
Conductor : Distr ibuted Adaptation for Complex Networks
� �

Mark Yarvis, An-I A. Wang, Alexey Rudenko, Peter Reiher, and Gerald J. Popek
{ yarvis, awang, arudenko, reiher, popek} @ fmg.cs.ucla.edu

University of Cali fornia, Los Angeles
Tech Report: CSD-TR-990042

Abstract
� �

Computer networks are becoming more complex and
diverse. Increasingly, an end-to-end connection will t rav-
erse several l inks with orders of magnitude differences in
characteristics such as bandwidth, latency, error rate, jit-
ter, and monetary cost. At the same time, most applica-
tions assume a level of network characteristics below
which they either provide no service, or service at a cost
higher than the user is wil ling to pay.

Conductor is an adaptation framework that moves the
responsibili ty for network complexity out of the applica-
tion and into the network. Conductor allows an applica-
tion’s use of the network to be tailored to the needs of the
user in a manner that is transparent to the application.
Conductor allows adaptation to be distributed to the
points in the network where it is required. Further, Con-
ductor allows arbitrary adaptations without compromising
reliabili ty. Finally, Conductor requires minimal changes
to existing systems. All of these characteristics are incor-
porated into a single, integrated framework.

Conductor has been shown to be effective in important
classes of problems in mobile computing, where network
complexity is most prevalent today. This paper describes
the Conductor architecture and presents experimental
results indicating that transparent, distributed adaptation
can significantly improve the user’s experience in com-
plex networks.

1 Introduction
Network applications often have major problems when
network characteristics change during use. Applications
must adapt to these changes to provide satisfactory serv-
ice. An application’s communications may cross land-
lines, satellit e links, dial-up service, wireless relays, and
asymmetric links, often without user or application
awareness. These various links differ in many ways, and
even a single type of link can vary substantially, causing
severe problems. Early attempts at Internet telephony
 �
 This work was partially supported by the Defense Advanced Research

Projects Agency under contract DABT63-94-C-0080.

were largely rejected due to frequent unexplained seg-
ments of garbled content. Some users abandoned the
Web because of unpredictable and intolerable delays in
accessing graphically dense, but information light, con-
tent. There are many other examples.

Researchers are already aware of the effects of wide
variations in bandwidth, delay, underlying reliabili ty,
noisiness, jitter, cost, security and other factors. Several
solutions to particular variation problems have shown
great benefit [Cohen98] [Balakrishnan95]. But these so-
lutions handle only parts of the general problem, and that
problem is likely to worsen soon. Mobili ty will cause
more computers to interact with more kinds of networks,
often under difficult conditions. Paths combining wired
links and wireless links are likely to be as common to-
morrow as cellular telephony for audio conversations is
today. Such combined paths will cause further complica-
tions.

Network applications can adapt their behavior to these
changing conditions in many ways, while still delivering
the necessary services: reducing the fideli ty of the trans-
mission of video, graphics and audio; switching to text
only; adding application-level redundancy for critical
values; encrypting sensitive content; etc. An obvious way
to add such adaptivity is to change the application itself.

However, changing the application can be complex.
First, the application must be able to recognize relevant
network changes. Then it must perform the appropriate
adaptation, preferably without disrupting its ongoing op-
eration. Applications can usually only perform adapta-
tions at their endpoints, rather than within the network,
since they generally treat the network as a black box. But
some network problems are best solved in the network,
close to the problem.

Changing the application to handle network variations
may be unreasonable. It adds to the cost and complexity
of application development, since it requires programmer
expertise in networking, which may be unrelated to appli-
cation expertise. Further, legacy applications may require
re-working to run in complex networks. Finally, using a
newly developed adaptation (e.g., a jitter-smoothing
function) would require retrofitting many applications.

Choosing the location of adaptations is also difficult. For
important simple cases, a single locus of adaptation is
sufficient [Fox97]. If the data transmission only encoun-
ters one troublesome link, adaptation around that link is
sufficient. But as networks become more complex, more
links in the transmission will cause problems, requiring
solutions that deploy and coordinate adaptations at multi-
ple locations.

Many useful adaptations fundamentally alter the data
content delivered to the end application. Dropping
frames from a video, converting color images to black-
and-white, and delivering text in the place of voice are
some examples. This style of adaptation is challenging,
since the most popular reliable transport protocol, TCP,
assumes that all bits that are sent will be received. Some
adaptation mechanisms avoid this problem by not sup-
porting TCP. Others do not allow these types of adapta-
tion. Still others introduce mediating agents to trick TCP,
unfortunately introducing new points of failure to do so.

A comprehensive solution to network adaptation should
possess these characteristics:

• The content of the information being exchanged must
be considered [Noble97]. For example, dropping
color information can reduce the bandwidth require-
ment of a video transmission. Doing so requires rec-
ognizing that the data type is video in a particular en-
coding format. The adaptors chosen for this trans-
mission must be selected carefully, or the result will
be undesirable, perhaps destroying content. Fortu-
nately, most data exchanged in networks today is
strongly typed, self describing, and easily identified.
Such data can be adapted outside the application.

• Multi-machine adaptation must be coordinated.
Many adaptations require that multiple machines
participate. Compression is a simple example. If a
compressor is deployed at one end, a decompressor
must be employed at the other.

• Deciding which adaptors to execute for a given oc-
currence of a given application, in what order, and on
what sites in the network can be difficult. The sys-
tem must collect environment information, create a
plan, and make good decisions, all at a low cost.

• Reliabili ty becomes tricky. If data is being inten-
tionally altered, what services should the communi-
cations facili ty provide? Guaranteed delivery of all
bits submitted to the pipe is unsuitable, since the ad-
aptation facil ity may intentionally drop some bits. In
particular, the services of TCP are not suff icient.

• A general framework for adaptor interaction is re-
quired. Multiple adaptor groups need to work to-
gether, both nested and sequentially; late binding is

essential; results are order-dependent; and independ-
ently developed adaptors must be incorporated.

Conductor is an application-level framework that demon-
strates these characteristics. Conductor dynamically de-
ploys multiple adaptors to improve an application’s
communication paths. Adaptors can be nested, deployed
serially, or both. The framework is robust to adaptor fail-
ures. It uses semantic segmentation to repair such fail-
ures without resetting the channel. Conductor uses a
planning algorithm to decide which adaptors to deploy.

Early experience with Conductor suggests that it works
well . Measurement and observation indicate substantial
improvements in the user’s experience. Our research
provides considerable evidence that general, application-
external, dynamically negotiated communications adap-
tation involving multiple, cooperating locations is a
promising approach.

Below, Section 2 first summarizes existing approaches to
providing adaptivity in networks. Section 3 describes the
design and implementation of Conductor. Section 4 gives
performance results, and Section 5 discusses how widely
applicable Conductor might be. Section 6 discusses on-
going and future work. Section 7 concludes.

2 Related Work
The general problem of adapting data flows for varying
network conditions has been studied for several years,
and has led to the development of several successful sys-
tems. These systems demonstrate that the general ap-
proach of adapting data sent over varying networks can
produce acceptable results at reasonable costs. Below we
outline their contributions and discuss their influence on
our work.

2.1 Proxies
One simple and powerful method of providing adaptation
for varying networks is to create a proxy site to assist in
the use of such networks. This approach is especially
applicable to mobile computers using wireless networks.
Generally, a proxy is a well-connected, powerful com-
puter that understands the characteristics of the client
computer and the nearby network. It can adapt incoming
data flows to customize them for the computer’s particu-
lar capabiliti es or to match the characteristics of the data
flow to the limitations of the network.

