Conductor: Distributed Adaptation for Complex Networ ks*

Mark Yarvis, An-1 A. Wang, Alexey Rudenko, Peter Reiher, and Gerald J. Popek
{yarvis, awang, arudenko, reiher, popek} @ fmg.cs.ucla.edu

University of California, Los Angeles
Ted Report: CSD-TR-990042

Abstract

Computer networks are beacming more complex and
diverse. Increasingly, an end-to-end connedion will trav-
erse severa links with orders of magnitude differencesin
charaderistics such as bandwidth, latency, error rate, jit-
ter, and monetary cost. At the same time, most appli ca-
tions assume alevel of network charaderistics below
which they either provide no service, or service d a st
higher than the user iswilling to pay.

Conductor is an adaptation framework that moves the
responsibili ty for network complexity out of the gplica-
tion and into the network. Conductor all ows an appli ca-
tion’s use of the network to be tail ored to the needs of the
user in amanner that is transparent to the gplication.
Conductor all ows adaptation to be distributed to the
pointsin the network where it isrequired. Further, Con-
ductor allows arbitrary adaptations without compromising
reliability. Finally, Conductor requires minimal changes
to existing systems. All of these charaderistics are incor-
porated into a single, integrated framework.

Conductor has been shown to be dfedive in important
classes of problemsin mobile computing, where network
complexity is most prevalent today. This paper describes
the Conductor architedure and presents experimental
resultsindicating that transparent, distributed adaptation
can significantly improve the user’s experiencein com-
plex networks.

1 Introduction

Network applications often have major problems when
network charaderistics change during use. Applicaions
must adapt to these changes to provide satisfadory serv-
ice An application’s communications may crossland-
lines, satellit e links, dial-up service, wirelessrelays, and
asymmetric links, often without user or applicaion
awareness These various links differ in many ways, and
even asingle type of link can vary substantially, causing
severe problems. Early attempts at Internet telephony

® Thiswork was partially supported by the Defense Advanced Research
Projects Agency under contract DABT63-94-C-0080.

were largely rejeded due to frequent unexplained seg-
ments of garbled content. Some users abandoned the
Web becaise of unpredictable and intolerable delaysin
accessng gaphicdly dense, but information light, con-
tent. There ae many other examples.

Reseachers are drealy aware of the €feds of wide
variations in bandwidth, delay, underlying reliabili ty,
noisiness, jitter, cost, seaurity and ather fadors. Several
solutions to perticular variation problems have shown
gred benefit [Cohen98] [Balakrishnan95]. But these so-
lutions handle only parts of the general problem, and that
problem islikely to worsen soon. Mohility will cause
more cmputers to interad with more kinds of networks,
often urder difficult conditi ons. Paths combining wired
links and wirelesslinks are likely to be a common to-
morrow as cdlular telephony for audio conversationsis
today. Such combined pathswill cause further complica-
tions.

Network appli caions can adapt their behavior to these
changing conditi ons in many ways, while still delivering
the necessary services: reducing the fidelity of the trans-
mission of video, graphics and audio; switching to text
only; adding appli cation-level redundancy for criticd
values; encrypting sensitive mntent; etc. An obvious way
to add such adaptivity isto change the gplication itself.

However, changing the gpli cation can be cmplex.
Firgt, the gplication must be aleto recognizerelevant
network changes. Then it must perform the gpropriate
adaptation, preferably without disrupting its ongoing op-
eration. Applicaionscan usualy only perform adapta-
tions at their endpants, rather than within the network,
sincethey generally trea the network as ablack box. But
some network problems are best solved in the network,
closeto the problem.

Changing the gplication to handle network variations
may be unreasonable. It addsto the cost and complexity
of application development, sinceit requires programmer
expertise in networking, which may be unrelated to appli-
caion expertise. Further, legacy applications may require
re-workingto run in complex networks. Finally, using a
newly developed adaptation (e.g., ajitter-smoothing
function) would require retrofitting many appli cations.

Choasing the locaion of adaptationsisalso dfficult. For
important smple caes, asingle locus of adaptation is
sufficient [Fox97]. If the data transmisson only encoun-
ters one troublesome link, adaptation around that link is
sufficient. But as networks beaome more complex, more
links in the transmisson will cause problems, requiring
solutions that deploy and coordinate alaptations at multi-
ple locations.

Many useful adaptations fundamentally alter the data
content delivered to the end applicaion. Droppng
frames from a video, converting color images to bladk-
and-white, and deli vering text in the placeof voice ae
some examples. This style of adaptation is challenging,
since the most popular reliable transport protocol, TCP,
assumes that all bitsthat are sent will be recaved. Some
adaptation mechanisms avoid this problem by not sup-
porting TCP. Others do not all ow these types of adapta-
tion. Still othersintroduce mediating agentsto trick TCP,
unfortunately introducing new points of failure to doso.

A comprehensive solution to network adaptation should
possessthese charaderistics:

e The oontent of the information being exchanged must
be cmnsidered [Nobled7]. For example, droppng
color information can reduce the bandwidth require-
ment of avideo transmission. Doing so requires rec-
ognizing that the data typeis video in a particular en-
coding format. The alaptors chosen for thistrans-
mission must be seleded carefully, or the result will
be undesirable, perhaps destroying content. Fortu-
nately, most data exchanged in networkstoday is
strongly typed, self describing, and easily identified.
Such data can be alapted outside the gopli cation.

e Multi-machine aaptation must be mordinated.
Many adaptations require that multi ple machines
participate. Compressionisasimpleexample. If a
compressor is deployed at one end, a decompressor
must be employed at the other.

« Dedding which adaptors to exeaute for a given oc-
currence of a given application, in what order, and on
what sites in the network can be difficult. The sys-
tem must coll ed environment information, creae a
plan, and make good cedsions, all at alow cost.

* Reliability becomestricky. If dataisbeing inten-
tionally altered, what services should the communi-
caionsfadlity provide? Guaranteed delivery of all
bits submitted to the pipe is unsuitable, sincethe a-
aptation fadlity may intentionally drop some bits. In
particular, the services of TCP are not sufficient.

e A general framework for adaptor interadion isre-
quired. Multiple aaptor groups need to work to-
gether, both nested and sequentially; late bindingis

essential; results are order-dependent; and independ-
ently developed adaptors must be incorporated.

Conductor is an applicaion-level framework that demon-
strates these charaderistics. Conductor dynamicaly de-
ploys multiple aaptorsto improve an applicaion’s
communicaion paths. Adaptors can be nested, deployed
serialy, or both. The framework isrobust to adaptor fail-
ures. It uses semantic segmentation to repair such fail-
ures without resetting the channel. Conductor uses a
planning algorithm to dedde which adaptorsto deploy.

Early experience with Conductor suggests that it works
well. Measurement and observation indicae substantial
improvementsin the user’s experience. Our reseach
provides considerable evidencethat general, application-
external, dynamicadly negotiated communicéations adap-
tation involving multi ple, cooperating locationsis a
promising approadh.

Below, Sedion 2 first summarizes existing approaches to
providing adaptivity in networks. Sedion 3 describes the
design and implementation of Conductor. Sedion 4 gives
performanceresults, and Sedion 5 dscusses how widely
appli cable Conductor might be. Sedion 6 dscusses on-
going and future work. Sedion 7 concludes.

2 Reated Work

The general problem of adapting data flows for varying
network conditions has been studied for several yeas,
and has |ed to the development of several successful sys-
tems. These systems demonstrate that the general ap-
proach of adapting data sent over varying networks can
produce accptable results at reasonable wsts. Below we
outline their contributions and discusstheir influence on
our work.

2.1 Proxies

One simple and powerful method o providing adaptation
for varying networksisto creae aproxy siteto assist in
the use of such retworks. Thisapproachis espedally
appli cable to mobile computers using wireless networks.
Generally, aproxy isawell-conneded, powerful com-
puter that understands the dharaderistics of the dient
computer and the neaby network. It can adapt incoming
data flows to customizethem for the mmputer’s particu-
lar cgpabiliti es or to match the charaderistics of the data
flow to the limitations of the network.

