
UNIVERSITY OF CALIFORNIA
SANTA CRUZ

Adaptive Caching by Experts

A thesis submitted in partial satisfaction
of the requirements for the degree of

MASTER OFSCIENCE

in

COMPUTER SCIENCE

by

Robert B. Gramacy
March 2003

The Thesis of Robert B. Gramacy is
approved:

Professor Manfred K. Warmuth, Chair

Professor Scott A. Brandt

Professor David P. Helmbold

Frank Talamantes
Vice Provost & Dean of Graduate Studies

Copyright c
 by

Robert B. Gramacy

2003

Contents

List of Figures v

List of Tables vi

Abstract vii

Acknowledgments viii

1. Introduction 1
1.1 Caching Policies . 1
1.2 Choosing A Policy . 2

2. Related Work 6
2.1 Expert Framework and Online Learning 7

2.1.1 Experts to Spin Down Hard Disks 11
2.1.2 Experts for Paging . 12
2.1.3 Experts for Caching . 14

3. Off-line Comparators 16
3.1 BestFixed and BestShifting(K) . 16

3.1.1 How BestShifting(K) Cheats 19
3.1.2 BestRefetching(R) . 20

3.2 Regions of Goodness 23
3.3 Virtual Caches and Master Policies . 26

3.3.1 One possible approach: Rolling Window Algorithm 27

4. Using the Expert Framework 28
4.1 Updating the Expert Weights . 28

4.1.1 Expert Framework v.s. Rolling Window 30

5. Master Policy Managing the Real Cache 33
5.1 Ranking . 34
5.2 Demand v.s. Continuous Rollover 38
5.3 Background Rollover 41
5.4 Cost-Aware Refetching from the Ideal Cache. 44

5.4.1 Tuning� and� . 44

6. Experimental Results and Discussion 46
6.1 Filesystem Data . .. 46
6.2 Results, Graphically . 47

7. Conclusion 52

iii

A. Shifting Master Policy Managing the Real Cache 53
A.1 Demand v.s. Instantaneous Rollover 53
A.2 Background Rollover 56
A.3 Shifting Results, Graphically . 57
A.4 Full Tabular Results on Filesystem Data 59

A.4.1 Tuning�; �, & Adding Hysteresis 59
A.4.2 Comparing Ranking with Shifting 61

References 63

iv

List of Figures

1.1 Plot: Watching the best policy shift . 3

2.1 Fixed Share Weight Update . 10

3.1 Plot: Off-line comparators 18
3.2 Plot: BestShifting(K) for different pools of policies 20
3.3 Plot: BestShifting & BestRefetching Comparators 23
3.4 Fig: Regions of savings . 24
3.5 Fig: Virtual Cache Memory . 26

4.1 Plot: Weights of baseline policies over time 29
4.2 Plot: Logarithm of weights of baseline policies over time 31

5.1 Fig: Ranking experts . 35
5.2 Code: Combing rankings . 37
5.3 Plot: Histograms of hits in the ideal cache 38
5.4 Code: Demand rollover . 39
5.5 Code: Continuous rollover 40
5.6 Plot: Master policy tracks the best expert 41
5.7 Code: Background rollover 43

6.1 Results: Off-line comparison of master policies, for WWk 48
6.2 Results: Off-line comparison of master policies, for UMo 49
6.3 Results: Off-line comparison of master policies, for SMoLRU 50

A.1 Code: Shifting Demand and Instantaneous Rollover 54
A.2 Code: Shifting Background Rollover 56
A.3 Results: Windowed comparison of master policies 57
A.4 Results: Off-line comparison of master policies 58
A.5 Code: Shifting master policy with hysteresis thresholds 61
A.6 Results: Comparing ranking versus shifting 62

v

List of Tables

1.1 Fig: Polices used in this paper . 2

6.1 Fig: Highlights of the CMU DFSTrace data 46

A.1 Results: Shifting performance summary on CMU DFSTrace data 60

vi

Adaptive Caching by Experts

Robert B. Gramacy

ABSTRACT

We are constructing caching policies that have 15-22% lower miss rates than the

best of twelve baseline policies over a large variety of request streams. This represents

an improvement of 45–70% over Least Recently Used, the most commonly imple-

mented policy. We achieve this not by designing a specific new policy, but by using

on-line Machine Learning algorithms to develop a master policy, which dynamically

combines the recommendations of a pool of standard policies based on their observed

success. The framework outlined in this paper is a paradigm shift for the design of

caching strategies. Our approach is attractive because it is simple, adaptive, scalable,

and gives impressive results. A thorough experimental evaluation of our techniques is

given, as well as a discussion of what makes caching an interesting on-line learning

problem.

Acknowledgments

Thanks to Manfred K. Warmuth and Scott A. Brandt for focus, encouragement,

patience, helpful suggestions, some great ideas, and financial support. Dave P. Helm-

bold helped out tremendously by providing an efficient recurrence for BestShifting(K),

and other such insights which alluded us. Thanks to Ismail Ari, Jonathan Panttaja, and

Clayton Bjorland, (the Evolutionary Game Theory Group) for helping to get the project

started. Leah Johnson helped a lot with editing and prose, and her love and patience is

always much appreciated. I can’t forget to thank my family. Where would I be without

them? Finally, my thanks goes out to the UCSC Storage Systems group (Ahmed Amer,

Ismail Ari, Scott A. Brandt, Darrel D. E. Long, and Ethan L. Miller) for great data, a

healthy pool of baseline policies, constructive comments, and criticism.

viii

1. Introduction

Caching is ubiquitous in operating systems. It is useful whenever we have a small,

fast main memory and a larger, slower secondary memory. For example: In file system

caching the secondary memory is a hard drive or a networked storage server, while

in web caching the secondary memory is the Internet. The goal of caching is to keep

within the smaller memory data objects (files, web pages, etc.) from the larger memory

which are likely to be accessed again in the near future. Since the future request stream

is not generally known, heuristics, calledcaching policies, are used to decide which

objects should be discarded as new objects are retained. If a requested object already

resides in the cache then we call it ahit, corresponding to a low-latency data access.

Otherwise, we call it amiss, corresponding to a high-latency data access, as the data is

fetched from the slower secondary memory into the faster cache memory. In the case

of a miss, room must be made in the cache memory for the new object. To accomplish

this, a caching policy discards objects from the cache which it thinks will cause the

fewest or least expensive future misses.

1.1 Caching Policies

In this work we consider twelve baseline policies including seven common policies

(RAND, FIFO, LIFO, LRU, MRU, LFU, and MFU), and five more recently developed

and very successful policies (SIZE and GDS [9], GD* [17], GDSF and LFUDA [2]).

These algorithms employ a variety of directly observable criteria including recency

of access, frequency of access, size of the objects, cost of fetching the objects from

secondary memory, and various combinations of these. Table 1.1 roughly groups these

twelve policies by the criteria they exploit.

For our discussion in this paper, any collection of caching policies can be used, and

their replacement criteria can be of any sort. We do require that a caching policy fulfill

1

criteria algorithm
– RAND

arrival order FIFO, LIFO
arrival time LRU, MRU, GDS, GDSF, LFUDA, GD*
request freq LFU, MFU, GDSF, LFUDA
object size SIZE, GDS, GD*,

retrieval cost GDS, GDSF, GD*

Table 1.1: A characterization of cache replacement policies used in this paper.

one obligation: that it maintain priorities over the objects it caches. Low priority ob-

jects are the next to be discarded, and high priority objects should be last. Policies do

not have to be deterministic. That is, objects can be discarded randomly. However, pri-

orities should indicate which objects are preferred, and which objects are expendable.

A completely random policy would assign the same priority to every object.

1.2 Choosing A Policy

The primary difficulty in selecting the best policy lies in the fact that each of these

policies may work well in different situations or at different times due to variations in

workload, system architecture, request size, type of processing, CPU speed, relative

speeds of the different memories, load on the communication network, etc. Thus the

difficult question is: In a given situation, which policy should govern the cache? For

example, the request stream from disk accesses on a PC is quite different from the

request stream produced by web-proxy accesses via a browser, or that of a file server

on a local network. The relative performance of the twelve policies may vary greatly

depending on the application. Furthermore, the characteristics of a single request

stream can vary temporally for a fixed application. For example, a file server can

behave quite differently during the middle of the night while making tape archives in

order to backup data, whereas during the day its purpose is to serve file requests to and

from other machines and/or users. Because of their differing decision criteria, different

policies perform better given different workload characteristics. The request streams

2

become even more difficult to characterize when there is a hierarchy or a network of

caches handling a variety of file-type requests. In these cases, choosing a fixed policy

for each cache in advance is doomed to be sub-optimal.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

205000 210000 215000 220000 225000 230000 235000

lru
fifo
mru
lifo
size
lfu

mfu
rand
gds

gdsf
lfuda

gd

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

205000 210000 215000 220000 225000 230000

(a) (b)

205000 210000 215000 220000 225000 230000 235000

Lowest miss rate policy switches between SIZE, GDS, GDSF, and GD*

size
gds

gdsf
gd

205000 210000 215000 220000 225000 230000

Lowest miss rate policy ... SIZE, GDS, GDSF, and GD*

(c) (d)

Figure 1.1: Miss rates (y axis) of (a) the twelve fixed policies (calculated
w.r.t. a window of 300 requests) over 30,000 requests (x axis), (b) the same
policies on a random permutation of the data set, (c) and (d) the policies with
the lowest miss rates in the figures above. (Snapshot of UMo dataset, see
Section 6.1.)

