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Abstract The Leibniz formula, for the divided difference of a product, and Opitz’s formula, for

the divided difference table of a function as the result of evaluating that function at a certain matrix, are
shown to be special cases of a formula available for the coefficients, with respect to any basis, of an ‘ideal’
or ‘Hermite’ polynomial interpolant, in any number of variables.

1. Introduction. The so-called Leibniz formula

(1.1) ∆(xi, . . . , xj)(fg) =
j∑

k=i

∆(xi, . . . , xk)f ∆(xk, . . . , xj)g,

for the divided difference of a product in terms of the divided differences of the factors, has played a major
role in the development of spline theory; it was an essential tool in the derivation of the B-spline recurrence
relations. My earliest reference for it now is [P33 : p. 12] who refers, for the case of uniform spacing, to [J20]
where, on page 105, that formula is referred to as ‘bekannt’. Nevertheless, the formula is generally credited
(see, e.g., [O64]) to Steffensen, because of his paper [S39].

In this note, the algebraic background of the Leibniz formula is explored, showing the formula to be
equivalent to Opitz’s formula (from [O64]; see (2.1) below) that gives the divided difference table of any
polynomial as the result of applying that polynomial to a certain matrix. This, in turn, is shown to be
a particular consequence of the fact that, in G. Birkhoff’s [B79] terminology, polynomial interpolation is
an ‘ideal’ interpolation scheme. This insight is used to explore Leibniz (and Opitz) formulæ for certain
multivariate polynomial interpolation schemes and their associated divided differences.

This note is laid out as follows. In Section 2, the connection between the Leibniz formula and the Opitz
formula is recalled, along with Opitz’s way of deriving them. The next section brings a brief discussion
of the basic features of ‘ideal’ interpolation, i.e., linear projectors on the space of polynomials (in one or
several variables, real or complex) whose kernel is a polynomial ideal. Section 4 provides the Opitz formula
in the general setting of ‘ideal’ interpolation, and the truncated Taylor series serves as a trivial illustration.
The nontrivial details for both the Opitz and the Leibniz formula are fully worked out for Chung-Yao
interpolation, in Section 6. Such formulas for other divided differences are outlined in Section 7. The final
section points out that this paper’s restriction to interpolation to polynomials is easily removed.

For ready reference, here is the (mostly, but not entirely, standard) notation used in this note. α ∈ ZZd
+

denotes a multiindex or, more precisely, a d-index, i.e., a d-vector with nonnegative integer entries; |α| :=∑
j α(j) is its length (or ‘degree’); also, α! :=

∏
j α(j)!. There being no standard notation for it, I use

()α : IFd → IF : x 7→ xα :=
∏
j

x(j)α(j)

for the monomial of multidegree α. Here, IF is either IR or C, though usually it is C. With this,

ΠII := span(()α : α ∈ II), II ⊂ ZZd
+,

with the special cases
Π := Π(IFd) := ΠZZd

+
, Πk := span(()α : |α| ≤ k).

The ad hoc abbreviation
p̂(α) := (Dαp)(0)/α!, p ∈ Π, α ∈ ZZd

+,

with
Dα :=

∏
j

D
α(j)
j

and Dj differentiation with respect to the jth argument, is convenient. Analogously,

()j : x 7→ x(j), j = 1:d,
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while
()0 : x 7→ 1.

In the dual, Π′, of Π, evaluation at some point v ∈ IFd is singled out, i.e., the linear functional

εv : Π → IF : p 7→ p(v),

and, more generally, εvq(D) : p 7→ (q(D)p)(v) for q ∈ Π, with

q(D) :=
∑
α

q̂(α)Dα.

Also,
Q(D) := {q(D) : q ∈ Q}, Q ⊂ Π,

and
Λ⊥ := ker Λ := ∩λ∈Λ ker λ, Λ ⊂ Π′.

2. The Opitz formula. In his short note [O64], describing a talk submitted but not given, G. Opitz
introduces ‘Steigungsmatrizen’ (lit.: ‘divided difference matrices’) as matrices of the form

S[f ; X] := f(AX),

with f a (univariate) polynomial or rational function or, more generally, a suitable limit of such functions,
and, correspondingly, f(AX) the ‘value’ of f at the matrix AX , with

AX :=




x1 1
x2 1

x3
. . .
. . . 1

xn


 ,

and with X := (x1, . . . , xn) a sequence of pairwise distinct complex numbers. The notation S[f ; X] for these
‘Steigungsmatrizen’ is his. Using the (obvious) eigenstructure of AX , Opitz readily concludes that, for each
i, j,

(2.1) S[f ; X](i, j) = ∆(xi, . . . , xj)f,

i.e., the divided difference of f at (xi, . . . , xj) (in W. Kahan’s felicitous notation1), hence the name ‘Stei-
gungsmatrix’. Here, as is customary, ∆(xi, . . . , xj) := 0 for i > j.