One of the most advanced proxy solutions is the Berkeley
proxy [Fox97]. This system uses cluster computing tech-
nology to provide ashared proxy servicefor awide vari-
ety of PDAs used at UC Berkeley. The proxy is cgpable
of providing many important services, including trans-
formation (changing the data from one format to another),
aggregation (combining several pieces of datainto one),

cading, and customizaion (typicdly converting adata
format into one suitable for aparticular PDA). The Ber-
keley reseachers have investigated methods of compaos-
ing adaptations on a single machine [Gribble99]. They
have dso examined how to use a ¢ustered proxy service
to provide highly reliable, scdeable servicesto alarge
number of customers.

The Berkeley proxy design, like dl other proxy systems,
assumes a single point of adaptation, at the proxy server.
Medhanicdly, multiple proxy sites can work on asingle
data flow, but the proxy paradigm provides no assistance
in making them cooperate.

Proxy solutions vary in their degreeof transparency.
Most require the user to designate a dosen proxy site.
Some dso require spedal coding or alteration of pro-
grams, though others work with unaltered code.

2.2 Transformer Tunnels and Protocol
Boosters

In many cases, the most effedtive way to handle difficult
network conditionsis to ater the behavior of the mmmu-
nicaion protocol. For example, if awireless network
charges money for eat padket sent, consoli dating small
padketsinto larger padkets before sending them over that
network would be desirable. As another example, trans-
missions over anoisy link may benefit from adding re-
dundant error correding codes to the padkets nt by the
standard protocol.

Transformer tunnels [Sudame98] and protocol boasters
[Mallet97] are two technologies that have demonstrated
the benefits of this approach. Transformer tunnels use IP
tunneling to alter the behavior of a protocol over atrou-
blesomelink. Generally, the methodis used to provide
protocol-level adaptations, such as consoli dation of pack-
ets, scheduling of transmissonsto preserve battery
power, encryption, lossless compresgon, and bufering.
Transformer tunnels usually work with TCP, generally
preduding adaptations that fundamentally and perma-
nently alter the cntents of a data padket. Transformer
tunnels are transparent to appli cations, but do not provide
suppart for compaosition of adaptations.

Protocol boosters are modules inserted into protocol
graphsto handle difficult links. Normally, their adapta-
tions are transparent to the underlying protocol and the
user and application. If not, they are deployed in pairs,
with one boaster performing areversible adaptation and
the other undoing it before the packets are presented to
the next node or link. One sample use of protocol bocst-
ersisto insert redundant error corredion padets on the
incoming end of anoisy link. A paired bocster on the
other end strips off the eror corredion padets, posshbly
using them to regenerate any red padkets that were cor-
rupted by the noise.

Protocol boosters are composable, but the boacster system
does not provide suppart for determining if a given set of
protocol boasters will perform well together. Generally,
protocol bocsters are asumed to provide losdessadapta-
tions, sincethe system provides no suppart for ensuring
reliable delivery if some padkets are dropped or perma-
nently altered.

2.3 Active Networks

Active networks are an attempt to add substantial
amounts of adaptivity into the network infrastructure
[Tennenhouse96] [Wetherall 98]. Inthe adive network
paradigm, potentially ead padket would execute spedal
code & ead visited router to determine its proper han-
dling. In some adive network models, the scope of this
spedal code is extremely limited to a set of useful op-
tions. In others, any arbitrary adion is permitted within
seaurity and resource limitations imposed by the network
infrastructure.

Active networks thus provide an extremely general adap-
tation mechanism. Key design issues remain unsolved for
adive networks, including seaurity mechanisms, costs,
and proper architedures. Active network reseachersare
only beginningto look at issues of composibility of ad-
aptations and reliabili ty of their adapted data streams. In
the long term, adive networks may offer a superior way
to solve the problems of adapting data streams of all
formsin al circumstances, and to deploy the kinds of
fadli ties discussed here. However, the success of this
networking paradigm is not yet certain, and usableim-
plementations of adive networks are not currently avail-
able.

2.4 Application-Aware Adaptation Methods

Whil e transparency of adaptation has many advantages, a
well-designed appli cation prepared to ded with varying
network conditionsis likely to perform better in impor-
tant circumstances. Several groups have produced key
system services for designing and buil ding applications
that participate in adapting to changing conditi ons.

The Rover toalkit [Joseph95] asdstsin designing appli-
cdionsto work in a mobile ewironment, focusing par-
ticularly on issues of varying and limited connectivity.
Rover employs two key concepts, queued RPC and relo-
caable dynamic objeds, to suppat mobile computers’
network operations. Queued RPC all ows RPC requests to
be delayed until connedivity permits their completion.
Relocatable dynamic objeds all ow a serviceto migrate
between client and server to interadt with a service,
avoiding trips acossawed link. These fadlities allow
recded programs to achieve substantial improvementsin
key performance metrics. Rover isdesigned primarily to
ded with communications between a single mobil e dient

and afixed server acossone bad link. It contains no
explicit suppart for composing different adaptations
(thoughits programming model would certainly all ow
composition), and it requires reprogramming for appli ca-
tionsto useitstoals.

Odys=y [Noble97] is a system service designed to sup-
port appli caions on mobile mmputers that exped to ded
with varying network services. Odyssey pays particular
attention to the issues of supparting multi ple networking
applications on a single mohile cmputer simultaneously,
and to the value of cooperation between the gplicaions
and the operating system. Applicaions register their
needs with Odyssey and provide upcdl s to invoke when
their needs can no longer be met. Odyssey wardens me-
diate between applications and servers, performing cad-
ing, for example. Wardens understand spedfic detail s of
particular types of data flows and adaptations. The Odys-
sey viceroy controls resource sharing among multiple
adaptations on a single mobile machine. When condi-
tions change (either better or worse), the viceroy invokes
the upcdlsregistered by the gplications, informing them
of the current limitations on resource usage. These upcdl
notifications all ow appli caions to adapt their behavior to
match the current conditi ons.

Odyssey has demonstrated significant benefits to applica
tions sharing the same device and network, again showing
that appli cation participation in adaptation can provide
valuable improvements. Odyssey isintended to ded with
one difficult link between the dient and server. Individ-
ual applications and wardens can compose aaptationsin
ad hoc ways, but suppart is not provided for compaosition
of adaptations occurring at other nodes. Reliability can
be very high at the destination node, since gplications
can be mded to ded with various kinds of failures, but
failures elsewhere ae not addressed.

2.5 Comparison to Related Work

The systems discussed above have demonstrated the
value of adapting data flows for varying networks, and
have shown the pradicdity of the mncept for redistic
situations. Conductor builds upon them, providing a
framework for dynamic deployment and management of
distributed adaptation.

Unlike proxy solutions, Conductor all ows adaptations to
occur at multi ple locaions in the network. This cgpabil-
ity is hown (Sedion 4.4) to provide major advantagesin
redistic drcumstances.

Unlike transformer tunnels and protocol boasters, Con-
ductor allows lossy adaptations and provides assistancein
composing adaptations. Also, Conductor has an end-to-
end reliability model that these methods ladk.

Conductor is based on existing, widely deployed network
technology, unlike adive networks. Deploying Conduc-
tor on anode requires asinge, small kernel modificaion,
rather than a complete change in the underlying ret-
working paradigm.

Conductor does not require gplicaionsto be re-coded or
even recompiled. While it forgoes sme of the possbili-
tiesthat systems like Rover and Odyssy exploited, Con-
ductor hasthe alvantage of working with off-the-shelf
applications.

Despite these differences, it should be stressed that Con-
ductor was built with the lesoonsleaned from al of these
systemsin mind. Many aspeds of Conductor leverage
this ealier work.

3 Conductor Design and
I mplementation

Conductor was designed to suppat many styles of data
communicaions. For instance, mobile mmputers may
choase to communicae with arbitrary partners, some of
which may also be mohile. In many cases, the networks
used to transmit the data may exhibit a wide set of prob-
lems at any point. In particular, the partners, the net-
works, the links used, and the problems encountered may
be difficult to predict. Inthe dsence of diredion from
the user or the goplicaion, the Conductor system will
strive to deliver the data & the highest posgble quality.
Since many types of data flows (e.g., HTTP, video
streams, e-mail) are largely self-identifying, Conductor
should be &leto determine what sort of datais being
transported and choose alaptations suitable for the data
type automaticaly.

