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Cost-effectiveness analysis is now an integral part of health technology assessment and addresses the
question of whether a new treatment or other health care program offers good value for money. In this
paper we introduce the basic framework for decision making with cost-effectiveness data and then review
recent developments in statistical methods for analysis of uncertainty when cost-effectiveness estimates are
based on observed data from a clinical trial. Although much research has focused on methods for
calculating con�dence intervals for cost-effectiveness ratios using bootstrapping or Fieller’s method, these
calculations can be problematic with a ratio-based statistic where numerator and=or denominator can be
zero. We advocate plotting the joint density of cost and effect differences, together with cumulative density
plots known as cost-effectiveness acceptability curves (CEACs) to summarize the overall value-for-money
of interventions. We also outline the net-bene�t formulation of the cost-effectiveness problem and show
that it has particular advantages over the standard incremental cost-effectiveness ratio formulation.

1 Introduction

Cost-effectiveness analysis is now an integral part of health technology assessment and
addresses the question of whether a new treatment or other health care program offers
good value for money. Economic evaluation has been most prominent and formalized
in the context of public-payer reimbursement of new medicines. For example, the
national Pharmaceutical Bene�ts Scheme in Australia and the Ontario Drug Bene�t
Plan in Canada both require economic evidence from pharmaceutical manufacturers in
support of new submissions for formulary listing.1 ,2 In the UK, the National Institute of
Clinical Excellence (NICE) uses economic evidence in setting guidance for the use of
new technologies in the National Health Service.3 In the United States, the US Public
Health Service has issued in�uential guidelines in how health care cost-effectiveness
studies should be conducted.4

Interest in statistical issues surrounding cost-effectiveness analysis has grown rapidly
in recent years, largely because more randomized trials of new therapies have begun
collecting patient-level data on resource usage and costs. This development has led
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to methodological discussions on methods for estimating the parameters of cost-
effectiveness and the role of statistical inference and hypothesis testing in relation to
decision making with cost-effectiveness data.5

In this paper we introduce the basic framework for decision making with cost-
effectiveness data and then review recent developments in statistical methods for
analysis of uncertainty when cost-effectiveness estimates are based on observed data
from a clinical trial. To illustra te and compare the methods, a common dataset is used
throughout the paper based on our own work on the cost-effectiveness of the
implantable cardioverter de�brilla tor (ICD).6 ,7 The example illustrates many of the
challenging aspects of trial-based cost-effectiveness analysis and a brief summary can
be found in Table 1.

As we will show, although much research has focused on methods for calculating
con�dence intervals for cost-effectiveness ratios using bootstrapping or Fieller’s
method, these calculations can be problematic with a ratio-based statistic where
numerator and=or denominator can be zero. We advocate plotting the joint density
of cost and effect differences, together with cumulative density plots known as cost-
effectiveness acceptability curves (CEACs) to summarize the overall value-for-money of
interventions. We also outline the net-bene�t formulation of the cost-effectiveness
problem and show that it has particular advantages over the standard incremental
cost-effectiveness ratio formulation.

2 The cost-e¡ectiveness plane

In Figure 1 we illustrate the cost-effectiveness (CE) plane, due originally to Black.8 TheCE
plane is a two-dimensional space with the x-axis being the mean difference (treatment
minus control) in effectiveness (DE) per patient and the y-axis being the mean difference in

Table 1 Cost-effectiveness of the implantable cardioverter de� brillatora

Background: In the Canadian Implantable De� brillator Study (CIDS) we
assessed the cost-effectiveness of the implantable cardioverter
de� brillator (ICD) in reducing the risk of death in survivors of
previous ventricular tachycardia (VT) or � brillation (VF)

Methods: Health care resource use was collected prospectively on the � rst
430 patients enrolled in CIDS (n ˆ 212 ICD, n ˆ 218 amiodarone).
Mean cost per patient, adjusted for censoring, was computed for
each group based on initial therapy assignment. Incremental cost-
effectiveness of ICD therapy was computed as the ratio of the
difference (ICD—amiodarone) in cost to the difference in life
expectancy (both discounted at 3% per year). All costs are in
1999 Canadian dollars; C$1 º US$0.65

Results: Over 6.3 years, mean cost per patient in the ICD group was
C$87715 versus C$38 600 in the amiodarone group (difference
C$49115; 95% CI C$41 597 to C$56 593). Life expectancy for the
ICD group was 4.58 years versus 4.35 years for amiodarone
(difference 0.23, 95% CI ¡0.12 to 0.57), for incremental cost-
effectiveness of ICD therapy of C$213 543 per life-year gained

aSource: Abridged abstract from O’Brien et al.6
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cost (DC) per patient. Costs are in money units such as dollars and effectiveness units are
typically health outcomes such as survival (‘life-years’ gained) which may be adjusted for
decrements in health-related quality of life to yield quality-adjusted life-years (QALYs).9

In principle, the axes are unbounded from positive to negative in�nity, and the origin
represents the control group because scales are in difference form. To aid reference, we
label the four quadrants using the points of the compass.

