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Abstract

Based on a geometric interpretation of the optic flow con-
straint equation, we propose a conditional probability on
the spatio-temporal image gradient. We consistently derive
a variational approach for the segmentation of the image
domain into regions of homogeneous motion.

The proposed energy functional extends the Mumford-
Shah functional from gray value segmentation to motion
segmentation. It depends on the spatio-temporal image gra-
dient calculated from only two consecutive images of an im-
age sequence. Moreover, it depends on motion vectors for
a set of regions and a boundary separating these regions.
In contrast to most alternative approaches, the problems
of motion estimation and motion segmentation are jointly
solved by minimizing a single functional.

Numerical evaluation with both explicit and implicit
(level set based) representations of the boundary shows the
strengths and limitations of our approach.

1. Introduction and Related Work
The estimation of motion from image sequences has a long
tradition in computer vision. In recent years, many ap-
proaches have been proposed to segment the image plane
on the basis of this motion information. The fields of im-
age sequence analysis and video compression provide nu-
merous applications. In some approaches, motion discon-
tinuities are modeled implicitly [1, 10, 9, 15]. Other ap-
proaches treat the problems of motion estimation in disjoint
sets and optimization of the motion boundaries separately
[14, 2, 12, 13, 7].

In [5], we presented a variational approach to motion
segmentation with an explicit contour where both the mo-
tion estimation and the boundary optimization are derived
from minimizing asingleenergy functional. Yet, this ap-
proach had an important drawback: Satisfactory results
were only obtained upon applying two posterior normaliza-
tions to the terms driving the evolution of the motion bound-
ary.

In the present paper, we derive a novel variational formu-
lation for segmenting the image plane into regions of homo-
geneous motion. It is based on a simple probabilistic model
for the spatio-temporal image gradient determined from two
consecutive images of a sequence. We show that local min-
imization of an appropriate energy functional leads to an
eigenvalue problem for the motion parameters and to a gra-
dient descent evolution for the motion boundaries. In con-
trast to our previous approach, all normalizations comprised
in the evolution equation are derived in a consistent manner
by minimizing the proposed functional.

We present numerical results for two implementations of
the functional: one with an explicit spline based representa-
tion of the contour, and one with an implicit level set based
representation. In particular, these results cover the cases of
a moving object on a moving background and of multiple
moving regions.

2. From the Optic Flow Constraint . . .

Let f : Ω × R+ → R+ be a gray value image sequence.
We assume the intensity of a moving point to be constant
throughout time. This induces the optic flow constraint
equation:

d

dt
f(x, t) =

∂f

∂x
u +

∂f

∂y
w +

∂f

∂t
= 0, (1)

where(u, w)t is the local velocity vector. Geometrically,
this constraint states that the spatio-temporal image gradient

∇3f =
(

∂f

∂x
,

∂f

∂y
,

∂f

∂t

)t

, (2)

must either vanish or be orthogonal to the homogeneous
velocity vectorv = (u, w, 1)t:

∇3f
t v = 0. (3)

This constraint has been employed in many motion estima-
tion approaches. Commonly — for example in the seminal
work of Horn and Schunck [8] and many subsequent works
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— the square of this constraint is used as a fidelity term.
In contrast, we suggest to use the angleα between the two
vectors as a measure of the orthogonality.

To this end, letx be a point with spatio-temporal deriva-
tive ∇3f , and letR be a region of the image with homo-
geneous velocityv. Then we model the probability that the
pointx is part of the regionR by:

P (∇3f | v) ∝ e− cos2(α) = exp
(
− (vt∇3f)2

|v|2 |∇3f |2

)
. (4)

This probability has the following favorable properties:

• It is maximal if the vectorsv and∇3f are orthogonal.

• It is minimal if the two vectors are parallel.

• It only depends on theangle between the spatio-
temporal image gradient and the homogeneous veloc-
ity vector, andnot on the magnitudeof these vectors.

3. . . . to Motion Segmentation
Based on the probability measure in equation (4), we will
now define a variational approach for motion segmenta-
tion. We suggest to segment the image planeΩ into a set
of pairwise disjoint regionsRi of homogeneous velocityvi

by minimizing the functional

E({vi}, C) =
∑

i

∫
Ri

(
−log P (∇3f | vi)

)
dx+ νL(C) (5)

simultaneously with respect to the motion vectorsvi of each
regionRi and with respect to the motion boundaryC sep-
arating these regions. The termL(C) denotes the length of
this boundary.