One of the most advanced proxy solutions is the Berkeley
proxy [Fox97]. This system uses cluster computing tech-
nology to provide a shared proxy service for a wide vari-
ety of PDAs used at UC Berkeley. The proxy is capable
of providing many important services, including trans-
formation (changing the data from one format to another),
aggregation (combining several pieces of data into one),

caching, and customization (typically converting a data
format into one suitable for a particular PDA). The Ber-
keley researchers have investigated methods of compos-
ing adaptations on a single machine [Gribble99]. They
have also examined how to use a clustered proxy service
to provide highly reliable, scaleable services to a large
number of customers.

The Berkeley proxy design, like all other proxy systems,
assumes a single point of adaptation, at the proxy server.
Mechanically, multiple proxy sites can work on a single
data flow, but the proxy paradigm provides no assistance
in making them cooperate.

Proxy solutions vary in their degree of transparency.
Most require the user to designate a chosen proxy site.
Some also require special coding or alteration of pro-
grams, though others work with unaltered code.

2.2 Transformer Tunnels and Protocol
Boosters

In many cases, the most effective way to handle difficult
network conditions is to alter the behavior of the commu-
nication protocol. For example, if a wireless network
charges money for each packet sent, consolidating small
packets into larger packets before sending them over that
network would be desirable. As another example, trans-
missions over a noisy link may benefit from adding re-
dundant error correcting codes to the packets sent by the
standard protocol.

Transformer tunnels [Sudame98] and protocol boosters
[Mallet97] are two technologies that have demonstrated
the benefits of this approach. Transformer tunnels use IP
tunneling to alter the behavior of a protocol over a trou-
blesome link. Generally, the method is used to provide
protocol-level adaptations, such as consolidation of pack-
ets, scheduling of transmissions to preserve battery
power, encryption, lossless compression, and buffering.
Transformer tunnels usually work with TCP, generally
precluding adaptations that fundamentally and perma-
nently alter the contents of a data packet. Transformer
tunnels are transparent to applications, but do not provide
support for composition of adaptations.

Protocol boosters are modules inserted into protocol
graphs to handle difficult l inks. Normally, their adapta-
tions are transparent to the underlying protocol and the
user and application. If not, they are deployed in pairs,
with one booster performing a reversible adaptation and
the other undoing it before the packets are presented to
the next node or link. One sample use of protocol boost-
ers is to insert redundant error correction packets on the
incoming end of a noisy link. A paired booster on the
other end strips off the error correction packets, possibly
using them to regenerate any real packets that were cor-
rupted by the noise.

Protocol boosters are composable, but the booster system
does not provide support for determining if a given set of
protocol boosters will perform well together. Generally,
protocol boosters are assumed to provide lossless adapta-
tions, since the system provides no support for ensuring
reliable delivery if some packets are dropped or perma-
nently altered.

2.3 Active Networks
Active networks are an attempt to add substantial
amounts of adaptivity into the network infrastructure
[Tennenhouse96] [Wetherall98]. In the active network
paradigm, potentially each packet would execute special
code at each visited router to determine its proper han-
dling. In some active network models, the scope of this
special code is extremely limited to a set of useful op-
tions. In others, any arbitrary action is permitted within
security and resource limitations imposed by the network
infrastructure.

Active networks thus provide an extremely general adap-
tation mechanism. Key design issues remain unsolved for
active networks, including security mechanisms, costs,
and proper architectures. Active network researchers are
only beginning to look at issues of composibility of ad-
aptations and reliabili ty of their adapted data streams. In
the long term, active networks may offer a superior way
to solve the problems of adapting data streams of all
forms in all circumstances, and to deploy the kinds of
facili ties discussed here. However, the success of this
networking paradigm is not yet certain, and usable im-
plementations of active networks are not currently avail-
able.

2.4 Application-Aware Adaptation Methods
While transparency of adaptation has many advantages, a
well-designed application prepared to deal with varying
network conditions is likely to perform better in impor-
tant circumstances. Several groups have produced key
system services for designing and building applications
that participate in adapting to changing conditions.

The Rover toolkit [Joseph95] assists in designing appli-
cations to work in a mobile environment, focusing par-
ticularly on issues of varying and limited connectivity.
Rover employs two key concepts, queued RPC and relo-
catable dynamic objects, to support mobile computers’
network operations. Queued RPC allows RPC requests to
be delayed until connectivity permits their completion.
Relocatable dynamic objects allow a service to migrate
between client and server to interact with a service,
avoiding trips across a weak link. These facili ties allow
recoded programs to achieve substantial improvements in
key performance metrics. Rover is designed primarily to
deal with communications between a single mobile client

and a fixed server across one bad link. It contains no
explicit support for composing different adaptations
(though its programming model would certainly allow
composition), and it requires reprogramming for applica-
tions to use its tools.

Odyssey [Noble97] is a system service designed to sup-
port applications on mobile computers that expect to deal
with varying network services. Odyssey pays particular
attention to the issues of supporting multiple networking
applications on a single mobile computer simultaneously,
and to the value of cooperation between the applications
and the operating system. Applications register their
needs with Odyssey and provide upcalls to invoke when
their needs can no longer be met. Odyssey wardens me-
diate between applications and servers, performing cach-
ing, for example. Wardens understand specific details of
particular types of data flows and adaptations. The Odys-
sey viceroy controls resource sharing among multiple
adaptations on a single mobile machine. When condi-
tions change (either better or worse), the viceroy invokes
the upcalls registered by the applications, informing them
of the current limitations on resource usage. These upcall
notifications allow applications to adapt their behavior to
match the current conditions.

Odyssey has demonstrated significant benefits to applica-
tions sharing the same device and network, again showing
that application participation in adaptation can provide
valuable improvements. Odyssey is intended to deal with
one difficult link between the client and server. Individ-
ual applications and wardens can compose adaptations in
ad hoc ways, but support is not provided for composition
of adaptations occurring at other nodes. Reliabili ty can
be very high at the destination node, since applications
can be coded to deal with various kinds of failures, but
failures elsewhere are not addressed.

2.5 Compar ison to Related Work
The systems discussed above have demonstrated the
value of adapting data flows for varying networks, and
have shown the practicali ty of the concept for realistic
situations. Conductor builds upon them, providing a
framework for dynamic deployment and management of
distributed adaptation.

Unlike proxy solutions, Conductor allows adaptations to
occur at multiple locations in the network. This capabil-
ity is shown (Section 4.4) to provide major advantages in
realistic circumstances.

Unlike transformer tunnels and protocol boosters, Con-
ductor allows lossy adaptations and provides assistance in
composing adaptations. Also, Conductor has an end-to-
end reliabili ty model that these methods lack.

Conductor is based on existing, widely deployed network
technology, unlike active networks. Deploying Conduc-
tor on a node requires a single, small kernel modification,
rather than a complete change in the underlying net-
working paradigm.

Conductor does not require applications to be re-coded or
even recompiled. While it forgoes some of the possibil i-
ties that systems like Rover and Odyssey exploited, Con-
ductor has the advantage of working with off -the-shelf
applications.

Despite these differences, it should be stressed that Con-
ductor was built with the lessons learned from all of these
systems in mind. Many aspects of Conductor leverage
this earlier work.

3 Conductor Design and
Implementation

Conductor was designed to support many styles of data
communications. For instance, mobile computers may
choose to communicate with arbitrary partners, some of
which may also be mobile. In many cases, the networks
used to transmit the data may exhibit a wide set of prob-
lems at any point. In particular, the partners, the net-
works, the links used, and the problems encountered may
be diff icult to predict. In the absence of direction from
the user or the application, the Conductor system will
strive to deliver the data at the highest possible quali ty.
Since many types of data flows (e.g., HTTP, video
streams, e-mail) are largely self-identifying, Conductor
should be able to determine what sort of data is being
transported and choose adaptations suitable for the data
type automatically.

