
Classifying Human Dynamics Without Contact Forces

Alessandro Bissacco Stefano Soatto

UCLA CSD-TR # 050009

Abstract

We develop a classification algorithm for hybrid autoregressive models of human motion for the purpose of video-based
analysis and recognition. We assume that some temporal statistics are extracted from the images, and we use them to infer
a dynamical system that explicitly models contact forces. We then develop a distance between such models, and compute an
approximation that forms the basis for a simple classifier that explicitly factors out exogenous inputs that are not unique to
an individual or her gait. We show that such a distance is far more discriminative than the distance between simple linear
systems, where most of the energy is devoted to modeling the dynamics of spurious nuisances such as contact forces.

1. Introduction
The analysis of human motion has been a subject of interest in the vision community for decades, further reinforced in
recent years by applications in security, biomechanics and entertainment. All aspects of the problem, from modeling to
detection, tracking, classification, and recognition are the subject of active research [12, 7, 33]. From a modeling perspective,
humans are physical objects interacting in physical space in ways that are mediated by forces, masses and inertias that can
be described, to first approximation, by ordinary differential equations. In other words, humans are dynamical systems.
Analytically, each individual can be described by a model that includes intrinsic parameters (masses, inertias), internalstates
(skeletal configurations, internal forces), also a property of the individual, and external forces (inputs), including contact
forces, that depend on the environment and other nuisance factors. From the point of view of perception, humans and their
clothes interact with light and an imaging device to yieldoutputimages.

While “static” (e.g. pose, skeletal configurations [22]), “quasi-static” (e.g. graphs of transitions between poses [31],
cumulative video statistics [4]), or “kinematic” representations [5] already contain significant information on both the identity
of humans and their action,1 dynamicsalso play a crucial role, that has been recognized early on by Johansson [17] who
showed that even if we strip the image of all of its pictorial content and look at displays of moving dots, from their motion
we can often tell whether a person is young or old, happy or sad, man or woman.2 In this paper we concentrate ondynamics
as a perceptual cue for human motion recognition.3

If we agree in viewing humans as dynamical systems, then learning their dynamic characteristics is a system identification
task [24]. System identification is a well established field, and yet in almost 50 years of research the problem of performing
decision tasks, such as detection and recognition, in the space of dynamical models is largely unexplored. Several attempts
have been made to endow the space of dynamical models with a metric and probabilistic structure, such as the Gap metric
[36], subspace angles [9], Martin’s distance [26]. However, even for simple linear systems deciding “how far” two models
are is not straightforward, and learning a distribution (e.g. a prior) in model space is even less so [20].4 In particular, if we
want to be able to learn models that have discriminative power, we have to factor out nuisance factors, such as external forces,
that do not depend on the particular individual or gait. Therefore, in this work we considermodels that explicitly represent
contact dynamics; such models arehybrid, in the sense that they involve both continuous dynamics and discrete “switches.”
Therefore, the simplest instance of our problem involves performinginference and classification of hybrid dynamical models.

1It is often easy to tell that someone is running, rather than walking, from a single snapshot.
2One could argue that moving dot displays also contain pose and kinematic information; however, dynamics remains an important cue, as one can guess

by watching two-hundred pound imitators display Charlie Chaplin’s walk (different masses, inertias and skeletal configuration, same perceptual dynamics).
Furthermore, one single snapshot of such moving dot displays rarely yields much information.

3This does not mean that kinematics, or pose or even pictorial cues are not important, and eventually all will have to be integrated into a coherent system.
We believe, however, that dynamics has been largely unexploited, hence our emphasis in this paper.

4Note that each of these techniques has been applied to the analysis and classification of human motion ([3] for subspace angles and Martin’s distance,
[27] for the Gap metric) with encouraging but limited results.
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Since the analysis is complex enough forrepetitive gaits(e.g. walking, running, jumping), we concentrate on this case.
Ideally an individual should be recognized regardless of the gait, and in particular during transient maneuvers, but this is
beyond the scope of this paper.