Inserting the model (4), we get (up to a constant):

E({vi}, C) =
∑

i

∫
Ri

|v t
i ∇3f |2

|vi|2 |∇3f |2
dx + νL(C). (6)

This functional (6) has the simple form

E({vi}, C) =
∑

i

v t
i Mi vi

|vi|2
+ νL(C), (7)

where

Mi =
∫
Ri

∇3f∇3f
t

|∇3f |2
dx (8)

In numerical implementations, we replace the term
|∇3f |2 in the denominator by|∇3f |2+ε2 with a small con-
stantε. This guarantees that the matrixMi is always well
defined. Moreover, points with very small spatio-temporal
gradient (in the order ofε), i. e. weak motion information,
will contribute less to the segmentation process.

The functional (6) can be considered a generalization of
the Mumford–Shah functional [11, 16] from gray value seg-
mentation to motion segmentation.

4. Energy Minimization
Given two consecutive imagesf1 andf2 from an image se-
quence, we approximate the spatio-temporal gradient by:

∇3f ≈
(
∇ f1+f2

2
f2 − f1

)
. (9)

From this, we determine the matrix

M =
∇3f∇3f

t

|∇3f |2
(10)

for each point in the image plane.
Given an initial contourC, we minimize the energy (6)

by alternating the two fractional steps of updating the mo-
tion parametersvi for the regionsRi, and of iterating a gra-
dient descent evolution for the boundaryC separating these
regions. This will be detailed in the following.

4.1. An Eigenvalue Problem
For a fixed boundaryC, minimization of the functional (6)
results in the eigenvalue problem

vi = arg min
v

vt Mi v

vtv
. (11)

The homogeneous velocity vectorvi for each regionRi

is therefore given by the eigenvector corresponding to the
smallest eigenvalue of the3×3-matrixMi defined in (8). It
is normalized, such that the third component is1.

4.2. Motion Competition
For fixed velocity vectorsvi, a gradient descent on the en-
ergy (6) for the boundaryC results in the evolution equa-
tion:

dC

dt
= −dE

dC
= (ej − ek) · n − ν

dL(C)
dC

, (12)

wheren denotes the normal vector on the boundary, the in-
dices ‘k’ and ‘j’ refer to the regions adjoining the contour,
and

ei =
v t

i M vi

v t
i vi

(13)

is an energy density.
The two terms in the contour evolution (12) have the fol-

lowing intuitive interpretation:

• The first term is proportional to the difference of the
energy densitiesei in the regions neighboring the
boundary. The neighboring regions compete for the
boundary in terms of their motion energy, thereby
maximizing the motion homogeneity. For this reason
we refer to this process asmotion competition.

• The second term minimizes the lengthL of the sepa-
rating motion boundary.
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5. A Spline Based Implementation

In this section, we propose an implementation of the con-
tour evolution (12) with an explicit closed spline curve:

C : [0, 1]× R+→ Ω, C(s, t) =
N∑

n=1

pn(t)Bn(s), (14)

with quadratic periodic B-spline basis functionsBn and
control pointspn = (xn, yn)t.

One difficulty of explicit contour parameterizations is
the fact that control points may cluster in one point. This
causes the normal vector to become ill-defined and con-
sequently the evolution along the normal becomes insta-
ble. To prevent this behaviour, we use the length measure

L(C) =
1∫
0

(
∂C
∂s

)2
ds. As discussed in [6], minimizing this

constraint enforces an equidistant spacing of control points
which strongly improves the numerical stability. The con-
tour evolution then reads:

∂C

∂t
= (ej − ek) · n − ν

∂2C

∂s2
. (15)

By inserting the spline definition (14), this equation is easily
converted to an evolution for the control pointspn(t).

In practice, we iterate this gradient descent for the con-
trol pointspn(t), and update in alternation the motion en-
ergy densitiesei according to (13) and (11).

6. A Level Set Implementation

The explicit contour implementation presented in the previ-
ous section is quite fast, because the contour evolution only
involves the update of a small number of control point co-
ordinates. Yet, explicit contour representations have certain
disadvantages. Firstly, one needs to take care of a regrid-
ding of control points which are not intrinsic to the contour.
And secondly, the contour topology is fixed, such that no
contour splitting or merging is possible unless it is modeled
explicitly by some (inevitably) heuristic method.