3.1 Conductor Design Pr inciples
• Application unawareness – Conductor should assume

that, in general, applications are unaware of the char-
acteristics of the networks they use and the problems
they encounter. Conductor thus does not rely on any
assistance from the application. Conductor does not
even expect the application to flag particular data
transmissions as suitable subjects for adaptation.

• Arbitrary adaptation – Conductor should support any
form of adaptation that proves useful. In particular,
Conductor’s design characteristics should not rule
out classes of adaptations, such as lossy compression
or pre-fetching.

• Distributed adaptation – For important cases, adapta-
tion must occur at multiple points in the network in
support of a single data flow. In principle, Conduc-
tor should allow adaptation at every node or router
visited by the data flow. In practice, Conductor must

be prepared to work with the subset of nodes or
routers that are will ing and able to participate.

• Composabili ty of adaptations – In general, a data
flow may benefit from multiple adaptations applied
at different locations in the network. Conductor must
handle both mechanical and semantic implications of
passing the data flow through these multiple adap-
tors.

• Planning – Conductor’s abilit y to select a set of
adaptors that improve the user’s experience is key to
its success. Conductor must create a plan for the de-
ployment of adaptors in support of a data flow. Since
this plan may include composition of several adapta-
tions, Conductor must ensure compatibili ty between
adaptations.

• Reliabili ty – Many useful forms of adaptation alter
the data, sometimes even removing some content.
Protocols like TCP expect every bit sent to be deliv-
ered, eventuall y. Conductor must ensure that se-
mantically meaningful data is reliably delivered, de-
spite adaptations that may alter the data’s form.

• Easy deployabili ty – Conductor should be easily in-
tegrated with a popular, widely used system, and
should require minimal alterations to that system.

3.2 Conductor Architecture
Conductor is a stream-oriented adaptation service in-
tended to be present on various nodes in a network. Pref-
erably these nodes will be at or near gateways between
networks of differing characteristics, so adaptation mod-
ules can be deployed at these points. Conductor consists
of two main pieces: adaptors, and the framework for de-
ploying those adaptors.

Conductor adaptors are self-contained pieces of code that
perform some particular adaptation, often only for a par-
ticular type of data stream. The set of Conductor adaptors
is expandable. Each Conductor node might have a differ-
ent set of adaptors available for local use. Adaptors are
frequently (although not necessarily) paired, converting
from a given protocol to a protocol better suited to the
transmission medium, and back to the given protocol.

By conforming, at the endpoints, to the protocol expected
by the user application, Conductor is able to provide an
application transparent service. However, paired adaptors
need not regenerate the original data flow, nor are they
necessarily user-transparent. Adaptors may deliver any
data to the application, so long as it conforms to the ex-
pected protocol. For instance, an adaptor may cause a
color image to be transformed to a black-and-white im-
age, or frames to be dropped from a video stream. These
adaptations will clearly affect the user’s experience.

Conductor provides a framework to support the operation
of adaptors. Figure 1 shows the architecture of Conduc-
tor on a single node, consisting primarily of a user-space
module that handles monitoring of data flows, delivery of
data streams to local adaptors, transmission of data
streams between Conductor nodes, planning for new data
flows, and recovery and reliabili ty. In addition, in most
systems Conductor requires a small kernel modification
to trap new data flows, allowing Conductor to examine
them for possible adaptation and initiate planning. In
some systems, existing extensibili ty mechanisms may
allow trapping of data flows without kernel modifications
[Mosberger96].

When a new data flow is started by an application (which
is unaware of the presence of Conductor and of the pre-
vail ing network conditions), Conductor traps the opening
of its socket. Conductor currently only traps TCP sock-
ets, but can be extended to handle other protocols. Con-
ductor examines information about the socket (and possi-
bly information about the first few bytes of data sent to
the socket) to determine if the system understands the
format of the data well enough to handle it. Conductor
has moderately heavy setup costs, so it will usually not
try to assist extremely short data streams. Assuming
Conductor does understand the data format and expects
that the setup costs will be dominated by the adaptation
benefits, it effectively kidnaps the TCP socket, providing
the il lusion of end-to-end TCP, when actuall y Conductor
is handling the reliable end-to-end delivery of data.

Once Conductor has chosen to intercept a connection, it
must form a path over which data will flow. Presumably
this path will contain both Conductor-enabled and non-
enabled nodes. Conductor follows the normal routing
path and probes for Conductor-enabled nodes along the
way. As this path of potential adaptation sites is formed,
information about local network conditions and node ca-
pabiliti es are gathered from each Conductor node discov-
ered and forwarded along the path. Once the path is
formed, therefore, the information required to generate a

TCP

Interception Layer

Adaptor
Runtime

User
Applicaiton

User Space
Kernel Space

E
nv

ir
on

m
en

t
M

on
it

or

Pl
an

ne
r

Conductor

Figure 1: The Conductor architecture deployed on a
node.

plan has been collected at the destination node. This in-
formation is used to generate a plan for which adaptors to
deploy. This plan is then delivered back to the partici-
pating nodes in one round-trip message, causing a data
path to be created with the appropriate adaptors inserted.

Conductor requires some method of reliably delivering
bits from node to node. Currently, Conductor uses TCP
for communication between Conductor nodes. Effec-
tively, Conductor splits the end-to-end TCP connection
into individual high-level node-to-node TCP connections,
while providing the required end-to-end services itself. In
the future, Conductor could also make use of other proto-
cols specificall y designed for particular link characteris-
tics, such as WTCP [Sinha99].

Once the path is set up, Conductor forwards the user’s
data stream down the path. Figure 2 gives a simple view
of Conductor in use. At each Conductor node, an adapta-
tion might be applied to the data. Some adaptations do
not change the data, but many do. Potentially, the bits
that arrive at the destination may be very different than
the bits that were sent. However, if Conductor’s planner
has done its job properly, the arriving bits are the most
suitable, semantically meaningful version of the data that
was possible to deliver in the face of prevail ing network
conditions. In the video example, dropping color in the
face of limited bandwidth yields black-and-white frames
that are semantically related to the color image that was
sent, but the overall sets of bits are very different.

Conductor monitors the data path during the course of the
data flow. In the current implementation, Conductor is
primarily interested in extreme variations in the available
resources and failures. Adapting to minor variations of
bandwidth, delay, etc., is the job of the individual adap-
tors. If, however, the variations are too large for them to
handle, or if there is an actual failure, Conductor will sig-
nal a problem. The effect of this signal is to initiate re-
planning. Conductor may try to find a new data path, or
alter the set of deployed adaptors on the old path.

3.3 Conductor Planning
Deciding which adaptors to deploy on behalf of an appli-
cation, in what order in the communication sequence, and
on what machines, can be easy or extraordinarily diffi-
cult. If there are only a modest number of applicable
adaptors and potential execution sites, and if interaction
between adaptors can be ignored, a planning algorithm
can be easy to construct. In contrast, designing an algo-
rithm in a complex, multi-hop environment can be diff i-
cult due to order dependent adaptor decisions, computa-
tion limits at certain sites, and a wide family of deploy-
able adaptors. If the planning algorithm takes too long,
circumstances may change, causing the plan to be out-
dated before it is even completed.

Conductor does not make the planning problem any
worse; the problem exists for each application in a com-
plex networked environment. Nor does Conductor solve
the planning problem. However, a framework like Con-
ductor does provide an environment for deploying good
heuristics and evaluating planning methods. Also, Con-
ductor provides an efficient mechanism to gather the in-
formation required by planning, and mechanisms for im-
plementing the chosen plan.

Much research has been done in the general area of plan-
ning to solve complex problems with varying constraints
[Lever94] [Veloso98]. This paper does not intend to
make a contribution to this research, or even to use the
most sophisticated planning algorithms already devel-
oped. Conductor currently uses a simple planning algo-
rithm that works well for many important situations. Fu-
ture research will examine more sophisticated planning
for network adaptivity.

