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Abstract In the present paper, we derive a novel variational formu-
lation for segmenting the image plane into regions of homo-
Based on a geometric interpretation of the optic flow con- geneous motion. It is based on a simple probabilistic model
straint equation, we propose a conditional probability on for the spatio-temporal image gradient determined from two
the spatio-temporal image gradient. We consistently derive consecutive images of a sequence. We show that local min-
a variational approach for the segmentation of the image imization of an appropriate energy functional leads to an
domain into regions of homogeneous motion. eigenvalue problem for the motion parameters and to a gra-
The proposed energy functional extends the Mumford- dient descent evolution for the motion boundaries. In con-
Shah functional from gray value segmentation to motion trast to our previous approach, all normalizations comprised
segmentation. It depends on the spatio-temporal image gra-in the evolution equation are derived in a consistent manner
dient calculated from only two consecutive images of an im- by minimizing the proposed functional.
age sequence. Moreover, it depends on motion vectors for We present numerical results for two implementations of
a set of regions and a boundary separating these regions.the functional: one with an explicit spline based representa-
In contrast to most alternative approaches, the problems tion of the contour, and one with an implicit level set based
of motion estimation and motion segmentation are jointly representation. In particular, these results cover the cases of
solved by minimizing a single functional. a moving object on a moving background and of multiple
Numerical evaluation with both explicit and implicit moving regions.
(level set based) representations of the boundary shows the

strengths and limitations of our approach. 2. From the Optic Flow Constraint . ..

1. Introduction and Related Work Let f : Q x RT — R* be a gray value image sequence.
) We assume the intensity of a moving point to be constant

The estimation of motion from image sequences has a longthroughout time.  This induces the optic flow constraint
tradition in computer vision. In recent years, many ap- equation:

proaches have been proposed to segment the image plane d af of of

on the basis of this motion information. The fields of im- —flz,t) = —u+ ——w+ — =0, 1)
age sequence analysis and video compression provide nu- dt Oz dy ot

merous applications. In some approaches, motion disconwhere(u, w)t is the local velocity vector. Geometrically,

tinuities are modeled implicitly [1, 10, 9, 15]. Other ap- thjs constraint states that the spatio-temporal image gradient
proaches treat the problems of motion estimation in disjoint
of of 8f)t

sets and optimization of the motion boundaries separately

[14, 2,12, 13, 7]. Vaf = (3957 P ot
In [5], we presented a variational approach to motion

segmentation with an explicit contour where both the mo- Must either vanish or be orthogonal to the homogeneous

tion estimation and the boundary optimization are derived Velocity vectorv = (u, w, %

from minimizing asingle energy functional. Yet, this ap- ‘

proach had an important drawback: Satisfactory results Vafv=0. )

were only obtained upon applying two posterior normaliza- This constraint has been employed in many motion estima-

tions to the terms driving the evolution of the motion bound- tion approaches. Commonly — for example in the seminal

ary. work of Horn and Schunck [8] and many subsequent works
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— the square of this constraint is used as a fidelity term
In contrast, we suggest to use the angleetween the two
vectors as a measure of the orthogonality.

To this end, let: be a point with spatio-temporal deriva-
tive Vs f, and letR be a region of the image with homo-
geneous velocity. Then we model the probability that the

pointz is part of the regiorR by:
t 2

—cos?(a) _
€ = ex —
p( [v]? [Vsf[?

This probability has the following favorable properties:

P(Vif|v)

e Itis maximal if the vectors andV; f are orthogonal.
e Itis minimal if the two vectors are parallel.
e It only depends on theangle between the spatio-

temporal image gradient and the homogeneous veloc-

ity vector, andhot on the magnitudef these vectors.

3. ... to Motion Segmentation

Based on the probability measure in equation (4), we will
now define a variational approach for motion segmenta-
tion. We suggest to segment the image plénimto a set

of pairwise disjoint region®2; of homogeneous velocity;

by minimizing the functional

E((0).€) = 3 [(Flog P(Vaf|v)) do +vL(C) (6)
iR,

simultaneously with respect to the motion vectarsf each
region R; and with respect to the motion boundarysep-
arating these regions. The te{C) denotes the length of
this boundary.