If we consider the ideal circumstance of knowing our (x,y) coordinates on the CE
plane for sure, with no uncertainty, then a number of eventualities can arise.

° North-West quadrant: treatment dominates control, being less costly and more
effective, and the ef�ciency-based decision rule is to adopt treatment.

° South-East quadrant: treatment is dominated by control, being more costly and less
effective, and the decision rule is not to adopt treatment.

° North-East quadrant: increased effectiveness with treatment is achieved at increased
cost. In this situation, the decision to adopt the new therapy will depend on where the
(x,y) coordinate falls in the NE quadrant and whether this point lies below the
acceptable ‘ceiling ratio’ of the decision maker. As illustra ted by the line extending
from the origin, the assumption is that the dollar amount that the decision maker is
willing to pay for a unit of effectiveness is known (denoted as l). If the incremental
cost-effectiveness ratio (ICER) of the new therapy (DC=DE), that is, the slope of a

Figure 1 Incremental cost-effectiveness plane showing four quadrants, line representing the ceiling ratio for
decision making and the location of the point estimate of incremental costs and effects for the CIDS data
example
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straight line from the origin that passes through the (DE, DC) coordinate, is less than
the decision maker’s maximum willingness to pay (l), then the treatment should be
adopted.

° South-West quadrant: reduced effectiveness with treatment is associated with lower
cost. This is the mirror image of the NE quadrant. If the ICER of the new therapy
(DC=DE)—which will be a positive ratio—is greater than l, then the treatment
should be adopted. Note that the decision rule is reversed since the ICER can
equivalently be considered as the additional cost of control over treatment divided by
the additional effect.

Using our example, if we assume, for the moment, that our ICD data (Table 1) had
no uncertainty, then the true cost difference per patient would be C$49 100 and the true
increase in survival would be 0.23 years for an ICER of C$214 000 per life-year gained.
If we assume that the maximum that society is willing to pay for a year of life is
C$100 000, then ICD therapy should not be adopted. This is shown graphically in
Figure 1 by the point estimate of cost-effectiveness falling above and to the left of the
line with slope l ˆ C$100 000. Of course, the problem is that all the parameters are
uncertain, including the amount society is willing to pay for a unit of effect.

3 Quantifying the precision of DC and DE

Given that cost and effect differences are estimates it is important that uncertainty in
those estimates is also presented. Based on the standard errors of the means it is
straightforward to calculate con�dence intervals for each of the cost and effect
differences, DC and DE, using standard methods, and these intervals can also be
plotted on the CE plane.5 In our example, the 95% con�dence intervals for DC are
(C$41 600 to C$56 600) and for DE are (¡0.12 to 0.57). These results are represented
on the CE plane in Figure 2, which, in addition to a point estimate of the cost and effect
difference of ICD therapy, also shows error bars representing the con�dence intervals
around those estimates.

The horizontal error bar in Figure 2 represents the con�dence interval for the effect
difference, and the vertical error bar represents the con�dence interval for the cost
difference. Both have the point estimate of the cost and effect differences at their center
and together the intervals de�ne a ‘box’ on the CE plane. Of note with our ICD
example is that the box ‘straddles’ the y-axis but lies completely above the x-axis,
re�ecting the fact that the difference in survival in the CIDS trial was not signi�cant
with a two-tailed p-value of 0.10 but that the difference in cost was signi�cant
(p < 0.05). Clearly, one crude approach to quantifying the precision of the ICER
(the ratio DC=DE), discussed by O’Brien et al.5 would be to de�ne upper and lower
bounds based on upper and lower 95% limits for DC and DE separately. For example,
the lower bound for ICER would be the ratio of the upper 95% limit on DC and the
upper 95% limit on DE.

