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ABSTRACT

This paper surveys the significance of recent work on
enmul ati ve neural networks (ENNs) by researchers across nmany
disciplines in the light of issues of indeterm nacy. Financial
and econoni c forecasters have witnessed the recent devel opment
of a nunmber of new forecasting nodels. Traditionally, popular
forecasting techni ques include regression analysis, tine-series
anal ysi s, noving averages and snoot hing nethods, and nunerous
j udgnment al net hods. However, all of these have the sane
drawback insofar as they require assunptions about the form of
popul ation distribution. Regression nodels, for exanple, assune
that the underlying population is normally distributed.

ENNs are nenbers of a famly of statistical techniques, as
are flexible nonlinear regression nodels, discrimnant nodels,
data reduction nodels, and nonlinear dynam c systens. They are
trainable analytic tools that attenpt to mmc information
processing patterns in the brain. Because they do not
necessarily require assunptions about popul ation distribution,
econom sts, mathematicians and statisticians are increasingly
using ENNs for data anal ysis.

JEL: C3, (C32, C45, C5, C63, F3, G15.

Keywords: Artificial Neural Networks, Dynamc Interrelations,
Forecasting.



1. | NTRODUCTI ON

This paper surveys the significance of recent work on
emul ati ve neural networks (ENNs) by researchers across many
disciplines in the light of issues of indeterm nacy. Financial
and econoni c forecasters have witnessed the recent devel opnment
of a nunber of new forecasting nodels. Traditionally, popular
forecasting techniques include regression analysis, tine-series
anal ysi s, noving averages and snoot hing nethods, and nunerous
j udgnment al net hods. However, all of these have the sane
drawback insofar as they require assunptions about the form of
popul ation distribution. Regression nodels, for exanple, assune
that the underlying population is normally distributed.

ENNs are nenmbers of a famly of statistical techniques, as
are flexible nonlinear regression nodels, discrimnant nodels,
data reduction nmodels, and nonlinear dynam c systens (Sarle,
1994; Cheng and Tetterington, 1994). They are trainable
analytic tools that attenpt to mmc information processing
patterns in the brain (Krishnaswany, G | bert, Pashley, 2000).

Because they do not necessarily require assunptions about
popul ati on di stribution, econom st s, mat hemat i ci ans and
statisticians are increasingly using ENNs for data anal ysis.
Not only do they not require assunptions about the underlying

popul ation but are also powerful forecasting tools that draw on
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the nost recent developnments in artificial intelligence
research.

As Hardin (2002) observes in his essay, “lndeterm nacy and
Basic Rationality,” statistical met hods, such as neura
net wor ks, were devel oped partly as the product of the ordinal
revolution in economcs and choice theory. As he points out,
because our choices have social and interactive contexts, it
woul d be extrenmely difficult to construct a theoretical nodel
that is capable of tracing out all of these potential and act ual
responses and interactions. Such nodels are bound to exhibit
fundament al i ndeterni nacy. These interdeterm nacies are the
i nevitable product of strategic interactions anong rational
i ndi vi dual s who understand that their actions, or inactions, are
going to be followed by reactions - those of the other
participants in the strategic ganme and those of the environnent.

In such circunstances, one may find that responses are not
simlar, |let alone unique.

This is especially true when we add the tine dinension to
the discussion. A player may react in ways very different to
what was presupposed in response to an unexpected reaction by
one’ s opponent. Such nodels are inherently dependent upon, and
sensitive to, initial conditions, which nmay not permt accurate

predi ctions even for very near-future states (Brown and Chua,
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1998; Smith, 1998; Stone, 1989; Bau and Shachmurove, 2002). As
Donot or and Batitsky (2002) point out, a creeping anplification
of error will eventually wi pe out all predictive accuracy. Even
the solar system reported to be the oldest paradigm of a
regul ar, predictable dynam cal system is unpredictable on the
time scale of mllions of years.

Supposi ng such a conpl ex nodel could be constructed, once
the nodel is subject to enpirical testing, the problem of
aggregation arises. Although ENNs performwell in the presence
of mssing data, large data sets are required to train them
(G lbert, Krishnaswany, and Pashley, 2000). This in turn |eads
to Arrows inpossibility theorem because of the central
difficulty with focusing on individual preferences due to the
aggregation of those preferences into a general choice rule
where it may be inpossible to determi ne an optimal allocation of
resources in the face of disagreenent.

For exanple, in the case of an election, Arrow s theorem
starts with a finite set of outcones (candidates for office), a
finite set of voters and their individual preferences over
out comes. The individual preferences are an wunrestricted
donai n, satisfying the Pareto principle, and they are
i ndependent of irrelevant alternatives (independence from ot her

i nfluences). Thus, Arrow s Inpossibility Theorem states that it



is not possible to derive a conplete and consistent soci al
choice rule exclusively fromindividual preferences, except in
di ctatorships, which are characterized by an inability to
determine the intensity of preference (Arrow, 1963; see also
Har di n, 2000).