In order to distill the essence of the problem, we concentrate on dynamics, and assume that some representation of a human
gait has been inferred, either in the form of joint angles in a skeletal model (e.g. [6]), or in the form of joint positions, e.g. from
a motion-capture system. In other words, we use data similar to Johansson’s displays, that distill dynamic information. Note
that, although we assume that the “image-to-model” problem is solved, which is not quite the case even today, and although
we do not use any images in this work, this is vision work indeed. In fact, the models we study are designed and analyzed for
the purpose of vision-based classification: If we were to infer and analyze models for, say, computer graphics, or robotics,
or biomechanics, the models would be quite different, and their inference would likely entail additional measurements (e.g.
forces) that are not directly available in a vision context. So, we concentrate oninference and classification of hybrid
dynamical models designed for vision-based human motion analysis and recognition.This is not a trivial problem, and even
some of the basic ingredients are missing from the literature, as we explain in the following section.

1.1 Relation to previous work

The literature on human motion recognition is too broad for us to review here. We will provide a synthetic overview of the
main approaches, both for the problem of classification of motion gaits [33] and of identification of people by their gait [31].

The proposed approaches can be classified as model-based [5, 3, 21, 19] representing the motion as the parameters of
a model fitted to the data, or holistic [16, 23, 35], where some statistics is extracted from the video sequence and used for
classification. In all cases the first step consists in deriving a compact representation of the motion, such as binary silhouettes
[31, 19], optical flow [23], joint angles of an articulated body model with image-based tracking [5, 3, 28], or other spatio-
temporal motion descriptors [2, 11, 37]. Then some statistics are computed on the reduced data and pattern recognition
techniques such as PCA [2], bilinear models [21], Hidden Markov Models [16, 19], K-Nearest Neighbor [23] or Support
Vector Machines [22] are applied to the classification problem.

As we motivated in the introduction, we take the approach of modeling the dynamics of human gaits with hybrid linear
models. Inference of the state and model parameters for a switching linear model is, in general, NP complete [34]. While
several heuristic algorithms exist, there is no optimal algorithm of reasonable complexity for the model orders that we need
to consider. Therefore, we concentrate on a specific class of models, that is switching autoregressive (AR) ones. These are a
subclass of switching linear system that is particularly attractive since, for each mode, the optimal estimator can be written
as a closed-form function of the data [24]. For hybrid-AR models, recent algebraic approaches to filtering and identification
[25] have shown promising results, although they are already too involved for our purpose, and therefore we will derive our
own identification algorithm in Sect. 2.2. This is our first contribution.

Our second challenge is to define a distance in the space of hybrid-AR models. To the best of our knowledge, this has only
been done once before [10] for the case where the models are represented by deterministic unknown parameters, rather than
having a distribution of them. We show that the simple extension of [10] to a stochastic model yields non-sensical distances
that either are non-zero when the two models are identical (eq. 7), or that can be infinity for models that are arbitrarily close
in the deterministic sense (eq. 8). We define a novel notion of discrepancy that is very intuitive because it ends up coinciding
with the Euclidean distance between the optimal estimators.

Our third challenge is to use such a distance for classification. Since we concentrate on the modeling aspect of this
problem, we choose the simplest classifier, nearest-neighbor, although one could take our approach and extend it to more
sophisticated ones, e.g. kernel machines. The main achievement of this paper is to show thatthe distance between hybrid
models that factor out contact forces is far more discriminative than the distance between linear models that was previously
used to classify gaits based on their dynamics.While this may not be surprising at first, since hybrid-AR models are a
super-class of linear models, and therefore they naturally have more modeling power, note that discriminative power usually
decreases with model complexity, since we can have orbits of model parameters that yield the same output statistics. This is
not the case in our model, and we show that it sharply classifies gait data where linear models yield total confusion.

Note that hybrid models for human and robotic locomotion are not new, see for instance [30], so we do not claim novelty
in the use of hybrid models. However, the use of hybrid models for classification, whether for human gaits or more in general,
has never been attempted before, to the best of our knowledge.
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2 Modeling human dynamics for classification
2.1. Autoregresssive Models
Consider a Gaussian linear time-invariant autoregressive (AR) model of ordern:

yt =
n∑

i=1

Aiyt−i + et yt ∈ Rp et ∼ N (0, R) (1)

The equation can be rewritten in normal form:
yt = ϕtθ + et (2)

ϕt =
[

yt−1 ⊗ Ip yt−2 ⊗ Ip · · · yt−n ⊗ Ip

]
θT =

[
θT
1 θT

2 · · · θT
p

]
θT

i =
[

A1(i, 1) · · · A1(i, p) · · · An(i, 1) · · · An(i, p)
]

where⊗ denotes the kronecker tensor product andIp is the identity matrix of dimensionp.