There are two central problems with the so-called ‘box’ method. The �rst is that it
ignores covariation between costs and effects. This is a symptom of the more general
failure to model the joint density of DC and DE, which de�nes ellipses—contours of
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equiprobability—on the CE plane, and of differing shape depending on the sign and
extent of covariation. The second problem is an issue of how such con�dence intervals are
interpreted. For the ICD data in Figure 2 it may be tempting to assume that ICD and
amiodarone have the same life expectancy and only compare them in terms of cost. This
form of analysis, known as cost-minimization analysis, uses the logic that among
outcome-equivalent options one should choose the less costly option. As we have
argued elsewhere,1 0 the problem with this sequential inferential logic is that failure to
show a signi�cant difference is not the same as establishing equivalence. Focusing on
hypothesis testing leads to an overemphasis on type Ierrors at the expense of type IIerrors.
Our contention is that emphasis should be placed on the estimation of the joint density of
DC and DE in the CE plane, using either parametric or non-parametric methods.

4 ICER con¢dence intervals based on the joint density
of DC and DE

The ICER statistic is a ratio of two random variables, either of which can take the value
zero, and this makes for an unstable distribution with discontinuities. For example, for a
positive cost difference (the numerator of the ICER) as the effect difference approaches

Figure 2 Con� dence limits and the con� dence box on the cost-effectiveness plane for the ICD data example
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zero from the positive direction, the ICER tends to positive in�nity. As the effect
difference approaches zero from the negative direction, the ICER tends to negative
in�nity. For negative cost differences the ICER signs are reversed. This discontinuity
about the zero effect difference causes statistical problems for estimating con�dence
limits; for example, there is no mathematically tractable formula for the variance of the
statistic. Even where the effect difference is signi�cantly different from zero, it would be
inappropriate to assume that the ICER’s sampling distribution followed a normal
distribution.

A general consensus has emerged in support of two main approaches: the parametric
method introduced by Fieller1 1 in 1954 and the non-parametric approach of bootstrap-
ping,1 2 both of which have been described in relation to cost-effectiveness
analysis.1 3 –1 6 We now illustra te each approach in turn, employing the example data
from the CIDS trial (Table 1).

4.1 Fieller’s theorem
Fieller’s method is parametric and based on the assumption that the cost and effect

differences (DC and DE) follow a joint normal distribution. The standard cost-
effectiveness ratio calculation of R ˆ DC=DE can be expressed as RDE ¡ DC ˆ 0,
with known variance R2 var…DE† ‡ var…DC† ¡ 2R cov…DE; DC†. Therefore, we can
generate a standard normally distributed variable by dividing the reformulated expres-
sion by its standard error:

RDE ¡ DCp
‰R2 var…DE† ‡ var…DC† ¡ 2R cov…DE; DC†Š

¹ N…0; 1†:

Setting this expression equal to the critical point from the standard normal distribution,
za=2 for a (1 7 a)100% con�dence interval, yields the following quadratic equation in R:

R2 ‰DE2 ¡ z2
a=2var…DE†Š ¡ 2R‰DE ¢ DC ¡ z2

a=2cov…DE; DC†Š ‡ ‰DC2 ¡ z2
a=2var…DC†Š ˆ 0:

The roots of this equation give the Fieller con�dence limits for R (the ICER) and are
obtained from straightforward application of the standard formula for quadratic
equations. After some messy manipulation we obtain

R ˆ

‰DE ¢ DC ¡ z2
a=2cov…DE; DC†Š §

p
f‰DE ¢ DC ¡ z2

a=2cov…DE; DC†Š2

¡‰DE2 ¡ z2
a=2var…DE†Š ¢ ‰DC2 ¡ z2

a=2var…DC†Šg
DE2 ¡ z2

a=2var…DE†

The attraction of this closed-form solution is that it requires only �ve pieces of informa-
tion: the estimated effect difference, the estimated cost difference, their respective
variances, and the covariance between them. Recently, Willan and Lin1 7 have also derived
the covariance term for the Fieller method when costs and effects are subject to censoring.

Figure 3a shows the assumption of joint normality on the CE plane for the ICD data
of Table 1 by plotting ellipses of equal probability covering 5, 50, and 95% of the
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integrated joint density. Also plotted are the estimated con�dence limits using Fieller’s
theorem (C$86 800 to ¡C$408 000), represented by the slopes of the lines on the plane
passing through the origin.

4.2 Bootstrapping
The approach of nonparametric bootstrapping has been gaining in popularity

with the advent of powerful desktop computing.1 2 It is a resampling procedure
that estimates an empirical sampling distribution for the statistic of interest rather
than relying on parametric assumptions. Bootstrap samples of the same size as the
original data are drawn with replacement from the original sample and the statistic of
interest is calculated. Repeating this process a large number of times generates a vector
of bootstrap replicates of the statistic of interest, which is the empirical estimate of that
statistic’s sampling distribution.