Inserting the model (4), we get (up to a constant):

E({v;},C) = Z/ ”|2|vv?’jj|f|2 dz +vL(C).  (B)
This functional (6) has the simple form
B} 0)= Y ”ﬂ i‘j;”i L), @)
where VufUas!
M, = ﬁdz (8)

In numerical implementations, we replace the term
|V5f|? in the denominator bjV 5 f |2 + €2 with a small con-
stante. This guarantees that the matdlX; is always well
defined. Moreover, points with very small spatio-temporal
gradient (in the order of), i. e. weak motion information,
will contribute less to the segmentation process.

The functional (6) can be considered a generalization of
the Mumford—Shah functional [11, 16] from gray value seg-
mentation to motion segmentation.

.4. Energy Minimization

Given two consecutive imagég$s and f> from an image se-
guence, we approximate the spatio-temporal gradient by:

Vf1+f2 )
Vsf =~ 2 . 9
of (h_ﬁ (©)
From this, we determine the matrix
V3 fVsft
M= ——7" 10
VarP (10)

for each point in the image plane.

Given an initial contoulC, we minimize the energy (6)
by alternating the two fractional steps of updating the mo-
tion parameters; for the regionsR;, and of iterating a gra-
dient descent evolution for the boundaryseparating these
regions. This will be detailed in the following.

4.1. An Eigenvalue Problem

For a fixed boundarg’, minimization of the functional (6)
results in the eigenvalue problem

’Ut Mi v
vty

(11)

v; = arg min
v

The homogeneous velocity vectoy for each regionR;

is therefore given by the eigenvector corresponding to the
smallest eigenvalue of ti8x 3-matrix M; defined in (8). It

is normalized, such that the third component.is

4.2. Motion Competition

For fixed velocity vectors;, a gradient descent on the en-
ergy (6) for the boundar¢’' results in the evolution equa-
tion:
A0 __dE dL(C)
dt  dC ac ’
wheren denotes the normal vector on the boundary, the in-

=(ej—ex) n —v (12)

dices %’ and ‘j’ refer to the regions adjoining the contour,
and .
tM v,
ei= L (13)
U, U4

is an energy density.
The two terms in the contour evolution (12) have the fol-
lowing intuitive interpretation:

e The first term is proportional to the difference of the
energy densities; in the regions neighboring the
boundary. The neighboring regions compete for the
boundary in terms of their motion energy, thereby
maximizing the motion homogeneity. For this reason
we refer to this process asotion competition

e The second term minimizes the lengthof the sepa-
rating motion boundary.



5. A Spline Based Implementation

In this section, we propose an implementation of the con-
tour evolution (12) with an explicit closed spline curve:

N
C:[0,1] xR = Q, C(s,t) =Y pa(t)Buls), (14)
n=1

with quadratic periodic B-spline basis functiof, and
control pointsp,, = (2, yn)'-

One difficulty of explicit contour parameterizations is
the fact that control points may cluster in one point. This
causes the normal vector to become ill-defined and con-
sequently the evolution along the normal becomes insta-

ble. To prevent this behaviour, we use the length measure

1
L(C) = Of(%g)z ds. As discussed in [6], minimizing this

constraint enforces an equidistant spacing of control points
which strongly improves the numerical stability. The con-
tour evolution then reads:

o2C

n - v——

0s? "’

oC
rrie (ej — ex) (15)
By inserting the spline definition (14), this equation is easily
converted to an evolution for the control poipg(t).

In practice, we iterate this gradient descent for the con-
trol pointsp, (t), and update in alternation the motion en-

ergy densitieg; according to (13) and (11).

6. A Level Set Implementation

The explicit contour implementation presented in the previ-

ous section is quite fast, because the contour evolution only

involves the update of a small number of control point co-

we can embed the motion energy (6) by the two-phase func-
tional:

_ |U1t V3f\2

E (v1,v2,0) = 2 [VsfP H(¢)dx
)

18
lvg Vs f|? (18)

W (I—H(qﬁ))daj + V/}VH((;S)MJ:.
Q Q

The contour evolution (12) then corresponds to the gradient
descent evolution on the embedding functipn

99 _ Vo

ot Vol

with e; as defined in (13). In numerical implementations,
we use for the delta functiof(¢) = ﬁH(qﬁ) a smoothed
approximation of finite widthr, as suggested in [3]. De-
pending on the size af, this permits to detect interior con-
tours, as shown in the results of Figure 5.