Parameter estimation
Assuming Gaussian prior on the parameters:θ ∼ N (θ0, P0)and given a sequence of observations :yN = {y1, y2, · · · , yN}the
posterior distribution of the parametersθ is [24]:

p(θ|yN , θ0, P0, R) = G(θ; θ̂, P̂ ) (3)

where:

θ̂ = P̂

(
P−1

0 θ0 +
N∑

t=1

ϕtR
−1yt

)
, P̂ =

(
P−1

0 +

N∑
t=1

ϕtR
−1ϕT

t

)−1

(4)

andG(θ; θ̂, P̂ ) is the Gaussian density with meanθ̂ and variancêP evaluated atθ:

G(θ; θ̂, P̂ ) = (2π)−
d
2 det(P̂ )−

1
2 exp

(
−1

2
(θ − θ̂)T P̂−1(θ − θ̂

)
(5)

For an intuitive understanding of these expressions consider the simple case of scalar measurementsy ∈ R. The equation of
P̂ reduces to:

P̂ =

(
P0 +

∑N
t=1 y2

t

R

)−1

=
(

P0 + (N − 1)
Σy

R

)−1

(6)

whereΣy is the sample variance of the measurements. The varianceP̂ is a measure of the uncertainty we have in the
estimated parameters. As we could expect, it decreases as the lengthN of the observation sequence and the signal-to-noise
ratio Σy

R increase. In the limitN →∞, the variancêP becomes zero and the estimateθ̂ is the true value of the parameters.

Model discrepancy (AR)
We use the posterior distributionsp(θ|yN ) on the parameters to define a discrepancy between models. As a first attempt we
consider the expectation of the Euclidean distance between the parametersθ1|yN

1 ∼ N (θ̂1, P̂1), θ2|yN
2 ∼ N (θ̂2, P̂2):

de(θ1, θ2)
2 = E[(θ1 − θ2)

T (θ1 − θ2)] =

= (θ̂1 − θ̂2)
T (θ̂1 − θ̂2) + Tr(P̂1 + P̂2) (7)

Unfortunately, this is not a distance; in particular, it is easy to see thatd(θ1, θ1) 6= 0. A second approach is to consider the
symmetric Kullback-Leibler divergence (K-L) between the two distributions:

KL(p1||p2) =
∫

p1(x) log
p1(x)
p2(x)

+ p2(x) log
p2(x)
p1(x)

dx (8)

which for our Gaussians becomes:
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KL(θ1||θ2) =
1

2
Tr

(
P̂−1

2 P̂1 + P̂−1
1 P̂2 − 2I

)
+

+ (θ̂1 − θ̂2)
T

(
Σ̂−1

1 + Σ−1
2

)
(θ1 + θ2) (9)

The problem with this approach is that as the variancesΣ̂1, Σ̂2 go to zero (i.e. the quality of the parameter estimates increase),
divergence goes to infinity. This happens because K-L is a measure of the extent to which two probability distributions agree.
If the two distributions have no common support the K-L distance is infinite indipendently of how far the distributions are.
Such a condition is met for example when we have good estimates from sequences generated by models with different
underlying parameters.

To overcome these problems, we define the discrepancyd(θ1, θ2) betweenθ1 andθ2 as the symmetric Kullback-Leibler
divergence between the unit variance distributionsN (θ̂1, Id) andN (θ̂2, Id):

d(θ1, θ2) = KL(N (θ̂1, Id)||N (θ̂2, Id)) =

= (θ̂1 − θ̂2)T (θ̂1 − θ̂2) (10)

Clearly this is the squared Euclidean distance between the MAP estimationsθ̂1 and θ̂2. This definition will become useful
later when we will extend the discrepancy(10) to Gaussian mixture distributions. Note that we are not simply taking the
Euclidean distance between AR parameters, sinceθi are random variables. We will further elaborate on this later.

2.2. Hybrid Autoregressive Models
In order to properly model contact forces in human motion we follow the approach of [1] in using hybrid models where the
switches correspond to ground contacts. However, unlike [1], we intend to use such models for classification, and therefore
we introduce a different, and to the best of our knowledge novel, switching autoregressive model. This has some similarity
with the Autoregressive HMM proposed in [18], although for each autoregressive model we consider the distribution of the
observationsyt for finite length sequences instead of using the asymptotic distribution ofyt, t →∞.

