaussian

The artificial neuron output, y, computes its output

according to the equation shown below.  This is the output of

the activation function for the current weighted sum, less the

threshold.  This value can be discrete or real depending on the

activation function used.  Once the output has been calculated,

it can be passed to another neuron (or group of neurons) or

sampled by the external environment.  The interpretation of the

neuron output depends upon the problem under consideration.  For

example, in pattern classification, an output of 1 would imply

the input belongs to a certain class.

y = f(w1 x1 + w2 x2 + w3 x3 + … wn xn + u)

Piecewise
Linear 
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y = f(w0 x0 + w1 x1 + w2 x2 + … wn xn)

Now, because usually learning is involved, one may want to

include a learning formula for weight updating

Wnewi = woldi + k,

where k is a function involving a learning constant and errors

at various (input, output and hidden) layers of the network (see

more below).  The output of the neuron, which depends on the

neuron’s threshold, is a non-linear transformation of the

weighted sum of its total input, usually the asymmetric sigmoid

or the hard limiter (Kollias and Refenes, 1996).

Perceptron Learning Process

This section presents a simple form of supervised learning

entitled the perceptron-learning algorithm.  Using this

procedure, one can train the perceptron to act as a binary logic

unit. We start with the simplest example of a Single-Layer

Perceptron Neural Networks.  A single-layer perceptron network

consists of one or more artificial neurons in parallel.  Each

neuron in the single layer provides one network output and is

usually connected to all of the external (or environmental)

inputs.  Figure 1 is an example of a single-neuron, single-layer

perceptron network.

The perceptron-learning algorithm can be described as
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follows:

1. Initialize the weights and threshold to small random

numbers.

2. Present a vector to the neuron inputs and calculate the

output.

3. Update the weights according to:

wj(t+1) = wj(t) + ?(d-y)xj

where d is the desired output, t is the iteration number,

and eta is the gain or step size, where 0.0 < ? < 1.0

4. Repeat steps 2 and 3 until the iteration error is less

than a user-specified error threshold or a predetermined

number of iterations have been completed

Notice that learning only occurs when an error is made;

otherwise, the weights are left unchanged.  During training, it

is often useful to measure the performance of the network as it

attempts to find the optimal weight set.  A common error measure

or cost function used is sum-squared error.  It is computed over

the entire input vector / output vector pairs in the training

set and is given by the equation below:

E = (1/2) ¦¦y(1) – d(1) ¦¦2 + ¦¦y(2) – d(2) ¦¦2  +

+ ¦¦y(p) – d(p) ¦¦2
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where p is the number of input/output vector pairs in the

training set.

The power of neural computing comes from the threshold

concept.  It provides a way to transform complex

interrelationships into simple yes-no situations.  When the

combination of several factors begins to become overly complex,

the neuron model posits an intermediate yes-no node to retain

simplicity.

ENNs consist of interconnected layers that contain

neuron-like units called processing elements.  These processing

elements allow an algorithm to “learn” and eventually recognize

meaningful patterns in the data.  As a given algorithm learns by

synthesizing more training records, the weights between its

interconnected processing elements strengthen and weaken

dynamically.

The computational structure of artificial neural networks

has attractive characteristics such as graceful degradation,

robust recall with noisy and fragmented data, parallel

distributed processing, generalization to patterns outside of

the training set, non-linear modeling, and learning (Tours,

Rabelo, and Velasco, 1993). They are unique in that they learn

meaningful patterns in data through inductive inference and

memorization.  Determinacy may play a key role here, employing
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the rational choice of picking more rather than less value when

given the weights of the preferences; thus, each of these

processes yield determinate outcomes up to the limit of the

device.

3. THE MULTILAYER PERCEPTRON MODEL

One of the most useful and successful applications of

neural networks to data analysis is the multilayer perceptron

model (MLP). Multilayer perceptron models are non-linear neural

network models that can be used to approximate almost any

function with a high degree of accuracy (White 1992).  An MLP

contains a hidden layer of neurons that uses non-linear

activation functions, such as a logistic function.  Figure 1

offers a representation of an MLP with one hidden layer and a

single input and output.  The MLP in figure 1 represents a

simple non-linear regression.