We therefore propose an implicit level set based imple-
mentation of the functional (6). It is based on the analogous
gray value approach proposed in [3]. The idea of all level
set contour descriptions is to define the contourC as the
zero level set of a functionφ : Ω → R:

C = {x ∈ Ω | φ(x) = 0}. (16)

Using the Heaviside step function

H(φ) =
{

1 if φ ≥ 0
0 if φ < 0 , (17)

we can embed the motion energy (6) by the two-phase func-
tional:

E (v1, v2, φ) =
∫
Ω

|v t
1 ∇3f |2

|v1|2 |∇3f |2
H(φ) dx

+
∫
Ω

|v t
2 ∇3f |2

|v2|2|∇3f |2
(
1−H(φ)

)
dx + ν

∫
Ω

∣∣∇H(φ)
∣∣dx.

(18)

The contour evolution (12) then corresponds to the gradient
descent evolution on the embedding functionφ:

∂φ

∂t
= δ(φ)

[
ν div

(
∇φ

|∇φ|

)
+ e2 − e1

]
, (19)

with ei as defined in (13). In numerical implementations,
we use for the delta functionδ(φ) = d

dφH(φ) a smoothed
approximation of finite widthτ , as suggested in [3]. De-
pending on the size ofτ , this permits to detect interior con-
tours, as shown in the results of Figure 5.

Minimization with respect to the motion parametersv1

andv2 will again lead to an eigenvalue problem of the form
(11) for the3× 3-matrices

M1 =
∫
Ω

∇3f∇3f
t

|∇3f |2
H(φ)dx, M2=

∫
Ω

∇3f∇3f
t

|∇3f |2
H̄(φ)dx,

whereH̄ = 1−H. As in the explicit scheme, we minimize
the functional (18) by alternating the update of the motion
vectorsvi with the iteration of the contour evolution (19).

7. Numerical Results
7.1. Segmenting Multiple Motion
To evaluate the explicit scheme introduced in Section 5, we
used the Avengers sequence.1 A moving car is captured by
a moving camera.

Figure 1 shows segmentation results obtained on frames
18 through 34. We fixed an initial contour (left), deter-
mined the spatio-temporal derivative for the given pair of
consecutive frames and iterated the minimization of energy
(6), alternating the motion estimation (11) and the contour
evolution (15). Despite the model hypothesis of constant
motion per region, the segmentation is fairly robust to non-
translatory motion. Once the car starts turning the segmen-
tation slowly degrades — see the last image in Figure 1.

Minimizing energy (6) simultaneously generates a seg-
mentation of the image plane and an estimate for the mo-
tion in the separate regions. The motion estimated for the
first two frames in the sequence is shown in Figure 3. Both

1We thank P. Bouthemy and his group for providing us with the image
data from the Avengers sequence.
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Figure 1: Segmentation of multiple motion for the frames 18–34 from the Avengers sequence: Contour evolution for the functional
(6) with an explicit contour initialized as shown in the top left image. The first two images show the evolution of the contour for the
first pair of frames, the following images show the segmentation obtained for consecutive frames. Both the car and the background
are moving. Despite the model hypothesis of constant motion per region, the segmentation is fairly robust to non-translatory motion
and only slowly degrades once the car starts moving perpendicular to the viewing plane (right).

Figure 2: Motion segmentation with an explicit contour for the frames 35–45 from the Avengers sequence. The contour is
initialized as shown on the left, then the minimization of (6) is iterated a fixed number of steps on each pair of consecutive frames
(the first two images showing frame 35). The comoving shadow is initially associated with the car, but attributed to the background
later on. Indeed, due to its semi-transparency, it is unclear whether the shadow is part of the car or not. There is no hypothesis of
motion continuity, therefore our approach can also be used for estimating temporally discontinuous motion and for tracking.

Figure 3: Motion estimate generated by minimizing energy
(6) for the first two frames from Figure 1. Both car and back-
ground move at different velocities – cf. Fig. 1, 2nd image.

the car and the background are moving, with velocities of
different direction and magnitude.

Figure 2 shows similar results for the frames 35–45 of
the Avengers sequence. The proposed method always uses
only two consecutive frames. Although using more than
two frames has been shown to stabilize the problem of mo-
tion estimation, we believe that using only two frames has
several advantages, in particular:

• No hypothesis is made on temporal continuity of the
motion. Therefore temporally discontinuous motion
can be estimated and segmented as well.

• Only two consecutive frames are used, motion estima-
tion reduces to a simple eigenvalue problem and the
contour evolution to an update of a few control points.
Therefore the proposed method is amenable to real-
time implementations for online tracking.

