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Abstract

We are developing a vendor-independent archive and on top of that a data warehouse for
mass spectrometry metabolomics data. The archive schema resembles the community-
developed object model, the Java implementation of the model classes, and an editor (for
both mzData XML files and the database) have been generated using the Eclipse Modeling
Framework. Persistence is handled by the JDO2 -compliant framework JPOX. The main
content of the Data Warehouse are the results of the signal processing and peak-picking
tasks, carried out using the XCMS package from Bioconductor, putative identification and
mass decomposition are added to the warehouse afterwards.

We present the system architecture, current content, performance observations and describe
the analysis tools on top of the warehouse.

Availability: http://msbi.ipb-halle.de/

1 Introduction

Mass spectrometry (both GC-MS and LC-MS) has become the workhorse technology for Meta-
bolomics, measuring the abundance of a large number of metabolites in parallel.

For hypothesis-driven and targeted experiments spreadsheets and other “light-weight” storage
and processing mechanisms are usually sufficient. With the ambitious goal of metabolomics
covering the whole range of metabolites and quest for data-driven analysis, structured and high-
performance data storage is mandatory.

Recent developments in the metabolomics community have led to data exchange standards like
mzData [10] and mzXML [11], which are currently being merged. Several databases have been
created for mass spectra, such as the METLIN database [14] for FTICR and MS2 spectra, or
the BinBase and SetupX system [2] for GC-MS data.

Datawarehouses are used to integrate data from multiple sources and operative (OLTP) database
systems optimized for retrieval and analysis (OLAP). The BioMart system [7] provides a frame-
work for building and querying large biological databases, with both a web-frontend, stan-
dalone design- and querying tools and a flexible command line interpreter. The BioMart was
initially designed for the EnsEMBL sequence repository. For “green bioinformatics” the Plant
Data Warehouse (PDW) has been created [4], which covers data on plant phenotypes, sequences
and expression levels.

This paper is structured as follows: in the next section we give an overview of the kinds of
metabolomics data we incorporate into the MetHouse system, followed by the description of
the data preparation and import steps. We finish with a conclusion and outlook.
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2 Metabolomics Data

A typical metabolomics experiment measures and compares multiple samples on a GC-MS or
LC-MS machine. The raw signals have to be processed and aligned to be comparable across the
runs. For a successful biological interpretation the signals have to be annotated and if possible
identified.

2.1 Experimental Metadata

In a classic, hypothesis driven experiment, several plants are grown and the extracts are mea-
sured for their metabolite content. To be useful beyond this individual experiment, the MS data
needs to be annotated with the experimental metadata. We have chosen the Architecture for
Metabolomics (ArMet) model [6] to capture the biological source of the subjects under study,
the growth condition and treatment history and follows all steps of the samples towards the
machine analysis. Furthermore each piece of information is connected to the large scale exper-
iment, the person responsible for the experimental step and a time stamp. A database-enabled
infrastructure is described in [8].

In a data-driven scenario, all previously recorded experiments can be mined for repeating pat-
terns and high correlation between the biological context and the measurements. Those findings
can be used as additional functional annotation which was not in the focus of the original ex-
periments.

Capturing the history of the experiment is also crucial for quality control purposes. If, for ex-
ample, a set of plants is clearly different regardless of the respective treatment, correlation with
the experimental metadata could reveal two sets of seed batches being used. Or in a medical
setting where the response of guinea pigs to the therapy is observed, unexpected metabolic
states could be connected with a special diet (“treats”) on Thursdays.

2.2 Mass Spectrometry Data

In both GC-MS and LC-MS the samples are first separated by a chromatographic column. The
duration of a typical experiment can vary between a few minutes and an hour. The chromato-
graphic column is connected to the mass spectrometer, and mass spectra are taken at frequencies
typically between 100s−1 and 0.5s−1.

We use the term raw data for the mass spectrometry full scan data, as exported from the machine
and shown in figure 1. This can be exported from the machine, and converted into the data
exchange format mzData. The conversion adds meta-data to the spectra, such as the Spectrum
Type, MS-level and Polarity.

However, the raw data is too detailed for biological interpretation, where only the integrated
intensities are of interest. Therefore the raw data is subjected to a set signal processing steps,
which extract a baseline, filter noise, detect and quantify individual peaks. Often this step is
time-consuming, and hence the peak data needs to be stored along with the raw data and the
software parameters used to create them.

http://journal.imbio.de/
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Figure 1: Left: 3D representation of LC-MS run typically with 4.5 to 5 million data points. The
XCMS package condenses this into few thousand peaks. Right: Close-up of raw data for an
arbitrary peak with mass mz=216.1 at time RT=290 sec.

2.3 Metabolite Identification

The identification of metabolites can be performed with different and complementary approaches.

Where libraries of spectra from identified compounds exist, a database lookup based on the
mass spectra can be performed. For GC-MS based metabolomics there is a solid and growing
set of compounds in e.g. the commercially available NIST library1 or plant-specific selections
in the Golm Metabolome Database2 (GMD) [9]. The KNApSAcK system [12] includes chem-
ical information on a large number of secondary metabolites, and also an online- or standalone
browser. For LC-ESI-MS those libraries are often collected in-house.