In other words, f(AX) is (or, the upper triangular part of f(AX) provides) the divided difference table
for f with respect to the sequence X, and, as Opitz points out, its calculation in this fashion from AX is less
affected by loss of significance than is the direct construction of the divided difference table by the repeated
formation of divided differences. In fact, it can be used for the symbolic calculation of divided differences;
see, e.g., [KF85], and, most recently, [RR01].

Further, Opitz observes that the map
f 7→ S[f ; X]

is linear as well as multiplicative, hence a ring homomorphism, from the ring of functions under pointwise
addition and multiplication into the ring of matrices of order n. In particular,

(fg)(AX) = f(AX)g(AX).

1 I am using here Kahan’s notation not only because it is quite literal, but because the standard notation,
[xi, . . . , xj ], has already other uses, e.g., the matrix with columns xi, . . . , xj or, in the case j = i + 1, the
closed interval with endpoints xi, xj .
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Because of (2.1), this is equivalent to the Leibniz formula, (1.1), i.e., to

∆(xi, . . . , xj)(fg) =
j∑

k=i

∆(xi, . . . , xk)f ∆(xk, . . . , xj)g.

Further, if we take (2.1) as the definition of S[f ; X], then the Leibniz formula implies that f 7→ S[f ; X] is a
ring homomorphism and so, in particular, S[f ; X] = f(AX).

3. Ideal interpolation. If P is a linear projector of finite rank on the linear space F with algebraic
dual F ′, then we can think of P as providing a linear interpolation scheme on F : For each g ∈ F , f = Pg
is the unique element of ranP := P (F ) for which

λf = λg, ∀λ ∈ ranP ′ = {λ ∈ F ′ : λP = λ}

(with P ′ : F ′ → F ′ : λ 7→ λP the dual of P ). In other words, given that kerP = ran(id − P ), we have

ranP ′ = (kerP )⊥ := {λ ∈ F ′ : kerP ⊂ ker λ}.

In this way, ranP ′ provides the interpolation conditions matched by P . Not surprisingly, there are exactly
as many independent conditions as there are degrees of freedom, i.e.,

dim ran P = dim ran P ′.

Now we take
F = Π,

the ring of polynomials in d (complex) variables. In [B79], Garrett Birkhoff defined ideal interpolation
as any linear projector P on Π whose nullspace or kernel is an ideal. In the interest of brevity, and without
passing judgement, we will call such a projector ideal. However, Birkhoff seemed not to have been aware of
the fact that ideal projectors had already been looked at carefully before that, by Möller in [Moe76], who
called them ‘Hermite interpolation’, for the following reason.

As is well-known (and, in this formulation, probably due to Gröbner ; see [G70 : p. 176]), a nonempty
subset I of Π is an ideal of finite codimension if and only if

I = ∩v∈V ker(εvQv(D))

for some finite subset V of Cd (necessarily the ideal’s variety) and some nontrivial D-invariant finite-
dimensional polynomial subspaces Qv, necessarily given by

Qv := {q ∈ Π : ((Dαq)(D)p)(v) = 0, α ∈ ZZd
+, p ∈ I}.

In other words, as Möller rightly stresses, ideal interpolation is characterized by the fact that its interpolation
conditions involve values and, possibly, also derivatives at certain sites, subject only to the condition that if
the linear functional εvq(D) is matched, then so are all ‘lower’ derivatives, i.e., every εv(Dαq)(D) for α ∈ ZZd

+.
Since an ideal projector is, in a sense, aware of the multiplicative structure of Π, we would expect

insights from considering its interaction with multiplication. The following lemma gives this interaction a
handy formulation.

Lemma. A linear projector P on Π is ideal if and only if

(3.1) P (pq) = P (pPq), ∀p, q ∈ Π.