In terms of the cost-effectiveness application, the approach involves a three-step
procedure:

(1) Sample with replacement nC cost=effect pairs from the patients in the control group
(where nC is the number of observed patients in the control group) and calculate the
mean cost and effect in this bootstrap resample.

(2) Sample with replacement nT cost=effect pairs from the patients in the treatment
group (where nT is the number of observed patients in the treatment group) and
calculate the mean cost and effect in this bootstrap resample.

Figure 3 Fieller’s theorem (a) and bootstrap (b) con� dence limits on the CE plane for the ICD data example
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(3) Using the bootstrapped means from the steps above, calculate the difference in
effect between the groups, the difference in cost between the two groups, and an
estimate of the incremental cost-effectiveness.

This three-step procedure provides one bootstrap replication of the statistic of
interest; repeating this process a large number of times (at least 1000 times is
recommended for con�dence interval calculation) generates the empirical distribution
of cost-effectiveness.

Each of 1000 bootstrapped effect and cost differences from step 3 above are plotted
on the CE plane in Figure 3b for the ICD data example. Con�dence limits can be
obtained by selecting the 26th and 975th of the 1000 replicates (which excludes 25
(or 2.5%) of observations from either end of the empirical distribution); this effectively
ensures that 95% of the estimated joint density falls within the wedge on the CE plane
de�ned by the con�dence limits. It should be immediately apparent from comparing
Figures 3a and 3b that the bootstrap estimate of the joint density and the bootstrap
con�dence limits (C$88 200 to ¡C$491 000) are very similar to those generated by
Fieller’s theorem. This suggests that for this particular example, the assumption of joint
normality for the cost and effect differences is reasonable.

4.3 The problem of negative (and positive) ratios
The con�dence interval methods outlined in the previous section are suitable for

‘well-behaved’ data, in the sense that the joint density of (DC, DE) lies wholly within
the North-East or South-West quadrants of the CE plane. But problems arise if parts of
the joint density lie in the two ‘dominance’ quadrants (SE and NW) that generate
negative ratios.1 8 First, a bootstrap interval for the ICER will order bootstrap replicates
from low-to-high in a distribution. But two replicates with negative ratios can come
from quadrants with totally opposite meaning—the NW quadrant (less effective, more
costly) and the SE quadrant (more effective, less costly). In the CIDS example, this
problem was countered by rank ordering all bootstrapped negative ratios in the North-
West quadrant of the cost-effectiveness above the positive ratios before obtaining the
percentile interval (see Figure 3b).

The more general problem is that data points in the negative quadrants have no
meaningful ordering. In the positive quadrants low ICERs are preferred to high ICERs
(from the point of view of the more costly more effective treatment). However, no such
simple arrangement exists in the negative quadrants. Consider the three following
points in the SE quadrant: A (1LY, ¡$2000); B (2LYs, ¡$2000); C(2LYs, ¡$1000);
giving negative ICERs of ¡$2000=LY, ¡$1000=LY and ¡$500=LY, respectively.
Therefore, in terms of magnitude, A has the lowest ICER, with C the highest and B
between the two. However, it should be clear that B is preferred to both A and C as it
has the highest number of life years saved and the greatest cost saving.

Note, however, that the problem of ICER ordering also applies to positive ratios in
different quadrants. As was pointed out above, the decision rule in the North-East
quadrant is to implement the new treatment if the ICER is below the ceiling ratio. In the
South-East quadrant the decision rule is to implement the new treatment if the ICER is
greater than the ceiling ratio. Therefore, when uncertainty in the cost-effectiveness
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results extend across different quadrants of the CE plane, problems arise for the
interpretation of con�dence intervals for the ICER.

5 Cost-e¡ectiveness acceptability curves

Given the problems of negative cost-effectiveness ratios a new approach has been
introduced based on the cost-effectiveness decision rule. Recall that if the estimated
ICER lies below some ceiling ratio, l, re�ecting the maximum that decision makers are
willing to invest to achieve a unit of effectiveness, then it should be implemented.
Therefore, in terms of the bootstrap replications on the CE plane in Figure 3b, we could
summarize uncertainty by considering what proportion of the bootstrap replications
fall below and to the right of a line with slope equal to l, lending support to the
cost-effectiveness of the intervention. This representation has been termed a cost-
effectiveness acceptability curve (CEAC)1 9 as it directly summarizes the evidence in
support of the intervention being cost-effective for all potential values of the decision
rule. It should be noted that, although the exact value of l is unknown, it must be
resolved—explictly or implicitly—at the time of any decision; assigning a money value
to health outcomes is inevitable.