Consider a discrete Markov chain withm states, transition matrixM and prior probabilitiesπm = [π1, · · · , πm]. To each
stateq is associated an AR model with noise covarianceRq and parameterθq with prior distributionθq ∼ N (θ0,q, P0,q) The
equations of the system are:

yt = ϕtθqt + eqt , eqt ∈ N (0, Rqt)
p(qt|qt−1) = M(qt, qt−1) , p(q1) = πq1 (11)

The main novelty of this model is that it induces a distribution on the AR parametersθm = {θ1, · · · , θm}. In other hybrid
AR systems proposed in the literature [10], the parametersθ are modeled as unknown deterministic values. A learning
algorithm is derived to compute the maximum likelihood estimateθML = argmaxθ p(yN |θ)given an observation sequence
yN . Unfortunately, this method does not provide a natural way to compare two model parametersθ1, θ2, and a common
solution [10] is to use the Euclidean distance between the parameters,||θ1 − θ2||. Our approach is different in the sense that
we treatθ as a random vector with given prior distributionp(θ) and compute the posterior given the observationsp(θ|yN ).
This allows us to compute distances between models by comparing the posterior distributions on the parameters (see eq.
(10)). We can relate the two approaches by considering the case of flat priorp(θ) ' const. Then the posteriorp(θ|yN ) is
proportional to the likelihoodp(yN |θ), and the maximum likelihood estimate is also the maximum a posterioriθML = θ̂. The
distancedML = ||θML

1 − θML
2 || = ||θ̂1 − θ̂2|| measures how far the principal modes of the posterior distributionsp(θ1|yN )

andp(θ2|yN ) are. In the case of hybrid models this solution is suboptimal since the posteriorsp(θi|yN ) are multimodal
mixtures, as we can see in figure 3, while with the distancedML we are taking into account only one component.

Parameter Estimation
Given an observation sequenceyN we want to estimate the posterior distribution:

p(θ|yN ,Λ) =
∑
qN

p(θ|qN , yN , Λ)p(qN |yN , Λ) =

=
∑
qN

m∑
i=1

p(θi|qN , yN , Λ)p(q = i|qN )p(qN |yN , Λ) (12)
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whereΛ = {θm
0 , Pm

0 , Rm,M, π} are the model parameters, withθm
0 = {θ0,1, · · · , θ0,m}, Pm

0 = {P0,1, · · · , P0,m}, Rm =
{R1, · · · , Rm}. Similarly to (3), we have thatp(θi|qN

j , yN ,Λ) = G(θi; θ̂i, P̂i) are Gaussian,p(q = i|qN ) is the relative
frequency of statei in the sequenceqN , andp(qN |yN ,Λ) is the posterior of the hidden states given the observations, can
be computed in closed form and will be given in the next section. Unfortunately, marginalizing the hidden statesqN =
{q1, · · · , qN} is computationally intractable because of the exponential complexity. Therefore, we approximate the solution
using a bank ofK filters, where each filter is tuned on a segmentation hypothesisqN

j . At each timet we generate a new
hypothesisqN

t by imposing a jump to the most likely sequence and discarding the less likely ones. We therefore approximate
the posterior with:

p(θ|yN , Λ) ' 1

C

K∑
j=1

m∑
i=1

p(θi|qN
j , yN , Λ)p(q = i|qN

j )p(qN
j |yN , Λ) (13)

whereC =
∑K

j=1 p(qN
j |yN ,Λ) andqN

j are the filter hypotheses. Therefore this approximation is a mixture of a constant
numberKm of Gaussians. In practice we have duplicate hypotheses (due to permutation of the states) and hypotheses with
low posterior, so the effective number of components is smaller (figure 3).