3.1 Conductor Design Principles

e Application unawareness— Conductor should assume
that, in general, appli cations are unaware of the char-
aderistics of the networks they use and the problems
they encounter. Conductor thus does not rely on any
asdstance from the gplicaion. Conductor does not
even exped the gplicaion to flag particular data
transmissions as suitable subjeds for adaptation.

« Arbitrary adaptation — Conductor should suppart any
form of adaptation that proves useful. In particular,
Conductor’s design charaderistics should not rule
out classes of adaptations, such aslossy compression
or pre-fetching.

< Distributed adaptation — For important cases, adapta-
tion must occur at multiple pointsin the network in
suppat of asingle dataflow. In principle, Conduc-
tor should all ow adaptation at every node or router
visited by the dataflow. In pradice Conductor must

be prepared to work with the subset of nodes or
routers that are willing and able to participate.

e Composahility of adaptations— In general, a data
flow may benefit from multiple alaptations applied
at different locationsin the network. Conductor must
handle both mecdhanicd and semantic impli cations of
passng the data flow through these multiple adap-
tors.

e Planning— Conductor’s ability to seled a set of
adaptors that improve the user’s experienceis key to
itssuccess. Conductor must creae aplan for the de-
ployment of adaptorsin suppart of adataflow. Since
this plan may include composition of several adapta-
tions, Conductor must ensure compatibili ty between
adaptations.

¢ Reliability — Many useful forms of adaptation alter
the data, sometimes even removing some ntent.
Protocols like TCP exped every bit sent to be deliv-
ered, eventually. Conductor must ensure that se-
manticdly meaningful dataisreliably delivered, de-
spite adaptations that may alter the data’s form.

e Easy deployabili ty — Conductor should be eaily in-
tegrated with a popular, widely used system, and
should require minimal alterations to that system.

3.2 Conductor Architecture

Conductor is a stream-oriented adaptation servicein-
tended to be present on various nodes in a network. Pref-
erably these nodes will be & or near gateways between
networks of differing charaderistics, so adaptation mod-
ules can be deployed at these points. Conductor consists
of two main pieces: adaptors, and the framework for de-
ploying those aaptors.

Conductor adaptors are self-contained pieces of code that
perform some particular adaptation, often only for a par-
ticular type of data stream. The set of Conductor adaptors
isexpandable. Each Conductor node might have adiffer-
ent set of adaptors avail able for locd use. Adaptors are
frequently (although not necessarily) paired, converting
from a given protocol to aprotocol better suited to the
transmission medium, and badk to the given protocol.

By conforming, at the endpants, to the protocol expeded
by the user application, Conductor is ableto provide an
appli cation transparent service. However, paired adaptors
need not regenerate the original data flow, nor are they
necessarily user-transparent. Adaptors may deliver any
datato the gplication, so long asit conformsto the ex-
peded protocol. For instance, an adaptor may cause a
color image to be transformed to a blad-and-white im-
age, or frames to be dropped from avideo stream. These
adaptations will clealy affed the user’s experience

Conductor
User Adaptor 5.
S 5| munti £5
Applicaiton) | £ Run'ume» > é-g
b [l vasa &

. B

: Interception Layeri
————— ->

Figure 1: The Conductor architecure deployed on a
node.

Conductor provides aframework to suppart the operation
of adaptors. Figure 1 shows the achitedure of Conduc-
tor on asingle node, consisting primarily of a user-space
module that handles monitoring of data flows, delivery of
data streamsto locd adaptors, transmission of data
streams between Conductor nodes, planning for new data
flows, and recovery and reliability. In addition, in most
systems Conductor requires asmall kernel modification
to trap new data flows, allowing Conductor to examine
them for posshble adaptation and initi ate planning. In
some systems, existing extensibili ty mecdhanisms may
alow trapping of data flows without kernel modifications
[Mosberger96].

When anew data flow is started by an application (which
is unaware of the presence of Conductor and of the pre-
vailing retwork conditions), Conductor traps the opening
of its socket. Conductor currently only traps TCP sock-
ets, but can be extended to handle other protocols. Con-
ductor examines information about the socket (and poss-
bly information about the first few bytes of data sent to
the socket) to determineif the system understands the
format of the data well enoughto handleit. Conductor
has moderately heavy setup costs, so it will usually not
try to asgst extremely short data streams. Assuming
Conductor does understand the data format and expeds
that the setup costs will be dominated by the adaptation
benefits, it effedively kidnaps the TCP socket, providing
theillusion of end-to-end TCP, when adually Conductor
is handling the reliable end-to-end delivery of data.

Once Conductor has chosen to intercept a connection, it
must form a path over which data will flow. Presumably
this path will contain both Conductor-enabled and non-
enabled nodes. Conductor foll ows the normal routing
path and probes for Conductor-enabled nodes along the
way. Asthispath of potential adaptation sitesis formed,
information about locd network conditions and node &
pabiliti es are gathered from each Conductor node discov-
ered and forwarded along the path. Oncethe pathis
formed, therefore, the information required to generate a

plan has been colleded at the destination node. Thisin-
formation is used to generate aplan for which adaptorsto
deploy. Thisplanisthen delivered bad to the partici-
pating rodes in one round-trip message, causing a data
path to be aeaed with the gppropriate adaptors inserted.

Conductor requires ©me method o reliably delivering
bits from node to node. Currently, Conductor uses TCP
for communication between Conductor nodes. Effec-
tively, Conductor splits the end-to-end TCP connedion
into individual high-level node-to-node TCP connedions,
whil e providing the required end-to-end servicesitself. In
the future, Conductor could also make use of other proto-
cols gedficdly designed for particular link charaderis-
tics, such asWTCP [Sinha99].

Ap(;:jlii?ation a /—D)\ Ap%leir;;rion
o=/ ¥ IS -y

Conductor
Framework

Adapfor
Pair

Figure 2: Conductor intercepts client-server communica-
tion channels and deploys distributed adptors.

Oncethe path is st up, Conductor forwards the user’s
data stream down the path. Figure 2 gives asimple view
of Conductor in use. At ead Conductor node, an adapta-
tion might be goplied to the data. Some alaptations do
not change the data, but many do. Potentially, the bits
that arrive a the destination may be very different than
the hits that were sent. However, if Conductor’s planner
has doneitsjob properly, the ariving bits are the most
suitable, semanticadly meaningful version of the data that
was posshle to deliver in the faceof prevailing retwork
conditions. In the video example, droppng color in the
faceof limited bandwidth yields black-and-white frames
that are semanticaly related to the mlor image that was
sent, but the overall sets of bits are very different.

Conductor monitors the data path during the murse of the
dataflow. Inthe airrent implementation, Conductor is
primarily interested in extreme variationsin the available
resources and failures. Adapting to minor variations of
bandwidth, delay, etc., isthejob d the individual adap-
tors. If, however, the variations are too large for them to
handle, or if there is an actual failure, Conductor will sig-
nal aproblem. The dfed of this dgnal isto initiate re-
planning. Conductor may try to find a new data path, or
alter the set of deployed adaptors on the old path.

3.3 Conductor Planning

Dedding which adaptorsto deploy on behalf of an appli-
cdion, in what order in the cdmmunication sequence, and
on what madines, can be eay or extraordinarily diffi-
cult. If there ae only amodest number of applicable
adaptors and paential exeaution sites, and if interadion
between adaptors can be ignored, a planning algorithm
can be eay to construct. In contrast, designing an algo-
rithm in a complex, multi-hop environment can be diffi-
cult dueto order dependent adaptor dedsions, computa-
tion limits at certain sites, and awide family of deploy-
able adaptors. If the planning algorithm takes too long,
circumstances may change, causing the plan to be out-
dated beforeit is even completed.

