INTRODUCTION TO CODING THEORY: BASIC CODES AND
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SIDDHARTHA BISWAS

ABSTRACT. Coding theory originated in the late 1940’s and took its roots in
engineering. However, it has developed and become a part of mathematics,
and especially computer science. Codes were initially developed to correct
errors on noisy and inaccurate communication channels. In this endeavor,
linear codes are very helpful. Linear codes are simple to understand, yet are
the most important and effective for practical applications, such as encoding
and decoding messages sent over communication channels. More specifically,
we shall examine Hamming codes and their properties. Furthermore, we shall
discuss the importance of Shannon’s Theorem on the existence of good codes.
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1. LINEAR CODES

Linear codes are some of the most basic codes in coding theory, and are very
useful for practical applications. Linear codes are used to encode messages that are
then sent over noisy communication channels. For convenience, we shall consider
binary codes (i.e. digits in the code are 0 or 1). However, properties and theorems
of linear codes still hold true for other number bases.

Consider the message u = ujus . .. u, where each u; is represented by a 0 or 1.
We let x = z1x5 ... x, be a function of the message u such that n > k.

Definition 1.1. A code is a set X such that for all x € X, x is a codeword.

Definition 1.2. An error correcting code is an algorithm for expressing a sequence
of numbers such that any errors which are introduced can be detected and corrected
(within certain limitations) based on the remaining numbers.

Definition 1.3. We call x = x(u) a linear code if there is a binary matrix H such
that

(1.4) HxT =0.
for all messages u. We call H the parity check matriz of this code.

1.1. Properties and Definitions for Linear Codes. Now that a linear code
has been defined let’s consider some properties of such a code. We shall also define
other basic concepts that helps in further understanding this type of codes.
(1) Given H, a parity check matrix of the code x, HxT = 0.
(2) The parity check matrix H is usually an (n — k) X n matrix of the form
H = [A|I,,—], where I,,_j is the identity matrix.
(3) There exists a generator matriz G, usually a k X n matrix of the form
G = [I| — AT], such that
(1.5) x = uG.
Furthermore, GH” = 0 and HG" = 0.
(4) The code x = z1xa...x, has length n. Given the initial message u =
ujUs . .. ug, the code x has dimension k. We therefore call x an [n, k] code.
(5) An [n, k] code has rank or efficiency R = k/n.
(6) Given x and y are codes, since H(x+y)? = Hx? + Hy?, x+y is therefore
also a codeword. This property defines the linearity of x.

1.2. Encoding. When encoding a message into a linear code, the codeword con-
sists of two parts. The first & symbols of the codeword represent the message itself:
X1 = Uy, Tg = Ug, ..., T = ug. The next (n — k) symbols are called check symbols,
and are determined by the parity check matrix and the condition of Hx” = 0.

Example 1.6. Let H be the parity check matrix, given by

H =

[
o = O

1
1
0

o O =
o = O
= O O

Since H is a 3 X 6 matrix, the associated code has length 6 and dimension 3: it is
a [6, 3] code. Remember that the first 3 symbols of the codeword give the original
message itself so,
Tr1 = U, To = U3, T3 = Uus.
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Therefore, after applying the matrix H to the transpose of x and substituting
the relevant u;, we get the relations

ur+uz+zx4 = 0
us+uz+x5s = 0
U1 + Tg = 0.

Now, given any message u = ujusus, we can create a codeword x. For example,
let’s consider x = 010. Then,

z4 =0, x5=1, x¢=0.

Therefore, our new codeword is x = 010010.

1.3. Decoding. Now that the message u has been encoded into x and sent through
the communication channel, the decoding process can begin. However, it is not
always true that the receiver has also received x as the coded message. Due to
channel noise, say that the word received is y. We will now see how to account for
error.

Definition 1.7. The vector e =y — x = ejes...¢, is defined as the error vector.