ENNs assunme that we do not know that we are incapable of
concei ving, designing, or constructing such a conplicated
interactive nodel of human behavior. The remaining optionis to
try to learn from past observations, to deduce the nain patterns
of future events by tracing painstakingly simlar interactions
found in historical data. Rat her than seeking, or inmposing,
sone determ nate principle, or even attributing uniqueness to
the solutions generated for the conplex makings of an
indeterm nate world, we |let historical data conveniently guide
us through the indeterm nable maze being confronted (see
Kri ppendorff, 2002).

I n such cases, one proceeds under the assunption that it
should be nore helpful to imtate the past rather than
estimating the proximty of the initial conditions to their
putative |later effects. This is because in economcs and
finance, as in any human behavior, initial conditions or past
observati ons depend on future values owing to expectations;

hence, the price of a house today does not depend solely on its
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price yesterday or ten years ago but al so on the expectations of
future demand for, and supply of, such assets in general and
this house in particular.

ENNs are capable of processing data and performng
cal cul ations that humans are not adept at perform ng nmentally.

Their answers, therefore, nust be accepted on faith, yet ENNs
t hensel ves are at the nmercy of the sanple data and the quality
of their features (Weiss and Kulikowski, 1991; Hi nton, 1992
Ri pl ey, 1993; Sarle, 1994). And they process data and make
forecasts nmuch in the same way as statistical algorithnms perform
estimations.

In applications specific to the financial and economc
fields, the main focus for ENN technol ogy so far has been with
data involving variables in non-linear relations. G anger
(1991) maintains that in financial and econonic data, non-linear
rel ationshi ps are nore likely to occur t han i near
relationships. This claim is supported by tests such as the
regression test and the neural network test, which confirnms this
non-linearity through the rejection of linearity and chaos where
justifiable.

Consequently, new tests based on ENN systens have increased
in popularity anmong econom sts. Researchers have exam ned the

application of ENNs to financial markets, where the non-1linear



properties of financial data create too many difficulties for
traditional nethods of analysis (see Orerod, Taylor, and Wal ker,
1991; Grudnitski and Osburn 1993; Altman, Mrco, and Varetto
1994; M chie, Spiegel halter and Taylor, 1994; Kaastra and Boyd
1995; and Swanson and Wiite, 1995).

The remai nder of ny paper is organized as follows. Section
2 expl ains the background and principles behind ermul ati ve neural
networks in general. Section 3 nore specifically |ooks into the
mul til ayer perceptron nodel. Section 4 discusses sone of the
advant ages and di sadvantages to using ENNs. Section 5 presents
sone of the recent applications of ENNs to busi ness, econom cs,
and finance. Section 6 concl udes.
2. BACKGROUND AND PRI NCI PLES
A. BACKGROUND

ENNs are information processing systenms whose structure and
function are nodeled after the <cognitive processes and
organi zati onal structure of neuro-biological systems. They are
a class of nodels devel oped by cognitive scientists interested
i n understandi ng the biological nervous system and sinulating
t he conputational methods of the brain.

ENNs are generally wused as nodels for intelligence,
| earni ng, and data analysis. For data analysis, ENNs are used

in numerous fields of inquiry, ranging from airport noise and



property values (Collins and Evans, 1994) to student grade point
average novenents (Gorr, Nagin, and Szczypula, 1994) and
agricultural crop yields (Joerding, Li, and Young, 1994; Wang,
1994) .

ENNs have been applied in nodeling narket response
(Dasgupta, Dispensa, and Gnhose, 1994), collective behavior
(Artyushkin, 1990), telecomunication flows (Fisher and Gopal
1994), real estate valuation (Wrzala, Lenk, and Silva, 1995),
and even the determinants of mlitary expenditure (Refenes
Kol l'i as, and Zapranis, 1995). They are also used for analyzing
rel ati ons among econoni ¢ and financial phenonena, forecasting,
data filtration, generating tine-series, and optimzation
(Haw ey, Johnson, and Rai na, 1990; Refenes, 1995; Gately, 1996;
White, 1988; Wiite 1996).

The nost basic conponents of ENNs are highly interconnected
processing el enents, called neurons, which work independently in
parall el (Hush and Horn, 1993; Luger and Stubblefield, 1993;
Corsten and May, 1996; Jain and Mao, 1996). It is anticipated
that self-organization of the neural interconnections wll
result in an artificial intelligence akin to human | earning.

However, the intelligence and value of ENNs are still
hi ghly debated (see Chatfield, 1993; Refenes, 1994; Levine,

2000) . On the one hand, neural networks are capable of



processi ng vast amounts of data and nmaking extrenely accurate
forecasts, but on the other hand, many authors argue that
despite their accurate forecasting capacities, neural networks
are not intelligent in the human sense, too incapable of
insightful 1imgination (Weiss and Kulikowski, 1991; Hinton,
1992; Ripley, 1993; Sarle, 1994; Abdi and Edel man, 1999).
Furthernmore, a difference in term nology raises a barrier
to communi cati on between econom sts and ENNs practitioners.
What econoni sts and statisticians call independent variables are

called inputs in the neural network Iliterature; dependent
vari ables are known as training values; estimted values are
call ed outputs; residuals are the sane as errors; estimtion is
i nt erchangeably represented by training, |earning, adaptation,
and self-organization; the neural network counterpart to an
estimation criterion is called either an error, cost, or
Lyapunov function; training patterns or training pairs are

observations in the statistical literature; transformations are
known as functional l|inks; interpolation and extrapol ation are
cal |l ed generalization (Hi nton, 1992; Wiite, 1992; Sarle, 1994;
Bi shop, 1995; Devroye, Gyorfi and Lugosi, 1996; Ripley, 1996).