To compute a nonparametric CEAC, the bootstrap resamples from Figure 3b can be
used in a plot of the proportion of bootstrap replications falling on the cost-effective
side of the line as l is varied across its full range from 0 through to in�nity. For a
parametric CEAC, the assumption of joint normality in the distribution of costs and
effects is invoked, and we can integrate the function over the CE plane to determine the
proportion of the parametric joint density—f(DC,DE)—that falls on the cost-effective
surface of the CE plane.2 0 The CEAC is computed as the folowing double integral:

…‡1

¡1

…lDE

¡1

f …DC; DE†dDCdDE

We employ this parametric approach and the resulting curve for the ICD example based
on the joint normal assumption shown in Figure 3a is presented in Figure 4. This
acceptability curve presents much more information on uncertainty than do con�dence
intervals. The curve cuts the vertical axis at the p-value (one-sided) for the cost
difference (which is p < 0.0001 in our ICD example) since a value of zero for l implies
that only the cost is important in the cost-effectiveness calculation. The curve is tending
toward 1 minus the p-value for the effect difference (which in the ICD example is
p ˆ 0.10), since an in�nite value for l implies that effect only is important in the cost-
effectiveness calculation. The median value (p ˆ 0.5) corresponds to the base-case
ICER, which is C$214 000 in our example.

As well as summarizing, for every value of l, the evidence in favor of the intervention
being cost-effective, acceptability curves can also be employed to obtain a con�dence
interval on cost-effectiveness. For the ICD example, the 95% upper bound is not
de�ned and the 95% lower bound is equal to C$86 800. A particularly nice feature of
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the CEAC is that it can be used to show uncertainty and variability (e.g., variation in
cost-effectiveness by age or risk factors) using multiple CEACs on the same plot. This
approach to presenting strati�ed cost-effectiveness was used in our subsequent work on
the cost-effectiveness of the ICD.2 1

6 The net-bene¢t framework

A recent development has been the rearrangement of the cost-effectiveness decision rule
to overcome the problems associated with ICERs.2 2 –2 5 In particular, Stinnett and
Mullahy2 4 offer a comprehensive account of the net-bene�t framework and make a
convincing case for employing the net-bene�t statistic to handle uncertainty in
stochastic cost-effectiveness analysis. The standard cost-effectiveness decision rule, to
implement a new treatment only if DC=DE < l, can be rearranged to give two
alternative inequalities on either the cost scale or on the effect scale. For simplicity,
we focus on the cost scale of Net Monetary Bene�t (NMB):

NMB ˆ l ¢ DE ¡ DC

The advantage of formulating the cost-effectiveness decision rule in this way is that, by
using the value of l to turn the decision rule into a linear expression, the variance for
the net-bene�t statistics is tractable and the sampling distribution is much better

Figure 4 Cost-effectiveness acceptability curve for the ICD data example
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behaved (in that with suf�cient sample size net bene�ts are normally distributed). The
variance expression for NMB is given by

var…NMB† ˆ l2 ¢ var…DE† ‡ var…DC† ¡ 2l ¢ cov…DE; DC†

Similar to the acceptability curve, the NMB is plotted conditionally as a function of l.
Figure 5 is the NMB plot for the CIDS example and includes the 95% con�dence
intervals on NMB based on the parametric variance formula above. The NMB curve
crosses the horizontal axis at the point estimate of cost-effectiveness of the intervention,
which is C$214 000 in our ICD example. Where the con�dence limits on NMB cross
the axis gives the con�dence interval on cost-effectiveness. We see from the �gure that
while the lower limit of cost-effectiveness is $86 800, the upper 95% limit of NMB does
not cross the axis, which indicates that the upper limit on cost-effectiveness is not
de�ned. This is the same result obtained from the analysis of the acceptability curve in
Figure 4.