The usual answer to the question of which policy to employ is either to select one

that works well on average, or to select one that provides the best performance on

some important subset of the workload. However, these strategies have two inherent

costs. First, the selection (and perhaps tuning) of the single policy to be used in

any given situation is usually done by hand. This may be both difficult and error-

prone, especially in complex system architectures with unknown and/or time-varying

workloads. Second, the policy with the best common case performance may in fact be

worse than what is achievable by another policy at any particular moment. Figure 1.1(a)

shows the hit rate of the twelve policies described above on a representative portion of

one of our data sets (UMo, described later in Section 6.1) and Figure 1.1(b) shows the

3

hit rate of the same policies on a random permutation of the request stream. While

cluttered, these figures show that the miss rates on the permuted data set are quite

different, and typically higher than those of the original data set. Figures 1.1(c) and (d)

show which policy is best at each instant of time for the data segment and its permuted

counterpart. It is clear from these (representative) figures that the best policy changes

over time.

To avoid the perils associated with trying to hand-pick a single policy, one would

like to be able to automatically and dynamically select the best policy for any situation.

In other words, one wants a cache replacement policy which is “adaptive”. In our

Storage Systems Research Group, we have identified the need for such a solution in the

context of complex network architectures and time-varying workloads and suggested

a preliminary framework in which a solution could operate [1] (see Section 2.1.3).

However, this preliminary work lacked concrete algorithmic solutions to the adaptation

problem. This paper presents a complete adaptive caching framework, together with

off-line comparators, competitive policies designed explicitly for varying workload

characteristics, and experimental results.

Rather than develop a new caching policy (well-plowed ground, to say the least),

this paper uses amaster policyto dynamically determine the success rate of all baseline

policies and vary both its replacement criteria and fetching behavior based on their

relative performance on the workload. We show that with no additional fetches, this

policy works about as well as the best fixed policy, chosena posteriori. We define a

refetchas a fetch of a previously seen object that is favored by the current policy but was

discarded from the real cache at some time prior. Refetching is like prefetching [23,

8, 13], except that the refetched objects have recently been discarded. With refetching,

the master policy can outperform the best fixed policy. In particular, when all required

objects are refetched continuously, it has a 15-23% lower miss rate than the best fixed

policy, and almost the same performance as the best possible partition into segments

and assignments of governing policies. For reference, when compared with LRU, this

policy has a 45-70% lower miss rate. To achieve the same miss rate as our master

4

policy, an LRU cache of five to six times larger would be needed. Disregarding misses

on objects never seen before (compulsorymisses), the performance improvements are

even greater. Because refetches are potentially costly, it is important to note that they

can be done in the background. Our preliminary experiments show this to be both

feasible and effective, capturing most of the advantage of continuous refetching.

The aim of a caching policy is usually twofold: (1) to reduce the end-user latency

for requested objects, and (2) to keep the total number of system I/O’s low. Refetching

can increase the amount of I/O’s performed by the system. However, with wise choices

of which objects to refetch and when, it is still possible to obtain a reduction in end-user

latency (miss rate) below that of the best fixed policy, while keeping the total number

of I/O’s low. In fact, the total number of I/O’s can often also be kept below that of the

best fixed policy. Our master policies always have far fewer I/O’s than LRU.

5

2. Related Work

Like many on-line algorithms, the more recently developed caching policies strive

for “adaptivity”. However, researchers often disagree about what adaptive really means,

and how it can be measured. Rather than survey the vast literature of attempts at

developing more “adaptive” caching policies, we refer the reader to our references. The

newer of the twelve policies used in this paper (see Section 1) juggle multipleaging

criteria which trade off recency, frequency, size, etc. in order to make replacements.

While none of these policies’ parameters are ever explicitly altered, their profound

improvement over traditional static policies, like LRU and LFU, suggests that their

criteria are in some sense more “adaptive”. Megiddo, et. al. [21] survey many of the

prominent policies for adaptivepaging1, adding their own into the mix. In contrast

to many previous caching and paging policies, theirsdoesinvolve a parameter that is

explicitly adapted. Instead, this section focuses on introducing theExpert Framework,

which our paper exploits, and whose degree of adaptivity can, in a certain sense, be

quantified.

Informally, expertsare decision making or prediction automata. They can be pre-

dictors, algorithms, heuristics, protocols, etc. Their actions can be static or dynamic in

time, and/or functions of state or particular inputs. Most often, experts are heuristics for

predicting responses, reacting to events, and/or altering systems. An expert’s success

is measured byloss. Loss is a quantification of the discrepancy between the actions, or

predictions of an expert, and what is currently judged to be an optimal response. In the

Expert Framework[16, 11, 20, 10, 6] amasteralgorithm enlists the advice of experts,

and observes their losses, in order to to make its own predictions, decisions, or actions.

The master algorithm is evaluated by the same loss functions. Ideally, its loss is smaller,

or close to, the loss of its best experts.

To our knowledge Avrim Blum [3] (1996) was the first author to suggest using

1Paging and caching are quite similar, except that all objects cached (orpages) have uniform size.

6

caching policies (actually, page-replacement policies) as experts to develop a master

paging strategy. In this work Blum also identified the need for modifications to the

Expert Framework for the situation where the experts, like caching policies, make

decisions which irreparably alter the state of a system.

Despite what to us seems like an obvious application domain, very few people have

applied the Expert Framework to operating systems problems. The few that are known

to us are introduced in this section, following a brief overview of the assumptions made

by the framework, how it operates, and what can be proven about it. The first applica-

tion helps determine appropriate spin-down times for hard disks in mobile computers.

Informed choices about when to spin down the hard disk can dramatically increase bat-

tery life, and save energy. The second application is paging, and is of largely theoret-

ical interest. Finally, we briefly mention our preliminary work in applying the Expert

Framework to caching: showing how experts can be used to find the best policy for

nodes in a distributed cache, and how to track the best policy when it changes over

time.

2.1 Expert Framework and Online Learning

Littlestone and Warmuth [20] introduced the Expert Framework to the on-line learn-

ing community with their presentation of the WEIGHTED MAJORITY algorithm for

finding the best predictor from a pool of possible candidates. Cesa-Bianchi, et. al. [11]

gave an in-depth treatment of the case when the expert’s loss is measured usingabsolute

loss. The most powerful aspect of the Expert Framework is that it makes no statistical

assumptions about the data. Instead, the loss of the master algorithm is usually bounded

by a function of the loss of the experts in its pool.

The basic setup is as follows. First, a comparison class of predictors is chosen.

These predictors are calledexperts, e = fe1; : : : ; eNg. Usually experts are themselves

learning algorithms, but they don’t have to be. The framework is very flexible in this

respect. Learning in the Expert Framework proceeds in trialst = 1; : : : ; T . At each

7

trial the experts receive an instance/label pair(xt; yt) 2 X � Y , make a prediction

en(xt), and incur alossLt;n = Lt(en(xt); yt) 2 [0; 1]. The loss function measures

the discrepancy between the expert’s prediction and the true label. Amasteralgorithm

combines the predictions of experts to make its own prediction. The master maintains

a weight vectorw = fw1; : : : ; wNg 2 P
N , wherePN is the probability simplex inN

dimensions. The weightwn represents the master algorithm’s belief in thenth expert.

After each trial, the master algorithm updates its belief in each experten by modifying

wn in response toLt;n. The most straightforward way of doing this is by applying the

following multiplicative update:

wt+1;n =
wt � �

Lt;n

normaliz.
; where� 2 (0; 1): (2.1)

In the more recent literature, (2.1) is written with� = e��, where� is referred to as

the learning rate. A master algorithm using this update is sometimes referred to as

the STATIC EXPERT algorithm [16]. Usually,e(xt) 2 R
N and the master predicts by

taking an inner product̂yt = w � e(xt), and itself incurs lossLt;A = Lt(ŷt; yt) 2 [0; 1].

Vovk [19, 24] discusses fancier prediction functions that lead to better loss bounds.

Algorithms employing the update given in (2.1) have bounds which relate the loss

of the master algorithm to the loss of the best expert. LetL1:::T;A andL1:::T;n, for

n = 1; : : : ; N , be the cumulative loss of the master algorithm, and the expertsen

respectively. Then, for any sequenceS of instance/label pairs(x1; y1); : : : (xt; yT),

L1:::T;A � min
n
fL1:::T;n + cL logng; (2.2)

wherecL is a constant that depends on the loss function [14, 19]. In other words, the

loss of the master algorithm is bounded by the loss of the best expert, plus the term

termcL logn, which can be recognized of as theminimum description lengthrequired

to encode the best expert. Vovk [24] generalized the theory to incorporate other loss

8

functions.

Bounds like (2.2) are great when the best expert is the most sensible comparator.

But what happens when the best expert changes over time? Imagine an off-line algo-

rithm that canpartition the sequence into sections, and choose the best expert in each

section. “Tracking” the best expert over time requires a weight update which could

help a previously poor expert, with low weight, to recover weight quickly when it starts

predicting well. Multiplicative updates like those in (2.1) are a double-edged sword:

driving the weights of experts which are currently poor to zero so quickly that it be-

comes very difficult for them to recover if they start doing well.

Herbster and Warmuth [16], and more recently Bousquet and Warmuth [6], devel-

oped a second set of updates in order to help prevent poor experts’ weights from be-

coming too small. After an intermediate LOSSUPDATE, identical to that of (2.1), these

updates, dubbed SHARE (or MIXING) UPDATES, force experts with a large amount of

weight to share (or mix) a small amount of their weight with poor experts.

wm
t;n =

wt;ne
��Lt;n

norm.
; wt+1 =

tX
q=0

t+1;qw
m
q ; where

tX
q=0

t+1;q = 1:

Mixing portfolios
t+1 prescribe how current and past weights (fwm
1 ; : : : ;w

m
t g)

contribute to the weight vector used in the next trial (wt+1). Typically,
t+1 constructs

wt+1 by mixing a fixed share (�� 1) of the firstt�1 intermediate weight vectors with

larger share (1� �) of wm
t , from the most recent LOSSUPDATE.