Hidden State Filtering
In order to obtain a good approximation of the posterior(13) we need to estimate theK most probable hidden state sequences
qN
1 , · · · , qN

K given the measurementsyN :

q̂N
1 , · · · , q̂N

K = arg max
qN
1 ,··· ,qN

K

K∑
i=1

p(qN
i |yN ,Λ) (14)

First we derive a recursive expression for the likelihoodp(yN |qN ,Λ):

p(yt|qt,Λ) = p(yt|qt, yt−1,Λ)p(yt−1|qt−1,Λ) (15)

which yields (see [14]):
p(yt|qt, yt−1,Λ) = G(yt;ϕT

t θ̂qt,t−1, ϕ
T
t P̂qt,t−1ϕt + Rqt

) (16)

whereθ̂i,t, P̂i,t are the estimates at timet of the parametersθi associated to statei (compare to(4)):

θ̂i,t = P̂i,t

P−1
0,i θ0,i +

∑
j|qj=i,j≤t

ϕjR−1
i yj

 (17)

P̂i,t =

P−1
0i

+
∑

j|qj=i,j≤t

ϕjR−1
i ϕT

j

−1

(18)

From(15) we obtain a recursive equation for the posterior up to timet:

p(qt|yt, Λ) =
Kt−1

Kt
p(yt|qt, yt−1, Λ)p(qt|qt−1, Λ)p(qt−1|yt−1, Λ)

whereKt = p(yt|Λ) is a constant independent ofqt, p(qt|qt−1,Λ) = M(qt−1, qt), t > 1 andp(q1|q0,Λ) = πq1 . Taking the
logarithms and substituting(16) yields the update equation:

log p(qt|yt, Λ) = log p(qt−1|yt−1, Λ) + C+

+ log M(qt−1, qt)−
1

2
log det Γ−

− 1

2

(
yt − ϕT

t θ̂qt,t−1

)T

Γ−1
(
yt − ϕT

t θ̂qt,t−1

)
(19)

whereΓ =
(
ϕT

t P̂qt,t−1ϕt + Rqt

)
. To find the most probable state sequences(14) we use a bank ofK filters, each matched

to a hidden state sequence hypothesisqN
i , and the posteriorp(qN |yN ,Λ) is computed recursively with(19). We initialize the

filters att = 1 so that there is at least one hypothesisqi,1 = i for each possible initial state valuei = {1, · · · ,m}. Then for
each timet = 2, · · · , N we iterate the following rules to maintain theK hypothesis:

• For each hypothesisqt
i , compute the posterior loglikelihoodlog p(qt

i |yt) using(19).
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• Extend the hypothesesqt
j , j = 1, · · · ,K to t + 1 by assuming no switch:qt+1

j = {qt
j , qj,t}

• Let the most probable sequenceqt
o split at timet+1, i.e. generatem−1 new hypothesesqt+1

K+i such that{qK+i,t+1} =
{1, · · · ,m}\{qo,t}.

• Cut off them− 1 least probable sequences, so onlyK are left.

This algorithm exploits the finite memory property of our hybrid model. Past data do not contain information on what happens
after a switch, therefore only the most likely sequence among all with a switch at a given time has to be considered. The
number of filtersK determines the quality of the estimates. WithK ≥ N , the algorithm is guaranteed to find the optimal
state sequences(14) [14]. In order to improve the performances it is useful to assume a minimum segment lengthl and allow
splitting and cut off only for sequences that did not switch in the lastl steps.

Discrepancy between Hybrid AR models
We obtain a discrepancy measure between models by extending to hybrid models the distance(10) between posteriors of
autoregressive parameters. Let the posterior distributions of the parametersθ1, θ2 be

p(θ1|yN
1 ,Λ) =

n1∑
i=1

α1,iG(θ1; θ̂1,i, P̂1,i)

p(θ2|yN
2 ,Λ) =

n2∑
i=1

α2,iG(θ2; θ̂2,i, P̂2,i)

We define the discrepancyd(θ1, θ2) between the parametersθ1 andθ2 to be the symmetric Kullback-Leibler divergence
between the mixtures of unit variance Gaussians

∑n1
i=1 α1N (θ̂1,i, Id) and

∑n2
i=1N (θ̂2,i, Id):

d(θ1, θ2) = KL

(
n1∑
i=1

α1,iN (θ̂1,i, Id)||
n2∑
i=1

α2,iN (θ̂2,i, Id)

)
(20)

There is no closed form expression for the Kullback-Leibler divergence between mixtures of Gaussians. For computational
reasons we use the efficient approximation proposed in [15], which substituted in(20) gives:

d(θ1, θ2) =

n1∑
i=1

α1,i min
j∈[1,n2]

(
(θ̂1,i − θ̂2,j)

T (θ̂1,i − θ̂2,j) + log
α1,i

α2,j

)
(21)

This approximation matches each Gaussian component ofθ1 with the closest component ofθ2. Since we normalized the
variances to the identity, this discrepancy is a weighted sum of the Euclidean distances between the modes of the two mixtures.