Figure 1: Multi-layer Perceptron with a Single Input and output

Hidden Layer

    Input Output     Target

YX

The number of inputs and outputs in the MLP, as well as the



19

number, can be manipulated to analyze different types of data.

 Figure 2 presents a multilayer perceptron with multiple inputs

and outputs. The MLP in figure 2 represents multivariate

multiple nonlinear regression.

Figure 2: Multi-layer Perceptron with Multiple Inputs and

outputs

Hidden Layer

    Input Output     Target

Y1X1

X2

X3

Y2

The complexity of the MLP can be adjusted by varying the

amount of hidden layers.  Different amounts of hidden layers can

transform an MLP from a simple parametric model to a flexible

non-parametric model (White, 1992; Kuan and White, 1994; Fine,

1999; Husmeier, 1999).  An MLP consisting of only one layer is

very close to the projection pursuit regression model, which
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allows computation of explicit formulae for bias and error about

the mean in orientation estimates and curve estimates.

However, the projection pursuit model uses a flexible non-

linear smoother whereas the MLP uses an already determined

activation function in the hidden layer.  The activation

function determines the activation or the internal state of a

neuron.  It is applied to the weighted inputs, and it results in

an output signal.  As the number of hidden layers is allowed to

increase, an MLP becomes a useful alternative to kernel

regression analysis, a nonparametric approach that makes no

assumptions regarding the functional form of the unknown

function (Green, 2000), and smoothing splines.  These spleens

are parametrically linear, and they are quick to fit a nonlinear

regression curve.

The Kernel method performs a local averaging of the

observations when estimating the regression function. 

Analogously, one can estimate derivatives of small order of the

regression function.  Crucial for the kernel regression

estimation is the choice of global or local bandwidths.  Too

small ones will lead to a wiggly curve while too large ones will

smooth away important details.
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Spline regressions are estimations methods that investigate

both shifts of slopes and intercepts by approximating the shifts

and changes in intercepts by separate linear function with dummy

variables.  The process is similar to estimating two or more

separate regressions at once without losing degree of freedom by

using linear restrictions on the estimated coefficients.  If the

variances differ across the different regression lines, however,

one ambiguity does arise in the estimation of the disturbance

variance.  With a nonlinear activation function, MLP is

genuinely nonlinear in the parameters and therefore takes more

computer time to fit than kernels or splines (White, 1992;

Eubank, 1994).

There are different uses for MLPs with more than one hidden

layer. In principal component analysis, a linear model for

dimensionality reduction in which inputs and targets are the

same variables, one hidden layer is insufficient for improving

upon principal components.  A non-linear generalization of

principal components can be obtained with the addition of two

hidden layers, where the second layer serves as a bottleneck and

the first and third layers provide the second non-linearity

(Sarle, 1994).

Cascading a group of single layer neurons forms multilayer-

perceptron models. In a three-layer network, for example, there
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is an input layer, an output layer, and a hidden layer wherever

intermediate nonlinear transforms occur.  The complexity of the

model can be varied according to how many layers are

incorporated. The nodes of different layers are densely

interconnected through direct links.  At the input layers, the

nodes receive the values of input variables and multiply them

through the network, layer by layer.

The middle layer nodes are often characterized as feature-

detectors.  The number of hidden layers and the number of nodes

in each hidden layer can be selected arbitrarily, but too many

nodes in the middle layer produce a neural network that merely

memorizes the input data and lacks the ability to generalize.

 Most commonly, the hidden layer includes at least 75% of the

number of input nodes.  The initial weights of the connections

can be chosen randomly.  In thousands of iterations, the neural

net's weights shift subtly, allowing it to learn (memorize) the

patterns and recall them in the future (Baets, 1994).

The random choosing of the initial conditions generates a

state of indeterminacy in terms of possible patterns or

outcomes.  Specifically, from an observer’s perspective, the

process is not observationally determinable (Krippendorff,

2002).

The computed output is compared to the known output.  If
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the computed output is “correct” (identical), then nothing more

is necessary.  If the computed output is “incorrect”, then the

weights are adjusted to make the computed output closer to the

known output.  This process is continued for a large number of

cases, or time-series, until the net gives the correct output

for a given input.  The entire collection of cases learned is

called a "training sample" (Connor, Martin, and Atlas, 1994;

Anderson, 1995; Anderson and Rosenfeld, 1998; Kecman, 2001).