Minimization with respect to the motion parameteis
andwv, will again lead to an eigenvalue problem of the form
(11) for the3 x 3-matrices

V3 fVsf!
!3 3

|V fl|?
whereHd = 1 — H. As in the explicit scheme, we minimize
the functional (18) by alternating the update of the motion
vectorsy; with the iteration of the contour evolution (19).

5(9) {y div( > +es— el} . (19)
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7. Numerical Results
7.1. Segmenting Multiple Motion

ordinates. Yet, explicit contour representations have certain 10 evaluate the explicit scheme introduced in Section 5, we
disadvantages. Firstly, one needs to take care of a regrig4sed the Avengers sequericé. moving car is captured by

ding of control points which are not intrinsic to the contour.
And secondly, the contour topology is fixed, such that no
contour splitting or merging is possible unless it is modeled
explicitly by some (inevitably) heuristic method.

We therefore propose an implicit level set based imple-
mentation of the functional (6). It is based on the analogous
gray value approach proposed in [3]. The idea of all level
set contour descriptions is to define the contGuas the
zero level set of a functiott : Q — R:

C={ze]¢px)=0} (16)
Using the Heaviside step function
[ 1 ife>0
H(¢>>{O o0 (17)

a moving camera.

Figure 1 shows segmentation results obtained on frames
18 through 34. We fixed an initial contour (left), deter-
mined the spatio-temporal derivative for the given pair of
consecutive frames and iterated the minimization of energy
(6), alternating the motion estimation (11) and the contour
evolution (15). Despite the model hypothesis of constant
motion per region, the segmentation is fairly robust to non-
translatory motion. Once the car starts turning the segmen-
tation slowly degrades — see the last image in Figure 1.

Minimizing energy (6) simultaneously generates a seg-
mentation of the image plane and an estimate for the mo-
tion in the separate regions. The motion estimated for the
first two frames in the sequence is shown in Figure 3. Both

1We thank P. Bouthemy and his group for providing us with the image
data from the Avengers sequence.



Figure 1: Segmentation of multiple motion for the frames 18—34 from the Avengers sequence: Contour evolution for the functional
(6) with an explicit contour initialized as shown in the top left image. The first two images show the evolution of the contour for the
first pair of frames, the following images show the segmentation obtained for consecutive frames. Both the car and the background
are moving. Despite the model hypothesis of constant motion per region, the segmentation is fairly robust to non-translatory motion
and only slowly degrades once the car starts moving perpendicular to the viewing plane (right).

=

Figure 2: Motion segmentation with an explicit contour for the frames 35-45 from the Avengers sequence. The contour is
initialized as shown on the left, then the minimization of (6) is iterated a fixed number of steps on each pair of consecutive frames
(the first two images showing frame 35). The comoving shadow is initially associated with the car, but attributed to the background
later on. Indeed, due to its semi-transparency, it is unclear whether the shadow is part of the car or not. There is no hypothesis of
motion continuity, therefore our approach can also be used for estimating temporally discontinuous motion and for tracking.

¢ Only two consecutive frames are used, motion estima-
tion reduces to a simple eigenvalue problem and the
contour evolution to an update of a few control points.
Therefore the proposed method is amenable to real-
time implementations for online tracking.

Eoes : 7.2. Segmenting Multiply Connected Regions

To evaluate the implicit scheme introduced in Section 6, we
used two consecutive frames from a sequence showing a
moving object which is not simply connected: A roll of
scotch tape is moving on a newspaper.