Conductor does not make the planning problem any
worse; the problem exists for eat applicationin a com-
plex networked environment. Nor does Conductor solve
the planning problem. However, aframework like Con-
ductor does provide an environment for deploying good
heuristics and evaluating planning methods. Also, Con-
ductor provides an efficient mechanism to gather the in-
formation required by planning, and mechanisms for im-
plementing the chosen plan.

Much reseach has been done in the general areaof plan-
ning to solve complex problems with varying constraints
[Lever94] [Veloso9g. This paper does not intend to
make a ontribution to thisreseach, or even to usethe
most sophisticaed planning algorithms alrealy devel-
oped. Conductor currently uses a simple planning algo-
rithm that works well for many important situations. Fu-
ture research will examine more sophisticated planning
for network adaptivity.

Currently, Conductor uses a centralized planning proce-
dure. Conductor colleds a description of conditions and
problems that are present on the nodes and the links that
will host a particular data flow. The description might
also contain user suggestions about the kinds of adapta-
tion the user might prefer, or other constraints on Con-
ductor’s behavior. The planning module gplies rules and
heurigtics to this data to build a plan.

When Conductor deddesto serve anew data flow, it
must select a set of Conductor nodes, forming a path be-
tween the gplication client and server. Information must
be wlleded from each Conductor node dong the path.
Conductor gatherslocd information from the node initi-
ating the communication and sendsiit to the next nodein
the path. That node addsits own information, and for-
wards the mlledion to the next node. Theinformation
colleded at eath node includes relevant locd link condi-
tions (such as link bandwidth, delay, and jitter), node -
pabiliti es (processng speed and storage size), and alist of
avail able alaptors. Eventualy, the information reaches
the destination node. The destination node isthe first

node that has all relevant information avail able, so Con-
ductor performs planning here, running an algorithm on
the mlleaed information. The resulting plan should gen-
erally be better than planning performed incrementally,
with partial knowledge, at ead Conductor node.

Each adaptor has a static record, containing the informa-
tion the planner needs about the adaptor’s behavior. This
record includes the format the alaptor accepts and pro-
duces and ather properties, such as whether and how the
adaptor alters the mmpressibili ty of the data. Thisand
similar properties all ow the planner to avoid the eror of
trying to compressencrypted data, or applying Lempel-
Ziv compresson to an image before atemptingto drop
color information. The alaptor properties also describe
the resources that will be cnsumed during its execution.

The use of an adaptor description impases an overhead on
the adaptor writer, who must prepare the record. Reason-
able caeisrequired, or poor dedsions will result from
even the best of planning algorithms.

3.3.1 Condutor Planning Algorithm

The Conductor planning algorithm consists of two major
steps. First, Conductor associates link problems with
candidate adaptors that handle these problems. For ex-
ample, if we need to send more bits on a particular link
than its bandwidth acually permits, some form of com-
presson should be performed. Matching problemsto
adaptorsis done on aper-link basis. Simultaneoudly, the
planner verifies the aili ty of the nodes to run the seleded
adaptors.

Seleding the proper adaptor to handle aproblem depends
on general observations, user preferences, and planning
criteria. For example, assume that a user wantsto send a
1Mbps red-time video data stream and the only channel
available is amodem running at 56Kbps. Conductor
needs to seled adaptors that can reduce the amount of
data 16 times, whil e minimizing the amount of datalost.
Conductor might first find the best matching lossless
compressor, perhaps reducing the data by 50%. Since
further data reduction is required, Conductor might then
choase the best matching color-droppng adaptation, re-
ducing the amount of data by another 75%. Asalast re-
sort, Conductor might choose aframe-droppng adapta-
tion that will drop every other frame, achieving the re-
quired 16timesreduction. Conductor would also deter-
mine the proper order of applying these three alaptations.
Conductor foll ows the user’s guidelines to constrain its
seledions. For instance, the user may prefer to drop
resolution rather than color.

The choice of adaptors at this gage of the planning algo-
rithm may affed the later stages of the dgorithm. Poorly
chosen adaptors might prevent reading the optimal plan
becaise of latency and resource mismatches. The airrent

Conductor planner uses a static set of rulesto match
problems and adaptor solutions.

The seaond step of Conductor planning resolves the
problems of composabili ty and resource matching for the
global end-to-end plan. Optimizing the initial plan re-
quires merging simil ar adaptors and extending the scope
of adaptors where gpropriate. The dgorithm for this
step foll ows:

1. Creaethe ordered set of adaptors A{}, initially
empty.

2. For ead link, scan all adaptors €leded for thislink.
For the next adaptor a; scanned:

2.1. Verify the compaosability of a; and al rightmost
adaptors from A{}.

2.2. Verify that the resources required by a; match
those available & the node.

2.3. Check if a; can be merged with adaptorsin A}
or extended over more links.

2.4. If any constraint is violated, return ERROR,
otherwise ald g; to A{}.

At the end of the dgorithm, A will contain the set of ad-
aptations tied to the particular nodes where they should be
exeauted. Note that this algorithm can result in an ER-
ROR return. Currently, in such cases, Conductor will not
deploy any adaptors. A more sophisticated planning al-
gorithm would include some form of badktrackingto find
another plan if theinitial attempt fails.

3.4 Conductor Reliability

Conductor decomposes the single, end-to-end TCP link
into multi ple TCP links between the alaptations, sincethe
data content is being altered, otherwise confusing TCP.
However, Conductor's use of split TCP bre&sthe end-to-
end reliabili ty semantics normally provided by TCP.
Without further suppart, failure of a Conductor node
would cause the fail ure of all connections passing through
that node. Moreover, Conductor interposes potentially
stateful adaptor modules into the data stream. For exam-
ple, many compresson algorithms retain information
about data dready processed to asdst in processng sub-
sequent data. Fail ure of any one of these modues could
also result in connedion failure. To proted against these
types of failures, Conductor provides an additional end-
to-end reliability model.

Adaptation, however, compli cates end-to-end reli abili ty
by removing the assumption that dataisimmutable in
transit. Typicd reliability mechanisms attempt to provide
exadly-once and in-order delivery of each byte transmit-
ted. Since alaptor modules can arbitrarily change the
data stream as it passes through each Conductor node, the

bytes recaved can differ arbitrarily, in number and kind,
from the bytes transmitted. Attemptingto provide
exadly-oncededlivery isfutile.

€Y ‘ <inmg src=a.jpg>
~ Adaptor
(b) <ing |lowsrc=b.jpg src=a.j pg>‘

Figure 3: Adaptation of an HTML tag —(a) initial data
enters adaptor, (b) adaptor adds lowsrc tag.

For instance, consider the stream of bytesin Figure 3a
representing a tag from an HTML document. An adaptor
module might choose to insert a new attribute to this tag,
asin Figure 3b. If the adaptor subsequently fail s, perhaps
before the entire tag is delivered to the destination, we
would need to determine apoint of retransmission. Using
a byte-count, for example, would leal to reception of
neither the original HTML tag nor the adapted version
(seeFigure 4). Sincethe state in the adaptor, describing
the change, has been logt, it is no longer possbleto de-
termine an appropriate point of retransmisson.

€Y <iny src=a.jpg>
Byte 1

(b) <j my | ow

src=bh. pg src=a.j pg>

Retransmit
from byte 9
(©

) <ing | ow=a.j pg>

Figure 4: Failure recovery using a byte-count — (a) data ar-
rivesat adaptor, (b) failure and retransmisson occur, (c)
retransmisgon produces an undesirableresult.

3.4.1 Semantic Segmentation

In Conductor, we have chosen a new model of reliabili ty
that is compatible with adaptation: exadly-onceand in-
order delivery of semantic meaning. Inthe dove exam-
ple, it isclea that either the original tag or the adapted
tag provide the same semantic function in the overall
HTML document. Adaptation hes merely altered the
form of that semantic meaning. Semantic segmentation
alows an adaptor to provide enough information to en-
sure that ead semantic dement in the data stream is de-
livered exadly-once and in-order, even if the alaptor was
to fail.