Currently, Conductor uses a centralized planning proce-
dure. Conductor collects a description of conditions and
problems that are present on the nodes and the links that
will host a particular data flow. The description might
also contain user suggestions about the kinds of adapta-
tion the user might prefer, or other constraints on Con-
ductor’s behavior. The planning module applies rules and
heuristics to this data to build a plan.

When Conductor decides to serve a new data flow, it
must select a set of Conductor nodes, forming a path be-
tween the application client and server. Information must
be collected from each Conductor node along the path.
Conductor gathers local information from the node initi-
ating the communication and sends it to the next node in
the path. That node adds its own information, and for-
wards the collection to the next node. The information
collected at each node includes relevant local li nk condi-
tions (such as link bandwidth, delay, and jitter), node ca-
pabiliti es (processing speed and storage size), and a list of
available adaptors. Eventually, the information reaches
the destination node. The destination node is the first

Client
Application

Server
Application

Adaptor
Pair

Conductor
Framework

Figure 2: Conductor intercepts client-server communica-
tion channels and deploys distr ibuted adptors.

node that has all relevant information available, so Con-
ductor performs planning here, running an algorithm on
the collected information. The resulting plan should gen-
erally be better than planning performed incrementally,
with partial knowledge, at each Conductor node.

Each adaptor has a static record, containing the informa-
tion the planner needs about the adaptor’s behavior. This
record includes the format the adaptor accepts and pro-
duces and other properties, such as whether and how the
adaptor alters the compressibili ty of the data. This and
similar properties allow the planner to avoid the error of
trying to compress encrypted data, or applying Lempel-
Ziv compression to an image before attempting to drop
color information. The adaptor properties also describe
the resources that will be consumed during its execution.

The use of an adaptor description imposes an overhead on
the adaptor writer, who must prepare the record. Reason-
able care is required, or poor decisions will result from
even the best of planning algorithms.

3.3.1 Conductor Planning Algorithm
The Conductor planning algorithm consists of two major
steps. First, Conductor associates link problems with
candidate adaptors that handle these problems. For ex-
ample, if we need to send more bits on a particular link
than its bandwidth actually permits, some form of com-
pression should be performed. Matching problems to
adaptors is done on a per-link basis. Simultaneously, the
planner verifies the abili ty of the nodes to run the selected
adaptors.

Selecting the proper adaptor to handle a problem depends
on general observations, user preferences, and planning
criteria. For example, assume that a user wants to send a
1Mbps real-time video data stream and the only channel
available is a modem running at 56Kbps. Conductor
needs to select adaptors that can reduce the amount of
data 16 times, while minimizing the amount of data lost.
Conductor might first find the best matching lossless
compressor, perhaps reducing the data by 50%. Since
further data reduction is required, Conductor might then
choose the best matching color-dropping adaptation, re-
ducing the amount of data by another 75%. As a last re-
sort, Conductor might choose a frame-dropping adapta-
tion that will drop every other frame, achieving the re-
quired 16 times reduction. Conductor would also deter-
mine the proper order of applying these three adaptations.
Conductor follows the user’s guidelines to constrain its
selections. For instance, the user may prefer to drop
resolution rather than color.

The choice of adaptors at this stage of the planning algo-
rithm may affect the later stages of the algorithm. Poorly
chosen adaptors might prevent reaching the optimal plan
because of latency and resource mismatches. The current

Conductor planner uses a static set of rules to match
problems and adaptor solutions.

The second step of Conductor planning resolves the
problems of composabili ty and resource matching for the
global end-to-end plan. Optimizing the initial plan re-
quires merging similar adaptors and extending the scope
of adaptors where appropriate. The algorithm for this
step follows:

1. Create the ordered set of adaptors A{} , initially
empty.

2. For each link, scan all adaptors selected for this link.
For the next adaptor ai scanned:

2.1. Verify the composabil ity of ai and all rightmost
adaptors from A{}.

2.2. Verify that the resources required by ai match
those available at the node.

2.3. Check if ai can be merged with adaptors in A{}
or extended over more links.

2.4. If any constraint is violated, return ERROR,
otherwise add ai to A{} .

At the end of the algorithm, A will contain the set of ad-
aptations tied to the particular nodes where they should be
executed. Note that this algorithm can result in an ER-
ROR return. Currently, in such cases, Conductor will not
deploy any adaptors. A more sophisticated planning al-
gorithm would include some form of backtracking to find
another plan if the initial attempt fails.

3.4 Conductor Reliabili ty
Conductor decomposes the single, end-to-end TCP link
into multiple TCP links between the adaptations, since the
data content is being altered, otherwise confusing TCP.
However, Conductor's use of split TCP breaks the end-to-
end reliabili ty semantics normally provided by TCP.
Without further support, failure of a Conductor node
would cause the failure of all connections passing through
that node. Moreover, Conductor interposes potentially
stateful adaptor modules into the data stream. For exam-
ple, many compression algorithms retain information
about data already processed to assist in processing sub-
sequent data. Failure of any one of these modules could
also result in connection failure. To protect against these
types of failures, Conductor provides an additional end-
to-end reliabili ty model.

Adaptation, however, complicates end-to-end reliabili ty
by removing the assumption that data is immutable in
transit. Typical reliabil ity mechanisms attempt to provide
exactly-once and in-order delivery of each byte transmit-
ted. Since adaptor modules can arbitrarily change the
data stream as it passes through each Conductor node, the

bytes received can differ arbitrarily, in number and kind,
from the bytes transmitted. Attempting to provide
exactly-once delivery is futile.

For instance, consider the stream of bytes in Figure 3a
representing a tag from an HTML document. An adaptor
module might choose to insert a new attribute to this tag,
as in Figure 3b. If the adaptor subsequently fails, perhaps
before the entire tag is delivered to the destination, we
would need to determine a point of retransmission. Using
a byte-count, for example, would lead to reception of
neither the original HTML tag nor the adapted version
(see Figure 4). Since the state in the adaptor, describing
the change, has been lost, it is no longer possible to de-
termine an appropriate point of retransmission.

3.4.1 Semantic Segmentation
In Conductor, we have chosen a new model of reliabili ty
that is compatible with adaptation: exactly-once and in-
order delivery of semantic meaning. In the above exam-
ple, it is clear that either the original tag or the adapted
tag provide the same semantic function in the overall
HTML document. Adaptation has merely altered the
form of that semantic meaning. Semantic segmentation
allows an adaptor to provide enough information to en-
sure that each semantic element in the data stream is de-
livered exactly-once and in-order, even if the adaptor was
to fail .

As the name implies, semantic segmentation breaks the
data stream into segments. A segment is the basic re-

transmission unit of Conductor. Initially, the data stream
can be thought of as being logically segmented into one-
byte segments, as shown in Figure 5a. Adaptors wishing
to modify the data stream must contain their changes
within individual segments. If a change would cross two
or more segments, those segments must first be combined
into a single segment. The new segment must maintain
all of the semantic meaning of the segments it replaces.
In our previous example, before adding a new attribute to
the tag, the adaptor would first combine the segments
making up the tag into a single segment, as shown in Fig-
ure 5b.

Note that the framing overhead for semantic segmentation
can be extremely low. Only a few bytes are required to
track each segment. Moreover, segments can be of arbi-
trary size. Also, although the initial stream is logically
considered to be a sequence of one-byte segments, such
streams can actually be transmitted as the original byte-
stream, without requiring per-byte framing.