Figure 4 shows the initial contour and the contour evolu-
tion obtained by minimizing energy (18) which amounts to
alternating the gradient descent (19) and the motion param-
the car and the background are moving, with velocities of &ter update (11). The images in the top row show one of the
different direction and magnitude. two consecutive frames with the evolving contour and the

Figure 2 shows similar results for the frames 35-45 of estimated motion superimposed.
the Avengers sequence. The proposed method always uses The figures in the bottom row show the corresponding
only two consecutive frames. Although using more than €volution of the embedding surfage underlying the con-
two frames has been shown to stabilize the problem of mo-tour evolution. It explains the change of contour topology

tion estimation, we believe that using only two frames has from the fourth to the fifth image. . _
several advantages, in particular: Figure 5 shows the same segmentation process for a dif-

o o ferentinitialization. These images demonstrate that the con-
» No hypothesis is made on temporal continuity of the toyr converges over fairly large distances. Moreover, our

motion. Therefore temporally discontinuous motion nymerical scheme is capable of detecting interior motion
can be estimated and segmented as well. boundaries.

Figure 3: Motion estimate generated by minimizing energy
(6) for the first two frames from Figure 1. Both car and back-
ground move at different velocities — cf. Fig. 1, 2nd image.



Figure 4: Level set motion segmentation for the energy (18p row: One of the two input images (showing a scotch tape
moving on a newspaper) with the evolving contour and the estimated motion superimposed. Note that the object of interest is
hardly distinguishable from the background on the basis of its intensity. Yet, the minimization of a the energy (18) generates both
a segmentation of the image plane and an estimate of the motion in each rBgibom row: Corresponding evolution of the
embedding surfacé. The evolving surface induces a change of the contour topology from the fourth to the fifth image. Moreover,

the embedding surface is less negative in regions of weak gray value structure because these are less easily ascribed to one or the

other motion hypothesis.
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Figure 5: Detecting interior motion boundarieSop row: Evolving motion boundary and estimated motion superimposed on the
first of the two input imagesBottom row: Corresponding evolution of the embedding level set functioiihe transition form the
third to the fourth image illustrates the process of detecting interior motion boundaries.

7.3. Segmenting Several Moving Objects 8. Summary and Conclusions

The following example presents an application of the level e presented a probabilistic approach to the problem of
set framework (18) in a real-world traffic scene showing segmenting images on the basis of motion information.
several moving objects with a differently moving back-  starting from a geometric interpretation of the well-known
ground. We used two consecutive images from a sequencgptic flow constraint, we proposed a conditional probability
recorded by D. Koller and H. Nagel (KOGS/IAKS, Univer- - on, the spatio-temporal image gradient at a poirgiven the
sity of Karlsruhe): The sequence shows several cars mov- velocity v. From this probability model we derived a novel
ing in the same direction, filmed by a static camera. In or- yariational framework for segmenting the image plane into
der to increase the complexity of the scene, we artificially yegjons of homogeneous motion.
induced a backgr'ound .motion by shifting one of the two  \we showed that minimizing the proposed energy leads
frames, thereby simulating a moving camera. to an eigenvalue problem for the motion parameters and
The images in figure 6, top row, show the contour evolu- to an evolution for the separating motion boundary. We
tion with the corresponding motion estimates superimposeddemonstrated the generality of our approach by detailing
on one of the two frames. The bottom row shows the evolu- two imp|ementations of this functional — one with an ex-
tion of the underlying level set function. Due to the level pjicit spline representation of the motion boundary, and one
set representation, the boundary can undergo topologicalyith an implicit level set based representation.
changes such as the split from the third to the fourth frame.  Numerical results on real-world image sequences
Therefore this framework permits to segment multiple mov- gemonstrate the capacity of our approach to segment mul-
ing objects against a differently moving background. tiply moving regions (moving cars captured by a mov-
2http://i21www.ira.uka.defimage _sequences/ ing camera), and to segment multiply connected moving




Figure 6: Segmenting multiple moving objects on a moving backgroufap row: Evolving motion boundary and estimated

motion field superimposed on one of the two input imagBsitom row: Corresponding evolution of the embedding level set
function¢. The motion segmentation functional permits to segment differently moving regions. Due to the level setimplementation,
the contour topology is not fixed such that multiple regions can be segmented on the basis of their motion. Note that both the
location of the motion boundary and the motion estimates for cars and background are gradually improved during minimization of
the proposed energy. Minor discrepancies between the final segmentation and the car boundaries are probably due to the fact that
the gray value of the street is not sufficiently structured to permit a reliable motion estimation.
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