In most real world problems, the neural network is never

100% correct.  ENNs are programmed to learn up to a given

threshold of error.  After the neural network learns up to the

error threshold, the weight adaptation mechanism is turned off,

and the net is tested on known cases it has not seen before. 

The application of the neural network to unseen cases gives the

true error rate.  In a well-trained neural network, the error

threshold and the true error should be identical (Baets, 1994).

The outputs are never 100% correct.  Recall that the

networks themselves are not correct or incorrect; it is their

outputs that are such.  But networks can be analyzed for

component or structural redundancy.

Although well-trained neural networks have determinate

error rates, the outputs of each ENN follow the indeterminacy

theory.  The most likely solution is never 100% accurate; thus,
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the solutions are never exactly the same.  The primary cause of

this is the indeterminacy of weight adjustment during the

“training” process, which may differ each time for each ENN.

4. ADVANTAGES AND DISADVANTAGES TO USING ARTIFICIAL NEURAL

NETWORKS

Econometric models as well as ENNs can be used as

forecasting tools, but each tool requires a different method

using different procedures, each of which offers specific

advantages and disadvantages.

ENNs have many advantages over conventional methods of

analysis.  First, they have the ability to analyze complex

patterns quickly and with a high degree of accuracy.

Second, artificial neural networks make no assumptions about

the nature of the distribution of the data.  They are not,

therefore, biased in their analysis.  Instead of making

assumptions about the underlying population, ENNs with at least

one middle layer use the data to develop an internal

representation of the relationship between the variables. 

Consequently, better results can be expected with neural

networks when the relationship between the variables does not

fit an assumed model.

Third, since time-series data are dynamic in nature, it is

necessary to have non-linear tools in order to discern
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relationships among time-series (Maasoumi, Khotanzad, and Abaye,

1994).  ENNs are best at discovering these types of

relationships.

Fourth, neural networks perform well with missing or

incomplete data.  Whereas traditional regression analysis is not

adaptive, indiscriminately processing older data together with

new data, ENNs readjust their weights as new input data becomes

available (Kuo and Reitch, 1994, Pao, 1989; Gilbert,

Krishnaswamy, and Pashley, 2000).  Fifth, compared with an

econometric model, it is easier to use ENNs where a forecast

needs to be obtained in a shorter period of time.

Since economic, financial and social systems are complex

and subject to human reactions and counter-reactions by

different agents or players, it is difficult, if not impossible,

to write down a complete model with all the potential reactions

and counter-reactions determined.  Given such complexity, it is

close to impossible to try to approximate in any details a model

based on first principal of, for example, utility maximizations

or profit maximization.  In such complex systems, it is natural

to turn to models, which emulate and simulate the economy or the

society in question.  That is exactly what the neural network

methodology is capable of delivering.

Such models are difficult to understand and are
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impractical to handle if one tries to control all of the

possible variables and potential outcomes in the systems and

account for all their dynamic interactions.  This is exactly

the nature of these problems, which are facing the problem of

indeterminacy.

One treatment of indeterminacy involves probability and

statistics; the other is the fuzziness of input and output

variables and the fact that economic and finance data arrived in

different time intervals are always subject to major revisions.

 Using the neural vocabulary, the transfer function, described

in Section 2B, can often be multi-valued, and the weights and

other (e.g., learning) parameters can at best be only interval-

valued.  Traditional econometrics techniques are not able to

handle such models due to these indeterminacies.  ENNs suggest

an alternative not by solving or reducing the indeterminacy but

by being able nevertheless to forecast with some degree of

accuracy.

However, there are some drawbacks connected with the use of

ENNs.  For one, ENNs are not all-purpose problem solvers.  Thus

far, there is no structured methodology available for choosing,

developing, training, and verifying an ENN.  There is no

standardized paradigm for development.  The output quality of

ENNs may be unpredictable regardless of the design and
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implementation schedule.  Some researchers maintain that no

estimation or prediction errors are calculable when using ENNs

(Caporaletti, Dorsey, Johnson, and Powell, 1994) due to constant

“learning“ by the process.  Also, ENNs are “black boxes,” for it

is impossible to figure out how relations in their hidden layers

are estimated (Li, 1994, Gilbert, Krishnaswamy, and Pashley,

2000).