Proof. The condition (3.1) is equivalent to having

P (Π(id − P )(Π)) = {0},
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and, since P is a linear projector hence (id − P )(Π) = ker P , this is equivalent to

Π kerP ⊂ kerP,

hence, given that kerP is a linear subspace, to kerP being an ideal.
It is standard in Algebraic Geometry (see, e.g., [CLO98 : p. 51ff]) to consider, on the quotient ring

Π/I := {f + I : f ∈ Π}

of the polynomials over the ideal I and for an arbitrary polynomial p, the map

Π/I → Π/I : f + I 7→ pf + I.

In our context, it is more convenient to consider, equivalently, the map

(3.2) Mp : ranP → ranP : f 7→ P (pf).

Evidently,
Mp ∈ L(ranP ),

i.e., Mp is a linear map on ranP . Further, (3.1) implies that, for arbitrary p, q ∈ Π and f ∈ ranP ,

MqMpf − Mqpf = P (qP (pf))− P (qpf) = 0.

It follows that the map

(3.3) m : Π → L(ranP ) : p 7→ Mp

is a ring homomorphism onto the commutative algebra generated by the specific linear maps

Mj : ranP → ranP : f 7→ P (()jf), j = 0:d,

in terms of which
Mp = p(M) :=

∑
α

p̂(α) Mα, p ∈ Π,

with
Mα :=

∏
j

(Mj)α(j) = M()α

independent of the order in which this product is formed from its factors.
It follows, directly from (3.1), that

(3.4) p(M)P ()0 = P (p P ()0) = Pp, p ∈ Π.

Such a formula plays a major role in Mourrain’s intriguing paper [Mou99], though it is proved there, consis-
tent with that paper’s setting, only for P whose range, B := ranP , is connected to 1, meaning that each
b ∈ B can be written in the form

∑d
j=0()jbj with each bj in B ∩ Π<deg b, hence, in particular, ()0 ∈ B, and

(3.4) simplifies to p(M)()0 = Pp.
(3.4) implies that kerm ⊂ ker P , while, if p ∈ ker P , then p(M)f = P (pf) = P (fPp) = P0 = 0 for all

f ∈ dom p(M) = ranP , i.e., p(M) = 0. Thus, altogether,

(3.5) ker m = kerP.

4. A general Opitz formula. If now

V : IFn → ranP : a 7→
∑

j

vja(j) =: [v1, . . . , vn]a
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is any basis for ranP , i.e., V = [v1, . . . , vn] is an invertible linear map, then the matrix representation for
Mp = p(M) with respect to this basis is

(4.1) M̂p = V −1MpV = p(M̂),

with
M̂j = V −1MjV, j = 1:d.

Consequently,

(4.2) P (pvj) = p(M)vj = V p(M̂)(:, j), p ∈ Π.

In particular,
Pp = p(M)P ()0 = V p(M̂)a0, p ∈ Π,

with a0 := V −1P ()0 the coordinates of P ()0 with respect to V .
(4.1), (4.2) is the promised generalization of Opitz’s formula.
To make the connection with (2.1), take, in particular, d = 1, and let P = Pn be the linear projector of

interpolation from polynomials of degree < n to data at the distinct sites x1, . . . , xn. Choosing, specifically,
for V the Newton basis

vj :=
∏

j<k≤n

(· − xk), j = 1:n,

we compute the jth column of M̂ := M̂1 as the coordinates, with respect to V , of

M1vj = Pn(()1vj) = Pn(xjvj + (· − xj)vj) = xjvj + Pnvj−1 = xjvj +
{

vj−1, j > 1;
0 otherwise,

hence

M̂ =




x1 1
x2 1

x3
. . .
. . . 1

xn


 = AX .

Consider now p(M)vj = Pn(pvj). Certainly, (Pjp)vj is in ran Pn and matches pvj at all the xi, hence must
equal Pn(pvj). Therefore,

p(M)vj =


 j∑

k=1

∏
k<h≤j

(· − xh) ∆(xk, . . . , xj)p


 vj =

j∑
k=1

vk∆(xk, . . . , xj)p.

Consequently,
p(M̂)(k, j) = ∆(xk, . . . , xj)p, k, j = 1:n.

Since Opitz [O64] bases his derivations on the eigenstructure of the matrix AX , it seems appropriate to
point out that it is standard in Algebraic Geometry (see, e.g., [CLO98 : p. 54ff]) to consider the eigenstructure
of the linear maps Mp (defined in (3.2)). To be sure, it is their dual, more precisely the matrix Mp, called
a multiplication table and defined implicitly by

〈()αp〉 =:
∑
β∈II

Mp(α, β)〈()β〉, α ∈ II

(with 〈f〉 := f + I and II the set of multidegrees that don’t occur among the multidegrees of elements of
the ideal) whose eigenstructure is given, by H. Stetter and his collaborators, a major role in the solving of
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polynomial systems; see, e.g., [AS88], [MoeS95]. But I find it more convenient to deal with the linear maps
Mp.