3.4.2 Failure Recovery
When a node, link, or adaptor fails, it is only necessary to
determine which segments have been completely received
downstream of the failure. Segments that are partially
received are discarded. Retransmission begins with the
segment following the last complete segment. Note that
retransmission may also imply readaptation, which does
not necessarily produce the same byte-stream as before.
Any form of the original byte-stream which emanated
from the source, adapted or not, can replace segments that
were lost. In the above example, the partially received
segment is thrown away and retransmission begins with
segment 1 (see Figure 5c), thus preserving the semantics
of the tag.

Retransmission is triggered by a retransmission request
which follows the data path in reverse to the source,

(a)

(b)

Adaptor

Figure 3: Adaptation of an HTML tag – (a) initial data
enters adaptor , (b) adaptor adds lowsrc tag.

Byte 1

<img low

Retransmit
from byte 9

src=b.jpg src=a.jpg>

(a)

(b)

(c)

Figure 4: Failure recovery using a byte-count – (a) data ar-
r ives at adaptor , (b) failure and retransmission occur , (c)
retransmission produces an undesirable result.

Segment 1

<img low

Retransmit from
segment 1

src=b.jpg src=a.jpg>

Segment 1-15

(a)

(b)

(c)

Figure 5: Failure recovery using Semantic Segmentation –
(a) one byte segments arr ive at adaptor , (b) segment com-
bination and adaptation occurs, (c) failure requires seg-
ment recovery.

passing through all Conductor nodes and adaptors. Con-
ductor nodes and adaptors can allocate data caches and
satisfy retransmission requests from these caches, or they
can forward the request. Since applications are unaware
of Conductor and cannot respond to retransmission re-
quests, a cache of the original data stream generated by
the application must be provided at the data source. Once
retransmission begins, the data can be adapted as before,
or in any manner now appropriate.

Since application servers are not aware of segmentation,
data from a partially received segment can not be deliv-
ered to the application. Only when the segment is com-
plete can it be delivered. Then, an acknowledgement is
sent back toward the source. The acknowledgement is
cumulative and indicates that this segment and all previ-
ous segments have been received at the endpoint. This
acknowledgement allows adaptors and nodes to free any
cache space or other state relevant to acknowledged seg-
ments.

3.4.3 Preserving Proper Composition
Adaptors are frequently interdependent. Failure of an
adaptor generally requires that it be replaced or that the
hierarchy of adaptors be altered. Since arbitrary adapta-
tion algorithms are allowed, a given adaptor may main-
tain state. Therefore, it may not always be possible to
simply reinstantiate an adaptor. For instance, replacing a
compression adaptor may require it to build a new dic-
tionary, which is no longer compatible with the down-
stream decompression adaptor. Even when appropriate,
reinstantiation of an adaptor is not always possible. If a
node fails, the system may be unable to locate the code or
another node to run it.

When it is not possible or appropriate to reinstantiate an
adaptor, the paired adaptor must be removed. In addition,
any adaptation composed in the failed adaptation will no
longer receive the input it expects and must also be re-
moved. Finally, any caches on nodes between the paired
adaptors must be invalidated, since they too will contain
data in a now unknown format.

3.5 Implementation Details
Conductor was developed on top of Linux 2.0. The
framework is primarily written in Java. Adaptors are also
written in Java.

Conductor intercepts TCP streams generated by local
applications through the use of a loadable kernel module
that allows a new set of functions to be stacked on top of
the normal socket functions for the TCP protocol. It was
necessary to add one function to the Linux kernel to sup-
port the stacking of socket interfaces. The new socket
functions allow Conductor to modify the parameters of

the application's connect() call , causing it to connect
to the local Conductor framework instead of the remote
server. The interception layer also allows Conductor to
determine the destination originall y requested by the ap-
plication and to maintain the ill usion that the application
client is actually connected to the application server.

Conductor makes use of the transparent proxy facili ty,
present in Linux as part of the kernel's firewall feature, to
discover the Conductor nodes between a client and server.
A client sends a UDP packet to the server. The first Con-
ductor node along the normal route to the server inter-
cepts the packet and then forwards it along to discover the
next node along the path.

Adaptors make use of an API that provides them with
access to the data stream and limited inter-adaptor com-
munication capabiliti es. An adaptor uses an AdaptorWin-
dow object to operate on a chunk of the data stream. The
AdaptorWindow object provides various flavors of two
main operations: expand() and contract(). The
expand() operation allows the adaptor to add more
bytes to the upstream end of the window from the data
flow. The contract() operation allows the adaptor to
push bytes downstream, out of the window, and on to
another adaptor. An adaptor can operate on the data
stream using one or more DataAccessPointer objects,
which provide byte-related access and modification op-
erations while maintaining the rules of segmentation.
Finally, adaptors can pass data to other adaptors of the
same stream, or other streams, via an inter-adaptor com-
munication cache.

4 Conductor Performance
To evaluate Conductor performance in actual deploy-
ment, we present a sample application where Conductor
might be useful. We then report the performance results
of the experiments designed to mimic that application.
All of the results are presented with a 90% confidence
interval.

4.1 Performance Test Environment
The real-li fe scenario we chose and considered more
closely is mobile Internet accesses (Figure 6).

An untethered hand-held device communicates to a base
station, which in turn connects to an ISP through an ex-

Base
Station

Gateway Internet

Figure 6: Test environment. A hand-held device communicates to
a server through a wireless link, a modem, and the Internet.

pensive modem link. The ISP then forwards the traff ic to
the desired destination. We assert that this network to-
pology is a plausible and representative model for a mo-
bile Internet access infrastructure.

For the user of this hand-held device, many concerns im-
mediately arise. The hand-held device has limited battery
power. The wireless link is error prone. The modem link
can be slow and costly, and small data transfers can be
expensive if the charges are based on the number of con-
nections. The Internet is known to be insecure. The list
goes on.

In our experiments, each network node is represented by
a Dell Inspiron 3500, with Pentium II 333 Mhz proces-
sors and 64 Mbytes of memory each. In a real system,
the various components would have widely differing ca-
pabiliti es. In particular, the hand-held device would have
limited CPU computing resources and limited battery life.
These assumptions were fed to the planning algorithm.
For the wireless link, we used 2 Mbps AT&T WaveLAN
cards with a power consumption specification of 3.00,
1.48, and 0.18 Watt seconds for corresponding transmit-
ting, receiving, and sleeping modes [Rudenko98]. We
used a 56 Kbps PPP serial connection to emulate the mo-
dem link and 10 Mbps Ethernet between the ISP and the
destination Internet server. Although representing the
Internet and server with dedicated hardware is not realis-
tic, the results will tend to understate the benefits of Con-
ductor.

4.2 Description of Application
The actual application using this network environment
allows users to perform image database queries. In our
particular example, archaeologists wish to use this appli-
cation in the field to submit visual queries to the distant
image database server, which wil l return 24-bit color im-
ages that match the submitted queries. We developed this
system based on the needs expressed by archeology re-
searchers [Ancona97]. The application was written with
no knowledge of underlying network infrastructures, and
it uses the standard TCP socket API to exchange visual
queries and image results. The application was specifi-
cally written for this experiment, and many features that
would be required in a real system that are irrelevant to
the experiment were not implemented.

Each visual query of an archaeological artifact consists of
a contour sketch, a color sample, and a texture sample
image of the artifact. The image database returns up to
three images that best match the query. The query and
results exchange in a rendezvous fashion: each query
blocks until the matching images return.

4.3 Experimental Sett ings
We randomly chose 20 queries as the benchmark load.
Queries and results have average sizes of 310 (± 52) and
700 (± 81) Kbytes, respectively. The same 20 queries
were repeated across different adaptor deployment set-
tings.