The difficulty in prediction from the lack of comprehension

of the system’s internal relations is a perfect example of

observational indeterminability.  The main factor in this

indeterminacy is that ENNs are autopoietic systems, producing

their own patterns from a set of inputs that will be needed to

operate the very network of production in the future

(Krippendorff, 2002).

One may claim that regression models are generally based on

first principles and law of motions, which has theoretical

foundations (typical in physics) whereas ENN modeling is based

on emulation or simulation.  The latter is much weaker from the

standpoint of identification of structure and explanatory power;

therefore, it is important to understand what network

methodology offers and fails to offer when, e.g. compared with

the traditional derivation of equations of motion for a given

dynamical system, based on fundamental laws.
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Another drawback is that neural networks have long training

times.  Excessive iterations are required to train neural

networks (Gilbert, Krishnaswamy, and Pashley, 2000).  Reducing

training time is crucial because building a neural network

forecasting system is a process of trial and error; hence, the

more experiments a researcher can run in a finite period of

time, the more confident he can be of the result.  The network

also tends to base its predictions of future events on

“memories” of similar situations from the past (Ruggiero 1994).

 In the case of financial markets, neural nets quantify the

influence of major financial variables and the impact that these

relationships have on the future price movement of the target

market (Gorr, 1994).

The nets learn from carefully crafted training data

containing such variables as interest rates, currency prices,

commodity prices, the slope of the yield curve, the movement in

major commodity prices, the movement in major financial

averages, internal market data, technical indicators, and so

forth.

Neural networks are data-dependent, so the algorithms are

only as good as the data shown to them (Meade, 1995).  In this

light, ENNs may be thought as weakly deterministic systems that

converge to a predictable eigen-behavior (see also Krippendorff,
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2002).

After the learning process, when given specific input data,

it may be possible to predict a general solution that would be

produced by an ENN.  Since the future is often drastically

different from the past in financial markets, the user needs to

test the predictions on out-of-sample ranges in order to ensure

the reliability of the network. The results are generally

indeterministic.  Kanas (2001) used out-of-sample data of

monthly returns forecasts for Dow Jones and the Financial Times

stock indices, using both a linear and neural network model. 

Neither model performed well in predicting directional changes

in the two indices, but they did help to support the conclusion

that the underlying relationship between stock prices is not

linear (Kanas 2001).

ENNs may become a bit overzealous and undertake to fit a

curve to some data even when there is no relationship.  They

tend to under- or over- fit data (Gilbert, Krishnaswamy, and

Pashley, 2000).  It is always possible to build a neural net or

a mathematical function that exactly fits all the historical

data such as a time series, but the predictive capability of

such a system is relatively nonexistent.  This over-fitting is

because the noise and anomalies in the data do not allow the net

to predict with any accuracy.  This is also the nature of
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indeterminacy in social systems we have discussed throughout

this paper.

An ENN’s rigor thus suffers from poor generalization

capability.  Enough repetitions will help to produce results

with extremely high R-squared values, but they will have no

relevance to reality. If a user relies on the results of an ENN

in the belief that an ENN has high predictive power, a series of

decisions will ensue that may prove disastrous.  The user should

always be aware that an ENN is not a strongly deterministic

system that contains explicit cause-and-effect relationships or

are based on first principals.  The severity of the consequences

should induce a prudent user to test one’s net on a number of

out-of-sample data sets in order to reaffirm the predictive

power of the system (Ruggiero, 1995).

However, work with hidden layer feed forward networks is

progressing towards limiting this problem (Corradi and White,

1995).  In feed forward networks, the weight flows from the

inputs in the forward direction, never cycling back to an input

node of an output node of a previous layer.  Although restricted

to one direction each, the choices of the weight flows are

interactive and often indeterminate within each individual

network.

Problems can be reduced by using already smoothed
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variables, which give the system less incentive to seek to fit

its own curve to the data.  It is also extremely important to

use only economically significant variables for inputs.  Every

user will have to define what one considers being the

economically significant variables.  Studies show that using a

few well-chosen variables will give significantly better results

than trying to use every economic indicator as a viable

predictor (Schwartz, 1995).  Developing a successful market-

timing neural network requires specialized expertise in the

market model.