The bare facts are these: For each v in the variety V := V(kerP ) of the ideal kerP , εv ∈ ranP ′, hence,
for every f ∈ B := ranP ,

εvMpf = εvP (pf) = εv(pf) = p(v)εvf,

and this shows εv (or, more precisely, εv B) to be a left eigenvector of Mp, with corresponding eigenvalue
p(v). Hence, if we are dealing with Lagrange interpolation (as is the case in [O64] at the outset), i.e., if
(εv : v ∈ V) spans ranP ′, then Mp is diagonalizable, and {p(v) : v ∈ V} is its spectrum. In that case, a
right eigenbasis for Mp is the basis (`v : v ∈ V) of ranP dual to (εv : v ∈ V), i.e., `v(w) = δvw, the Lagrange
basis. Further, {p(v) : v ∈ V} is also the spectrum of Mp in the general case, with each q ∈ Qv that is not
in

∑d
j=1 DjQv giving rise to a (right) eigenvector of Mp for the eigenvalue p(v).

5. An Example: the truncated Taylor series. As a first (and trivial) d-variate example with d > 1,
consider P = Tk, the linear map on Π that associates with p ∈ Π its Taylor expansion

Tkp :=
∑
|α|<k

()αDαp(0)/α!

of order k. Evidently,
ranT ′

k = ε0Π<k(D),

thus
kerTk = ideal(()α : |α| = k).

In particular, with
V<k := [()α : |α| < k]

the power basis for Π<k = ranTk, we find ()j()α ∈ ranTk iff |α| < k−1, while, for |α| = k−1, P (()j()α) = 0.
Hence, with ιj := (δij : i = 1:d),

M̂j(α, β) = δβ+ιj−α, |α|, |β| < k,

a strictly lower triangular matrix in any total ordering of ZZd
+ that respects ‘degree’, i.e., for which |α| <

|β| =⇒ α < β. It reflects the evident fact that the action of M̂j is to shift the coefficient function

p̂ : α → p̂(α) = Dαp(0)/α!

by ιj , i.e.,
M̂jp = p̂(· − ιj),

dropping off those terms that are, thereby, pushed outside the relevant index set, {α : |α| < k}.
Correspondingly (or directly by (4.2)), the αth column of p(M̂) is obtained from p̂ by a shift of p̂ by α,

again dropping off those terms that are, thereby, pushed outside {α : |α| < k}, i.e.,

p(M̂)(:, α) = p̂(· − α).

In particular, for any p, q ∈ Π,

(̂pq)(α) = (pq)(M̂)(α, 0) = p(M̂)q(M̂)(α, 0) =
∑
β≤α

p̂(α − β)q̂(β),

the familiar Leibniz formula for the derivative of a product.

6. An Example: Chung-Yao interpolation. In [CY77], Chung and Yao introduced the eponymous
multivariate polynomial interpolation scheme. This scheme provides interpolation from Πk to data at the
sites

ΘIH := {θH : H ∈ (
IH
d

)},
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with IH a set of d + k hyperplanes in IRd in general position and θH the unique point common to the d
hyperplanes in such an H ∈ (

IH
d

)
. Chung and Yao [CY77] show that such interpolation is possible and

uniquely so, by exhibiting the interpolant PIHg to g in Lagrange form.
[dB95] (see [dB97] for details) provides the following Newton form for PIHg:

(6.1) PIHg =
k∑

j=0

∑
K∈

(
IHj−1
d−1

) pj−1,K [ΘIHj ,K | nK , . . . , nK ]g,

with the various terms occurring here defined as follows.