7.2. Segmenting Multiply Connected Regions
To evaluate the implicit scheme introduced in Section 6, we
used two consecutive frames from a sequence showing a
moving object which is not simply connected: A roll of
scotch tape is moving on a newspaper.

Figure 4 shows the initial contour and the contour evolu-
tion obtained by minimizing energy (18) which amounts to
alternating the gradient descent (19) and the motion param-
eter update (11). The images in the top row show one of the
two consecutive frames with the evolving contour and the
estimated motion superimposed.

The figures in the bottom row show the corresponding
evolution of the embedding surfaceφ, underlying the con-
tour evolution. It explains the change of contour topology
from the fourth to the fifth image.

Figure 5 shows the same segmentation process for a dif-
ferent initialization. These images demonstrate that the con-
tour converges over fairly large distances. Moreover, our
numerical scheme is capable of detecting interior motion
boundaries.
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Figure 4: Level set motion segmentation for the energy (18).Top row: One of the two input images (showing a scotch tape
moving on a newspaper) with the evolving contour and the estimated motion superimposed. Note that the object of interest is
hardly distinguishable from the background on the basis of its intensity. Yet, the minimization of a the energy (18) generates both
a segmentation of the image plane and an estimate of the motion in each region.Bottom row: Corresponding evolution of the
embedding surfaceφ. The evolving surface induces a change of the contour topology from the fourth to the fifth image. Moreover,
the embedding surface is less negative in regions of weak gray value structure because these are less easily ascribed to one or the
other motion hypothesis.

Figure 5: Detecting interior motion boundaries.Top row: Evolving motion boundary and estimated motion superimposed on the
first of the two input images.Bottom row: Corresponding evolution of the embedding level set functionφ. The transition form the
third to the fourth image illustrates the process of detecting interior motion boundaries.

7.3. Segmenting Several Moving Objects

The following example presents an application of the level
set framework (18) in a real-world traffic scene showing
several moving objects with a differently moving back-
ground. We used two consecutive images from a sequence
recorded by D. Koller and H. Nagel (KOGS/IAKS, Univer-
sity of Karlsruhe).2 The sequence shows several cars mov-
ing in the same direction, filmed by a static camera. In or-
der to increase the complexity of the scene, we artificially
induced a background motion by shifting one of the two
frames, thereby simulating a moving camera.

The images in figure 6, top row, show the contour evolu-
tion with the corresponding motion estimates superimposed
on one of the two frames. The bottom row shows the evolu-
tion of the underlying level set function. Due to the level
set representation, the boundary can undergo topological
changes such as the split from the third to the fourth frame.
Therefore this framework permits to segment multiple mov-
ing objects against a differently moving background.

2http://i21www.ira.uka.de/image sequences/

8. Summary and Conclusions

We presented a probabilistic approach to the problem of
segmenting images on the basis of motion information.
Starting from a geometric interpretation of the well-known
optic flow constraint, we proposed a conditional probability
on the spatio-temporal image gradient at a pointx, given the
velocity v. From this probability model we derived a novel
variational framework for segmenting the image plane into
regions of homogeneous motion.

We showed that minimizing the proposed energy leads
to an eigenvalue problem for the motion parameters and
to an evolution for the separating motion boundary. We
demonstrated the generality of our approach by detailing
two implementations of this functional — one with an ex-
plicit spline representation of the motion boundary, and one
with an implicit level set based representation.

Numerical results on real-world image sequences
demonstrate the capacity of our approach to segment mul-
tiply moving regions (moving cars captured by a mov-
ing camera), and to segment multiply connected moving
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Figure 6: Segmenting multiple moving objects on a moving background.Top row: Evolving motion boundary and estimated
motion field superimposed on one of the two input images.Bottom row: Corresponding evolution of the embedding level set
functionφ. The motion segmentation functional permits to segment differently moving regions. Due to the level set implementation,
the contour topology is not fixed such that multiple regions can be segmented on the basis of their motion. Note that both the
location of the motion boundary and the motion estimates for cars and background are gradually improved during minimization of
the proposed energy. Minor discrepancies between the final segmentation and the car boundaries are probably due to the fact that
the gray value of the street is not sufficiently structured to permit a reliable motion estimation.

regions. We showed that the method is robust to non-
translatory motion.

We illustrated the implicit scheme by showing how the
embedding surface generates topological changes of the
motion boundary. In particular, we demonstrated that our
method is capable of detecting interior motion boundaries.

Present work focuses on generalizations of the proposed
approach to more than two motion phases [4] and to the si-
multaneous segmentation of multiple frames in a sequence.
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