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Abstract. Since privacy information can be inferred via social relations,
the privacy confidentiality problem becomes increasingly challenging as
online social network services are more popular. Using a Bayesian net-
work approach to model the causal relations among people in social net-
works, we study the impact of prior probability, influence strength, and
society openness to the inference accuracy on a real online social net-
work. Our experimental results reveal that personal attributes can be
inferred with high accuracy especially when people are connected with
strong relationships. Further, even in a society where most people hide
their attributes, it is still possible to infer privacy information.

1 Introduction

With the increasing popularity of Social Network Services (SNS), more and
more online societies such as Friendster, Livejournal, Blogger and Orkurt have
emerged. Unlike traditional personal homepages, people in these societies publish
not only their personal attributes (e.g., age, gender, and interests), but also their
relationships with friends. As social networks grow rapidly, many interesting
research topics [3,6,13] arise. Unfortunately, among these topics, privacy has
not been fully addressed yet. Given the huge amount of personal data and social
relations available in online social networks (for example, Friendster owns over
24 million personal profiles), it is foreseeable that privacy may be compromised
if people are not careful in releasing their personal information.

Information privacy has become one of the most urgent research issues in
building next-generation information systems. A great deal of research effort has
been devoted to protecting people’s privacy. Aside from recent developments in
cryptography and security protocols that provide secure data transfer capabil-
ities, there has been work on enforcing industry standards (e.g., P3P [12]) and
government policies (e.g., the HIPAA Privacy Rule [11]) to grant individuals
control over their own privacy. These existing techniques and policies aim to ef-
fectively block direct disclosure of sensitive personal information. However, to the
best of our knowledge, none of the existing techniques handle indirect disclosure
which can often be achieved by intelligently combining pieces of seemingly in-
nocuous or unrelated information. Specifically, in scenarios like social networks,
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we realize that individuals connected in social networks often share common at-
tributes. For instance, in a dance club, people come together due to their common
interest; in an office, people connect to each other because of similar professions.
Therefore, it is possible that one may be able to infer someone’s attribute from
the attributes of his/her friends. In such cases, privacy is indirectly disclosed by
their social relations rather than from the owner directly.

In this paper, we study the privacy disclosure in social networks. We want to
analyze under what conditions and to what extent privacy might be disclosed by
social relations. In order to perform privacy inference, we propose an approach to
map Bayesian networks to social networks. We discuss prior probability, influence
strength and society openness which might affect the inference, and conduct
extensive experiments on a real online social network structure.

The paper is organized as follows. In Section 2, we briefly introduce the
background and related work. In Section 3, we explain the target scenarios, pro-
pose an approach to model social networks with Bayesian networks and perform
Bayesian inference on personal attributes. In Section 4, we present three key
characteristics of social networks and conduct experiments to investigate their
impact on privacy inference. In Section 5, we discuss the issue of society open-
ness and explain why Bayesian inference performs well even with little evidence
of friends’ attributes. Finally, we summarize this paper.

2 Background and Related Work

2.1 Social Networks

Social network analysis has been conducted in many areas. Milgram’s classic
paper [8] in 1967 estimates that every person in the world is only six hops away
from each other. The recent success of the Google search engine [2], which applies
social network ideas to the Internet, draws great attention on social network
analysis again. For instance, Newman [10] reviews the relationship between graph
structure and dynamical behavior of large networks. The ReferralWeb project
mined social networks from a wide variety of public-available information [6]. A
work similar to ours is [3], which realizes that one’s decision to buy products
may be influenced by his/her friends, and they model social network as a Markov
random field to find the customers’ network value. In contrast, we believe a
person’s attribute can be reflected from his/her friends’ attributes, and we view
a social network as a Bayesian network.

2.2 Bayesian Networks

A Bayesian network [4,5,9] is a graphic representation of the joint probabil-
ity distribution over a set of variables. It consists of a network structure and
a collection of conditional probability tables (CPT). The network structure is
represented as a Directed Acyclic Graph (DAG) in which each node corresponds
to a random variable and each edge indicates a dependent relationship between



connected variables. In addition, each variable (node) in a Bayesian network is
associated with a CPT, which enumerates the conditional probabilities for this
variable, given all the combinations of its parents’ value. Thus, for a Bayesian
network, the DAG captures causal relationships among random variables, and
CPTs quantify these relationships.