As the name impli es, semantic segmentation breaks the
data stream into segments. A segment isthe basic re-

(< Tnfel 1T Il [Toig
Segment 1
(b) [<ing Towsrc=b.] Fg src=a.] pg>|
Segment 1-15

(C) <i [ow src=h. | src=a.| pg>

Retransmit from

segment 1

Figure 5: Failure recovery using Semantic Segmentation —
(a) one byte segments arr ive at adaptor, (b) segment com-
bination and adaptation occurs, (c) failure requires sg-
ment recovery.

transmission unit of Conductor. Initially, the data stream
can be thought of as being logicdly segmented into one-
byte segments, as shown in Figure 5a. Adaptors wishing
to modify the data stream must contain their changes
within individual segments. If a change would crosstwo
or more segments, those segments must first be cmbined
into asingle segment. The new segment must maintain
al of the semantic meaning of the segmentsit replaces.
In our previous example, before alding a new attribute to
the tag, the adaptor would first combine the segments
making up the tag into a single segment, as sown in Fig-
ure 5h.

Note that the framing overhead for semantic segmentation
can be extremely low. Only afew bytes are required to
tradk eat segment. Moreover, segments can be of arbi-
trary size Also, although theinitial stream islogicdly
considered to be asequence of one-byte segments, such
streams can adually be transmitted as the original byte-
stream, without requiring per-byte framing.

3.4.2 Failure Recovery

When anode, link, or adaptor fails, it isonly necessary to
determine which segments have been completely receved
downstream of the failure. Segments that are partially
recaved are discarded. Retransmission begins with the
segment foll owing the last complete segment. Note that
retransmission may also imply readaptation, which does
not necessarily produce the same byte-stream as before.
Any form of the original byte-stream which emanated
from the source, adapted or not, can replacesegments that
werelost. Inthe dove example, the partially receved
segment is thrown away and retransmission begins with
segment 1 (seeFigure 5¢), thus preserving the semantics
of the tag.

Retransmission istriggered by a retransmission request
which foll ows the data path in reverse to the source,

passng through all Conductor nodes and adaptors. Con-
ductor nodes and adaptors can al ocate data caties and
satisfy retransmisson requests from these cahes, or they
can forward the request. Since gplicaions are unaware
of Conductor and cannot respond to retransmisgon re-
quests, a cade of the original data stream generated by
the gplicatiion must be provided at the data source Once
retransmission begins, the data can be adapted as before,
or in any manner now appropriate.

Since @plication servers are not aware of segmentation,
data from a partially recaved segment can not be deliv-
ered to the gplicaion. Only when the segment is com-
plete can it be delivered. Then, an acknowledgement is
sent badk toward the source. The aknowledgement is
cumulative and indicates that this segment and all previ-
ous sgments have been receved at the endpant. This
adknowledgement all ows adaptors and nodesto free ay
cade spaceor other state relevant to acknowledged seg-
ments.

3.4.3 Preserving Proper Composition

Adaptors are frequently interdependent. Failure of an
adaptor generally requiresthat it be replaced or that the
hierarchy of adaptors be dtered. Since abitrary adapta-
tion algorithms are dl owed, a given adaptor may main-
tain state. Therefore, it may not always be posshleto
simply reinstantiate an adaptor. For instance, repladng a
compression adaptor may requireit to build a new dic-
tionary, which is no longer compatible with the down-
stream decompression adaptor. Even when appropriate,
reinstantiation of an adaptor is not always possble. If a
node fail s, the system may be unable to locate the wde or
another node to runit.

When it is not posshble or appropriate to reinstantiate an
adaptor, the paired adaptor must be removed. In addition,
any adaptation composed in the fail ed adaptation will no
longer recave the input it expeds and must also be re-
moved. Finally, any caches on nodes between the paired
adaptors must be invalidated, sincethey too will contain
datain a now unknown format.

3.5 Implementation Details

Conductor was developed ontop o Linux 2.0. The
framework is primarily written in Java. Adaptors are dso
written in Java.

Conductor intercepts TCP streams generated by locad
appli cations through the use of aloadable kernel module
that all ows a new set of functionsto be stadked on top o
the normal socket functions for the TCP protocol. It was
necessary to add ane function to the Linux kernel to sup-
port the stacking of socket interfaces. The new socket
functions all ow Conductor to modify the parameters of

the gplicaion'sconnect () cdl, causing it to conned
to the locd Conductor framework instead of the remote
server. Theinterception layer also all ows Conductor to
determine the destination originally requested by the g-
plicaion and to maintain the ill usion that the gplicaion
client isadually conneded to the gplicaion server.

Conductor makes use of the transparent proxy fadlity,
present in Linux as part of the kernel's firewall feaure, to
discover the Conductor nodes between a dient and server.
A client sends a UDP padket to the server. Thefirst Con-
ductor node dongthe normal route to the server inter-
cepts the padket and then forwards it along to discover the
next node dong the path.

Adaptors make use of an API that provides them with
accessto the data stream and limited inter-adaptor com-
munication cagpabiliti es. An adaptor uses an AdaptorWin-
dow objed to operate on a chunk of the data stream. The
AdaptorWindow objed provides various flavors of two
main operations: expand() andcontract (). The
expand() operation all owsthe adaptor to add more
bytes to the upstream end of the window from the data
flow. Thecontract () operation allowsthe aaptor to
push bytes downstream, out of the window, and on to
another adaptor. An adaptor can operate on the data
stream using one or more DataAccessPointer objeds,
which provide byte-related access and modification op-
erations whil e maintaining the rules of segmentation.
Finally, adaptors can passdatato other adaptors of the
same stream, or other streams, via an inter-adaptor com-
munication cade.

4 Conductor Performance

To evaluate Conductor performancein adual deploy-
ment, we present a sample gpli cation where Conductor
might be useful. We then report the performance results
of the experiments designed to mimic that appli cation.
All of the results are presented with a 90% confidence
interval.

4.1 PerformanceTest Environment

The red-life scenario we chose and considered more
closely is mobil e Internet accesses (Figure 6).

!
Base ATT Gateway~ - Internet /— @

Station

Figure 6: Test environment. A hand-held devicecommunicatesto

a server through a wirelesslink, a modem, and the I nter net.

An untethered hand-held device @mmunicates to a base
station, which in turn conneds to an | SP through an ex-

.ﬁm@

pensive modem link. The ISP then forwards the traffic to
the desired destination. We art that this network to-
pology isa plausible and representative model for a mo-
bil e Internet access infrastructure.

For the user of this hand-held device, many concernsim-
mediately arise. The hand-held device has limited bettery
power. Thewirelesslink iserror prone. The modem link
can be slow and costly, and small data transfers can be
expensive if the dharges are based on the number of con-
nedions. The Internet is known to beinsecure. Thelist
goes on.

In our experiments, each network node is represented by
aDéll Inspiron 350Q with Pentium 1l 333 Mhz proces-
sors and 64 Mbytes of memory each. Inared system,
the various components would have widely differing ca-
pabiliti es. In particular, the hand-held device would have
limited CPU computing resources and limited battery life.
These asumptions were fed to the planning algorithm.
For the wirelesslink, we used 2Mbps AT& T WaveL AN
cards with a power consumption spedficaion of 3.00,
1.48, and 0.18 Watt seconds for corresponding transmit-
ting, recaving, and slegping modes [Rudenko9g. We
used a 56 Kbps PFP seria connedion to emulate the mo-
dem link and 10Mbps Ethernet between the ISP and the
destination Internet server. Although representing the
Internet and server with dedicated hardware is not redis-
tic, the results will tend to understate the benefits of Con-
ductor.

4.2 Description of Application

The adual application using this network environment
alows usersto perform image database queries. In our
particular example, archaeologists wish to use this appli-
caion in the field to submit visual queriesto the distant
image database server, which will return 24-bit color im-
ages that match the submitted queries. We developed this
system based on the neeads expressed by archeology re-
seachers[Anconad7]. The gplication was written with
no knowledge of underlying network infrastructures, and
it uses the standard TCP socket API to exchange visual
queries and image results. The gplication was pedfi-
cdly written for this experiment, and many features that
would berequired in ared system that are irrelevant to
the experiment were not implemented.

Each visual query of an archaeologicd artifad consists of
a contour sketch, a alor sample, and a texture sample
image of the atifad. The image database returns up to
threeimages that best match the query. The query and
results exchange in arendezvous fashion: each query
blocks until the matching images return.