In order to decode the received message y, it is sufficient to know what e is, for
x =y — e and from x it is simple to decode the original message u. However, the
decoder can never be sure of the error vector e. Therefore, he must pick the one
that is most likely to occur. Under the assumption that any codeword x is equally
likely to occur, this method minimizes the probability of the decoder making a
mistake, and thus is called mazimum likelihood decoding. To further describe this
decoding method, certain definitions are necessary.

Definition 1.8. The Hamming distance between two vectors x = x1x2...x, and
Y = 4192 - .. Yn is denoted by dist(x,y) and is equal to the number of places where
they differ. For example,

dist(111001,101111) =3, dist(101010,001001) = 3.

Definition 1.9. The Hamming weight of a vector x = x12s ..., is the number
of x; # 0, and is written as wt(u). For example,

wt(111001) = 4,  wt(101010) = 3.

Definition 1.10. Given a code X, the minimum distance of the code is the min-
imum Hamming distance between its codewords. It is also known as simply the
distance of the code.

From this, it can be deduced that dist(x, y) = wt(x —y) and min dist(x,y) =
min wt(x —y).

Definition 1.11. A binary symmetric channel is a channel with binary inputs and
binary outputs and error probability p.

In a binary symmetric channel, given the error vector e = ejes ... e,, the prob-
ability that e; = 0 is 1 — p whereas the probability that e; = 1 is p where generally,
0 < p < 1/2. In general, the following equation holds true for the probability of
the occurrence e, Pr(e), given an fixed vector w of weight a.
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(1.12) Pr(e =w) =p*(1 —p)"~“.

Given that p < 1/2, it follows that (1 — p) > p, and

1=p)">pA—=p)" "t >p*(1—p)" 2> .

Therefore, the error vector with the least weight is most likely, so the decoder
picks that vector as the error vector. This method is also known as nearest neighbor
decoding. From here, a brute force plan is required, as each received codeword y is
compared to all 2% possible codewords x using the chosen error vector. However,
this method is near impossible for k large. Therefore, there must be another method
that can decode the message faster.

Another method used to decode codes is using a standard array. For this method,
we must give a definition.

Definition 1.13. Given the set X of all linear codes x, for any vector a, the set
a+X={a+x|xeX}
is called a coset of x.

Given the received codeword y, y must belong to some coset. Suppose, y =
a; + x, then for the sent codeword x’, the error vector would be e = y — x’ =
a; + x — x' = a; + z”, which is contained in the set a; + X. Therefore, all the
possible error vectors are the vectors in the coset containing y. The decoder’s
approach now becomes choosing the minimum weight vector € in this coset; this
vector is called the coset leader. Now, y can be decoded as x =y — é. We let {a;}
be the set of coset leaders. We find the coset leaders in a standard array.

The standard array is a table, with the first row consisting of the possible origi-
nal messages u, the second row consisting of the codewords x with the 0 codeword
as the first element of the row, and the other rows consists of the other cosets a; +
X with coset leader (error vector) as the first element of each row.

Row 1 = up Us ... Ugk
Row 2 = T To . Tok
Row3d = a1 +21 a1 +22 ... a1 + Tok
Row?2 = a,+21 an,+22 ... an+ Xok

From this standard array, given the received codeword y, we can find the corre-
sponding transmitted codeword x as the second element of the column y is in, and
from that, the original message u follows. This is true because when creating this
array, each code y is determined by taking possible codes x and adding the most
likely error vector e to it. Therefore, the second element of each column of codes y
is the original code x that was initially sent. This method in theory is fairly simple;
however, in practice it can be a long process. There are other methods such as the
syndrome decoding method, which will be discussed later.