IH−1 ⊂ · · · ⊂ IHk := IH

is any increasing sequence of subsets of IH with #IHj = d + j, all j. Further,

pj,K :=
∏

h∈IHj\K

h

h↑(nK)
,

with h denoting a hyperplane as well as a particular linear polynomial whose zero set coincides with that
hyperplane, and h↑ its leading term, i.e., its linear homogeneous part. Also,

ΘIK,K := ΘIK ∩ lK ,

with
lK := ∩h∈Kh

the straight line common to the d − 1 hyperplanes in K, while

nK

is an arbitrary nontrivial vector parallel to that line. Last, but certainly not least,

[X | Ξ]g :=
∫

[X]

DΞg

is the multivariate divided difference (notation) introduced in [dB95]. Here, X = (x0, . . . , xn) and Ξ =
(ξ1, . . . , ξn) are arbitrary sequences in IRd, the first one having one more entry than the second, DΞ :=
Dξ1 · · ·Dξn

is the composition of directional derivatives Dξ :=
∑

j ξ(j)Dj , and

(6.2) f 7→
∫

[x0,...,xn]

f :=
∫ 1

0

∫ s1

0

· · ·
∫ sn−1

0

f(x0 + s1∇x1 + · · · + sn∇xn) dsn · · · ds1

(with ∇xj := xj − xj−1) is termed, by Micchelli in [Mi79], the divided difference functional on IRd and is
familiar from the Genocchi-Hermite formula for the univariate divided difference. [X | Ξ] is symmetric in
the ‘sites’ x ∈ X, and is linear and symmetric in the ‘directions’ ξ ∈ Ξ, and satisfies the recurrence

[X | Ξ][X ′, · | Ξ′] = [X, X ′ | Ξ, Ξ′].

Let now

V := [pj,K : (j, K) ∈ II], with II := {(j, K) : K ∈ (
IHj

d−1

)
, j = −1:(k − 1)},

be the corresponding ‘Newton’ basis for ranP = Πk. For j = 0:k, let hj be the sole element of IHj\IHj−1,
pick K ∈ (

IHj−1
d−1

)
, and let H := K ∪ hj . Then

(x − θH) =
∑
h∈H

nH\h
h(x)

h↑(nH\h)
.
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This implies that

xpj−1,K(x) = (θH + (x − θH))pj−1,K(x)

= θHpj−1,K(x) +
∑
h∈H

nH\h


 ∏

h′∈IHj\H

h′↑(nH\h)
h′↑(nK)


 pj,H\h(x).

Notice that each of the pj,H\h in the sum over H vanishes on ΘIHj
. In particular, for j = k, the sum over H

vanishes for every x ∈ ΘIH. It follows that, for i = 1:d, the matrix representation M̂i for Mi : f 7→ P (()if)
with respect to the ‘Newton’ basis V is ‘lower triangular’ and quite sparse, with the column corresponding
to pj−1,K having nonzero entries only on the diagonal, where it has the value θhj∪K(i), and at the entries,
if any, corresponding to pj,hj∪K\h for h ∈ hj ∪ K.

Now, what about f(M̂) for arbitrary f ∈ Π? The polynomial fpj−1,K vanishes on ΘIHj−1 , hence depends
only on f restricted to ΘIH\ΘIHj−1 . However, this dependence is hardly simple. Formally, we have

f(M̂)((j, K), (j′, K ′)) = [ΘIHj+1,K | nK , . . . , nK ](fpj′,K′), (j, K), (j′, K ′) ∈ II.

The fact that f(M̂) is lower-triangular, in any ordering of the index set II that refines the natural partial
ordering provided by the first components, is evident.

With this, from the fact that (fg)(M̂) = f(M̂)g(M̂), we get the following ‘Leibniz formula’:

(6.3) [ΘIHj ,K | nK , . . . , nK ](fg) =
∑

(j′,K′)∈II;j′<j

[ΘIHj ,K | nK , . . . , nK ](fpj′,K′) [ΘIHj′+1,K′ | nK′ , . . . , nK′ ]g.

Note that the second factor depends only on g on the sites ΘIHj′+1
, while the first factor depends only on

f on the sites in ΘIHj\ΘIHj′ . In particular, the first factor is trivially zero when j′ ≥ j, hence the sum’s
restriction to j′ < j.

Note also, by way of a check, that, for d = 1, IH consists of pairwise distinct points, with IHj containing
j + 1 points, h0, . . . , hj , say. Further, K = ∅ is the sole element of

(
IHj

d−1

)
, and l∅ = IR, hence we may choose

ι1 for n∅ and, with that,
[ΘIHj ,K | nK , . . . , nK ] = ∆(h0, . . . , hj),

by the Genocchi-Hermite formula, while, as observed earlier,

∆(h0, . . . , hj)(
∏
i<j′

(· − hi)f) = ∆(hj′ , . . . , hj)f.