Some example mixing schemes, discussed extensively by Bousquet and War-

muth [6], are outlined below. Figure 2.1 shows pictorially how
 mixes past inter-

mediate weights in these updates.2

1. FIXED SHARE TO START VECTOR mixes in a small amount of the (uniform)

initial weight vector withwm
t from the most recent LOSS UPDATE, to help

2picture borrowed from Bousquet & Warmuth [6].

9

FS to Start Vector
-

210 t-1 t... q0

.
6

1

1-�

�

t+1(q)

FS to Uniform Past
-

210 t-1 t... q0

.
6

1

1-�

�=t

t+1(q)

FS to Decaying Past
-

210 t-1 t... q0

.
6

1

1-�

/ �
t�q

t+1(q)

Figure 2.1: Three Fixed Share (FS) share updates: FS to Start Vector, FS
to Uniform Past, and FS to Decaying Past. The diagrams describe how
intermediate weightswm

t;n are mixed in order to determinewt+1;n.

prevent experts’ weights from becoming too small.

2. FIXED SHARE TO UNIFORM PAST mixes in the past average of intermediate

weight vectors. This share update is ideal for the situation where there is only a

10

small sub-pool of helpful experts. Currently poor experts which were good in the

past maintain a slightly higher “dormant” weight than those which have proven

less useful over time.

3. FIXED SHARE TO DECAYING PAST also mixes in the weight vectors of previous

trials, but is more generous about sharing weight to experts who have faired well

recently.

The loss of master algorithms which employ mixing updates (like those described

above) can be bounded by a function of the loss of the optimal partition of experts. Just

as before, these bounds usually include terms representing the minimum description

length of an encoding of the partition (and experts used):

L1:::T;A � min
P
fL1:::T;Pg+O(# of bits to encodeP) (2.3)

whereL1:::T;P is the loss of partitionP .

Some recent examples of applications of the Expert Framework to operating sys-

tems problems follow.

2.1.1 Experts to Spin Down Hard Disks

Mobile computers can conserve battery power by spinning down the hard disk when

it is not in use. On many systems, inactivity for a fixed amount of time determines

whether or not the disk should spin down. Fixed timeouts on the order of 30 sec-

onds to 10 minutes are typically chosen by the user of the device. Helmbold, et. al.

[15] propose a more adaptive approach which uses many, harmonically or exponential

spaced, fixed timeouts as expertsen, for n = 1; : : : ; N . The algorithm proceeds in trials

t = 1; : : : ; T . At each trial,t, an idle timeit is provided to the master. For each idle

period,it, the energy used by the fixed timeouten is computed as

11

Energy(en; t) =

8<
:

it if it � en

en + spin-down cost otherwise:

Supposing the algorithm knew the length of the idle time at the beginning of a burst of

inactivity, the energy used by an optimal strategy would be

Optimal(t) =

8<
:

it if it � spindown-cost

spin-down cost otherwise:

To keep the units simple, spindown-cost is measured in seconds of (spun-up) disk

idling. Using the above, the loss of each expert is then computed as

Loss(en; t) =
Energy(en; t)� optimal

spin-down cost
:

A variant of Herbster and Warmuth’s VARIABLE SHARE algorithm [16] is used to

update the experts’ weights, and the actual timeout used by the master algorithm

is the usual weighted linear combination (inner product) of the experts’ timeouts:PN
n=1wnen. It is reported that this approach results in the mobile computer using as

little as 88% of the energy consumed by the best possible (fixed) time-out chosen in

hindsight.

This application of the Expert Framework is perhaps the most promising and suc-

cessful one to date. It is also the first application (known to us) of the Expert Framework

to an operating systems problem.

2.1.2 Experts for Paging

Blum, et. al. [4] applied updates from the Expert Framework topaging. Their

policy is designed to exploit a situation quite similar to our own. Underlying everything

12

is the assumption that the workload is partitioned intophases. Each phase consists of

a “working set” of pages which receive a majority of the requests. With this setup

they consider an off-line comparator calledr-unfair. The comparatorr-unfair knows

the future, and therefore knows the phase boundaries. At the beginning of each phase,

r-unfair fetches only the most frequently requested pages (the working set) into the

cache. During a phase, requests to pages not in the current working set are “rented” (at

a loss of1=r) rather than fetched into the cache (which incurs a loss of 1).

An on-line policy proceeds similarly, but cannot anticipate phase changes. At the

start of each phase it createsk! experts, one for each permutation of the pages in the

working setlearnedin the previous phase.3 Each expert then keeps its own view of

the cache, and executes a MARKING algorithm [5]. The expert’s initial permutation

determines the order in which unmarked pages are discarded. Requests to new pages

are rented (this time at a loss of 1) until they become marked (requestedr times in the

phase). Only marked pages are actually fetched into the cache. When allk pages in

the cache become marked a new phase begins. Within each phase the RANDOMIZED

WEIGHTED MAJORITY algorithm [20] is used to update a distribution of weights, one

weight for each expert. The weights are used to construct a probability distributionPj,

over all pagesj. Pj is computed by taking the ratio of the sum of weights corresponding

to the experts which retainedj, divided by the total weight of all experts.

Pj =

P
n:j2en

wnP
nwn

(2.4)

P determines the order in which unmarked pages are released from the cache in or-

der to make room for marked pages that need to be fetched. By proceeding in this

way the expected number of page faults will be the same as the expected loss to the

RANDOMIZED WEIGHTED MAJORITY algorithm.

3At the beginning of the first phase the previous working set is empty.

13

Blum, et. al. show that this on-line policy has a competitive ratio4 of O(r + logn)

with respect tor-unfair. While an impressive result, Blum, et. al, fail to address the

computational burden and memory required to maintaink! experts, and each of the

correspondingk! views of thek pages in the cache. Their paper is largely a theoretical

work, and provides no experiments or simulations demonstrating the advantage of their

approach in practice.

2.1.3 Experts for Caching

Recently, the Machine Learning and Storage Systems groups at UC Santa Cruz

embarked on a joint venture to apply on-line learning to storage related problems,

including caching. In a preliminary work, Ari, et. al. [1], discuss a framework for

Adaptive Caching using Multiple Experts (or ACME) in order to manage replacements

within distributed caches5. The topology of a distributed cache is both geographic and

hierarchical. Employing the same caching strategy at adjacent nodes, or between parent

and child nodes, is usually sub-optimal [25, 7]. For example, a cache which only serves

requests missed by a parent cache executing LRU will likely observe a request stream

which is recency-saturated. Implementing LRU at the child level is a poor choice. Even

with complete knowledge of the request stream, choosing the best policy for each node

can be a daunting task for an administrator. ACME was designed to help nodes choose

their own policy based on the requests they observe.

Extending this research, Gramacy, et.al. [12], demonstrated how one could shift

back and forth between policies in order to exploit temporal changes in the workload’s

characteristics. Turning ACME on its head by taking the experts to be the policies’

caches, instead of the policies themselves, we were able to use the Expert Framework

to produce a master policy whose miss rate waslower (experimentally) than that of

4competitive ratio:worse case loss of the on-line policy over the optimal comparator.
5distributed caches: a network of autonomous caches (nodes) whose workload depends on their

geographic location, and the policies executed by nearby nodes (e.g. web proxies,n-level caches).

14

the best policy in the pool. Our key observation was that experts acquire high weight

because they retained objects currently favored by the workload. This thesis expands

on and solidifies the ideas expounded in that work.

15

3. Off-line Comparators

Our goal is to design a caching policy which “adapts” its replacement criteria based

on which policies in its pool are currently best. Of course, implicit in the desire for

something adaptive is a tacit desire for something good. Many caching policies claim

to be “adaptive”, but seldom is “adaptive” clearly defined. Thus, we use the term

“adaptive” only informally. When we want to be precise, we use off-line comparators

to judge the performance of our on-line algorithms, as is commonly done in the on-

line learning community [20, 10, 18]. In this paper, we use three off-line comparators:

BestFixed, BestShifting(K), and BestRefetching(R). These are described below.

In addition to these off-line comparators we also compare to LRU (our easiest

comparator). A successfully adaptive policy should do at least as well as LRU. We

also compare against the rate ofcompulsorymisses (our hardest comparator). The

compulsory“policy” only misses requests for objects it has never seen before. Its miss

rate of is the same as that of any policy which governs an infinitely large cache, and is a

lower bound on the miss rate of the optimal replacement policy on a cache of any size.

3.1 BestFixed and BestShifting(K)

BestFixed is thea posterioriselected policy with the lowest miss rate on the en-

tire request stream, chosen from the pool of twelve (orN) policies. Computing this

comparator is straightforward.

BestShifting(K) considers all possible partitions of the request stream into at most

K segments along with the best policy for each segment. BestShifting(K) then chooses

the partition yielding the lowest miss rate over the entire dataset.

BestShifting(K) can be computed using dynamic programming. LetB(t; k; i) be

the total number of misses accrued by BestShifting(k), for k � 0, after observingt � 0

16

requests, where the current policy (on the segment including thetth request) is policy

i 2 f1; : : : ; ng. B(t; k; i) can be computed with the following recurrence:

B(t; k; i) =

8>>>>><
>>>>>:

0 t = 0; k � 1

B(t� 1; k; i) + misst;i t > 0; k = 1

minfB(t� 1; k; i) + misst;i; (or) t > 0; k > 1

minj 6=ifB(t� 1; k � 1; j) + misst;igg

(3.1)

where misst;i 2 f0; 1g indicates whether thetth object would have been retained

(misst;i = 0) or discarded (misst;i = 1) by theith policy.