Our experiments assume that end-to-end response time,
throughput, and power consumption are the primary con-
cerns. The end-to-end response time is defined as the
time between the beginning of a query transmission from
the hand-held device to the end of receiving correspond-
ing results. Response time does not consider the planner
costs because those costs are not paid at every query
(Section 4.5). Throughput is the number of completed
queries over time. If we consider queries as being sub-
mitted back-to-back, the throughput will t rend as the in-
verse of response time. Power consumption is the power
required by the network interface device for transmitting,
waiting, and receiving a query at the hand-held device.

We directly measured response time. Power consumption
was calculated based on measured times and the rated
power consumption specification of the WaveLAN cards.
Experiences with measuring power consumption have
shown that the reported li fe of a battery is highly unreli-
able and subject to non-linear variations [Rudenko98], so
this method provides a more accurate picture of power
consumption than would querying the battery.

We would not expect this application to perform particu-
larly well in this environment without assistance. The
modem link will significantly slow image transmission,
and much battery power will be wasted waiting for results
that will be arriving very slowly. Conductor can improve
the performance of the application by deploying a set of
adaptors (see Figure 7).

Compression and scheduler adaptors are two candidates
for improving the performance of this application. Com-
pression adaptors can improve the end-to-end response
time by reducing the size of image representations. How-
ever, the time to perform the compression has to be less
than the time saved in transmission. Since our queries
have rendezvous semantics (as opposed to non-blocking
semantics), compression might also improve throughput

Server

Base
Station

Gateway Internet

Scheduler Compress/Decompress
Figure 7: Application network environment with adaptors
deployed.

by reducing the per-query response time. Reducing the
transmission time also decreases the power required for
queries. The compression adaptors in our experiments
use Lempel-Ziv compression.

The scheduler adaptor is responsible for turning on and
off the network device on the mobile computer to save
power while waiting for the arriving data stream. How-
ever, turning off the network device longer than the
waiting period might adversely affect both response time
and throughput. The implemented scheduler currently
approximates the waiting interval based on a variant of a
moving average over recent waiting times.

4.4 Conductor in Action
We ran experiments in several configurations, including
the cases without Conductor, with Conductor with no
adaptors, and with Conductor running with either or both
scheduler and compression adaptors in place. Because of
limited computing resources on the handheld computer,
the planner chooses to place the compression and decom-
pression adaptors between the base station and the image
database server, in both directions. In order to reduce the
communication lag perceived during scheduler coordina-
tion, the planner chooses to place the scheduler between
the hand-held device and the base. The planner described
in Section 3.3 was actually running and making decisions
on adaptor deployment in these experiments.

Figure 8 shows end-to-end response times for various
adaptor configurations, with “no Conductor” as the base
comparison. In the “no Conductor” case, simple TCP
communications were used.

In these diagrams and the following text, we use special
notation to indicate which adaptors were deployed for
each case. As shown in Figure 6, the data passes over
three links: a wireless LAN, a dialup line, and the Internet
(considered as a single link for simplicity). Adaptors
could be deployed at any link endpoint. Our notation is
shorthand indicating which adaptors are deployed at each

location. In this notation, each link is represented by “-” .
Characters between the link symbols indicate which
adaptors are deployed. “_” means no adaptors are de-
ployed. “n” means a null adaptor is deployed. Null
adaptors receive all i ncoming data by Conductor, but pass
it back again, unaltered and as quickly as possible. “c”
indicates a compression or decompression adaptor. “s”
indicates a scheduling adaptor. Scheduling adaptors must
be deployed on both sides of a link to be effective.

Deploying both scheduler and compressor adaptations (s -
sc - _ - c) reduces response time by 69%. Intuition sug-
gests that the 55% image compression ratio achieved by
Lempel-Zev compression of the data in our benchmark
workload should account for the majority of this im-
provement. However, our measurements on the effects of
each adaptation showed the contrary.

Either compression adaptation (_ - c -_ -c) or scheduling
adaptation (s - s _ - _) reduced response time, by 63% and
52% respectively. One might expect the scheduler to
occasionally overestimate the arrival times of results and
subsequently increase response time. To better explain
the scheduler behavior, we replaced the scheduling
adaptors with null adaptors (n - n - _ - _), still resulting in
a measured response time improvement of 43%. The
majority of response time reduction by the scheduler ad-
aptation is obtained because of the split in the TCP con-
nection at the base-station (note that spli t-TCP is only
used when adaptors are deployed on a node). Packets lost
due to errors in the wireless link can be retransmitted
more quickly from the base station than from the server
because they do not have to travel over the high-latency
PPP link. This effect has been previously reported in
[Cohen98].

The remaining improvements achieved by the scheduling
adaptors are primarily due to the bulk transmission of
data. When a packet is lost, another packet follows
quickly behind, producing a duplicate acknowledgement
and triggering fast retransmission of the lost packet. We
checked this hypothesis by replacing the wireless link
with an Ethernet link. Without the wireless link, the
scheduling adaptation had no significant affect on re-
sponse time, as expected.

Conventional wisdom would suggest that extending com-
pression (primarily intended for the modem link) across
more of the network would improve performance, since
other links would also need to handle less data. We
would thus expect the end-to-end compression (c - _ - _ -
c) and the compression over the problematic links (c - _-
c - _)∗ to perform better than the other two configurations
(_ - c - c - _ and _ - c - _ - c). However, the latter con-
figurations performed better. Running one end of the

∗ This case corresponds to a typical positioning of adaptors when using a
single proxy.

� � � � � � � � � � � � �

� 	 �
 	 � 	

 	 � 	
 	 �

� 	
 	 � 	

 	 � 	 � 	

� 	
 	
 	 �
� 	 � 	 � 	 �

� 	 � 	 � 	 �

�

 � � �
 �
 �

� � � � �
 �
�
 � � � � � � � � �
 � �

� � � �
 � � � � � � � � � �

 � � � �

Figure 8: Conductor r esponse time for var ious adaptor con-
figurations.

compression adaptor at the base station has the side effect
of causing Conductor to run split TCP across the wireless
LAN link. Even without the scheduling adaptor, running
split TCP across this link allows quicker retransmission
of lost packets.

The throughput portrait, shown in Figure 9, demonstrates
benefits similar to response time. The full adaptor de-
ployment case (s - sc - _ - c) generates 3.2x improvement
in throughput.

With respect to power consumption (Figure 10), deploy-
ing our adaptors (s - sc - _ - c), saves power by a factor of
10.

The split TCP adaptation at the base station (n - n - _ - _)
improves power saving by a factor of 2.5. Since both the
scheduler (s - s _ - _) and compression (_ - c - _ - c)
adaptors implicitly carry the benefits of split ting TCP, we
need to evaluate their effects relative to the null adapta-
tion case to isolate their contributions. Relative to the
null adaptation case, the scheduler and compression ad-
aptations improve power savings by factors of 2.8 and
1.4, respectively. By multiplying the three isolated fac-
tors, we roughly obtain the power saving factor of 10 for
the combined case (s - sc - _ - c).

Power savings by various compression adaptor configu-
rations are direct results of reducing the response time.
Since current scheduler adaptors predict the result arrival
time at approximately 70% accuracy, we could achieve
greater power savings by improving the scheduler accu-
racy.

4.5 Conductor Overhead
The most important overheads exhibited in Conductor
will tend to vary depending on exact circumstances, such
as the kinds of links in the network and the power and
load of the nodes running Conductor. Thus, generalizing
about these overheads is difficult. In the sample applica-
tion scenario, the current Conductor implementation ex-
hibits 30% increase in latency, 25% reduction in through-
put, and 16% extra power consumption, without any ad-
aptation. If Conductor decides the stream is not conducive
to adaptation at all , the overhead would be significantly
lower. As shown above, when Conductor chose to per-
form these experimental adaptations, their introduction
more than overcame these overheads.