In the neural network literature, training sets are commonly

used in a manner that corresponds to the sanple in statistics.
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B. PRI NCI PLES

The neuron is a basic functional element of the brain (see
Paper by Gur et al. 2002). An individual neuron consists of a
cell body, dendrites, and an axon. Every individual neuron
receives electrical stimuli from other neurons through the
dendrites, which is then anplified or de-anplified by the
synapse and summated. |If the sumof all stimuli is greater than
the neuron’s resistance threshold, provided by the cell body,
then the neuron fires, producing a stinmulus that passes through
t he axon to another neuron (G eitman, 1991).

These synaptic connections are used to carry nessages from
one neuron to another. The strength of these connections
varies. Neurons store information and | earn neani ngful patterns
by strengthening their inter-connections. The synaptic process,
nodel ed mat hematically, serves as the theoretical basis for
artificial neural networks.

This section denonstrates the basic structure and
behavi or of artificial neurons. These neurons, on their own,
are very sinple structures and are generally nore useful when
connected together as part of a |larger network.

A set of inputs x;, a set of weights w, a threshold, u, an
activation function, f, and a signal neuron output, y, where i
is the degree (number of inputs) of the neuron. The wei ghts
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represent the anplification or de-anplification of the process.

Typically, the values of the inputs, x;, are external and
are stinmuli fromthe environment. Alternatively, they may be
generated fromthe outputs of other artificial neurons. They
can be discrete values froma set, such as {0,1}, or real-
val ued nunbers.

The weights, w are real -val ued nunbers that deterni ne the
contribution of each input to the neuron's wei ghted sum and
eventually its output. The goal of neural network training
algorithnms is to determ ne the best possible set of weight
val ues for the problem under consideration. Finding the
optimal set is often a trade-off between conmputation tinme and
m nim zing the network error.

The threshold, u, is a real nunber that is subtracted
fromthe wei ghted sum of the input values. Sonetinmes the
threshold is referred to as a bias value. 1In this case, the
real nunber is added to the weighted sum For sinplicity, the
t hreshol d can be regarded as another input / weight pair,
where wp = u and xo = -1.

The activation function, f, can be very sinple; for
exanple, there is the unit step function (see bel ow).

However, the artificial neuron nodel has been expanded to

i nclude other functions such as the signoid, piecew se |inear,
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and Gaussi an functions. The activation functions that are
often consi dered are shown bel ow.

A possible representation of the Unit Step equation is:

f(x) = Oif x <0

1if x =0

Uni t '
St ep

The Sigmoid equation is:

f(x) =1/ (1 + e ™)

I
Si gnoi d 1

The piecew se equation is:

f(x) = O if X < Xuin



1if X = Xpax

Pi ecew se '
Li near

The Gaussi an equation is:

f(X) — [1/(278)05] e[-(X-|.l)(x- W/ 2ss]

|Gaussi an .I' 'I.

The artificial neuron output, vy, conputes its output

according to the equation shown below. This is the output of
the activation function for the current weighted sum I|ess the
threshold. This value can be discrete or real depending on the
activation function used. Once the output has been cal cul at ed,
it can be passed to another neuron (or group of neurons) or
sanpl ed by the external environnent. The interpretation of the
neur on out put depends upon the problem under consideration. For
exanple, in pattern classification, an output of 1 would inply

the i nput belongs to a certain class.

y = f(w Xg + W Xz 4+ W3 X3+ W, Xp + U)
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y = f(Wo Xo + Wi X1 +Wo X2 4 Wy Xp)
Now, because wusually learning is involved, one my want to
include a learning fornmula for weight updating

wee = wld 4k,
where k is a function involving a |earning constant and errors
at various (input, output and hidden) |ayers of the network (see
nore bel ow). The output of the neuron, which depends on the
neuron’s threshold, is a non-linear transformation of the
wei ghted sum of its total input, usually the asymmetric signoid
or the hard limter (Kollias and Refenes, 1996).
Perceptron Learning Process

This section presents a sinple form of supervised | earning
entitled the perceptron-learning algorithm Using this
procedure, one can train the perceptron to act as a binary logic
unit. We start with the sinplest example of a Single-Layer
Perceptron Neural Networks. A single-layer perceptron network
consists of one or nore artificial neurons in parallel. Each
neuron in the single layer provides one network output and is
usually connected to all of the external (or environnental)
inputs. Figure 1 is an exanple of a single-neuron, single-I|ayer
perceptron networKk.