Using dynamic programmingmemoizationto fill in a tableB[T;K; i] takes time in

O(TKN), whereT is the total number of requests in the workload, andK is the largest

k of interest. Having filled in the tableB[�; �; �] we can extract

BestShifting(K) = min
i
B[T;K; i]: (3.2)

Moreover, it is also the case that

BestFixed= BestShifting(1): (3.3)

Another interesting comparator arises when we consider BestShifting(K), asK !1.

We call this comparatorAllVC:

AllVC
:
= lim

k!1
BestShifting(k); (3.4)

This is an interesting benchmark whereby a miss is incurred only if the object would

have been missed by all of theN baseline policies.

17

0 200 400 600

4.
0

4.
5

5.
0

5.
5

WWk, BestShifting(K)

K = Number of Shifts

M
is

sr
at

es
 %

Best Fixed = SIZE
BestShift(K)
All Virtual Caches

BF=SIZE

All VC

Figure 3.1: Off-line comparators for a typical dataset (WWk, 138,000 re-
quests, see Section 6.1). Miss rates are plotted as a functionK, the number
of policy switches or segments. BestFixed incurs 7,665 misses, AllVC incurs
5,396. 2% (or 2,970 misses) are compulsory.

Figure 3.1 shows BestShifting(K), BestFixed, and AllVC graphically for a typical

dataset of about138; 000 requests. Here, miss rates are plotted as a functionK, the

number of policy switches or segments. The BestFixed policy is SIZE. Notice that a

small number of shifts (K � 50) gives ashifting policywith a miss rate� 20% less

than BestFixed. More shifts (K > 50) gives only marginal improvement.

We seek to develop a policy which switches its decision criteria to effectively

exploit significant changes in the workload’s characteristics. Informally, we consider

a policy to be “adaptive” when its miss rate is lower than BestFixed and close to

BestShifting(K), for modestK.

18

3.1.1 How BestShifting(K) Cheats

Even though it has knowledge of the future, BestShifting(K) is still restricted to

follow the same protocol as the type of online policy we seek to develop; namely that

it can only solicit advice from a pre-specified pool of policies in order to facilitate

requests. Still, there are two ways in which BestShifting(K), as specified above,

“cheats”.

The first cheat is that BestShifting(K) uses its knowledge of the future to take

advantage of baseline policies which experience and intuition suggests are poor choices

in all but a few rare scenarios. Policies like MRU, MFU, and LIFO, prefer releasing

objects that where recently accessed. We included them in our pool of policies on the

off-chance that they might prove unexpectedly useful. It turns out that BestShifting(K)

does indeed find them useful, but not for the purpose we intended. For largerK, after

many of the major shifts in the characteristics of the workload have been assigned (more

sensible) policies, we found more and more short segments governed by one of MRU,

MFU, or LIFO.

Fortunately, employing MRU, MFU, and LIFO does not help BestShifting(K) all

that much. Figure 3.2 shows that removing these policies leaves the miss rate largely

unaffected. WhenK is small they are not being used at all.

The second cheat involves the state of the cache when BestShifting(K) switches

policies. Its recurrence, as given above, makes the powerful assumption that the opera-

tion of switching policies comes at a negligible cost. In (3.4), misst;i indicates whether

policy i would have missed objectt if it had governed the cache all along. That is, the

recurrence prescribes not only a change of governing policy, but also a swap of cache

contents. This situation is an artifact of our attempt to keep BestShifting(K) simple,

and tractable. Realistically, a new governing policy should work with a cache state

which resulted from management by previous governing policies.

Our experiments suggest that much of the advantage gained by changing governing

policies comes not because a new policy is expected to make wise replacements in

the future, but rather that its past choices make it preferred for the current requests.

19

0 100 200 300 400 500 600 700

4.
0

4.
5

5.
0

5.
5

WWk: Fair v. Unfair Optimal Partition

K = Number of Shifts

M
is

sr
at

es
 %

All 12 Policies
12 − MRU, MFU, LIFO

Figure 3.2: Comparing BestShifting(K)’s for different sub-pools of policies
to judge “fairness”. Notice that including policies like MRU and MFU which
are notoriously bad strategies online actually help BestShifting(K), but only
a little bit.

Therefore, even though BestShifting(K) “cheats” byrolling over its cache contents at

each policy shift, it models the extreme situation where the best objects to keep in (or

bring into) the cache are those cached by the best policy. This idea is what we will

try to exploit when developing an on-line master policy. BestShifting(K) is an ideal

comparator for judging how successful we are at accomplishing this goal.

3.1.2 BestRefetching(R)

One way to better understand the amount by which BestShifting(K) uses rollover to

cheat is to keep track of the number ofrefetchesrequired to facilitate each cache shift.

Realistically, objects discarded by a previous governing policy, which are cached by the

20

new governing policy, would have to be refetched. Rather than plottingK on the x-axis,

as in Figure 3.1, BestShifting(K) could be plotted versus anR-axis which shows the

number of refetches required to accomplishK shifts. Adding an extraR-table in the

dynamic programming (3.1), and extra inputs depicting the refetch-distance between

all caches at all times, suffices to record the number of refetches used byB[�; �; �].

Alternatively, one can derive a recurrence (and thus another comparator) which

deals with refetches more naturally– not just as an afterthought. With this in mind, we

define BestRefetching(R) to be the minimum number of misses incurred a partition

of policies into segments which results inR refetches, regardless of the total number

segments used.

Computing BestRefetching(R) is is similar to computing BestShifting(K). Let

reft(i; j) be the number of refetches required to move from the cache of policyi to

policy j, at timet. Now letB0(t; r; i) be the minimum number of misses incurred by

a shifting policy for the firstt requests, ending with the governing policyi, and using

at mostr refetches to accomplish an arbitrary amount of shifting between governing

policies. Then, in the spirit of (3.1) ...

B0(t; r; i) =

8>>>>>>>><
>>>>>>>>:

0 t = 0; r � 0;

1 r < 0;

B0(t� 1; r; i) + misst;i t > 0; r = 0;

minfB0(t� 1; r; i) + misst;i; (or) t > 0; r � 1:

minj 6=ifB
0(t� 1; r � reft(j; i); j) + misst;igg

(3.5)

As before, (3.5) can be computed by using dynamic programming, and we have that

BestRefetching(R) = min
i
B0[T;R; i]: (3.6)

Again, we have

21

BestFixed= BestRefetching(0) and AllVC
:
= lim

r!1
BestRefetching(r): (3.7)

The memoization tableB0[�; �; �] takes time inO(N2RT) to fill in. The reason for

theN2 term instead ofN , like in theO(NKT) time for filling in B[�; k; �] to compute

BestShifting(K) via (3.1), is as follows. The termr � reft(j; i) in (3.5) might cause

minj 6=i to be different for each choice ofi. Therefore, eachB0[t; r; i] requiresO(N2)

to compute because theminj 6=i needs to be re-evaluated for alli = 1; : : : ; N . In

other words, the choice of which policy to let govern the current request depends on

how previous requests are partitioned into segments and governing policies, given a

particular refetch allowance. Instead of “r� reft(j; i)”, which depends on bothi andj,

the recurrence for computing BestShifting(K) given in (3.1) has simply “k�1”, which

doesn’t depend on eitheri or j. As a result,minj 6=i is the same for allB0[�; �; i], and

thus needs only be evaluatedN times to computeB[t; k; �].

Asymptotic behavior aside, we typically see that the number of refetches,R, in-

duced by a particularK is orders of magnitude larger thanK. Each shift in policy

can cause anywhere between 10 and 200 refetches. So computing BestRefetching(R)

requires vastly more resources than computing BestShifting(K), in terms of both time

and space. In our experiments, computing BestRefetching(R) consumes about 100

times the memory of BestShifting(K), and takes 1200 times longer to compute. Fig-

ure 3.3 compares BestShifting(K) and BestRefetching(R), by plotting their miss rates

as a function of refetches. Refetches are plotted on the x-axis as a percentage of the

total number of requests. At the two extremes (no refetches or shifts, and saturating

refetches or shifts) both methods give the same results:

BestShifting(1) = BestRefetching(0)= BestFixed

and

AllVC = lim
k!1

BestShifting(k) = lim
r!1

BestRefetching(r):

22

0.0 0.2 0.4 0.6 0.8

4.
0

4.
5

5.
0

5.
5

WWk, BestShifting(K) & BestRefetching(R)

Refetches as % of Total Requests

M
is

sr
at

es
 %

BestFixed = SIZE
BestShifting(K)
BestRefetching(R)
All Virtual Caches

BF=SIZE

All VC

Figure 3.3: Shows BestShifting(K) with miss rates plotted as a func-
tion of refetches (x-axis), computed to facilitate each of theK shifts, and
BestRefetching(R) for comparison.

However, BestShifting(R) is not restricted by the number of policy shifts it uses. This

allows it to achieve lower miss rates with less refetching.

3.2 Regions of Goodness

Later, when we experiment with our on-line master policies, we will want to get a

sense of how good they are. Here, we highlight several (compound) ways in which an

on-line adaptive algorithm can be good, as measured against the comparators outlined

previously.

Caching policies are usually developed with the following goal: to reduce user

latencies resulting from memory requests. Often, this is accomplished by reducing the

23

number of fetches which result from misses. However, our comparators, and our on-

line algorithms, can further reduce the miss rate by actually increasing the number of

fetches– by cleverly refetching objects before they are requested. Depending on the

system, there may be a tradeoff between increasing the number of fetches (I/O’s) and

reducing the end-user latency of requests (miss rate).