Detailed measurements indicate that using native threads,
rather than user-level threads, will remove over 90% of
the above overheads. Conductor currently uses user-level
threads because the Java native thread library for our Java
environment contains serious bugs. We plan to switch to
the Java native thread library once these bugs are re-
moved, leading to substantial performance improvement.

Planning is performed once per connection, not necessar-
ily for every query and response. In the case of the ex-
periments reported here, there were 20 queries per con-
nection. Therefore, the cost of planning is amortized over
multiple queries. The cost of planning in these experi-
mental runs was typically 139 mill iseconds or approxi-
mately 7 mil liseconds per query. The average improve-
ment in response time was about 399,350 mill iseconds,
easily dominating the planning cost.

It is also encouraging that the cost of adding null adaptors
is quite small , less than 0.1% impact on throughput and
latency. The measured impact of the (necessary) use of
split TCP is also modest, generally under 2%.

4.6 Performance Comments
Our experience with Conductor indicates a substantial
opportunity to improve network service by strategic de-
ployments of adaptations. At the same time, the effects
of interactions of different adaptations for an application
in a specific network environment are reasonably com-
plex. For example, even we were surprised by the impact
of spli t-TCP effects on our experiments. This experience
adds weight to the view that application writers cannot
realistically be expected to effectively take into account

� � � ! � � � ! � �
" # " $ # % # $

$ # % # $ # %
% # $ # % # $
$ # % # % # $
% # $ # $ # %
" # " # % # %
& # & # % # %

& ' $ ' & () $ * ' +

, (- . * ' +
/ ' & 0 1 2) + - * 1 ' & "

3 ' 4 5 + / ' & ") 6 . * 1 ' & 7 4 - * * " 5 $ ' & (8 9) 5 + : ;

Figure 10: Conductor power consumption for var ious
adaptor configurations.

� < = � = < � �

� 	 �
 	 � 	

 	 � 	
 	 �

� 	
 	 � 	

 	 � 	 � 	

� 	
 	
 	 �

� 	 � 	 � 	 �

� 	 � 	 � 	 �

�

 � � �
 �
 �

� � � � �
 �
�
 � � � � � � � � �
 � �

� > �
 � � > � � � � ? � � � � � � @ >
 � � �

Figure 9: Conductor throughput for var ious adaptor con-
figurations.

the significant impacts of underlying details and assump-
tions in a complex network.

The results of our experiments also suggest variations on
conventional wisdom. Multiple point adaptation appears
superior to single proxies in accommodating the variety
of needs of complex modern networks. Simple, end-to-
end adaptations have less flexibil ity to tailor solutions to
fit the heterogeneous link characteristics of multi-hop
network paths. Overall , composition of adaptors intro-
duces new ways to solve a variety of network problems
simultaneously within a single framework.

Of course, these views must be tested in a wide set of
networking circumstances and applications before one
should conclude that applications would benefit enough
to justify wide deployment of a framework like Conduc-
tor. Nevertheless, the observed improvements are sub-
stantial enough, given an unoptimized code base, that the
approach appears quite promising.

5 Applicability of Distr ibuted
Adaptation

There are numerous approaches to adaptation in computer
networks, as suggested in Section 2. However, acceler-
ated growth in the scale and heterogeneity of networks,
provide considerable incentive for a general solution that
both covers a wide range of possibiliti es and can be ex-
tended to address emerging network challenges in the
future.

Early networks were relatively homogeneous. However,
today one can anticipate a truly ubiquitous network pres-
ence, leading to increased network heterogeneity. Inex-
pensive home LANs, metropolitan-area wireless access,
personal-area wireless devices, public access networks,
smart buildings, high bandwidth multimedia paths, and
even ad hoc dynamically deployed networks will all be
interconnected. Personal portable devices (e.g., PDA,
phone, watch) will communicate and coordinate in local
activities, as will devices in a car or off ice (e.g., laptop,
desktop, printer, A/V equipment, a visitor’s PDA). These
clusters of network devices will desire connectivity with
other clusters of communication via perhaps a nearby
public access point, the wired workstation, or a wireless
device such as the cell-phone or a packet radio.

For instance, a heart monitor may use the cell-phone to
contact a doctor’s PDA to report an anomaly, along with
relevant data, while the doctor is at lunch. The PDA
might be connected via the restaurant’s public wireless
LAN that is in turn connected to the network via the
city’s metropolitan-area network. This connection might
cross numerous networks with widely varying character-
istics.

This increased network complexity and diversity require
that more systems-level self-management be present in
the network. Some information required for proper ad-
aptation is unlikely to be available at the endpoints; in-
stead it will be present only at gateways within the net-
work. For instance, only the cell-phone knows if it cur-
rently has an established connection (and is therefore
virtually free to use).

In such an environment, one cannot expect applications to
shoulder the burden of adaptation. The more complexity
in future networks, the more relevant this observation
becomes. Moreover, retrofitting legacy applications for
each network evolution is impractical (and at any stage of
evolution, most applications are legacy). Therefore, the
network adaptation layer should be distinct from, and
generally independent of, the application layer in the net-
work stack. The need to largely decouple solutions to
network complexity from application design is analogous
to abstracting the complexities of hardware via device
drivers, virtual memory, and other operating systems
services.

Application-specific adaptation benefits greatly from be-
ing deployed into the network. Some adaptations, such as
forward error correction, caching, and the scheduler used
as an example in Section 4, must be placed at particular
nodes in the network to be effective. The placement of
other, more general adaptations such as compression, may
seem best at endpoints, but their location may be re-
stricted by load balancing concerns, security restrictions,
or resource constraints [Vahdat99].

It should be noted, however, that a general solution to
transparent distributed adaptation requires a correspond-
ing reliability solution. The use of non-trivial adaptors in
the network changes the content of a data-stream and thus
breaks the reliable delivery guarantee of a protocol li ke
TCP, upon which so many applications depend. One
must reconstruct that guarantee to remain transparent.
Fortunately, it can be cheaply provided by adding a mod-
est amount of mechanism and reusing underlying TCP
services.

6 Future Work
There are numerous areas that require solutions in order
for distributed adaptation to be widely employed. Several
important items are discussed below.

6.1 Secur ity
Conductor needs a security layer, not only to protect the
user’s data through encryption (which requires a suitable
key distribution protocol), but also as a means to protect
against unwanted adaptations. That is, it is important to
make the framework itself safe and robust in the face of

security challenges. Also, distributed adaptation nor-
mally requires that a stream be decrypted before adaptors
can operate on the data. Either one must trust the frame-
work to do so or else choose the order of adaptations
carefully so that the data is available in clear text when
needed. We are currently developing a security extension
that allows Conductor nodes to agree upon and execute a
variety of different models for authentication and key
distribution, based on the level of security required by the
user.

6.2 Planning
The problem of planning is a rich research topic in itself.
Conductor’s existing planning algorithm is far from per-
fect. There are many possible improvements, including:

• Multicasting node conditions and planning prefer-
ences for greater efficiency

• More involvement by local nodes in the planning
process

• Reuse of cached plans for commonly occurring con-
ditions

• Incremental planning to provide quick approximate
plans that are improved as more time becomes avail-
able to examine different options

• Evaluating the merits of alternate transmission paths

The existing Conductor planning method mostly serves to
demonstrate that the planning framework is adequate to
make and implement automated decisions.

6.3 User and Application Control
Conductor permits user-input into the planning process to
help determine which adaptors to select based on which
data characteristics are most important to the user at this
moment. Conductor’s current user control interface is
extremely limited, and human factors are important in this
case. A richer interface is not necessarily better. Instead,
the interface must present options in human terms: the
impact of dropping B-frames in a video transmission is
probably little known to the average user. An effective
interface for user control over adaptation is an open issue.