The perceptron-learning al gorithm can be described as

15



foll ows:

1. Initialize the weights and threshold to small random
nunbers.

2. Present a vector to the neuron inputs and cal cul ate the
out put .

3. Update the wei ghts according to:
w(t+1) = w(t) + 2(d-y)X
where d is the desired output, t is the iteration nunber,

and eta is the gain or step size, where 0.0 < ? < 1.0

4. Repeat steps 2 and 3 until the iteration error is |ess
than a user-specified error threshold or a predeterni ned

nunber of iterations have been conpl eted

Notice that learning only occurs when an error is made
ot herwi se, the weights are | eft unchanged. During training, it
is often useful to nmeasure the performance of the network as it
attenpts to find the optinal weight set. A commopn error nmeasure
or cost function used is sumsquared error. It is conputed over
the entire input vector / output vector pairs in the training
set and is given by the equation bel ow

E = (1/2) Jiy® —d® 112 y® - d® 2

2
+ Hy(p) e ! |
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where p is the number of input/output vector pairs in the
training set.

The power of neural conputing cones from the threshold
concept. | t provi des a way to transform conplex
interrelationships into sinple yes-no situations. When the
conmbi nati on of several factors begins to become overly conpl ex,
t he neuron nodel posits an internediate yes-no node to retain
sinmplicity.

ENNs consist of interconnected |layers that contain
neuron-|like units called processing el ements. These processing
el ements allow an algorithmto “learn” and eventually recognize
meani ngful patterns in the data. As a given algorithmlearns by
synthesizing nmore training records, the weights between its
i nterconnected processing elenments strengthen and weaken
dynam cal | y.

The conputational structure of artificial neural networks
has attractive characteristics such as graceful degradation,
robust recall wth noisy and fragnented data, parallel
di stri buted processing, generalization to patterns outside of
the training set, non-linear nodeling, and |earning (Tours,
Rabel o, and Vel asco, 1993). They are unique in that they learn
meani ngful patterns in data through inductive inference and
menorization. Deternmi nacy nmay play a key role here, enploying
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the rational choice of picking nore rather than | ess val ue when
given the weights of the preferences; thus, each of these
processes yield determ nate outcones up to the limt of the
devi ce.
3. THE MULTI LAYER PERCEPTRON MODEL

One of the nost wuseful and successful applications of
neural networks to data analysis is the nultilayer perceptron
nodel (M.P). Multil ayer perceptron nodels are non-linear neural
network nodels that can be used to approxinmate alnost any
function with a high degree of accuracy (Wite 1992). An MP
contains a hidden |ayer of neurons that wuses non-Ilinear
activation functions, such as a logistic function. Figure 1
offers a representation of an MLP with one hidden |ayer and a
single input and output. The MLP in figure 1 represents a
si npl e non-1inear regression.

Figure 1: Miulti-layer Perceptron with a Single Input and out put

Hidden Layer

Input Output Target

A

The number of inputs and outputs in the MP, as well as the

\T\
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nunmber, can be mani pul ated to analyze different types of data.
Figure 2 presents a nultilayer perceptron with multiple inputs
and outputs. The MP in figure 2 represents nultivariate

nmul ti pl e nonlinear regression.

Figure 2: Milti-layer Perceptron with Miltiple Inputs and

out puts

Hidden Layer

Output Target

/

()
= D

JHENE

The conplexity of the M.P can be adjusted by varying the
anount of hidden |layers. Different amounts of hidden | ayers can
transform an MLP from a sinple paranetric nodel to a flexible
non- paranmetri c nmodel (White, 1992; Kuan and White, 1994; Fine,
1999; Husneier, 1999). An MP consisting of only one layer is

very close to the projection pursuit regression nodel, which
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al l ows conputation of explicit fornmulae for bias and error about

the nmean in orientation estimtes and curve esti nates.

However, the projection pursuit nodel uses a flexible non-
| i near snoother whereas the MP uses an already determ ned
activation function in the hidden |ayer. The activation
function determ nes the activation or the internal state of a
neuron. It is applied to the weighted inputs, and it results in
an out put signal. As the nunber of hidden layers is allowed to
increase, an MP becomes a wuseful alternative to kernel
regression analysis, a nonparanetric approach that makes no
assumptions regarding the functional form of the unknown
function (G een, 2000), and snoothing splines. These spl eens
are paranetrically linear, and they are quick to fit a nonlinear

regressi on curve.

The Kernel nmethod perfornms a |ocal averaging of the
observations when estimating the regression function.

Anal ogously, one can estimate derivatives of small order of the

regression function. Crucial for the kernel regression
estimation is the choice of global or |ocal bandw dths. Too
small ones will lead to a wiggly curve while too |arge ones w ||

snoot h away i nportant details.
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Spline regressions are estinmations nmethods that investigate
both shifts of slopes and intercepts by approximating the shifts
and changes in intercepts by separate linear function with dumy
vari abl es. The process is simlar to estimating two or nore
separate regressions at once w thout |osing degree of freedom by
using linear restrictions on the estimated coefficients. |If the
variances differ across the different regression |ines, however,
one anbiguity does arise in the estimtion of the disturbance
vari ance. Wth a nonlinear activation function, MP is
genui nely nonlinear in the parameters and therefore takes nore
conputer time to fit than kernels or splines (Wite, 1992;
Eubank, 1994).