0%

A

A = Total I/Os less than BestFixed

B = Total I/Os less than LRU

C = Total I/O more than LRU

Refetches as % of Total Requests

B−

B

B+

+ = Better than BestShifting

− = Worse than BestFixed

C+

M
is

s
R

at
e

(%
)

C−

C

A+

AllVC

BestShifting

BestFixed

LRU LineBF Line

Figure 3.4: Eight regions of savings (or success) with respect to BestFixed,
BestShifting, and LRU. The regions are horizontally partitioned by the Best-
Fixed miss rate, and the AllVC miss rate. BestRefetching(R), BF and LRU
Lines partition the space vertically. BF and LRU Lines are constructed by
drawing lines connecting the BestFixed and LRU miss rates,` andb respec-
tively, with their counterpart on each axis (BF Line=f(0; b); (b; 0)g and LRU
Line=f(0; `); (`; 0)g).

Figure 3.4 shows eight regions in a plot of miss rate versus refetches where success

(or failure) can be interpreted eight different ways. The regions are divided by BestRe-

fetching, BestFixed, and two lines which represent an equal tradeoff between misses

and refetches of BestFixed and LRU. I/O’s result from both misses and refetches. Poli-

cies whose miss rate and refetches place it below and to the left of theLRU Line, in the

24

figure, cause less total I/O’s (misses + refetches) than LRU. Likewise, policies mapped

below and to the left ofBF Linecause less total I/O’s than BestFixed.

Compared to LRU, regions A* and B* in the figure correspond to a decrease inboth

the number of refetched objects, and the number of misses. C* regions correspond to

fewer misses than LRU, but ultimately result in an increase in total number of I/O’s due

to refetching. Compared to BestFixed, only A* regions correspond to both a decrease

in miss rate, and a decrease in the total number of fetches.

Regions labeled “+” correspond to miss rates better than BestShifting, whereas

regions labeled “-” correspond to miss rates worse than BestFixed. If the amount of

I/O’s is a non-issue, then to be the C+ region is our goal. If, like in most cases, we

prefer to minimize both the number of total fetches and the number of misses, then our

goal is to be in one offA,A+,B,B+g.1

1B regions can disappear if BestFixed=LRU, but this has never happened with our data. With the set
of 12 policies we used, LRU is never the best policy.

25

3.3 Virtual Caches and Master Policies

We seek to develop an on-line master policy that determines how a set of baseline

policies should govern the real cache at any given time. First, the policies need to

be evaluated. Our key idea is to use “virtual caches”. Avirtual cachesimulates the

operation of a single baseline policy. Each virtual cache records a few bytes of metadata

about each object in its cache: ID, size, and calculated priority. Object data is kept only

in the real cache, making the cost of maintaining the virtual caches negligible2.

(with object data)
Real Cache

Size(real cache) Sum(Size(VC.i))

12 Virtual Caches
(without object data)

Size(full cache)

Fixed Policy, e.g. LRU
(with object data)

Figure 3.5: Virtual caches consume real cache memory.

To be fair we also require that virtual caches reside in the same cache memory

that would otherwise have been used to cache “real” object data. Figure 3.5 shows the

virtual caches nestled inside of the real cache space. Virtual caches operate with fixed

(virtual) cache space equal to the size of the full cache. Therefore, the actual space used

to cache real objects is a function of the size of the 12 virtual caches, and changes with

time:

Size(real cache)= Size(full cache)�
12X
i=1

Size(VCi):

2As an additional optimization, we record the id and size of each object only once, regardless of the
number of virtual caches it appears in.

26

Dictionary data structures can be used to manage object headers cached in any of theN

virtual caches (and the real cache). Virtual caches themselves only contain pointers to

dictionary entries. This makes their space usage (in the total cache) even more compact,

and lookups of object headers in all caches more efficient. In our experiments the total

size of all twelve virtual caches consumed less than 1% of the full cache memory.

Virtual caches are proving grounds for a pool of candidate policies. Our task is to

produce amaster policywhich observes the success of each policy on its virtual cache,

and bases its own replacement policy on those it judges to be currently “best”. This

leaves the question of how to make such a judgment. One possibility is the Rolling

Window Algorithm discussed in the following subsection. A cleaner, more efficient

approach uses the Expert Framework from on-line learning. This will be the focus of

much of the rest of this paper.

3.3.1 One possible approach: Rolling Window Algorithm

Via virtual caches, the master policy can observe the miss rates of each policy on the

actual request stream in order to determine their performance on the current workload.

A simple heuristic which can be used to determine how to manage the real cache at any

given time, is to continuously monitor the number of misses incurred by each baseline

policy in a past window ofW (say 300) requests (depicted in Figure 1.1(a)). The master

policy can give control over the real cache to the policies with the least misses in this

window. We call this therolling windowalgorithm.

This approach has two disadvantages. Firstly,W is difficult to tune. In our ex-

periments (not shown) the optimal window sizes range isW 2 [100; 8000], depending

on the workload. Secondly,O(NW) memory (in addition to that required by virtual

caches) is needed forN policies each with a window size ofW . Using windows, the

master policy’s bookkeeping would encroach even further into the real cache space.

Both of these problems are mitigated by using the Expert Framework for on-line learn-

ing in place of a rolling window. This is the topic of the next section.

27

4. Using the Expert Framework

Choosing caching strategies is a useful application of theExpert Frameworkfor on-

line classification. While not a classification problem, policies or their virtual caches

can be thought of as as experts, misses as some unit of loss, and predictions as object

replacements. Miss rates on past windows of a fixed sizeW are similar to the idea

of maintaining a distribution over the experts, but we have already argued that this

can be expensive (O(NW) for N experts). Using updates developed for the Expert

Framework [16, 6] gives a similar effect by maintaining only a single weightwn, for

each expertn 2 f1; : : : ; Ng. The weightwn is an estimate of the performance of policy

i relative to the other policies. We commonly refer to the distribution of weights as a

vectorw = hw1; : : : ; wNi.

4.1 Updating the Expert Weights

After each request the master policy updatesw in two ways, thereby updating its

belief in each policy. Updating the weight vector(w1; : : : ; wN) after each trial com-

mences in two stages. First, the weights of all policies that missed the new request

aremultiplied by a factor� 2 (0; 1) and then renormalized. This is called theloss

update(see Section 2.1). Since the weights are renormalized, they remain unchanged

if all policies miss the new request. As noticed by Herbster and Warmuth [16], multi-

plicative updates drive the weights of poor experts to zero so quickly that it becomes

difficult for them torecoverif their experts subsequently start doing well. This is some-

times referred to as the “curse of the multiplicative update”. Therefore, a secondshare

updateprevents the weights of experts that did well in the past from becoming too

small, allowing them to recover quickly, as shown in Figure 4.1.

There are a number of share updates [16, 6] with various recovery properties. Some

of these are outlined in Section 2.1. We chose the FIXED SHARE TO UNIFORM PAST

28

0

0.2

0.4

0.6

0.8

1

205000 210000 215000 220000 225000 230000 235000

FS
U

P
W

ei
gh

t

Requests Over Time

Weight History for Individual Policies

lru
fifo
mru
lifo
size
lfu

mfu
rand
gds

gdsf
lfuda

gd

Figure 4.1: Weights of baseline policies over time under loss and share up-
dates. (same snapshot of 30,000 requests from UMo, see Section 6.1).

(FSUP) update because of its simplicity and efficiency (more on this later), and because

of its ability to fixate on a small sub-pool of the full pool of policies, encoding our prior

belief that only a small subset of the policies will be useful. Note that the loss bounds

proven in the Expert Framework for the combined loss and share update do not apply

in this context. That is, we do not know how to relate the loss of the master policy to

the weighted loss of its expert policies. Nevertheless, our experimental results suggest

that we are indeed exploiting the recovery properties of the combined update that are

discussed extensively by Bousquet and Warmuth [6].

Formally, for each trialt, the loss update is

wm
t;n =

wt;i�
misst;n

Zt+1

; Zt+1 =
NX
n=1

wt;n�
misst;n ; for n = 1; : : : ; N (4.1)

where� is a parameter in(0; 1) and misst;i is 1 if the tth object is missed by policyi

29

and 0 otherwise. The initial distribution is uniform, i.e.w1;i = 1=N . The FSUP update

mixes the current weight vector with the past average weight vectorrt =
Pt

q=1w
m
q =t.

This is easy to compute on-line without using more than a constant amount of memory

per expert:

wt+1 = (1� �)wm
t + �rt�1 rt =

(t� 1)rt�1 +w
m
t

t
(4.2)

where� is a parameter in(0; 1). A small � parameter causes high weight to decay

quickly if its corresponding policy starts incurring more misses than other policies with

high weights. The higher� is the more quickly previously good policies will recover.

In our experiments we used� = 1=e � 0:37 and� = 5=1000 = 0:005. Setting� = 0

gives the STATIC EXPERT algorithm (mentioned in Section 2.1). In our experiments,

using this algorithm resulted in all of the weight going to the BestFixed policy. Setting

�; � will be discussed in more detail in Section 5.4.1.

4.1.1 Expert Framework v.s. Rolling Window

There are many reasons why we prefer using the Expert Framework to the rolling

window algorithm for measuring the success of policies. As already mentioned, the

O(N) extra information required by the Expert Framework is much more reasonable

than theO(NW) required by the rolling window. Figure 4.1 illustrates a number of

other advantages gained by using the Expert Framework instead of a rolling window.

Compared to a rolling window, tracking weights over time gives a much clearer descrip-

tion of the policies competition. This is illustrated pictorially by comparing Figure 1.1

(a) and (c) with Figure 4.1.