4.3 Experimental Settings

We randomly chose 20 queries as the benchmark |oad.
Queries and results have average sizes of 310(+ 52) and
700 (% 81) Kbytes, respedively. The same 20 queries
were repeaed aaossdifferent adaptor deployment set-
tings.

Our experiments assume that end-to-end response time,
throughput, and power consumption are the primary con-
ceans. The end-to-end response time is defined as the
time between the beginning of a query transmission from
the hand-held deviceto the end of receving correspond-
ing results. Response time does not consider the planner
costs because those asts are not paid at every query
(Sedion 4.5). Throughput isthe number of completed
queries over time. If we consider queries as being sub-
mitted badk-to-back, the throughput will trend asthein-
verse of response time. Power consumption is the power
required by the network interfacedevicefor transmitting,
waiting, and receaving a query at the hand-held device

We diredly measured response time. Power consumption
was cdculated based on measured times and the rated
power consumption spedficaion of the Wavel AN cards.
Experiences with measuring power consumption have
shown that the reported life of a battery is highly urreli-
able and subjed to non-linea variations [Rudenko98], so
this method provides a more acairate picture of power
consumption than would querying the battery.

Gateway— Internet —@

Server

L

Scheduler

CompresgDemmpress

Figure 7: Application network environment with adaptors
deployed.

We would not exped this applicaion to perform particu-
larly well in this environment without assstance. The
modem link will significantly slow image transmission,
and much battery power will be wasted waiting for results
that will be ariving very sowly. Conductor can improve
the performance of the goplication by deploying a set of
adaptors (seeFigure 7).

Compression and scheduler adaptors are two candidates
for improving the performance of this applicaion. Com-
presson adaptors can improve the end-to-end response
time by reducing the size of image representations. How-
ever, the time to perform the cmmpresson hasto be less
than the time saved in transmission. Since our queries
have rendeavous smantics (as oppacsed to non-blocking
semantics), compresson might also improve throughput

R NON

by reducing the per-query resporse time. Reducingthe
transmission time dso deaeases the power required for
queries. The cmpresson adaptorsin our experiments
use Lempel-Ziv compression.

The scheduler adaptor is responsible for turning on and
off the network device on the mobile computer to save
power whil e waiting for the ariving data stream. How-
ever, turning off the network devicelonger than the
waiting period might adversely affed both response time
and throughput. The implemented scheduler currently
approximates the waiting interval based on avariant of a
moving average over recant waiting times.

4.4 Conductor in Action

We ran experiments in several configurations, including
the cases without Conductor, with Conductor with no
adaptors, and with Conductor running with either or both
scheduler and compresson adaptorsin place Becaise of
limited computing resources on the handheld computer,
the planner chooses to placethe compression and decom-
presgon adaptors between the base station and the image
database server, in both diredions. In order to reducethe
communicaion lag perceived during scheduler coordina-
tion, the planner choosesto placethe scheduler between
the hand-held device and the base. The planner described
in Sedion 3.3 was adually running and making dedsions
on adaptor deployment in these experiments.

nooonduc’rori =
n—n—f—fi =
s-s _—_7 =
Adaptor --C-c-_ | =
Corfiguctiors . c =
,—C—,—ci -
c-_-cC-_] =
s—sc—_fci B
0 260 460 660 860

ResporseT ime (seconds)

Figure 8: Conductor r esponsetimefor various adaptor con-
figurations.

Figure 8 shows end-to-end response times for various
adaptor configurations, with “no Conductor” as the base
comparison. Inthe “no Conductor” case, simple TCP
communicaions were used.

In these diagrams and the foll owing text, we use spedal
notation to indicate which adaptors were deployed for
eadt case. Asshownin Figure 6, the data passes over
threelinks: awirelessLAN, adialup line, and the Internet
(considered asasingle link for simplicity). Adaptors
could be deployed at any link endpant. Our notation is
shorthand indicating which adaptors are deployed at eat

locaion. Inthisnotation, ead link is represented by “-".
Charaders between the link symbadls indicate which
adaptors are deployed. “_” means no adaptors are de-
ployed. “n” meansanull adaptor is deployed. Null
adaptors recave dl i ncoming data by Conductor, but pass
it badk again, unaltered and as quickly as possble. “c”
indicates a compression or decompression adaptor. “s’
indicates a scheduling adaptor. Scheduling adaptors must
be deployed on bath sides of alink to be dfedive.

Deploying bath scheduler and compressor adaptations (s -
sc- _ - c) reduces response time by 69%. Intuition sug-
gests that the 55% image cmpresson ratio achieved by
Lempel-Zev compression of the data in our benchmark
workload should acount for the majority of thisim-
provement. However, our measurements on the effeds of
ead adaptation showed the cntrary.

Either compresdon adaptation (_ - ¢-_ -c) or scheduling
adaptation (s- s_ - _) reduced response time, by 63% and
529% respedively. One might exped the scheduler to
occasionally overestimate the arival times of results and
subsequently increase response time. To better explain
the scheduler behavior, we replaced the scheduling
adaptors with null adaptors(n-n-_ -), still resultingin
ameasured response time improvement of 43%. The
majority of response time reduction by the scheduler ad-
aptation is obtained because of the split in the TCP con-
nedion at the base-station (note that split-TCP is only
used when adaptors are deployed on anode). Padets lost
due to errorsin the wirelesslink can be retransmitted
more quickly from the base station than from the server
becaise they do not have to travel over the high-latency
PPP link. Thiseffed has been previously reported in
[Cohen9g].

The remaining improvements achieved by the scheduling
adaptors are primarily due to the bulk transmisson of
data. When a padket islost, another padket follows
quickly behind, producing a duplicate acknowledgement
and triggering fast retransmisgon of the lost padket. We
chedked this hypothesis by repladng the wirelesslink
with an Ethernet link. Without the wirelesslink, the
scheduling adaptation had no significant affed on re-
sponsetime, as expeded.

Conventional wisdom would suggest that extending com-
presson (primarily intended for the modem link) acoss
more of the network would improve performance, since
other links would aso need to handle lessdata. We
would thus exped the end-to-end compression (- _ - -
¢) and the compresson over the problematic links (c - _-
c- _)"to perform better than the other two configurations
(_-c-c-_and_-c-_-c). However, thelatter con-
figurations performed better. Running one end of the

“This case corresponds to atypica positioning of adaptors when using a
single proxy.

no conductor EH
n-n-_-_ =
§-S-_-_ =
Adaptor --c-c_ | |
Corfigudtions . . _¢ =
-c--cC ==
c-_-c-_ =
s-sc-_-C |
o 5 10 15 20

Throughput (queries /hour)

Figure 9: Conductor throughput for various adaptor con-
figurations.

compression adaptor at the base station has the side dfed
of causing Conductor to run split TCP aaossthe wireless
LAN link. Even without the scheduling adaptor, runnng
split TCP aaossthislink all ows quicker retransmission
of lost padkets.

The throughput portrait, shown in Figure 9, demonstrates
benefits smilar to response time. The full adaptor de-
ployment case (S- sC- _ - €) generates 3.2x improvement
in throughpui.

no condudtor | =
n n::— A
s-s-_-_ |[mEH
Adaptor —-c-c-_ | -
Configurctiors . e =
-Cc--C -
c-_-c-_ =
s-SC-_ ci |
0 560 1060 1560

Power Cons umption (watt s econd/query)

Figure 10: Conductor power consumption for various
adaptor configurations.

With resped to paver consumption (Figure 10), deploy-
ing our adaptors (s- sc- _ - ¢), saves power by a fador of
10.

The split TCP adaptation at the base station (n-n-_-)
improves power saving by afador of 2.5. Sincebath the
scheduler (s-s_ -) and compresgon(_-c-_-C)
adaptors implicitly carry the benefits of splitting TCP, we
need to evaluate their effeds relative to the null adapta-
tion caseto isolate their contributions. Relative to the
null adaptation case, the scheduler and compresson ad-
aptations improve power savings by fadors of 2.8 and
1.4, respedively. By multiplying the threeisolated fac-
tors, we roughly obtain the power saving fador of 10 for
the ombined case (s- sc- _ - C).