At the same time, although Conductor can transparently
make many decisions on behalf of applications, knowl-
edgeable programs could clearly give Conductor better
advice than its planner could deduce on its own. In addi-
tion, such “Conductor-aware” applications could provide
a more seamless interface for users to register their pref-
erences regarding an application’s behavior.

We plan to improve both aspects of Conductor.

6.4 Performance Analysis
The current performance of Conductor and the existing
measurements are encouraging, but more work is cer-
tainly necessary. The implementation needs to be tuned
to demonstrate, in practice, that distributed adaptation can
impose littl e overhead. Furthermore, measurement in a
wide set of circumstances is needed to provide high con-
fidence that the specifics of the viewpoints expressed in
this paper bear up to generality.

7 Conclusions
New technologies increase the complexity of computer
networks and make network behavior difficult to predict.
A trend toward network diversity only increases the com-
plexity, and as a result, applications can no longer expect
a consistent level of service from the network. At the
same time, users want applications that work properly and
without undue cost in the network environments of the
future. Users will not accept applications that fail to take
network diversity into account.

Even if it were feasible, periodically updating an applica-
tions abili ty to react to unfavorable network conditions
would not be effective. To adapt effectively, a presence
within the network is required to monitor the link char-
acteristics and to adapt the data stream on the user’s be-
half.

A single point of adaptation in the network is also insuff i-
cient in complex networks. We have demonstrated, by
example, that placing adaptation at multiple locations
across the network can provide a considerable improve-
ment in complex networks that cannot be achieved using
a single proxy. This example represents a wider class of
scenarios in which user data must cross several li nks with
differing characteristics.

Support for distributed adaptation requires an appropriate
framework for monitoring the characteristics of interior
network nodes and links, determining and deploying a set
of compatible adaptations, and preserving the expected
reliabili ty semantics. Existing solutions do not prove all
of these characteristics. In particular, none allow the co-
ordination of multiple adaptations among multiple nodes.
Extending any of these approaches to support distributed
adaptation would require similar functionali ty and over-
heads to Conductor.

Conductor demonstrates the feasibili ty of building a sys-
tem to support distributed adaptation. Conductor pro-
vides protocol-level adaptation to tailor an application’s
use of a network, and thus the user’s experience, in an
application-transparent manner. Beyond the simple me-
chanics of properly deploying multiple adaptation mod-
ules, Conductor provides two key capabili ties to support
distributed transparent adaptation.

• Conductor includes a planning infrastructure that
allows an end-to-end picture of the network to be
gathered, possible solutions to be evaluated, and a set
of adaptors to be deployed. We have demonstrated
the use of this infrastructure with one possible plan-
ning algorithm that selects appropriate adaptations in
a few important cases.

• Conductor introduces a new model of semantic reli-
abili ty that allows arbitrary adaptation while pre-
serving the expected end-to-end reliabili ty semantics.

We have demonstrated the benefits of using Conductor
with a sample application based on real-world require-
ments. This example shares characteristics with a wide
class of applications, suggesting that Conductor can pro-
vide benefit to many important applications. Without
Conductor, use of our example application in the field
could be costly, severely limiting the benefit to the user.
By deploying adaptations into the network in a distributed
manner, Conductor is able to significantly reduce both the
response time and power requirements of the application,
allowing the user to obtain faster results and work longer
on a single battery charge.

References
[Ancona97] M. Ancona, G. Dodero, C. Fierro, V. Gianuzzi,
V. Tine, A. Traverso, “Mobile Computing for Real Time
Support in Archaeological Excavations,” Proceedings of
Computer Applications in Archaeology, University of Bir-
mingham, UK, April 1997.

[Balakrishnan95] H. Balakrishnan, S. Seshan, E. Amir, and
R. Katz, “ Improving TCP/IP Performance Over Wireless
Networks,” Proceedings of the 1st ACM International Con-
ference on Mobile Computing and Networking (MobiCom
’95), November, 1995.

[Cohen98] R. Cohen and S. Ramanathan, “Using Proxies to
Enhance TCP Performance over Hybrid Fiber Coaxial Net-
works,” Hewlett-Packard Laboratories Tech Report #HPL-
97-81, 1997. Available at:
http://www.hpl.ph.com/techreports/97/HPL-97-81.html

[Fox97] A. Fox, S. Gribble, Y. Chawathe, E. Brewer, and P.
Gauthier, “Cluster-Based Scaleable Network Services,” Pro-
ceedings of the 16th ACM Symposium on Operating System
Principles, October, 1997.

[Gribble99] S. D. Gribble, M. Welsh, E. A. Brewer, and D.
Culler, “The MultiSpace: an Evolutionary Platform for In-
frastructural Services,” to appear in Proceedings of the 1999
Usenix Annual Technical Conference, Monterey, CA, June
1999.

[Joseph95] A. Joseph, A. deLespinasse, J. Tauber, D. Gif-
ford, and F. Kaashoek, “Rover: A Toolkit for Mobile Infor-

mation Access,” Proceedings of the 15th ACM Symposium on
Operating System Principles, December 1995.

[Lever94] J. Lever and B. Richards, “parcPlan: A Planning
Architecture with Parallel Actions, Resources, and Con-
straints,” Proceedings of the, 8th International Symposium on
Methodologies for Intelli gent Systems (ISMIS ’94), Berlin,
Germany, Springer-Verlag, 1994, pp. 213-222.

[Mallet97] A. Mallet, J. Chung, and J. Smith, “Operating
System Support for Protocol Boosters,” HIPPARCH Work-
shop, June 1997.

[Mosberger96] D. Mosberger and L. Peterson, “Making
Paths Explicit in the Scout Operating System,” Proceedings
of OSDI ’ 96, October 1996, pp 153-168.

[Noble97] B. Noble, M. Satyanarayanan, D. Narayanan, J.
Tilton, J. Flinn, and K. Walker, “Agile Application-Aware
Adaptation for Mobili ty,” Proceedings of the 16th ACM
Symposium on Operating System Principles, October, 1997.

[Rudenko98] A. Rudenko, P. Reiher, G. Popek, and G.
Kuenning, “Saving Portable Computer Battery Power
through Remote Process Execution,” ACM Mobile Comput-
ing and Communication Review (MC2R), Vol. 2, No. 1,
1998.

[Sinha99]P. Sinha, N. Venkitaraman, R. Sivakumar, and V.
Bharghavan, “WTCP: A Reliable Transport Protocol for
Wireless Wide-Area networks,” to appear in the Proceedings
of the Fifth Annual International Conference on Mobile
Computing and Networks (MobiCom ’99), August 1999.

[Sudame98] P. Sudame and B. Badrinath, “Transformer
Tunnels: A Framework for Providing Route-Specific Adap-
tations,” Proceedings of the Usenix Technical Conference,
June 1998.

[Tennenhouse96] D. Tennenhouse and D. Wetherall , “To-
wards an Active Network Architecture,” Computer Commu-
nications Review, April 1996.

[Wetherall98] D. Wetherall , J. Guttag, and D. Tennenhouse,
“ANTS: A Toolkit for Building and Dynamically Deploying
Network Protocols,” IEEE OPENARCH’98, April 1998.

[Vahdat99] A. Vahdat, M. Dahlin, T. Anderson, A. Aggar-
wal, “Active Names: Flexible Location and Transport of
Wide-Area Resources,” to appear in Proceedings of the Sec-
ond Usenix Symposium on Internet Technologies and Sys-
tems, Boulder, CO, October 1999.

[Veloso98] M. M. Veloso, M. E. Pollac, and M. T. Cox,
“Rationale-based Monitoring for Planning in Dynamic Envi-
ronments,” Proceedings of the Fourth International Confer-
ence on Artificial Intelli gence Planning Systems, Menlo
Park, CA, AAAI Press, 1998, pp. 171-179.