The rolling window algorithm tracks an absolute performance metric in a fixed

window. In contrast, the weights of the Expert Framework measure the success of

policies relative to one another by taking recent requests into account and, to a smaller

degree, all past requests. In both Figures 4.1 and 1.1 (c) it is apparent which policy is

30

favored and when. Note that they agree. However, Figure 4.1 gives a visually clearer

portrayal of the relative success of each of the policies over time, whereas Figure 1.1(a)

is a complete mess in this respect.

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

205000 210000 215000 220000 225000 230000 235000

L
og

 F
SU

P
W

ei
gh

t

Requests Over Time t

Logarithm of Weight History for Individual Policies

lru
fifo
mru
lifo
size
lfu

mfu
rand
gds

gdsf
lfuda

gd

Figure 4.2: Logarithm of weights of baseline policies over time under loss
and share updates. (same snapshot of 30,000 requests from UMo, see Sec-
tion 6.1).

Figure 4.2 shows how the master policy uses FSUP to manipulate weights, favoring

policies which have performed well in the past, by plotting the logarithm of the expert

weights over time. Notice that the four best policies (SIZE, GDS, GDSF, GD*) main-

tain a log-weight several orders of magnitude higher than the other policies, even when

they are doing poorly. Also, the figure brings out contenders like LFUDA, a policy

designed to minimizebyte miss rate1, and to a lesser extent LRU, by showing that both

maintain a noticeably higher dormant weight than the other policies.

1byte miss rateis an alternative measure of loss whereby policies are punished proportional to the
size of the object missed.

31

We chose not to implement the FIXED SHARE TO DECAYING PAST (FSDP) update

because it requires extra memory on the order of the entire history (forT requests) of

weights for each of theN policies (O(NT)). Bousquet and Warmuth [6] show that

an approximation to FSDP can be achieved with onlyO(N log(T)) more memory.

Nevertheless, asT gets large, the extra memory required would even further constrain

the amount of space allotted for caching real objects, negating any initial benefit gained.

In a real applicationT !1. Any approach which requires memory or time resources

that depends onT is essentially useless.

32

5. Master Policy Managing the Real Cache

Expert framework weights represent the master policy’s belief in each expert policy

at any given time. Analogous with the rolling window, it makes sense to give control

over the real cache to the policy with the highest weight. However, the success of

a policy is essentially a function of both the policyand the (virtual) cache state that

results from implementing that policy. If the master policy’s belief in its expert policies

changes over time, the objects in the real cache will likely differ from the objects

cached virtually by the better rated expert policies. This suggests that a technique which

switches both policy and cache contents will likely give the best results. With this in

mind, we proceed with a high-level overview of our master policy, and the following

subsections cover the details.

Rather than constructing a master policy by adapting and combining the best of the

baseline policies’ replacement criteria, we instead choose to develop a master policy

which combines the best virtual caches. This approach is motivated by the observed

success of BestShifting(K) and BestRefetching(R) and from our discussion in Section

3.1.1; namely the insight that a policy’s current success is more a reflection of its past

decisions than its present or future ones. Accordingly, we view the experts as rankings

over the objects its policy chose to retain. The basic protocol of our master policy goes

as follows:

1. A request is processed on each virtual cache and then the loss and share updates

of the Expert Framework are applied.

2. Next, the request is processed on the real cache, based on the rankings of objects

cached virtually by policies with high weight.

3. If desired, before processing the next request, objects can be refetched into the

real cache, based on the rankings constructed in Step 2.

We will often need to reference all of the objects in all caches, real or virtual. So, from

now on, we will refer to these objects as the master policy’sscope. That is, thescope

33

of the master policy contains those objects that are currently in the real cache, and all

N virtual caches.

In our previous work [12] we were concerned with finding an on-line shifting policy

where the real cache was only governed by the single best policy at any given time. This

approach is discussed in Appendix A. Notice that with our current setup, there need

not be a single governing policy.

Viewing the experts’ predictions as rankings makes them easy to combine. How

rankings can be computed, combined, used to facilitate replacements, and suggest

refetches, will be the topic of the following subsections.Refetchesare like prefetches

[23, 8, 13] except that the objects fetched have necessarily resided in the real cache at

some time prior. More precisely, we define arefetchas a fetch of a previously seen

object that was kept in the virtual cache(s) of higher weight expert policies, but was

discarded from the real cache.

Based on these rankings, threerollover strategies will be discussed: demand, con-

tinuous, and background.Rolloveris the process of bringing preferred objects into the

real cache through a series of replacements and refetches. Demand rollover represents a

baseline for feasible master policies which consist only of replacements, prescribing no

additional refetches other than those required anyway on a per-request basis. Contin-

uous rollover refetches aggressively and thus serves as a representative of what can be

achieved by combining rankings on-line under the most liberal cost model. Background

rollover is a cost-aware alternative to continuous rollover which combines replacements

and a small amount of refetching as time and system resources permit. It turns out that

a small number of refetches is just what’s needed to reap the full benefit of combining

policies.

5.1 Ranking

Each expert keeps a priority for the individual objects in its virtual cache. These

priorities specify the order in which objects are discarded, inducing a ranking on its

34

virtually cached objects. Lower ranked objects are discarded first, higher ranked objects

last. The master policy can use these rankings together with the experts’ weights to

make a ranking of its own. This master ranking specifies which objects in the real

cache should be discarded first, and which objects should be refetched, if possible.

Figure 5.1 gives a rough sketch of how the expert’s rankings are combined; the details

follow.

ID Size

5147
1124

3kb
1.5kb

456 2kb

r1,r2, ...

r1,r2, ...

r1,r2, ...

..., rM1

..., rM2

..., rMN

vc1

vc2

vcN

w1

w2

wN

R1
R2

RM

Master Rank

Object Dictionary Ranked Objects in Virtual Caches Weights

(Best)

(Worst)

Figure 5.1: Weighted experts’ ranks are combined to make a master ranking
of all objects. Here, the Object Dictionary is a mechanism which allows
quick access to the scope of all objects the master policy knows about. Object
ranks flow from the weighted virtual caches pointing from the right, forming
a master rank of all objects pointing from the left.

Let RealCache denote the set of objects in the real cache, and VCi be the set of

objects in theith virtual cache. The scope is contained in the setO. That is,O is the

collection of objects in the union of the real cache, and allN virtual caches:

O = RealCache[
N[
n=1

VCn (5.1)

Let rn;o be the position of objecto 2 VCn relative to the lowest priority object when

the set is sorted by priority into non-increasing order. An example of a list of a virtual

cache’s objects which are ranked by priority is given below.

35

object o5 o1 o11 o12 o3 o6 o2 o15 o9

priority 4 12.5 8 1 3 16 3.14 5 12

rank 4 8 6 1 2 9 3 5 7

Objecto12 would be the first object to be discarded from the above virtual cache;

o6 is currently the last to be discarded. In the terminology of the Expert Framework

this ranking is analogous to the experts’prediction. Each expert’s weight and ranking

can be combined to induce a master ranking over all objects in the scope of the master

policy. This weighted combination of rankings is analogous to the inner product’s

role in Expert Framework for classification. Master prioritiesPo, for eacho 2 O, are

constructed by summing the weighted ranks ofo in each virtual cache:

Po =

8><
>:

X
n:o2VCn

wnrn;o if 9n : o 2 VCn

0 if 8n : o =2 VCn

(5.2)

Notice that the contribution of each of the virtual caches isnot normalized by a count

of the number of objects they contain. Virtual caches with more (smaller sized) objects

have a higher influence on the master rank, regardless of their weight.

Finally, objects are sorted into non-increasing order with respect toP . The master

rankRo gives the position ofo from the lowest priority object in its sorted list. Based

on this raking we define the on-line combined ideal cache. Theideal cachecontains

as many of the highest ranked objects, according toR, that fit in the real cache space

(size(RealCache)).

IdealCache= hoR1 ; : : : ; oRm
i :

8>>>>>>>><
>>>>>>>>:

Pm
i=1 size(oRi

) � size(RealCache)

and0
BB@

Pm+1
i=1 size(oRi

) > size(RealCache)

orPm
i=1 size(oRi

) = size(O)

1
CCA

(5.3)

36

Operations on the real cache should proceed so as to make its contents match the ideal

cache as much as possible, and at the lowest cost. At a high level this is accomplished

by the following rules of thumb:

� Objects in the real cache ranked lowest byR will be discarded first in order to

make room for a new request.

� If resources permit, objectso 2 IdealCache� RealCache, which are ranked

highest byR, are the next ones to be refetched.

foreach requestt do

process the request on the virtual caches.
update the weightsw.

setPo = 0, for all o in scopeO.
foreach virtual cache VCn do

Letm = jVCnj .
rn = ho1; : : : ; omi pointers to objectso 2 VCn

sorted by priority.
for i = 1; : : : ;m do

Poi = Poi +wn � rn;oi .
end for

end foreach
R = hoR1 ; : : : ; oRmi pointers to objectso 2 O sorted byP .

Let IdealCache =;.
foreachoRi

: i = 1; : : : ; jOj do
if (size(IdealCache) + size(oRi

) > size(RealCache))
break foreach.

end if
Let oRi

2 IdealCache.
end foreach

process the request on the real cache.

end foreach.

Figure 5.2: Pseudocode for the master policy which uses virtual cache ranks
to construct its own master ranking.

Figure 5.2 depicts the ranking operation described above in pseudocode. This

illustration assumes that a dictionary manages the objects under the scope of the master

policy. Each virtual cache maintains a list of pointers to objects in the dictionary,

37

together with priorities. New requests are processed on each virtual cache, then the

weights of the experts are updated. Before the request is processed in the real cache,

the experts rankings are computed and combined. First, the master priorities (Po) are

initialized to zero. Next, the contents of each virtual cache are sorted by priority, and

the resulting weighted ranking is added into the master priority for each object. Finally,

the master ranking,R, is constructed by sorting all objects with respect toP .