There are different uses for MLPs with nore than one hidden
layer. In principal conmponent analysis, a linear nodel for
di nensionality reduction in which inputs and targets are the
same vari ables, one hidden layer is insufficient for inproving
upon principal conponents. A non-linear generalization of
princi pal conmponents can be obtained with the addition of two
hi dden | ayers, where the second | ayer serves as a bottl eneck and
the first and third layers provide the second non-linearity
(Sarle, 1994).

Cascadi ng a group of single |ayer neurons fornms nmultilayer-
perceptron nodels. In a three-layer network, for exanple, there
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is an input layer, an output |layer, and a hidden | ayer wherever
i nternmedi ate nonlinear transfornms occur. The conplexity of the
nodel can be varied according to how many |ayers are
incorporated. The nodes of different Ilayers are densely
i nterconnected through direct links. At the input |layers, the
nodes receive the values of input variables and multiply them
t hrough the network, |ayer by |ayer.

The m ddl e | ayer nodes are often characterized as feature-
detectors. The nunber of hidden |ayers and the nunmber of nodes
in each hidden |ayer can be selected arbitrarily, but too many
nodes in the mddle |ayer produce a neural network that nmerely
menorizes the input data and |lacks the ability to generalize.

Most commonly, the hidden |ayer includes at |east 75% of the
nunmber of input nodes. The initial weights of the connections
can be chosen randomy. |In thousands of iterations, the neural
net's weights shift subtly, allowing it to |earn (menorize) the
patterns and recall themin the future (Baets, 1994).

The random choosing of the initial conditions generates a
state of indetermnacy in ternms of possible patterns or
out cones. Specifically, from an observer’s perspective, the
process is not observationally determ nable (Krippendorff,
2002) .

The conputed output is conpared to the known out put. | f
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the conmputed output is “correct” (identical), then nothing nore
is necessary. If the conputed output is “incorrect”, then the
wei ghts are adjusted to make the conputed output closer to the
known output. This process is continued for a |arge nunber of
cases, or time-series, until the net gives the correct output
for a given input. The entire collection of cases learned is
called a "training sanmple"” (Connor, Martin, and Atlas, 1994;
Ander son, 1995; Anderson and Rosenfeld, 1998; Kecman, 2001).

In most real world problens, the neural network is never
100% correct. ENNs are programmed to learn up to a given
threshold of error. After the neural network learns up to the
error threshold, the weight adaptation mechanismis turned off,
and the net is tested on known cases it has not seen before.
The application of the neural network to unseen cases gives the
true error rate. In a well-trained neural network, the error

threshold and the true error should be identical (Baets, 1994).

The outputs are never 100% correct. Recall that the
net wor ks thenselves are not correct or incorrect; it is their
out puts that are such. But networks can be analyzed for

conponent or structural redundancy.
Al t hough well-trained neural networks have determ nate
error rates, the outputs of each ENN follow the indeterm nacy

theory. The nost likely solution is never 100% accurate; thus,
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the solutions are never exactly the same. The primary cause of
this is the indetermnacy of weight adjustnment during the
“training” process, which may differ each time for each ENN

4, ADVANTAGES AND DI SADVANTAGES TO USI NG ARTI FI Cl AL NEURAL

NETWORKS

Econonmetric models as well as ENNs can be wused as
forecasting tools, but each tool requires a different nethod
using different procedures, each of which offers specific
advant ages and di sadvant ages.

ENNs have many advantages over conventional methods of
anal ysi s. First, they have the ability to analyze conplex
patterns quickly and with a high degree of accuracy.

Second, artificial neural networks make no assunptions about
the nature of the distribution of the data. They are not,
therefore, biased in their analysis. | nstead of making
assunptions about the underlying population, ENNs with at |east
one mddle layer use the data to develop an internal
representation of the relationship between the variables.
Consequently, better results can be expected wth neural
net wor ks when the relationship between the variables does not
fit an assunmed nodel .

Third, since time-series data are dynamc in nature, it is
necessary to have non-linear tools in order to discern
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rel ati onshi ps anong tinme-series (Maasoum , Khotanzad, and Abaye,
1994). ENNs are best at discovering these types of
rel ati onshi ps.

Fourth, neural networks perform well wth mssing or
i nconpl ete data. Whereas traditional regression analysis is not
adaptive, indiscrimnately processing older data together with
new data, ENNs readjust their weights as new i nput data becones
available (Kuo and Reitch, 1994, Pao, 1989; G | bert,
Kri shnaswany, and Pashley, 2000). Fifth, conpared with an
econonetric nodel, it is easier to use ENNs where a forecast
needs to be obtained in a shorter period of tine.

Since econom c, financial and social systenms are conpl ex
and subject to human reactions and counter-reactions by
different agents or players, it is difficult, if not inpossible,
to wite down a conplete nodel with all the potential reactions
and counter-reactions determ ned. G ven such conplexity, it is
close to inpossible to try to approximte in any details a node
based on first principal of, for exanple, utility maxim zations
or profit maxim zation. |In such conplex systenms, it is natural
to turn to nodels, which enulate and sinulate the econony or the
society in question. That is exactly what the neural network
met hodol ogy i s capabl e of delivering.