This verifies that, indeed, (6.3) reduces to (1.1) when d = 1.

7. Other divided differences. Let T be an arbitrary finite subset of Cd and assume that the poly-
nomial subspace B is correct for it in the sense that

Λt
T : B → CT : b 7→ b T

is 1-1 and onto. Then, with
W : CW → B : a 7→

∑
w∈W

a(w)w

an arbitrary basis for B (using W to denote both the basis and the associated basis map), the Gram matrix

Λt
TW = (w(τ ) : τ ∈ T, w ∈ W )

is invertible, hence, for any particular ordering of the basis W , there is some ordering of T so that

Λt
TW = LU,
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with L lower triangular and U unit upper triangular (in the chosen orderings of T and W ). Then one is free
to call

λ(τ1, . . . , τi) :=
∑

k

L−1(i, k)ετk
=

∑
k≤j

L−1(i, k)ετk

the ‘divided difference’ at the sequence (τ1, . . . , τi), and to call, correspondingly, the polynomials

vj :=
∑

k

wkU−1(k, j) =
∑
k≤j

wkU−1(k, j)

‘Newton polynomials’, and to call ∑
j

vj λ(τ1, . . . , τj)f

the ‘Newton form’ of the interpolant from B to f at T. Assuming that B contains the constant function
and that, in fact, v1 = ()0, it then follows that

λ(τ1, . . . , τj)(fg) =
j∑

k=1

λ(τ1, . . . , τj)(fvk) λ(τ1, . . . , τk)g,

with λ(τ1, . . . , τj)(fvk) only depending on f at τk, . . . , τj . The role reversal of f and g here as compared to
(1.1) is due to the fact that the ‘Newton’ basis here is ordered differently than there.

It is in this manner, or, perhaps, in a more relaxed block-triangular way, that one could provide some
kind of Leibniz formula and even an Opitz formula in the context of more general schemes of multivariate
polynomial interpolation, e.g., the least interpolant of [dBR90], or the Sauer-Xu formulation [SX95].

The divided difference introduced by Rabut in [R01] does not quite fit this pattern. For, while Rabut
does define divided differences as the coefficients of the interpolating polynomial, he sticks to the power basis

Vk := [()α : |α| ≤ k]

rather than some kind of multivariate Newton basis. Precisely, with T some pointset in IRd correct for
interpolation from Πk, hence

P := Vk(Λt
TVk)−1Λt

T

well-defined, he denotes the (T, α)-divided difference of f by

f [T]α

and defines it implicitly by
Pf =:

∑
α

()αf [T]α.

With this definition, it follows from (4.2) that

(p[T]α : |α| ≤ k) = p(M̂)(:, 0), p ∈ Π,

hence that
(pq)[T]α =

∑
β

(p()β)[T]α q[T]β =
∑
β≤α

(p()β)[T]α q[T]β.

However, since f [T]α depends on f on all of T, the first factor in each summand still depends, offhand, on
p on all of T.

In Rabut’s setting, the matrix representation M̂j of

Mj : Πk → Πk : p 7→ P (()jp)
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is, in principle, not that hard to work out. For |α| ≤ k, we have ()j()α ∈ Πk if and only if |α| < k. Therefore

M̂j(α, β) =
{

δβ+ιj−α, |β| < k;

()β+ιj [T]α, |β| = k.

However, this still leaves the particular details of the specific divided differences ()β+ιj [T]α for |β| = k to be
supplied. At this point, I do not know whether it would be worthwhile to make that effort.

8. Extensions. In contrast to the standard literature on polynomial interpolation and divided dif-
ferences, I have restricted here attention to interpolation to polynomials. However, since a polynomial
interpolant only depends on the values at the interpolation sites of the function being interpolated, interpo-
lation extends immediately to any function having values at least at the interpolation sites, and this leads
to a natural extension, to such functions, of whatever divided difference notion or polynomial interpolation
scheme is used.

In the univariate setting, if the interpolation involves ‘repeated’ sites, i.e., matching of certain ‘con-
secutive’ derivatives, then, correspondingly, the interpolation scheme and the divided differences extend
to functions suitably differentiable at the interpolation sites. The same holds for multivariate ideal inter-
polation, except that, at present, it is not known whether every such Hermite interpolation scheme can
be viewed as the limit of suitable Lagrange interpolation schemes, i.e., whether in this sense multivariate
Hermite interpolation can be viewed as interpolation involving ‘repeated’ sites.
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