Bayesian networks have been extensively applied to fields such as medicine,
image processing, and decision support systems. Since Bayesian networks include
the consideration of network structure, we use them as our inference model.
Individuals in a social network can be represented as nodes and the relations
between individuals can be modelled as edges in Bayesian networks.

3 Bayesian Inference Via Social Relations

3.1 Problem Statement

Intuitively, friends often share common attributes (e.g., hobbies and professions);
thus, it is possible to predict someone’s attributes by looking at the types of
friends he/she has. In this paper, we want to investigate the effect of social
relations on privacy inference. However, in the real world, people are acquainted
with each other via all types of relations, and a personal attribute may only be
sensitive to certain types of relations. For example, in order to predict someone’s
age, it is more appropriate to consider the ages of his/her classmates rather than
officemates. Therefore, to infer people’s privacy from social relations, one must
be able to filter out other types of relations between two connected people. To
simplify this problem, we investigate privacy inference in homogeneous societies
where individuals are connected by a single type of social relations (referred
to as “friendship”) and the impact of every person on his/her friends is the
same. Homogenous societies reflect small closely related groups (such as offices,
classes or clubs), where people are connected by a relatively pure relationship.
Real social networks can be regarded as the combinations of many homogeneous
societies.

To perform inference, we use Bayesian networks to model the causal rela-
tions among people in social networks. Specifically, if we want to infer the value
of attribute A for a person (referred to as query node X), we first construct a
Bayesian network from X'’s social network, and then analyze the Bayesian net-
work to obtain the probability that X has attribute A. In Section 3.2, we start
from a simple case in which privacy inference only involves the direct friends of
the query node. In Section 3.3, we treat the more complex case where attribute
values from friends at multiple hops away are considered.

3.2 Single Hop Inference

Let us consider the case in which we know the attribute values for all the direct
friends of the query node X. We define Y;; as the jth friend of X at 7 hops away.
If a friend can be reached via more than one route from X, we use the depth of
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Fig. 1. Reduction of a social network (a) into a Bayesian network to infer X from his
friends Y via Localization assumption (b) and via Naive Bayesian Assumption (c). The
shaded nodes represent friends whose attribute values are known.

the shortest path as the value of i. Let Y; be the set of Y;; (1 < j < n;), where n;
is the number of X’s friends at 7 hops away. For instance, Y7 = {Y11, Y12, ..., Yin, }
is the set of X’s direct friends which are one hop away.

An example of a social network with six friends is shown in Fig. 1(a). In this
figure, Y71, Y12 and Y73 are direct friends of X. Y27 and Y31 are the direct friends
of Y15 and Y3, respectively. In this scenario, the attribute values of Y71, Y12 and
Y13 are known (represented as shaded nodes).

Bayesian Network Construction To facilitate the construction of the Bayesian
network, we make two assumptions.

Intuitively, the direct friends of an individual have more influence on this per-
son than friends who are two or more hops away. We assume that it is sufficient
to consider only the attribute values of direct friends Y7 to infer X’s attribute.
Once all the attribute values of Y; are known, knowing the attribute values of
any other friends at multiple hops away provides no additional information for
predicting X’s attribute. Formally, we state this assumption as follows.

Localization Assumption Given the attribute values of the direct friends
Y7 of the query node X, then friends at more than one hop away (i.e., Y; for
i > 1) are conditionally independent of X.