Such nmodels are difficult to understand and are
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inpractical to handle if one tries to control all of the
possi bl e vari abl es and potential outconmes in the systens and
account for all their dynamc interactions. This is exactly
the nature of these problens, which are facing the probl em of
i ndet er m nacy.

One treatnent of indeterm nacy involves probability and
statistics; the other is the fuzziness of input and output
vari abl es and the fact that econom c and finance data arrived in
different time intervals are always subject to mmjor revisions.

Usi ng the neural vocabulary, the transfer function, described
in Section 2B, can often be nulti-valued, and the weights and
other (e.g., learning) paraneters can at best be only interval -
val ued. Traditional econonmetrics techniques are not able to
handl e such nodels due to these indeterm nacies. ENNs suggest
an alternative not by solving or reducing the indeterm nacy but
by being able nevertheless to forecast with sonme degree of
accuracy.

However, there are some drawbacks connected with the use of
ENNs. For one, ENNs are not all-purpose problem solvers. Thus
far, there is no structured nethodol ogy avail able for choosing,
devel oping, training, and verifying an ENN. There is no
st andar di zed paradigm for developnent. The output quality of
ENNs nmay be unpredictable regardless of the design and
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i npl ement ati on schedul e. Some researchers maintain that no
estimation or prediction errors are cal cul able when using ENNs
(Caporal etti, Dorsey, Johnson, and Powell, 1994) due to constant
“l earning” by the process. Also, ENNs are “black boxes,” for it
is inpossible to figure out how relations in their hidden |ayers
are estimated (Li, 1994, Gl bert, Krishnaswanmy, and Pashley,
2000) .

The difficulty in prediction fromthe | ack of conprehension
of the systemis internal relations is a perfect exanple of
observational indetermnability. The min factor in this
indeterm nacy is that ENNs are autopoietic systenms, producing
their own patterns froma set of inputs that will be needed to
operate the very network of production in the future
(Kri ppendorff, 2002).

One may claimthat regression nodels are generally based on
first principles and law of nmotions, which has theoretical
foundations (typical in physics) whereas ENN nodeling is based
on enulation or sinulation. The latter is nuch weaker fromthe
st andpoi nt of identification of structure and expl anatory power;
t herefore, it 1is inportant to wunderstand what net wor k
nmet hodol ogy offers and fails to offer when, e.g. conpared with
the traditional derivation of equations of notion for a given
dynam cal system based on fundamental | aws.
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Anot her drawback is that neural networks have | ong training
tinmes. Excessive iterations are required to train neural
networks (G | bert, Krishnaswany, and Pashl ey, 2000). Reduci ng
training time is crucial because building a neural network
forecasting systemis a process of trial and error; hence, the
nore experinments a researcher can run in a finite period of
time, the nore confident he can be of the result. The network
also tends to base its predictions of future events on
“menories” of simlar situations fromthe past (Ruggiero 1994).

In the case of financial markets, neural nets quantify the
i nfluence of major financial variables and the inpact that these
rel ati onshi ps have on the future price novenent of the target
mar ket (Gorr, 1994).

The nets learn from carefully crafted training data
contai ning such variables as interest rates, currency prices,
commodity prices, the slope of the yield curve, the novenent in
maj or commodity prices, the novenment in major financial
averages, internal market data, technical indicators, and so
forth.

Neural networks are data-dependent, so the algorithns are
only as good as the data shown to them (Meade, 1995). In this
light, ENNs may be thought as weakly determ nistic systens that
converge to a predictabl e eigen-behavior (see also Krippendorff,
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2002) .

After the learning process, when given specific input data,
it may be possible to predict a general solution that would be
produced by an ENN. Since the future is often drastically
different fromthe past in financial markets, the user needs to
test the predictions on out-of-sanple ranges in order to ensure
the reliability of the network. The results are generally
i ndeterm ni stic. Kanas (2001) wused out-of-sanple data of
nmonthly returns forecasts for Dow Jones and the Financial Tines
stock indices, using both a linear and neural network nodel.
Nei t her nodel perfornmed well in predicting directional changes
in the two indices, but they did help to support the concl usion
that the underlying relationship between stock prices is not
i near (Kanas 2001).

ENNs may becone a bit overzeal ous and undertake to fit a
curve to sone data even when there is no relationshinp. They
tend to under- or over- fit data (G lbert, Krishnaswany, and
Pashl ey, 2000). It is always possible to build a neural net or
a mat hematical function that exactly fits all the historical
data such as a tinme series, but the predictive capability of
such a systemis relatively nonexistent. This over-fitting is
because the noise and anormalies in the data do not allow the net

to predict with any accuracy. This is also the nature of

29



i ndeterm nacy in social systens we have discussed throughout
t hi s paper.