In the next section we will illustrate both the computation of the distance and its use for classification of hybrid dynamical
models, which we apply to human motion data.

3. Experiments
Our goal in this research is to recognize human motion based on dynamic signatures. We believe that dynamics contain a
significant amount of information: Johansson’s stripped-down moving-dot displays [17] can allow one to infer whether the
person is young, old, happy, sad, even man or woman, which is information likely not coded in the pose or configuration. In
particular, we use a hybrid dynamical model because we have determined that the contact dynamics, which is an exogenous
event independent of the individual and her gait, is a dominant dynamic event that must be factored out of the classification
and recognition process. However, our framework applies to the recognition of dynamic events in general, without restriction
to human motion. In particular, even within human motion, our framework applies to different representations, from the
trajectories of moving intensity blobs, to the joint angles estimated from a video-based tracking system, to the position of
retro-refractive markers in motion capture.

In the specific case described in this section, the data used in the experiments is given as a set of joint angle trajectories
on a skeletal model of the human body. These angles may be obtained from a video-based full body tracker or from a
motion capture system. We opted for the latter for ease of collection and ground-truth testing. We used a 6-camera infrared
motion capture system running at 60Hz; we used20 retro-reflective markers on the test subjects at the proximity of the body
joint locations and recorded the marker trajectories during the motion. The subjects were asked to walk, run and limp on a
treadmill. We collected a total of233 sequences from11 subjects, see table 1 for details. Each sequence is sampled at60 Hz
and is about6 second-long.
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Subject 1 2 3 4 5 6 7 8 9 10 11 Total
Walk 14 14 7 14 14 2 5 14 7 14 9 114
Run 14 8 9 14 8 - 7 3 - 8 8 79
Limp 4 2 4 5 5 - 5 5 - 5 5 40
Total 32 24 20 33 27 2 17 22 7 27 22 233

Figure 1: List of motion capture data sequences in the gait dataset. For each subject (first column), number of walking,
running and limping sequences collected.

Figure 2:Short clips (about 3 seconds) from the sequences of the gait dataset. Subject 1 walking (top), running (center) and
limping (bottom)

From marker positions we estimated body skeleton model and join angles with an approach similar to the one proposed in
[29]. First we estimate the reference frame moving with the body limb from the set of markers attached to the limb. Then
the joint positions are obtained as the center of rotation of the reference frames of adjacent limb. From joint positions,
by enforcing fixed limb length we obtained skeleton model and joint angles. Since we do not use a reference model for
the skeleton, the estimated skeletons vary from person to person, this affecting the joint angles estimates and making the
recognition problem harder. In figure2 we show some sample clips of the data sequences. Of course we could use pose and
configuration information to aid the classification, since that is available in our dataset. However, we are not going to do so
because (a) these data are generally not reliable when estimated directly from video, and (b) although pose and configuration
are important, many groups are addressing them, and we therefore want to focus our attention on dynamics. Naturally,
eventually all will have to be integrated into a complete classification system.
From each sequence, we extracted the24 angles corresponding to the8 joints defining the positions of hips, femurs, tibias
and feet. The angles are expressed in the exponential map parameterization [13]. Since the number of parameters of the
AR model isp2, wherep is the dimension of the measurements, we had to reduce the dimensionality of the data. For this
purpose we applied PCA to each sequence, and retained the firstp = 4 components. Given a sequenceyN

i we learned the
posterior(13) using the algorithm described in section2.1. The model we propose is very general and contains a number of
parameter that should to be tuned to the particular class of signals under investigation. In these experiments, we used first-
order autoregressive models, i.e.n = 1in (1). We set prior meansθm

0 to zero and the prior variancesPm
0 to p0I, wherep0 is

a large number, thus modeling the lack of prior information on the parameters. The noise variancesRm are set to the identity,
so that in(17) we obtain least squares estimates. We have2 hidden states and the Markov chain parametersM,π are so that
all state have equal probability and the average length of a segment isL: M(i, i) = L