Based on this assumption, ¥2; and Y3; in Fig. 1(a) can be pruned, and the
inference of X only involves X, Y71, Y12 and Yi3 (Fig. 1(b)). Then the next
question is how to decide a DAG linking the remaining nodes. If the resulting
social network does not contain cycles, a Bayesian network can be obtained im-
mediately. Otherwise, one must employ more sophisticated techniques to remove
cycles, such as the use of auxiliary variables to capture non-causal constraints
(exact conversion) and the deletion of edges with the weakest relations (approzx-
imation conversion). We adopt the latter approach and make a Naive Bayesian
Assumption. That is, the attribute value of X influences that of Y3; (1 < j < nq),
and there is a direct link pointing from X to each Y7;. By making this assump-
tion, we consider the inference paths from X to Y7, as the primary correlations,
and disregard the correlations among the nodes in Y;. Formally, we have:



Naive Bayesian Assumption Given the attribute value of the query node
X, the attribute values of direct friends Y7 are conditionally independent of each
other.

This Naive Bayesian model has been used in many classification/prediction
applications including textual-document classification. Even though it simplifies
the correlation among variables, this model has been shown to be quite effec-
tive [7]. Thus, we adopted this assumption in our study. In Fig. 1(c), we obtain
a final DAG by removing the connection between Y7; and Yis in Fig. 1(b).

Bayesian Inference We use the Bayes Decision Rule to predict the attribute
value of X. For a general Bayesian network with maximum depth ¢, let the value
for X, Z, be the attribute value with the maximum conditional probability given
the observed attribute values of other nodes in the network (i.e., the maximum
posterior probability):

Z=argmax P(X =z | Y1,Y5,....Y3) z e {t, f}. (1)

Since single hop inference involves only the direct friends Y; that are inde-
pendent of each other, the posterior probability can be further reduced using
the conditional independence encoded in the Bayesian network:

P(X =X | Yl) = P(X = | YH :y117-~~7)/1n1 :ylnl)
P(X =z, Y11 = Y11, -y Y1n1 = y1n1)
- P(Yi1 = y11, s Ying = Yiny)
N P(X:.T)P(Yll :yu,.-.,le = Ying ‘ X:LK) (2)
- YL P(X =) P(Yir = Y11y, Ying = Ying | X = )]
. PX =) I, PMu=yu | X =2)
YL P =) I PV = yu | X = )]
where 2 and y;; are the attribute values of X and Y;; respectively (1 < j < ny,
z,y1; € {t, f}) and the value of y;; is known.

Since we assumed that the network is homogeneous, the CPT for each node
is the same. Thus, we use P(Y =y | X = z) to represent P(Y1; = y1; | X = z).
For this reason, direct friends of X are equivalent to each other, and the posterior
probability now depends on Nj;, which is the number of friends with attribute
value ¢, rather than the individual attribute value. Therefore, we rewrite the
posterior probability P(X = x| Y1) as P(X = x| Nyt = nyt). If Nip = nyg, we
obtain:

 P(X=2)-P(Y =t| X =2)"t P(Y = f| X = g)m1 "
TSP =) PV = [ X =@y - P(Y = f| X = a)m o]
(3)
To compute (3), we need to further learn the conditional probability P(Y =
y | X = x). We apply the parameter estimation [9] technique and obtain:

P(X =z | N1t = n1t)

# of friendship links connecting people with X =x and Y =y

(4)

PY=vu|X=2zx)=
( vl z) # of friendship links connecting a person with X =«

Substituting (4) and (3) into (1) yields Z.
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Fig. 2. Reduction of a social network (a) into a Bayesian network to infer X from his
friends Y via Generalized Localization assumption (b). The shaded nodes represent
friends whose attribute values are known.

3.3 Multiple Hops Inference

In real world, the attribute values of all the direct friends may not be observed
because people may hide their sensitive information. Therefore, the Localization
Assumption in Section 3.2 is no longer applicable. To incorporate more attribute
information into our Bayesian network, we propose a generalized localization
assumption as follows.

Generalized Localization Assumption Given the attribute value of the
jth friend of X at ¢ hops away, Y;; (1 < j < n;), the attribute of X is condition-
ally independent of the descendants of Yj;.