Studies show that networks produce the best results when

used in conjunction with an expert.  The expert prompts the

neural network at key decision nodes, and he or she allows the

user to enter his opinion as to the weight, or importance, of a

specific variable.  By removing highly correlated signals that

have a fairly direct relationship between two inputs, the user

can assess more correctly the predictive power of the inputs

still present and thereby construct a better model.  With such

checked interaction, expert-guided networks command greater

predictive power.  These interactive choices present a form of

indeterminacy, which results from strategic interaction,

differing each time for each expert.

5. APPLICATIONS OF ENNs TO BUSINESS, ECONOMICS, AND FINANCE
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Emulative neural networks are used in a widening range of

applications, including airline security control, investment

management and risk control (Brockett, Cooper, Golden, and

Pitaktong, 1994), industrial management and production (Davies,

Thomas, and Shaw, 1994; Satake, Morikawa, and Nakamura, 1994;

Eberts and Habibi, 1995), as well as in forecasting stock price

indexes and derivative securities (Hutchinson, Poggio, and Lo,

1994; Li, 1994; Fish, Barnes, and Milam, 1995; Shachmurove and

Witkowska, 2001), and predicting exchange rates (Kuan and Liu,

1995) and thrift failures.

A typical civil engineering situation in which ENNs are

utilized is vehicle discharge headway at signalized

intersections. In this situation, variables include driver

behaviors, vehicle characteristics, and traffic environment.  A

three-layered ENN was created to predict this model. When the

model was trained and validated with field data, it was proven

to estimate fairly accurately headway for individual vehicles

better than any other headway model (Hung and Tong, 2002).

ENNs have found ardent supporters among various avant-garde

portfolio managers, investment banks, and trading firms.  Most

of the major investment banks, such as Goldman Sachs and Morgan

Stanley, have dedicated departments to the implementation of

neural networks.  Fidelity Investments has set up a mutual fund
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whose portfolio allocation is based solely on recommendations

produced by an artificial neural network.  The fact that major

companies in the financial industry are investing resources in

emulative neural networks indicates that artificial neural

networks may serve as an important method of financial

forecasting in the future.

ENN processing has many managerial applications.  The use

of ENNs for production planning and controls (PPC) has a

potential to grow significantly because more than one function

of a PPC system can be supported by an ENN.  Such functions

include forecasting in the framework of master production

scheduling and consumption-driven material requirement planning;

determination of lot sizes for production and procurement;

capacity adjustment; scheduling; and short-term intervention

into running processes (Corsten and May, 1996).

Yoon and Swales (1990) compare ENNs to discriminant

analysis. The technique of discriminant analysis is generally

used to build a procedure that not only consider the number of

correct and incorrect classifications of the data but also takes

into account the cost of each type of classification.  Yoon and

Swales (1990) show that the prediction of stock price

performance based on an ENN model is superior to prediction

based on a discriminant analysis.
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Surkan and Singleton (1990) find that ENNs models perform

better than discriminant analysis also in predicting future

assignments of ratings to bonds.  This may lead to an inaccurate

assumption of determinacy, where - given a set of initial

conditions - it may be presupposed that future prices of stocks

and bonds may be predicted.  However, the actual values (or ENN

outcomes) fluctuate unpredictably, indicating a noticeable

behavior of indeterminacy.

Trippi and DeSieno (1992) apply an ENN system to the

modeling of trades in Standard and Poor’s 500 index futures. 

They find that the dynamics of the ENN system helps to

outperform a passive approach to investment (a buy-and-hold

strategy) in the index; thus, they favor the implementation of

ENNs to the financial decision making process.

Donaldson, Kamstra, and Kim (1993) contribute to the study

of the capital asset pricing model as well as ENNs by examining

the fat tails and heteroskedasticity in stock return data. 

Using data from the stock indexes of London, New York, Tokyo,

and Toronto, they find that ENN models outperformed many

traditional models, including the autoregressive conditioned

heteroskedasticity (ARCH) model, in removing leptokurtosis and

symmetric and asymmetric heteroskedasticity from the stock index

data.  This superior capability allows the ENN model to be
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utilized (perhaps a little too confidently) as a deterministic

tool.