NMB and parametric acceptability curves are closely related concepts. Each point of
an acceptability curve can be calculated from the p-value on the null hypothesis of
NMBˆ 0. An acceptability curve calculated in this way gives the same acceptability

Figure 5 Net monetary bene� t statistic as function of ceiling ratio for the ICD data example including 95% CI
on net monetary bene� t. Where the net-bene� t curves intersect with the NMB ˆ 0 axis de� nes the point esti-
mate and 95% con� dence interval on cost-effectiveness.Note that the upper 95% limit on cost-effectivenessis
not de� ned in this example
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curve as that by van Hout et al.,1 9 based on the joint normal distribution of cost and
effect differences. Similarly, the net-bene�t method and Fieller’s theorem, being both
based on the assumption of joint normality, have a formal equivalence.2 6

6.1 Summary
Since con�dence intervals for cost-effectiveness ratios are not always de�ned, we

strongly recommend that analysts plot their results on the CE plane, using either
bootstrap replications or ellipses under the assumption of joint normality (see Figure 3a,
b). This gives a visual representation of the joint uncertainty that aids interpretation.
Further summarization can be made with an acceptability curve or net-bene�t plot. Our
own preference is the use of acceptability curves since these curves directly address the
question of the study: How likely is it that the new intervention is cost-effective?

7 Statistical decision theory as a unifying framework

Although a strict frequentist interpretation of cost-effectiveness acceptability curves is
possible through the consideration of the p-value on net bene�ts,2 0 the natural way to
interpret these curves is as the probability that the intervention is cost-effective. A number
of commentators have stressed that such a view of probability in cost-effectiveness
analysis is only possible in a Bayesian framework.2 7 –2 9

Bayesian methods are central to the analytic framework of statistical decision
theory3 0 and differ from the frequentist in several fundamental ways. First, Bayesian
methods formally incorporate previous evidence (‘priors’) with observed data (‘like-
lihood’) to estimate a posterior probability distribution for the hypothesis under study.
Hence the Bayesian conditions on the data, not the null hypothesis being true, which is
the frequentist perspective. Secondly, a full Bayesian decision analysis will parameterize
a loss function associated with alternative decision consequences such that the expected
utility of alternative courses of action can be computed. This second aspect is
particularly attractive for economic analysis, which has a central focus on expected
utility maximization. As shown by Claxton,2 2 in the case of cost-effectiveness analysis a
composite metric such as NMB provides a logical means by which to parameterize a
loss function.

But if one uses the framework of statistical decision theory a puzzle emerges. In
Bayesian mode, Claxton2 2 argues that classica l statistical inference is ‘irrelevant’ to
decision making with cost-effectiveness data; the only defensible Type 1 error rate is
50% and the expected utility maximizer should always ‘play the winner’. So what value
is there to estimating uncertainty using the methods outlined above if the Bayesian
perspective is to choose the decision option with the highest expected value? The answer
lies in the value of collecting new data that will further reduce the expected utility loss
associated with ‘wrong decisions’; that is, circumstances where NMB< 0. Hence the
relationship between the reduction in parameter uncertainty and reduced opportunity
loss provides an ef�ciency-based framework for whether it is worthwhile to collect new
data. Claxton and Posnett2 3 have recently illustra ted how the principles of expected
information value that can be found in texts such as Pratt et al.,3 0 can be applied to
the economic appraisal of clinical trial design.
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8 Conclusions

Data visualization is an important principle when examining uncertainty in cost-
effectiveness data and we recommend the use of the CE plane as a graphical tool for
arraying the joint density of cost and effect differences. We have also emphasized the
estimation of uncertainty rather than hypothesis testing, arguing that the latter can lead
to underpowered and misleading inference. Given that the ceiling ratio for the monetary
value of health (l) is not known, plus the distributiona l problems with the ratio-formed
ICER, we believe that there is very limited scope for formal tests of hypotheses in cost-
effectiveness studies. We advocate the use of CEACs that directly address the concern of
the decision maker: how likely is it that the intervention is cost-effective if I am willing
to pay $l for a unit of health outcome? The CEAC is a �exible tool and permits
interpretation by the frequentist—who may look to 95% con�dence limits for
inference—and the Bayesian, who is interested in playing the winner and choosing
the alternative that has the highest expected value.

The net-bene�t framework provides a very important contribution to the analysis of
uncertainty for incremental cost-effectiveness by removing the reliance on ratio statistics,
which are inherently problematic from a statistical point of view. In particular, net-
bene�t methods allow straightforward calculation of acceptability curves, a simple solu-
tion to the problem of power calculation, and have recently been employed to directly
estimate cost-effectiveness within a regression framework.3 1 NMBalso provides a logical
metric for a Bayesian loss function and therefore permits the analyst to assess the monetary
value of further reducing parameter uncertainty by collecting new data.
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