L+1 , M(i, j) = 1
(L+1)(m−1) i 6= j,

πi = 1
m . The posteriors are computed with a bank ofK filters. To have optimal segmentations we would needK to be

not smaller than the sequence lengthN , typically about400. In practice we noticed reducingK to 50 does not change
significantly the approximation(13). Since some of the computed segmentation hypotheses are equivalent (they are equal
up to a permutation of the states), the filtering is followed by a hypothesis reduction step where we remove the duplicate
hypotheses. Then we proceed to computing the posterior on the parameters(13). Of all the components of(13), typically
only few of them have weight significantly different form zero. Therefore we proceed to pruning all the hypothesis that have
weight below a small threshold. In figure(3) we show the histogram of the number of components of the posteriors learned
from the gait sequences. We see that most of the sequences have multimodal distribution, with number of modes limited by
the number of filtersK.
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Figure 3:Histogram of the number of components of the parameter posterior (13) for the gait sequences in the dataset. These
results show that we cannot assume the posterior to be unimodal.

3.1 Hybrid models allow for finer dynamic discrimination

The point of this section is to show that hybrid models have more discriminative power than simpler linear models [3], since
those must employ most of their modeling assets to capture contact forces that are not specific to an individual or a walking
gait. Our intent here is to show that discrimination between different classes (e.g. different gaits by the same individual, or
different individuals walking the same gait) is made possible by a hybrid model where it was not by using a linear dynamical
model.

This is, therefore, a feasibility study, and we do not need to compete with other gait or individual recognition techniques
that use different (static) features. Our approach is meant to complement them, not to replace them.

In figure(4) we show the pairwise distance between models learned from the dataset sequences. We clearly see that the
hybrid models can discriminate between gait classes. For comparison, we learned first order autoregressive models from
the same sequences and computed the Euclidean distances(10) between their parameters. By using this simpler similarity
measure we would not be able to discriminate between gaits. This is confirmed by the results of a simple nearest neighbor
classification: for walking, running and limping we have respectively37.7%, 31.7%, 85% misclassification rates with autore-
gressive model and25.4%, 1.3%, 85% with hybrid model. The high misclassification rate of limp vs. walk may be due to the
different parameterizations of the motion, to the dimensionality reduction step or simply to the fact that the dynamics of the
two gaits are very close.

4 Discussion

We have presented a technique to perform classification in the space of hybrid autoregressive models that we have used to
classify human gaits in a way that is insensitive to exogenous factors such as contact forces. We have shown that classification
based on a hybrid model yields significant improvements.

In order to achieve our results, we had to devise a novel (approximate) filtering and identification technique for hybrid AR
models (this is inspired by a wealth or results available in the literature), and introduce a novel distance between such models.
This distance is not computable efficiently, so we have proposed an approximation, which we have tested experimentally.

Our results are restricted tostationary (quasi-periodic) gaits. Ideally we would like to recognize transient actions, but
doing so in a principled manner is beyond our means at the moment, so we prefer to concentrate on a simpler problem. We
also assume, somewhat optimistically, that temporal statistics are extracted for us from images. This does not mean that we
under-appreciate the difficulty in detecting, localizing, and tracking humans in video, on the contrary. The models we propose
can be used tosupportthese tasks, eventually, and our inference techniques relies on a model that is inferrable from images.
This is not, therefore, a paper in graphics, since it seeks models with discriminative power, not with generative power. We do
not assume that forces or higher-order temporal statistics are available, which would be the case if we were analyzing data
for graphics or biomechanics.
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Figure 4: Discrepancy measure between models learned from the gait dataset. (a) shows the euclidean distance between
maximum likelihood estimates of autoregressive model parameters. (b) displays the proposed distance between posterior
distributions of the parameters of hybrid autoregressive models. We can see that the simple autoregressive models are not
discriminative enough to capture the character of the motion class. Misclassification rates with nearest neighbor for walking,
running and limping are respectively 37.7%, 31.7%, 85% for autoregressive model and 25.4%, 1.3%, 85% for hybrid model.
It appears that the limping and walking gait are not successfully discriminated. This is not surprising: since it is hard to limp
on a running treadmill, the dynamics of the two gaits, as we see in figure 2, are very close.
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