An ENN's rigor thus suffers from poor generalization
capability. Enough repetitions will help to produce results
with extrenely high R-squared values, but they will have no
relevance to reality. If a user relies on the results of an ENN
in the belief that an ENN has high predictive power, a series of
decisions will ensue that may prove disastrous. The user shoul d
al ways be aware that an ENN is not a strongly determnistic
system that contains explicit cause-and-effect relationships or
are based on first principals. The severity of the consequences
shoul d i nduce a prudent user to test one’s net on a nunber of
out-of -sanmple data sets in order to reaffirm the predictive
power of the system (Ruggi ero, 1995).

However, work with hidden |ayer feed forward networks is
progressing towards |limting this problem (Corradi and Wite,
1995). In feed forward networks, the weight flows from the
inputs in the forward direction, never cycling back to an input
node of an output node of a previous layer. Although restricted
to one direction each, the choices of the weight flows are
interactive and often indetermnate w thin each individual
net wor k.

Problenms can be reduced by using already snoothed
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vari abl es, which give the systeml|ess incentive to seek to fit
its own curve to the data. It is also extrenely inportant to
use only econom cally significant variables for inputs. Every
user will have to define what one considers being the
econom cally significant variables. Studies show that using a
few wel |l -chosen variables will give significantly better results
than trying to use every econonmic indicator as a viable
predi ctor (Schwartz, 1995). Devel oping a successful market-
timng neural network requires specialized expertise in the
mar ket nodel

St udi es show that networks produce the best results when
used in conjunction with an expert. The expert pronmpts the
neural network at key decision nodes, and he or she allows the
user to enter his opinion as to the weight, or inportance, of a
specific variable. By renmpoving highly correlated signals that
have a fairly direct relationship between two inputs, the user
can assess nore correctly the predictive power of the inputs
still present and thereby construct a better nodel. Wth such
checked interaction, expert-guided networks comrand greater
predictive power. These interactive choices present a form of
i ndeterm nacy, which results from strategic interaction,
differing each time for each expert.

5. APPLI CATI ONS OF ENNs TO BUSI NESS, ECONOM CS, AND FI NANCE
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Emul ati ve neural networks are used in a w dening range of
applications, including airline security control, investnment
managenent and risk control (Brockett, Cooper, Golden, and
Pi taktong, 1994), industrial nmanagenment and production (Davies,
Thomas, and Shaw, 1994; Satake, Morikawa, and Nakamura, 1994,
Eberts and Habi bi, 1995), as well as in forecasting stock price
i ndexes and derivative securities (Hutchinson, Poggio, and Lo,
1994; Li, 1994; Fish, Barnes, and MI|lam 1995; Shachnurove and
Wt kowska, 2001), and predicting exchange rates (Kuan and Liu,
1995) and thrift failures.

A typical civil engineering situation in which ENNs are
utilized S vehicl e di schar ge headway at signalized
intersections. In this situation, variables include driver
behavi ors, vehicle characteristics, and traffic environment. A
three-layered ENN was created to predict this nodel. When the
nodel was trained and validated with field data, it was proven
to estimate fairly accurately headway for individual vehicles
better than any ot her headway nodel (Hung and Tong, 2002).

ENNs have found ardent supporters anpng various avant-garde
portfolio managers, investnent banks, and trading firms. Most
of the major investnent banks, such as Gol dnman Sachs and Morgan
St anl ey, have dedicated departnents to the inplenentation of

neural networks. Fidelity Investnments has set up a nutual fund
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whose portfolio allocation is based solely on recomendati ons
produced by an artificial neural network. The fact that mjor
conpanies in the financial industry are investing resources in
enul ative neural networks indicates that artificial neural
networks my serve as an inportant nmethod of financial
forecasting in the future.

ENN processi ng has nmany managerial applications. The use
of ENNs for production planning and controls (PPC) has a
potential to grow significantly because nore than one function
of a PPC system can be supported by an ENN. Such functions
include forecasting in the framework of master production
schedul i ng and consunption-driven material requirement planning;
determ nation of |ot sizes for production and procurenent;
capacity adjustnent; scheduling; and short-term intervention
into running processes (Corsten and May, 1996).

Yoon and Swales (1990) conpare ENNs to discrimnant
anal ysis. The technique of discrimnant analysis is generally
used to build a procedure that not only consider the nunber of
correct and incorrect classifications of the data but al so takes
into account the cost of each type of classification. Yoon and
Swal es (1990) show that the prediction of stock price
performance based on an ENN nodel is superior to prediction

based on a discrin nant anal ysis.
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Sur kan and Singleton (1990) find that ENNs nodel s perform
better than discrimnant analysis also in predicting future
assignnments of ratings to bonds. This nay |lead to an inaccurate
assunmption of determ nacy, where - given a set of initial
conditions - it may be presupposed that future prices of stocks
and bonds nmay be predicted. However, the actual values (or ENN
out comes) fluctuate wunpredictably, indicating a noticeable
behavi or of indeterm nacy.

Trippi and DeSieno (1992) apply an ENN system to the
nodel ing of trades in Standard and Poor’s 500 index futures.
They find that the dynamics of the ENN system helps to
outperform a passive approach to investnent (a buy-and-hold
strategy) in the index; thus, they favor the inplenmentation of
ENNs to the financial decision making process.