For high-resolution mass data de-novo identification is possible, because the exact mass is a
linear combination of the individual atom masses for each element. In addition, the isotope
distribution can be taken into account to filter the initial result set. Such a package is DISOP
(Decomposition of ISOtope Patterns) by Böcker et al. [1]. Others are included e.g. in vendor
specific software, usually not easy to integrate in a software pipeline.

3 Implementation

In this section we describe the modules which together comprise the MetHouse. This includes
archival of the raw data as exported from the mass spectrometer, and import of processed peaks
into the warehouse. Finally, the peak data has to be connected to annotation, including links
to chemical databases for identified compounds. An overview of the architecture is shown in
figure 2.

1http://www.nist.gov/srd/nist1.htm
2http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/gmd.html
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Figure 2: Overview of the
MetHouse architecture. The
output of the processing mod-
ules XCMS, DISOP, and Annot
are imported into the dataware-
house. Multiple sources for
Metabolite Identification are
extracted from the original
sources, transformed into a
common schema and loaded
into the datawarehouse.

3.1 Peak storage and processing

For a detailed description of our raw data archive see [8]. It is designed to store the mass
spectrometry raw data, including both complete LC-MS runs and individual MSn spectra taken
from peaks of interest. Adhering to the mzData standard guarantees both the availability of
converters (either from machine vendors or third parties) and at the same time detailed meta-
data (e.g. machine parameters) in the file. We also performed a benchmarking to show the
timing for both import and retrieval of raw data, shown in figure 3.

Signal processing is part of the preprocessing step that operates on the raw data. The signal
processing is done using the Bioconductor package XCMS [13].

A peak is described by its centroid expressed in mass and retention time, the minimum/maxi-
mum for mass and retention time and its intensities (using several quantification methods). The
XCMS-parameter settings are stored along with the peak data, so peaks from a single input can
be processed multiple times and distinguished or even filtered based on those settings.

Peak data is imported from within the R environment, so no temporary files have to be cre-
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Figure 4: BioMart frontend for
retrieval of compound informa-
tion. The litlist has informa-
tion on arabidopsis secondary
metabolites compiled from the
literature, and includes modifi-
cations expected in ESI-LC-MS.

ated. Since the database is connected via RODBC, many different RDBMS can be used for
storage. For Oracle servers the native database interface (ROracle) has to be used, unless the
commercially available ODBC drivers are installed. To improve speed, the import is done using
prepared statements. However, usually the signal processing steps are the limiting factor.

3.2 Identification

Compound libraries are imported by parsing the respective flat files and kept in the staging area.
For libraries in the NIST format *.MSP this is done using perl and the perl-DBI database API.
The in-house library of MS2 spectra is already kept in an RDBMS.

Before transfer into the data warehouse, the records are filtered (e.g. compounds irrelevant
to plant research) or corrected/augmented (e.g. recalculating the exact mass in KEGG, which
provides only two decimals for the mass). The isotope pattern can also be added, based on the
elemental composition of the molecule.

The DISOP library is written in optimized C++ code. We wrapped the DISOP library into an
R-package, so it can easily operate on both the XCMS output and MetHouse database content.

3.3 Data Warehouse

The data warehouse is built around the BioMart, which is a powerful and open-source frame-
work for biological datawarehouses, and integrates well with both the Bioconductor project [3]
and the Taverna workflow system [5]. A screenshot of the web interface is shown in figure 4.

Possible queries on the peaks are e.g. the retrieval of mass and retention time of the internal
standards, to check for the stability of the machine calibration. Currently the data warehouse
contains the data shown in table 1. The server is an AMD64 X2, 2GB Ram, 4*300GB SATA
disks in RAID5 configuration running PostgreSQL 8.1.4.

http://journal.imbio.de/
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Objects Content Source
Compounds LitList 1412 In-House Excel Sheet & Macro

Compounds MS2 89 In-House Spectra Library
Compounds GMD 1166 csbdb.mpimp-golm.mpg.de

Compounds KEGG 1100 www.genome.jp
Compounds KNApSAcK 99273 kanaya.aist-nara.ac.jp

LC-MS Experiments 41 MzData Archive
Processed Peaks 52778 XCMS peak picking

Table 1: Current number of objects in MetHouse. The compounds already imported have been
selected for their relevance to arabidopsis metabolomics research. The number of peaks per ex-
periment ranges from 1203 to 1426.

4 Summary & Outlook

We have chosen and combined several open and extensible technologies for RDBMS, ORM,
signal processing, data warehousing and statistics. The MetHouse system is currently under
development, and even in this early stage includes a number of sources for each of the required
steps in metabolomics data analysis.

It is also possible to store peaks for which no raw data is available, i.e. to circumvent XCMS
preprocessing. In this case the peak lists have to be transformed during the ETL process to con-
form with the schema. Some post-processing, e.g. chromatogram based peak-shape correlation
calculations are then not possible.

The planned inclusion of e.g. direct-injection FTICR3 will also (by definition) have to replace
XCMS preprocessing, but will equally benefit from the compound identification.

Further work will improve the connectivity to efforts currently developed in the metabolomics
community, such as BioMoby services for the individual data sources, or processing services
for mass spectrometry data. This way, complete mass spectrometry workflows can be created,
using e.g. the GUI from the Taverna project. Eventually, joining data from the available -omics
technologies will put functional genomics on the fast track.
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