This assumption states that if the attribute value for the X’s direct friend,
Y7, is unknown, then the attribute value of X is conditionally dependent on
the attribute values for the direct friends of Y7;. This process continues until
we reach a descendent of Y7; whose attribute value is known. For example, the
network structure in Fig. 2(a) is the same as in Fig. 1(a), but the attribute
value of Y75 is unknown. Based on the Generalized Localization Assumption, we
extend the network by branching to Y72’s direct child Ys;. Since Y5;’s attribute
is unknown, we further branch to Y5;’s direct friend Y3;. The branch terminates
here because the attribute of Y3; is known. Thus, the inference network for X
includes all the nodes in the graph. After applying Naive Bayesian assumption,
we obtain the DAG shown in Fig. 2(b). Similar to single hop inference, the
resulting DAG in multiple hops inference is also a tree rooted at the query node
X. One interpretation of this model is that when we predict the attribute value
of X, we always treat him/her as an egocentric person who influences his/her
friends but not vice versa. Thus, the attribute value of X can be reflected by
those of his/her friends.

For multiple hops inference, we still apply the Bayes Decision Rule. Due to
additional unknown attribute values such as Y75, the calculation of the posterior
probability becomes more complicated. One common technique to solve this
equation is through variable elimination [14]. We adopt the same technique to
derive the value of Z in (1).



4 Experimental Study of Inference Accuracy

In this section, we define three characteristics of social networks that might
affect Bayesian inference and evaluate their impact. The performance metric
that we consider is inference accuracy, which is defined as the percentage of
nodes predicted correctly by inference.

4.1 Characteristics of Social networks

Prior Probability P(X = t) is the probability that people in the social network
have attribute A. When no additional information is provided, we could use prior
probability to naively predict attribute values for the query nodes: if P(X =t) >
0.5, we predict that every query node has value ¢; otherwise, we predict that it
has value f. We call this method naive inference. The average naive inference
accuracy that can be obtained is max(P(X = t),1 — P(X = t)). In our study,
we use it as a reference to compare with our Bayesian inference approach.

Influence Strength P(Y =t | X = t) is defined as the conditional probabil-
ity that Y has attribute A given that its direct friend X has the same attribute.
This conditional probability measures how X influence its friend Y. A higher
influence strength implies that there is a higher probability that X and Y will
have attribute A.3

Society Openness O(A) is defined as the percentage of people in a society
who release their values of attribute A. The more people release their attribute
values, the higher the society openness is, and the more evidence about attribute
A is observed.

4.2 Data Set

For the experiment, we collect 66,766 personal profiles from an online weblog
service provider Livejournal [1], which owns 2.6 million active members. For each
member, Livejournal generates a personnel profile which specifies the member’s
personal information as well as the URLs for the profiles of this member’s friends.
Among the collected profiles, there are 4,031, 348 friend relations. The number
of friends per member v.s. the number of members follows the power law distri-
bution. About half of the population have less than 10 direct friends.

In order to evaluate the inference behaviors for a wide range of parameters,
we use a hypothetical attribute and synthesize the attribute values: for each
member, we assign a CPT and determine the actual attribute value based on
the parent’s value and the assigned CPT. The attribute assignment starts from
the set of nodes whose in-degree is 0 and explores the rest of the network fol-
lowing friendship links. Since we are investigating homogeneous societies, all the

3 There is another type of influence strength P(Y = ¢ | X = f), which is the condi-
tional probability that two friends have opposite values of attribute A. In an equi-
librium state, the value of P(Y =t | X = f) can be derived from P(X = t) and
P(Y =t| X =t), so we do not introduce it as an additional characteristic.
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Fig. 3. Inference accuracy of Bayesian vs. Fig. 4. Inference accuracy of Bayesian in-
naive inference when P(X =t) = 0.3. ference for different prior probabilities.

members are assigned with the same CPT. We evaluate the inference perfor-
mance by using different CPTs.

After the attribute assignment, we obtain a social network. To infer each indi-
vidual, we built a corresponding Bayesian network, and then conducted Bayesian
inference as described in Section 3.