Power savings by various compression adaptor configu-
rations are dired results of reducing the response time.
Since current scheduler adaptors predict the result arrival
time & approximately 70% acairacy, we could achieve
greder power savings by improving the scheduler aca-

racy.

4.5 Conductor Overhead

The most important overheals exhibited in Conductor
will tend to vary depending on exad circumstances, such
asthe kinds of links in the network and the power and
load of the nodes running Conductor. Thus, generalizing
about these overheadsis difficult. Inthe sample gplica
tion scenario, the aurrent Conductor implementation ex-
hibits 30% increase in latency, 25% reduction in through-
put, and 18% extra power consumption, without any ad-
aptation. If Conductor deddes the stream is not conducive
to adaptation at all, the overhead would be significantly
lower. Asshown above, when Conductor chose to per-
form these experimental adaptations, their introduction
more than overcame these overheads.

Detail ed measurements indicate that using netive threads,
rather than user-level threads, will remove over 90% of
the éove overheads. Conductor currently uses user-level
threads because the Java native threal library for our Java
environment contains frious bugs. We plan to switch to
the Java native thread library oncethese bugs are re-
moved, leading to substantial performanceimprovement.

Planningis performed once per connedion, not necessar-
ily for every query and response. Inthe cae of the ex-
periments reported here, there were 20 queries per con-
nedion. Therefore, the mst of planning is amortized over
multi ple queries. The st of planning in these experi-
mental runs was typicdly 139 milliseconds or approxi-
mately 7 milliseaonds per query. The average improve-
ment in resporse time was about 399,350 mill iseconds,
easily dominating the planning cost.

It isalso encouraging that the st of adding null adaptors
is quite small, lessthan 0.1% impact on throughput and
latency. The measured impad of the (necessary) use of
split TCP is also modest, generally under 2%.

4.6 PerformanceComments

Our experience with Conductor indicates a substantial
opportunity to improve network service by strategic de-
ployments of adaptations. At the same time, the dfeds
of interadtions of different adaptations for an application
in a spedfic network environment are reasonably com-
plex. For example, even we were surprised by the impad
of split-TCP effeds on our experiments. This experience
adds weight to the view that application writers cannot
redisticdly be expeded to effedively take into acount

the significant impads of underlying detail s and assump-
tionsin a mmplex network.

The results of our experiments also suggest variationson
conventional wisdom. Multiple point adaptation appeas
superior to single proxies in acmmmodating the variety
of needs of complex modern networks. Simple, end-to-
end adaptations have less flexibil ity to tail or solutions to
fit the heterogeneous link charaderistics of multi-hop
network paths. Overall, composition of adaptors intro-
duces new ways to solve avariety of network problems
simultaneously within a single framework.

Of course, these views must be tested in a wide set of
networking circumstances and appli caions before one
should conclude that appli cations would benefit enough
to justify wide deployment of aframework like Conduc-
tor. Nevertheless the observed improvements are sub-
stantial enough, given an unoptimized code base, that the

approach appears quite promising.

5 Applicability of Distributed
Adaptation

There ae numerous approaches to adaptation in computer
networks, as suggested in Sedion 2. However, accéer-
ated growth in the scd e and heterogeneity of networks,
provide mnsiderable incentive for a general solution that
both covers awide range of possibiliti es and can be ex-
tended to addressemerging network challengesin the
future.

Early networks were relatively homogeneous. However,
today one @an anticipate atruly ubiquitous network pres-
ence leading to increased network heterogeneity. Inex-
pensive home LANSs, metropditan-areawirelessaccess,
personal-areawireless devices, public ac@ssnetworks,
smart buildings, high bandwidth multimedia paths, and
even ad hoc dynamicaly deployed networks will al be
interconneded. Personal portable devices (e.g., PDA,
phone, watch) will communicate and coordinatein loca
adivities, aswill devicesina ca or office(e.g., laptop,
desktop, printer, A/V equipment, avisitor's PDA). These
clusters of network devices will desire mnnedivity with
other clusters of communication via perhaps a neaby
public accespoint, the wired workstation, or awireless
device such asthe cél-phone or a padet radio.

For instance, a heat monitor may use the cél-phone to
contad adoctor’s PDA to report an anomaly, along with
relevant data, while the doctor isat lunch. The PDA
might be mwnneded viathe restaurant’s public wireless
LAN that isin turn conneded to the network via the
city’s metropditan-areanetwork. This connedion might
crossnumerous networks with widely varying charader-
istics.

Thisincreased network complexity and diversity require
that more systems-level self-management be present in
the network. Some information required for proper ad-
aptation isunlikely to be avail able & the endpaints; in-
stead it will be present only at gateways within the net-
work. For instance only the cél-phone knows if it cur-
rently has an established connedion (and is therefore
virtually freeto use).

In such an environment, one canot exped applicationsto
shoulder the burden of adaptation. The more complexity
in future networks, the more relevant this observation
bemmes. Moreover, retrofitting legacy applications for
ead network evolutionisimpradicd (and at any stage of
evolution, most applicaions are legacy). Therefore, the
network adaptation layer should be distinct from, and
generally independent of, the gplicaion layer in the net-
work stadk. The need to largely decouple solutionsto
network complexity from application designis analogous
to abstrading the complexities of hardware via device
drivers, virtual memory, and ather operating systems
services.

Application-spedfic adaptation benefits grealy from be-
ing deployed into the network. Some alaptations, such as
forward error corredion, cading, and the scheduler used
as an example in Sedion 4, must be placed at particular
nodes in the network to be dfedive. The placement of
other, more general adaptations such as compresson, may
seem best at endpaints, but their locaion may be re-
stricted by load balancing concerns, seaurity restrictions,
or resource mnstraints [Vahdat99].

It should be noted, however, that a general solution to
transparent distributed adaptation requires a crrespond-
ing reliability solution. The use of nontrivial adaptorsin
the network changes the mntent of a data-stream and thus
breaks the reli able delivery guaranteeof a protocol like
TCP, upon which so many appli caions depend. One
must reconstruct that guaranteeto remain transparent.
Fortunately, it can be thegly provided by adding a mod-
est amount of mechanism and reusing underlying TCP
services.

6 FutureWork

There ae numerous areas that require solutions in order
for distributed adaptation to be widely employed. Several
important items are discussed below.

6.1 Searity

Conductor neals a seaurity layer, not only to proted the
user’s data through encryption (which requires a suitable
key distribution protocal), but also as a meansto proted
against unwanted adaptations. That is, it isimportant to
make the framework itself safe and robust in the faceof

seaurity challenges. Also, distributed adaptation nor-
mally requires that a stream be deaypted before adaptors
can operate on the data. Either one must trust the frame-
work to doso or else doase the order of adaptations
caefully so that the datais available in clea text when
needed. We ae aurrently developing a seaurity extension
that all ows Conductor nodes to agreeupon and execute a
variety of different models for authentication and key
distribution, based on the level of security required by the
user.

6.2 Planning

The problem of planning isarich reseach topic in itself.
Conductor’s existing planning algorithm is far from per-
fed. There ae many posshble improvements, including:

e Multicasting rode @nditions and planning prefer-
ences for greaer efficiency

¢ Moreinvolvement by locd nodesin the planning
process

¢ Reuseof caded plans for commonly occurring con-
ditions

e Incremental planningto provide quick approximate
plans that are improved as more time becmes avail-
able to examine different options

e Evaluating the merits of alternate transmission paths

The &isting Conductor planning method mostly servesto
demonstrate that the planning framework is adequate to
make and implement automated dedsions.

6.3 User and Application Control

Conductor permits user-input into the planning processto
help determine which adaptors to seled based on which
data charaderistics are most important to the user at this
moment. Conductor’s current user control interfaceis
extremely limited, and human factors are important in this
case. A richer interfaceis not necessarily better. Instead,
the interfacemust present options in human terms: the
impad of dropping B-framesin avideo transmission is
probably little known to the average user. An effedive
interfacefor user control over adaptation is an open issue.