Donal dson, Kanstra, and Kim (1993) contribute to the study
of the capital asset pricing nodel as well as ENNs by exam ni ng
the fat tails and heteroskedasticity in stock return data.
Usi ng data from the stock indexes of London, New York, Tokyo,
and Toronto, they find that ENN nopdels outperforned many
traditional nmodels, including the autoregressive conditioned
het eroskedasticity (ARCH) nodel, in renoving |eptokurtosis and
symretric and asymetric heteroskedasticity fromthe stock index
dat a. This superior capability allows the ENN npdel to be
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utilized (perhaps a little too confidently) as a determ nistic
t ool .

A bal anced assessnment of the potential of ENNs is offered
by HiIl, Marquez, O Connor, and Renus (1994). They find
emul ati ve neural networks to be conparable to traditional
statistical nethods. |In regard to the forecasting potential of
artificial neural networks, they find that such networks perform
as well as classical statistical nodels for forecasting yearly
time-series, but that for nmonthly and quarterly tine-series,
ENNs may actually outperform statistical nodels. ENNs do not
necessarily outperform regression in nodeling human deci sion-
maki ng, except when non-linear elenents are involved. This is
not a case of explicit determnacy as it is nore likely an
i ndication of a weakly determ nistic system

Kuo and Reitsch (1996) test the accuracy of forecasts
produced by both multiple regression and neural network nodels.

They test their nodels on ten different out-of-sanple data sets
and anal yze the forecasting errors of each of the nodels. The
results indicate that ENNs outperform conventional nethods in
all cases.

6. CONCLUSI ON
The technology of ENNs has existed theoretically for

decades. However, the explosion in conputational processing
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power in the last ten years has revived research using such
nets. Devel oping even a sinple ENN requires mllions of
cal cul ations. The shift from expensive to affordable conputer
processing power has fueled the growh in neural network
research (Perry, 1994). ENNs are revolutionizing statistica

conputing in many fields as they not only “learn” autononously,
but they also are ideal for noticing non-linear relationships in
data (Rummel hart and McCl ell end, 1986; Wasserman, 1989; Maren,
Har ston and Pap, 1990; Hoptroff, 1993). A perfect exanple of an
aut opoi etic system an ENN is the best available tool today for
anal yzi ng and even forecasting indetermnistic data.

ENN nodel s are becomi ng highly desirable statistical tools
for statisticians and econom sts who, having internalize the
hal  mrk of rational expectations, now firmy believe that
peopl e react to one another and to policy rules in strategic and
dynam c ways. The construction of an explicitly detailed
dynam ¢ nodel, however, is extrenely difficult, for such a node
must be capable of tracing all of the potential and actual
responses and interactions. Thus, npdels are bound to exhibit
indetermnacy in the sense that it may be inpossible to devel op
a unique solution for a given situation

This fuzziness of input and output variables and of
possi ble nmulti-valued transfer function, where the weights and
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other (e.g., learning) paraneters can at best be only interval-

valued, is at the basis of such indeterm nacy. A nodel’s
optimal performance will result in an approximtion of a
solution or of a nost |ikely outcone, which is the inevitable

product of strategic interactions anong variables and/or
rational individuals.

The ability to deal with many processing elenents makes
neural conputing faster than conventional conputing. In
addition, parallelity makes it robust and fault-tolerant in the
sense that performance does not degrade significantly even if
one of the nodes fails. Researchers are concluding that nost
econom ¢ and financial problems are non-linear; that sinple
cause-and-effect relationships rarely exist; that, instead, nost
probl ens encountered are fuzzy patterns, which relate to
mul ti ple vari abl es.

Nonet hel ess, as many have argued (see, for exanple Sarl e,
1994), statistics and ENNs are not conpeting nethodol ogi es for
data analysis. Rather, the paths of statistics and ENNs often
Cross. There are many wuseful neural network nodels for
nonl i near data analysis, such as the M.P nodel, and there is
room for many nore applications of statistics to neural
net wor ks, especially in regard to estimation criteria
optim zation algorithnms, confidence intervals, diagnostics, and
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graphi cal methods (Sarle, 1994).
As they do not require an exact specification of the

functional equations, emrulative neural systenms can be applied to

predi ct econom c phenonena - especially unr ecogni zed,
unstructured, and non-stationary processes. Thus, ENNs are
hi ghly suitable for analyzing econom c systens. ENNs have

proven thenselves to be adequate also for searching out and
identifying non-linear relationships and for pinpointing those
variables that hold the highest predictive value. After
extensive training, ENNs are able to elimnate substantial
ampunts of anmbiguity in econonmic forecasts, although never
conpl etely overcom ng indeterm nacy.

The wunique qualities and enornpus potential of this
technol ogy assure it a leading place in the search for a better
and nore diversified forecasting technique and nethod of
anal ysi s. As conputer power increases, processing tine
decreases, and personal conputers becone nore and nore
avail abl e, the use of enulative neural networks will continue to
i ncrease. Specifically, they will be utilized as anal ytical
tools in an attenpt to resolve residual gquestions of
i ndeterm nacy that are likely to continue to befuddl e humanity

for quite sone time to cone.
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