A balanced assessment of the potential of ENNs is offered

by Hill, Marquez, O’Connor, and Remus (1994).  They find

emulative neural networks to be comparable to traditional

statistical methods.  In regard to the forecasting potential of

artificial neural networks, they find that such networks perform

as well as classical statistical models for forecasting yearly

time-series, but that for monthly and quarterly time-series,

ENNs may actually outperform statistical models.  ENNs do not

necessarily outperform regression in modeling human decision-

making, except when non-linear elements are involved.  This is

not a case of explicit determinacy as it is more likely an

indication of a weakly deterministic system.

Kuo and Reitsch (1996) test the accuracy of forecasts

produced by both multiple regression and neural network models.

 They test their models on ten different out-of-sample data sets

and analyze the forecasting errors of each of the models.  The

results indicate that ENNs outperform conventional methods in

all cases.

6. CONCLUSION

The technology of ENNs has existed theoretically for

decades. However, the explosion in computational processing
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power in the last ten years has revived research using such

nets.  Developing even a simple ENN requires millions of

calculations.  The shift from expensive to affordable computer

processing power has fueled the growth in neural network

research (Perry, 1994).  ENNs are revolutionizing statistical

computing in many fields as they not only “learn” autonomously,

but they also are ideal for noticing non-linear relationships in

data (Rummelhart and McClellend, 1986; Wasserman, 1989; Maren,

Harston and Pap, 1990; Hoptroff, 1993).  A perfect example of an

autopoietic system, an ENN is the best available tool today for

analyzing and even forecasting indeterministic data.

ENN models are becoming highly desirable statistical tools

for statisticians and economists who, having internalize the

hallmark of rational expectations, now firmly believe that

people react to one another and to policy rules in strategic and

dynamic ways.  The construction of an explicitly detailed

dynamic model, however, is extremely difficult, for such a model

must be capable of tracing all of the potential and actual

responses and interactions.  Thus, models are bound to exhibit

indeterminacy in the sense that it may be impossible to develop

a unique solution for a given situation.

This fuzziness of input and output variables and of

possible multi-valued transfer function, where the weights and
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other (e.g., learning) parameters can at best be only interval-

valued, is at the basis of such indeterminacy.  A model’s

optimal performance will result in an approximation of a

solution or of a most likely outcome, which is the inevitable

product of strategic interactions among variables and/or

rational individuals.

The ability to deal with many processing elements makes

neural computing faster than conventional computing.  In

addition, parallelity makes it robust and fault-tolerant in the

sense that performance does not degrade significantly even if

one of the nodes fails.  Researchers are concluding that most

economic and financial problems are non-linear; that simple

cause-and-effect relationships rarely exist; that, instead, most

problems encountered are fuzzy patterns, which relate to

multiple variables.

Nonetheless, as many have argued (see, for example Sarle,

1994), statistics and ENNs are not competing methodologies for

data analysis.  Rather, the paths of statistics and ENNs often

cross.  There are many useful neural network models for

nonlinear data analysis, such as the MLP model, and there is

room for many more applications of statistics to neural

networks, especially in regard to estimation criteria,

optimization algorithms, confidence intervals, diagnostics, and
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graphical methods (Sarle, 1994).

As they do not require an exact specification of the

functional equations, emulative neural systems can be applied to

predict economic phenomena - especially unrecognized,

unstructured, and non-stationary processes.  Thus, ENNs are

highly suitable for analyzing economic systems.  ENNs have

proven themselves to be adequate also for searching out and

identifying non-linear relationships and for pinpointing those

variables that hold the highest predictive value.  After

extensive training, ENNs are able to eliminate substantial

amounts of ambiguity in economic forecasts, although never

completely overcoming indeterminacy.

The unique qualities and enormous potential of this

technology assure it a leading place in the search for a better

and more diversified forecasting technique and method of

analysis.  As computer power increases, processing time

decreases, and personal computers become more and more

available, the use of emulative neural networks will continue to

increase.  Specifically, they will be utilized as analytical

tools in an attempt to resolve residual questions of

indeterminacy that are likely to continue to befuddle humanity

for quite some time to come.
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