At the same time, although Conductor can transparently
make many dedsions on behalf of appli cations, knowl-
edgeable programs could clealy give Conductor better
advicethan its planner could deduceon itsown. In addi-
tion, such “Conductor-aware” applications could provide
amore seamlessinterfacefor usersto register their pref-
erences regarding an applicaion’ s behavior.

We plan to improve both aspeds of Conductor.

6.4 PerformanceAnalysis

The aurrent performance of Conductor and the existing
measurements are encouraging, but more work is cer-
tainly necessary. The implementation needs to be tuned
to demonstrate, in pradice, that distributed adaptation can
impose littl e overhead. Furthermore, measurement in a
wide set of circumstancesis neaded to provide high con-
fidencethat the spedfics of the viewpoints expressed in
this paper bea up to generality.

7 Conclusions

New technologies increase the cmmplexity of computer
networks and make network behavior difficult to predict.
A trend toward network diversity only increases the com-
plexity, and as aresult, applicaions can no longer exped
a onsistent level of servicefrom the network. At the
same time, users want appli cations that work properly and
without undue st in the network environments of the
future. Userswill not accept applicaions that fail to take
network diversity into acount.

Even if it were feasible, periodicaly updating an applica-
tions abili ty to read to unfavorable network conditions
would not be dfedive. To adapt effedively, a presence
within the network is required to monitor the link char-
aderistics and to adapt the data stream on the user’s be-
half.

A single point of adaptation in the network is a so insuffi-
cient in complex networks. We have demonstrated, by
example, that pladng adaptation at multiple locations
aaossthe network can provide a onsiderable improve-
ment in complex networks that cannot be adieved using
asingle proxy. Thisexample represents awider classof
scenariosin which user data must cross sveral links with
differing characteristics.

Suppart for distributed adaptation requires an appropriate
framework for monitoring the charaderistics of interior
network nodes and links, determining and deploying a set
of compatible adaptations, and preserving the expeded
reli abili ty semantics. Existing solutions do not prove &l
of these dharaderistics. In particular, none dlow the -
ordination of multiple alaptations among multi ple nodes.
Extending any of these gpproaches to suppart distributed
adaptation would require similar functionality and over-
heads to Conductor.

Conductor demonstrates the feasibili ty of building a sys-
tem to suppart distributed adaptation. Conductor pro-
vides protocol-level adaptation to tail or an application’s
use of a network, and thus the user’s experience, in an
appli cation-transparent manner. Beyond the simple me-
chanics of properly deploying multi ple alaptation mod-
ules, Conductor provides two key capabili ties to suppart
distributed transparent adaptation.

e Conductor includes a planning infrastructure that
alows an end-to-end picture of the network to be
gathered, passble solutionsto be evaluated, and a set
of adaptorsto be deployed. We have demonstrated
the use of thisinfrastructure with one possble plan-
ning algorithm that seleds appropriate alaptationsin
afew important cases.

e Conductor introduces a new model of semantic reli-
abili ty that all ows arbitrary adaptation while pre-
serving the expeded end-to-end reli abili ty semantics.

We have demonstrated the benefits of using Conductor
with a sample gplication based on red-world require-
ments. This example shares charaderistics with awide
classof applicaions, suggesting that Conductor can pro-
vide benefit to many important applicaions. Without
Conductor, use of our example gplicaion in the field
could be mstly, severely limiting the benefit to the user.
By deploying adaptations into the network in a distributed
manner, Conductor is able to significantly reduce both the
response time and power requirements of the gpli cation,
alowing the user to oltain faster results and work longer
on asingle battery charge.

References

[Anconad7] M. Ancona, G. Dodero, C. Fierro, V. Gianuzz,
V. Tine, A. Traverso, “Mobile Computing for Red Time
Support in Archaeologicd Excavations,” Proceedings of
Computer Applicationsin Archaeology, University of Bir-
mingham, UK, April 1997

[Balakrishnan95] H. Balakrishnan, S. Seshan, E. Amir, and
R. Katz, “Improving TCP/IP Rerformance Over Wireless
Networks,” Proceadings of the 1 ACM International Con-
ference on Mobile Computing and Networking (MobiCom
'95), November, 19%.

[Cohen98] R. Cohen and S. Ramanathan, “Using Proxiesto
Enhance TCP Rerformance over Hybrid Fiber Coaxia Net-
works,” Hewlett-Packard Laboratories Tech Report #HPL-
97-81, 1997. Available a:
http://www.hpl.ph.com/techreports/97/HPL-97-81.html

[Fox97] A. Fox, S. Gribble, Y. Chawathe, E. Brewer, and P.
Gauthier, “Cluster-Based Scdeable Network Services,” Pro-
cealings of the 16" ACM Symposium on Operating S/stem
Principles, October, 1997.

[Gribble99] S. D. Gribble, M. Welsh, E. A. Brewer, and D.
Culler, “The Multi Space an Evolutionary Platform for In-
frastructural Services,” to appea in Procealings of the 1999
Usenix Annual Technical Conference, Monterey, CA, June
1999.

[Joseph95] A. Joseph, A. delespinasse, J. Tauber, D. Gif-
ford, and F. Kaashoek, “Rover: A Toadkit for Mobile Infor-

mation Access” Proceadings of the 15" ACM Symposium on
Operating System Principles, December 1995.

[Lever94] J. Lever and B. Richards, “parcPlan: A Planning
Architedure with Parallel Actions, Resources, and Con-
straints,” Proceadings of the, 8" Internationa Symposiumon
Methodologies for Intelli gent Systems (I1SMIS’94), Berlin,
Germany, Springer-Verlag, 199, pp. 213222,

[Mallet97] A. Mallet, J. Chung, and J. Smith, “ Operating
System Suppat for Protocol Boosters,” HIPPARCH Work-
shop, June 1997.

[Mosberger96] D. Mosberger and L. Peterson, “Making
Paths Explicit in the Scout Operating System,” Proceelings
of OSDI ' 96, October 1996, pp 153-168.

[Nohle97] B. Noble, M. Satyanarayanan, D. Narayanan, J.
Tilton, J. Hinn, and K. Walker, “Agile Applicaion-Aware
Adaptation for Mobility,” Proceadings of the 16" ACM
Symposium on Operating §stem Principles, October, 1997.

[Rudenko98] A. Rudenko, P. Reiher, G. Popek, and G.
Kuenning, “ Saving Portable Computer Battery Power
through Remote ProcessExeaution,” ACM Mobil e Comput-
ing and Comnunication Review (MC2R), Vol. 2, No. 1,
1998.

[Sinha99]P. Sinha, N. Venkitaraman, R. Sivakumar, and V.
Bharghavan, “WTCP: A Reliable Transport Protocol for
WirelessWide-Areanetworks,” to appea in the Procealings
of the Fifth Annual International Conference on Mobile
Computing and Networks (MobiCom *99), August 1999.

[Sudame98] P. Sudame and B. Badrinath, “ Transformer
Tunrels: A Framework for Providing Route-Spedfic Adap-
tations,” Proceedings of the Usenix Technical Conference,
June 1998.

[Tennenhause96] D. Tennenhouse and D. Wetheral, “To-
wards an Active Network Architedure,” Computer Comru-
nications Review, April 1996.

[Wetherall 98] D. Wetherall, J. Guttag, and D. Tennenhouse,
“ANTS: A Todlkit for Building and Dynamicdly Deploying
Network Protocols,” IEEE OPENARCH'’ 98, April 1998

[Vahdat99] A. Vahdat, M. Dahlin, T. Anderson, A. Aggar-
wal, “Active Names. Flexible Locdion and Transport of
Wide-Area Resources,” to appea in Proceealings of the Sec-
ondUsenix Sympaosium on Internet Techndogies and Sys-
tems, Boulder, CO, October 1999.

[Veloso98] M. M. Veloso, M. E. Pollac and M. T. Cox,
“Rationale-based Monitoring for Planning in Dynamic Envi-
ronments,” Procealings of the Fourth International Confer-
enceon Artificial Intelli gence Planning Systems, Menlo
Park, CA, AAAI Press 1998, pp. 171-179.