4.3 Experimental Results

Comparison of Bayesian and Naive Inference In the first set of experi-
ments, we compare the performance of Bayesian inference with naive inference.
We want to study whether we can utilize the social relations to improve infer-
ence accuracy. We fix the prior probability to 0.3 and vary the influence strength
from 0.1 to 0.9. Fig. 3 shows the inference accuracy of the two methods. It is
clear that Bayesian inference outperforms naive inference. The curve for naive
inference fluctuates around 70%, because with the prior probability being 0.3,
the average accuracy we can achieve is 70%. The performance of Bayesian infer-
ence varies with influence strength. We achieve a very high accuracy, especially
at high influence strength. The accuracy even reaches 95% for the influence
strength 0.9, which is much higher than the 70% accuracy of the naive inference.
We observed the same trend for other prior probabilities as well.

Effect of Influence Strength and Prior Probability Fig. 4 shows the
inference accuracy of Bayesian inference when the prior probability is 0.05, 0.1,
0.3 and 0.5, and the influence strength varies from 0.1 to 0.9. As the prior
probability varies, the inference accuracy yields different trends with the influ-
ence strength. The lowest inference accuracy always occurs when the influence
strength is equal to the prior probability. For example, the lowest inference ac-
curacy (approximately 70%) at the prior probability 0.3 is achieved when the
influence strength is 0.3. This is because when the influence strength is equal
to the prior probability, knowing friend relations provide no more information
than just knowing the prior probability; thus, people in the network are actu-
ally independent of each other. Furthermore, the higher the difference between
the influence strength and the prior probability, the stronger the influence (no
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matter positive or negative) of parent on children, and the better the Bayesian
inference performs.

Society Openness In the previous experiments, we assume the society open-
ness is 100%. That is, all the friends’ attribute values of the query node are
known. In this set of experiments, we study the inference behavior at different
levels of society openness. We randomly hide the attributes of a certain percent-
age of members, ranging from 10% to 90%, and then perform Bayesian inference
on those nodes.

Fig. 5 shows the experimental results for the prior probability P(X = t) = 0.3
and the society openness O(A) = 10%, 50% and 90%. The inference accuracy de-
creases as more members hide their attributes. For instance, at influence strength
0.7, when the openness is decreased from 90% to 10%, the accuracy reduces from
84.6% to 81.5%. However, the reduction in inference accuracy is relatively small
(on average less than 5%). We also observe similar trends for other prior proba-
bilities. This phenomenon is quite counterintuitive. Generally, when the society
openness is small, the observed evidence on friends’ attributes is low and the
inference accuracy should drop drastically. To better understand the impact of
openness, we perform some analysis in the next section.

5 Discussions on Society Openness

In this section, we want to obtain some insight about the impact that soci-
ety openness has on the inference accuracy through analysis and simulations
in simple regular social network structures. We consider single hop inference in
two-level trees and multiple hops inference in complete k-ary trees.

5.1 Single Hop Inference

As mentioned earlier, the Bayesian network for single hop inference is a two-level
tree. Given a general two-level tree with the query node X as the root and n;
direct friends Yii, ..., Yin, as leaves, we want to derive the probability distri-
bution of the posterior probability variation due to the change of openness, i.e.,
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the difference of the posterior probability and the probability that this differ-
ence occurs. We change the openness by randomly hiding a certain percentage
of friends’ attributes.

Let random variables Ni; and Nj, be the number of friends having attribute
value t before and after hiding the attribute values of h friends, where 0 < h < n,
and max(0, N1y — h) < Ni, < min(Nyg,ny — h). If Niy = ny and Ny, = nl,,
we can compute the posterior probabilities P(X = ¢ | Ny = ny¢) and P(X =
t | Ni, = n};) from (3) respectively. Note that for Bayesian inference, hiding
friends’ attribute values in a two-level tree has the same effect as removing these
nodes. Therefore, the posterior probability variation caused by hiding h attribute
values is:

AP(X =t | N1t = n1, Ny = nliy) = |[P(X =t | Ny = n1e) — P(X =t | Niy = nl,)|
(5)
Now we want to derive the probability that each possible value of AP(X =
t | Ny = nyg, Nj, = n);) occurs. In other words, we want to compute the
probability of the joint event Ny; = nyy and Nj, = n}, (before and after hiding
nodes), which is equal to:

P(N1t = nig, N1y = niy) = P(N1¢ = n1e) - P(N1; = nle | Nie = nag). (6)

Thus, we need to compute the two terms on the right-hand side of the equation.
Initially, if we know X'’s attribute value is  (z € {t, f}), the probability that
N1t = nq¢ follows the Binomial distribution:

ni

P(Nlt—n1t|X—x)—< )-P(Y—t|X—x)"“~P(Y—f|X—x)”1_"“. (7)

nit
By unconditioning on X, we obtain:

P(NltI’I’th):P(X:t)P(Nlt:nlt‘X:t)-‘rP(XIf)P(Nlt:nlt|X:f)
(8)

We define h; and hy as the numbers of hidden nodes with attribute ¢ and

f, respectively (hy = ny, —nj, and hy = h — hy). Then we can compute the
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conditional probability that Ny, = n}, given N1z = ny; as:
(5 - (")
(%)

In this equation, the numerator represents the number of ways to hide h;
friends with value ¢ and hy friends with value f, and the denominator represents
the number of combinations to choose any h nodes from a total of n; nodes.
Substituting (8) and (9) into (6), we obtain P(Ny1; = nyg, N, = nfi,).

In the simulation study, we fix n; to be 10. To obtain the posterior probability
variation AP(X =t | Nys = nyt, N7, = n};) and its corresponding probability
for each possible combination of ny; and nf,, we vary h from 2 to 8. We plot the
histogram of the posterior probability variation as follows. We divide the range
of posterior probability variation into 10 equal width intervals. Then we compute
the probability that the posterior probability variation falls in each interval.

Fig. 6 shows the histogram of the posterior probability variation when the
prior probability is 0.3 and the influence strength is 0.7. The x axis represents
the intervals and the y axis represents the frequency of the posterior probability
variation within the interval. We observe that for 70% to 90% of the cases, the
variation is less than 0.1. Thus, in single hop inference, the posterior probability
is unlikely to be varied greatly due to hiding nodes randomly.

P(N{t = nllt | N1t = nlt) = (9)

5.2 Multiple Hops Inference

For multiple hops inference, we use complete k-ary trees, in which all the internal
nodes have k children. We hide a node with all of its ancestors in the tree, and
check how the posterior probability varies with & and the maximum depth of
the hidden nodes d. Fig. 7 depicts an example of when k = 2 and d = 2. The
attribute values of Y77 and Y3 are hidden.

Fig. 8 plots the posterior probability variation when we vary k and d in a
k-ary tree. The prior probability is 0.3 and the influence strength is 0.7. As
k increases, the posterior probability variation before and after hiding nodes
decreases, because there are increasingly more direct friends and the inference
result will depend less on the hidden nodes. Moreover, when k = 1, the posterior
probability varies more significantly when the maximum depth of hidden nodes
is larger. For k > 1, the posterior probability does not vary much with the depth.
These two observations show that, if there are many closer friends to the query
node, a friend that is further away has little impact on the posterior probability.
For our experiments in Section 4, the majority of the nodes have multiple direct
friends. For example, about half of the population have more than 10 direct
friends. As a result, openness in such an environment yields small variations of
posterior probability which result in small changes in inference accuracy.

6 Conclusions

In this paper, we investigated the problem of privacy inference in social net-
works. Using Bayesian networks to model the causal relations among people in
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social networks, we performed a series of experiments on the real social network
structures. We showed that privacy may be indirectly released via social rela-
tions, and the inference accuracy of privacy information is closely related to the
inference strength between friends. Further, we observed that even in a society
where people hide their attributes, privacy still could be inferred from Bayesian
inference.

To protect privacy disclosure in social networks, we could either hide our
friendship relations or ask our friends to hide their attributes. However, our
analysis showed that randomly hiding friends’ attributes and hiding people’s at-
tributes at multiple hops away have a small impact on privacy inference. There-
fore, effective privacy protection should selectively hide friendship relations or
friends’ attributes. To achieve this, we should take both social network struc-
tures and influence strength of social relations into consideration. We plan to
investigate this issue in our future work.
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