WWk

Normalized Rank

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
40

00
0

80
00

0

UMo

Normalized Rank

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
40

00
0

10
00

00

SMoLRU

Normalized Rank

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
30

00
50

00

Figure 5.3: Histograms of the position of hits in the ranked ideal cache for
three representative datasets (see Section 6.1). The ranks in the real cache
(x-axis) were normalized by the total number of objects in the real cache,
because the number can change over time. Frequency (y-axis) refers to the
number of times an object in a bucket was hit.

To evaluate just how ideal the ideal cache is, we plotted histograms tallying how

often hits were incurred at various positions in the master rank. Histograms for our

three representative datasets are shown in Figure 5.3. Hits to objects in the ideal cache

seem to decay with the object’s rank. We take this as an indication that our combined

ranking is sensible, but that there is also room for improvement (see the histogram for

SMoLRU). Finding the best master ranking, and developing some theory for combining

arbitrary rankings, is part of our ongoing research.

5.2 Demand v.s. Continuous Rollover

Each rollover strategy follows the same basic protocol: When space is needed to

cache a new request, the master policy discards objects in the real cache with low

38

master rank. This operation purges the real cache of objects which are either not present

or have low priority in the virtual caches of currently favored policies. Discarding

low ranked objects causes the content of the real cache torollover to the content of

the virtual caches which are governed by high weight policies. We call this strategy

demand rolloverbecause high ranked objects not in the real cache are only fetched on

demand (i.e. when requested). In Section 6 we will show that a master policy based on

demand rollover typically does about as well as than BestFixed. Figure 5.4 shows the

demand rollover operation in pseudocode, picking up where Figure 5.2 left off.

Objects in the ideal cache areneverdiscarded in order to make room for a new

request. If enough room cannot be made by discarding objects from RealCache�

IdealCache, then the newly requested object is NOT fetched into the cache. In the

terminology of Blum, et. al., [4] such an object isrented, rather than cached. The

only time an object can be discarded from the ideal cache is if the memory allocated

to virtually cached objects begins to encroach on the real cache space, and there are no

objects in RealCache� IdealCache which can be discarded to make room.1

foreach requestt do

...
IdealCache = ... (as in Figure 5.2 and Eq. (5.3)).

while (free(RealCache)< size(t)) do
discardo 2 RealCache� IdealCache with the lowest rank inR.

end while

if (free(RealCache)< size(t)) do
fetcht into RealCache

end foreach.

Figure 5.4: Processing requests on the real cache using demand rollover.

While we were initially happy to have developed a policy which works almost

as well as BestFixed, we were ultimately not satisfied and wanted to do as well as

1This is not shown in Figure 5.4.

39

BestRefetching. We noticed that under demand rollover the content of the real cache

lagged behindthe better policies’ virtual caches. We conjectured that “quicker” rollover

strategies would improve overall performance. Our search for a better master policy

began by considering an extreme and unrealistic rollover strategy that assures no lag

time: After each request, refetchall of the highest ranked objects that were not retained

in the real cache, discarding low ranked objects as necessary. In other words, take the

real cache to be the ideal cache. As expected, the miss rate of this policy was greatly

improved over demand rollover. We call this strategycontinuous rolloverbecause the

real cache is continuously overhauled, request after request. The continuously rolling

real cache is shown in Figure 5.5, picking up where Figure 5.2 left off.

foreach requestt do

...
IdealCache = ... (as in Figure 5.2 and Eq. (5.3)).

RealCache= IdealCache.

end foreach.

Figure 5.5: Processing requests on the real cache using continuous rollover.

Figure 5.6 shows how the master policy based on continuous rollover tracks the

best policy over time, essentially hugging the bottom of the policy’s window miss

rates as plotted in Figure 1.1(a). Like BestRefetching, continuous rollover assumes

a cost model where an arbitrary amount of refetching can essentially be done for free.

Experimentally, a master policy employing continuous rollover always performs as well

as the best on-line combination of policies, assuring no lag time when the mixture

changes. Unfortunately, such a master policy is largely unrealistic. Miss rates obtained

using continuous rollover are still interesting because they represent a lower bound on

the number of misses suffered by our particular flavor of on-line policy. As will be

shown in Section 6, continuous rollover outperforms BestFixed, and does nearly as

well as BestShifting(K) or BestShifting(R), for largeK or R. Our next task is to

40

present a compromise between demand and continuous rollover, which will lead to a

more realistic rollover strategy with low lag time.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

205000 210000 215000 220000 225000 230000 235000

M
is

s
R

at
es

Requests Over Time

Miss Rates under FSUP with Master

lru
fifo
mru
lifo
size
lfu

mfu
rand
gds

gdsf
lfuda

gd
roll

Figure 5.6: Continuous rollover based master policy (bold pink) tracks the
best expert (on the 30,000 request snapshot of UMo, see Section 6.1).

5.3 Background Rollover

Continuous rollover can cause a large number of refetches even when weights of

experts remain relatively constant over time. If all refetches are counted as misses, then

the miss rate of such a master policy is comparable to that of BestFixed. We suspect

that same holds for BestShifting and BestRefetching, as more shifts or refetches are

allowed. However, from a user perspective, refetching is advantageous because of

the latency advantage gained by having required objects in memory before they are

needed. And, from a system perspective, refetches can be “free” if they are done when

the system would otherwise be idle.

41

To take advantage of possible “free” refetches, we introduce the concept ofback-

ground rollover. The exact criteria for when to refetch an object will depend heavily on

the system, workload, and the expected cost and benefit of each object. To characterize

the performance of background rollover without addressing these architectural details

we allow the number of refetches per trial to be a Poisson (Pois(�)) random variable,

following the conventional assumption that the elapsed time between events (requests,

in this case) are exponentially distributed. We experiment with rate parameters to the

Poisson draws from� = 0:025 (seldom refetching at all) to� = 10000 (essentially

continuous rollover). Only objects which reside in the ideal cache, but are currently not

in the real cache, are refetched. Refetches proceed in order of rankR: To make room

for refetched objects, objects not in the ideal cache are discarded, lowest rank first.

Background refetching techniques with� � 0:1 typically gave fewer misses than

BestFixed, approaching and nearly matching the performance obtained by the master

policy using continuous rollover with� � 2. Of course, techniques which slow down

the redistribution of weights among experts (by tuning� and�, see Section 5.4.1) also

tend reduce the number of refetches. In Section 6 we show that expensive continuous

rollover is not required; only a small amount of refetching in the background, as time

permits, is all that is needed to reap the full benefits of combining policies.

Figure 5.7 shows background rollover pseudocode which can be inserted after the

ranking code in Figure 5.2. After each request is processed on the real cache, a draw

d is taken from Pois(�). The drawd is the maximum number of objects which can be

refetched during this trial. These objects should make up a subset of those which could

be found in a continuously rolling real cache.OR contains the highest ranked objects

which will be refetched (OR � IdealCache� RealCache). Notice thatjORj � d, and

so the number of objects refetched each trial isjORj, and notd. Notice also that� = 0

reduces this refetching strategy to demand rollover, and thatlim�!1 is equivalent to

continuous rollover. Only objects from RealCache� IdealCache should be discarded

to make room for a refetched object. Things have been set up such that size(RealCache

� IdealCache)� size(OR), so making enough room for refetched objects should never

42

foreach requestt do

...
IdealCache = ... (as in Figure 5.2 and Eq. (5.3)).

while (free(RealCache)< size(t)) do
discardo 2RealCache� IdealCache with the lowest rank inR.

end while

if (free(RealCache)< size(t)) do
fetcht into RealCache

Let d = Pois(�).
LetOR = thed highest ranked objects in IdealCache� RealCache.

(jORj � d)
while (free(RealCache)< size(OR)) do

discardo 2 RealCache� IdealCache with the lowest rank inR.
end while

fetch objects fromOr into RealCache.
end foreach.

Figure 5.7: Processing requests on the real cache using background rollover.

be a problem.

Our experiments suggest that a minimal amount of refetching is essential for our

master policy to approach BestRefetching(R) in miss rate, for largeR. In some cases,

the leverage of our adaptive caching framework is partly contingent on being able

to do a small amount of “free” refetching. Often, a small amount of refetching is

quite feasible because many systems which cache data are not continuously inundated

with requests. On the other hand, if the role of cache replacements on a system is to

keep down the number of requests to objects on slower media, then refetching actually

increases the number of these requests, which is undesirable. In a real system refetches

should only be done when it can be determined that they have low cost. A more in-depth

study of when refetching is feasible will be part of our future work.

43

5.4 Cost-Aware Refetching from the Ideal Cache

A key observation that we made while examining the ideal cache, and the objects

refetched by more aggressive background rollover policies (� > 0:1), was that only

a small portion of objects refetched actually resulted in hits before eventually being

discarded. Many lower priority objects made homes in the ideal cache with relatively

short tenure. Often, objects with low priority in the real cache would toggle back and

forth between ideal and discardable states. More aggressive refetching strategies would

alternately refetch and discard many of these objects, every few requests, if the weights

of the expert policies were changing rapidly. We soon noticed that most of the hits

resulting from refetched objects came from those which were ranked in the top half of

the ideal cache (see Figure 5.3). Refetched objects from this group proved to be worth

the effort. Later, we will show that refetching from just the top 40-60% of the ideal

cache left the miss rate essentially unchanged, and resulted in one-tenth of the number

of refetches used by attempting to rollover to the entire ideal cache.