Example 1.14. Given the parity check matrix
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H =

= o O

1
0
1

O~
O O =
o = O
= O O

we can calculate the generator matrix,

G =

_ o O
_ = O
o = O

1
0].
1

o o

1

0

0
From this information, along wit
standard array:

the equation x = u@, we can create the

000 001 010 011 100 110 111 101
000000 001101 010110 011011 100001 110111 111010 101100
100000 101101 110110 111011 000001 010111 011010 001100
010000 011101 000110 001011 110001 100111 101010 111100
001000 000101 011110 010011 101001 111111 110010 100100
000100 001001 010010 011111 100101 110011 111110 101000
000010 001111 010100 011001 100011 110101 111000 101110
000001 001100 010111 011010 100000 110110 111011 101101

Using this array, given any codeword y, the most likely codeword x can be
derived by the equation X = y — €, and since the first element of each row are error
vectors, the codeword x corresponding to y is the second element of the column
that contains y.

So, if y = 011001, then x = 011011, and following, u = 011.

2. HAMMING CODES

Hamming codes are a type of binary linear codes developed in 1950 by Richard
Hamming. Hamming codes are easy to encode and decode, and are [n, k, d] codes,
where d = minimum distance. Hamming codes are useful in detecting and cor-
recting errors, but first we need to establish the definition of a syndrome.

Definition 2.1. Given the received codeword y and parity check matrix H, the
syndrome of y is

(2.2) S =HyT

The syndrome identifies errors in the received codeword. The value of the syn-
drome is the position of the code where the error is. With a binary code, this also
implies that the error can be easily corrected. The syndrome tells us the symbol of
the code which is erroneous. With a binary code, if the current erroneous symbol is
0, we simply switch it to a 1, and vice versa. Then what is left is the sent codeword
which is easy to decode. This is the syndrome decoding method.

Definition 2.3. The code 7 is a binary Hamming code if it is of length n = 2" — 1
(where r is an integer greater than 1) and has a r x 2" — 1 parity check matrix H.
That makes n a [2" — 1,2" — 1 — r, 3] code.
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Definition 2.4. Two codes are considered equivalent if they differ only by the
order of their symbols.

0000 0000
0001 0010
1001 1100
1111 1111

These are examples of 4 sets of equivalent codes where each row is a set of
equivalent codes.

Example 2.5. Let’s consider the Hamming code with » = 3. Therefore, we have

a [7,4,3] code. Let the (3 x 7) parity check matrix be

000 1 11

011001

101010
Notice that columns of the matrix are comprised of the integers 1 through 7 in

base two. However, this matrix does not look like the usual H = [A|I,,_] form.

Since codes are equivalent if the symbols are in different orders, we can reorder the
columns of the matrix to give an equivalent codes. Let

1
H = 1.
1

1101 1 00
H=1110010
101 1001
Now we have the familiar [A|],,_j] form. From this we can use the above methods

to encode and decode any 4 digit message.

Hamming codes are linear codes with specific properties. Encoding and decoding
them follow the same rules that apply for general linear codes. The importance of
Hamming codes lie in the fact that they are error correcting codes that can correct
one bit errors. Hamming codes are used in places where such errors are common,
such as DRAM chips, satellite communication hardware, and other telecommuni-
cations.

3. SHANNON’S THEOREM

In 1948, Claude Shannon developed a result that has become one of the fun-
damental theorems of coding theory. The theorem basically states that error free
transmission of codes is possible within a maximum rate depending on the noise
of the communication channel. First Shannon established the capacity of a given
channel, which is the theoretical transfer rate over that channel.

Definition 3.1. The probability of error or Pre is the probability that given a
received codeword, the decoded output of that codeword is in error.

Definition 3.2. The capacity of a channel given Pro = p is given by

(3.3) C(p) =1+ plogy(p) + (1 — p)logy(1 — p).

This equation is specifically for binary codes.
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Theorem 3.4. Take a binary symmetric channel with symbol error probability.
Given any € > 0, R < C(p), for n sufficiently large, there is an [n,k] binary code
of rate k/n > R with Pre < €.

From this theorem, we can see that if R < C(p) we can find a [n, k] code that
will make the probability error arbitrarily small. With this, communication chan-
nel noise and distractions become less important and can be disregarded due to
Shannon’s remarkable discovery.
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