5.4.1 Tuning� and �

In the case where refetches are very costly we may wish to take further measures

to keep their frequency down. This can be done by making the master policy less

responsive to changes in the workload’s characteristics. Setting� � 1=e and0 �

� < 1 will cause the past average of weights to dominate the current distribution, and

thus make major changes in the contents of the ideal cache less likely. As a result,

policies which dominate for longer intervals of requests will gather a larger share of the

weight. This will cause the distribution of weights to explore the simplex cautiously.

Cautious exploration will yield an ideal cache with more inertia, which will require

less refetching to keep up with. Unfortunately, curbing exploration will also yield

miss rates with a less impressive improvement over BestFixed. Alternatively, setting,

� � 1=e and0 < �� 1 will make the master policy sensitive to rapid changes in the

44

characteristics of the request stream.

Thus, reducing the number of policy switches translates into increasing�. That is,

with larger� (lower learning rates) a baseline policy has to be doing really well on its

virtual cache in order to be used by the master policy.

While � controls the responsiveness of the master algorithm to changes in the

workload,� controls the entropy of the distributionw. Large� causesw to be more

uniform, and thus have higher entropy. Small� causesw to be more skewed, resulting

in a smaller working set of expert rankings. This leads to lower entropy distributions,

and a more dynamic ideal cache. As a general rule, we have found that our master

policies are far more sensitive to changes in� than to changes in� in terms of the

number of refetches, and the number of misses. However, tweaking�, by starting with

small� < 1=1000 and then increasing it once a good� has been set, can help reduce the

miss rate of the master policy without significantly increasing the number of refetches.

That being said, we fix� = 1=e and� = 5=1000 for all experiments in this paper, as

good results can still be can obtained without paying much attention tuning parameters.

45

6. Experimental Results and Discussion

Results presented here have an underlying theme: Miss rates of master policies,

as described in the previous section, are measured against typically chosen policies

like LRU, and against off-line comparators like those introduced in Section 3. The

main suite of datasets we used in our experiments are described Section 6.1, and a

table of statistics describing them is given for quick reference. As our master policies

have several flavors, depending on the amount of refetching allowed, we illustrate our

success graphically in Section 6.2.

6.1 Filesystem Data

Dataset: Work-Week User-Month Server-Month-LRU
(WWk) (UMo) (SMoLRU)

#Requests 138k 382k 48k
Cache size 900KB 2MB 4MB
%Skipped 6.5% 12.8% 15.7%
Compuls 0.020 0.015 0.152

LRU Miss Rate 0.166 0.076 0.870
BestFixed Pol / MR SIZE 0.055 GDS 0.075 GDSF 0.399

%<LRU 36.8% 54.7% 54.2%

Table 6.1: Highlights of the CMU DFSTrace filesystem workloads used in
our experiments.

Table 6.1 gives the highlights of the the three large datasets used in our experiments.

These were gathered using Carnegie Mellon University’s DFSTrace system [22] and

had durations ranging from a single day to over a year. The traces we used represent a

variety of workloads including a personal workstation (Work-Week, or WWk), a single

user (User-Month, or UMo), and a remote storage system with a large number of clients,

filtered by LRU on the clients’ local caches (Server-Month-LRU, or SMoLRU). Small

cache sizes were chosen to maximize the disparity between baseline policies and to

exaggerate the potential benefit of combining policies. For each data set, the table

46

shows the number of requests in the workload, the cache size used, the % of requests

skipped because they were un-cacheable (larger than the real cache size, or the request

was to meta-data), and the number compulsory miss rate. The table also shows which of

our twelve baseline policies performed best (BestFixed), and the percent improvement

of BestFixed over LRU (labeled ‘% <LRU’). For each dataset, all 12 virtual caches

consumed, on average, less than 2% of the total cache space.

The original traces provide information at the system-call level, and represent the

original stream of access events, not filtered through any intervening caches. For these

CMU traces we extracted file accesses based on file open requests. This assumes a

data-object granularity for the analysis. We focus on patterns of file requests and are

not concerned with intra-file access patterns.

It is common for systems to work with file accesses that have been filtered through

prior caching stages. Under these conditions the workload would effectively be the

misses of such cache stages. As mentioned in the Section 2.1.3, one of the many

difficult systems problems is that of choosing an appropriate caching policy for a cache

arbitrarily deep in anN -level or distributed cache. Server-Month-LRU (SMoLRU) is

included as a representative dataset for such a situation. The requests in this workload

have been pre-filtered by a 100KB LRU cache.1

6.2 Results, Graphically

Figure 6.1 depicts the degree of “adaptivity” of our ranking master policies on the

WWk dataset by showing their miss rates up against the comparators outlined in Section

3. The basic background rollover strategy is labeled “Rank Ideal”. Our most impressive

results were obtained by restricting the background rollover policy to refetch only from

the top 40% of ranked objects in the ideal cache (see Section 5.4). This curve is labeled

“Rank 40% Ideal”.

1This was done by our Storage Systems Group, here at UCSC.

47

0 10 20 30 40

4.
0

4.
5

5.
0

5.
5

WWk Master and Comparator Missrates

Refetches as % of Total Requests

M
is

sr
at

es
 %

BestRefetching(R)
Rank Ideal
Rank 60% Ideal
Rank 40% Ideal
BestFixed = SIZE
AllVC

8.5% = LRU missrate
2.0% = Obligatory missrate

c

d

c

d

c

d

Figure 6.1: Online ranking master policies compared for WWk against off-
line comparators, including LRU and AllVC. “d” marks the performance of
demand rollover; “c” is for continuous rollover. Each master policy, labeled
“Rank * Ideal”, is plotted for� = 0; : : : ; 10000.

All curves in Figures 6.1-6.3 are plotted for varying�– the parameter to the Poisson

distribution which governs the number of refetches attempted in each trial. The x-axis

represents refetches as a percent of the total number of requests. Notice that each master

policy (“Rank * Ideal”) exhibits the same overall performance trends in terms of miss

rate, but require different amounts of refetching.

The curve labeled “Rank 40% Ideal” in Figure 6.1 (for WWk) depicts a demand

rollover-based master policy (� = 0) which performs slightly worse than BestFixed,

and background rollover policy (� � 0:025) which beats it! Using� = 1, correspond-

ing to an attempt at, on average, one free re-fetch per request, “Rank 40% Ideal” gives

miss-rate almost 21% better than BestFixed, and ends up requiring only one refetch af-

ter, on average, more than fifty requests. As� becomes large, its miss rate approaches

48

0 20 40 60 80

5.
5

6.
0

6.
5

7.
0

7.
5

UMo Master and Comparator Missrates

Refetches as % of Total Requests

M
is

sr
at

es
 %

BestRefetching(R)
Rank Ideal
Rank 60% Ideal
Rank 40% Ideal
BestFixed = GDS
AllVC

16.6% = LRU missrate
 1.5% = Obligatory missrate

c

d

c

d

c

d

Figure 6.2: Online ranking master policies for UMo compared against off-
line comparators, including LRU and AllVC. “d” marks the performance of
demand rollover; “c” is for continuous rollover. Each master policy, labeled
“Rank * Ideal”, is plotted for� = 0; : : : ; 10000.

that of continuous rollover, which takes a free refetch in one out of every twenty re-

quests. Regardless of the amount of refetching, continuous rollover on WWk has a

miss rate� 22% better than BestFixed. All master policies do significantly better than

LRU.

Using the regions outlined in Figure 3.4, our master policies on WWk fall into

the lower portion of the B region, providing a significant savings in both fetches and

misses over LRU. Also, a significant improvement over BestFixed was gained in terms

of misses, with a slight increase in the total number of fetches. Discounting compulsory

misses (accounting for over 2% of requests), our best policies have about one quarter

fewer “real” misses than BestFixed and about half as many “real” misses as LRU.

Figures 6.2 and 6.3 show similar, and in some ways better, results for the UMo

49

and SMoLRU datasets. These datasets are interesting for the following reason. In both

caseslimR!1 BestRefetching(R) causes an order of magnitude more refetches than the

number of requests in the workload. (The same holds forlimK!1 BestShifting(K).)

In fact, to actually compute either of these comparators using dynamic programming

proved to be too computationally intensive. Instead, the comparators were computed for

refetch counts close to the total number of requests, and the curves were interpolated by

including the AllVC comparator at the limit. Our on-line master policies, on the other

hand, were able to take advantage of the major policy switches in the request stream,

and match BestRefetching by using only a modest number of refetches.

0 10 20 30 40 50 60

30
32

34
36

38
40

SMoLRU Master and Comparator Missrates

Refetches as % of Total Requests

M
is

sr
at

es
 %

BestRefetching(R)
Rank Ideal
Rank 60% Ideal
Rank 40% Ideal
BestFixed = SIZE
AllVC

59.8% = LRU missrate
15.3% = Obligatory missrate

d

c

d

c

d

Figure 6.3: Online ranking master policies for SMoLRU compared against
off-line comparators, including LRU and AllVC. “d” marks the performance
of demand rollover; “c” is for continuous rollover. Each master policy, la-
beled “Rank * Ideal”, is plotted for� = 0; : : : ; 10000.

UMo is our longest request stream. Demand rollover gives a master policy whose

miss rate is better than BestFixed, placing it in the A region of Figure 3.4. A small

50

amount of refetching allows “Rank 40% Ideal” to track BestRefetching (16% better

than BestFixed), but refetches slightly more often than BestFixed, which places it in

the B+ region. Compared to LRU, “Rank 40% Ideal” provides a significant reduction

in user latency by achieving more than 61% fewer misses without increasing the total

number of fetches.

Our results on the SMoLRU dataset are our most impressive. Demand rollover

strategies, without doing any refetching, performed almost 10% better than BestFixed,

putting it in the A region of Figure 3.4. With a small amount of refetching, “Rank 40%

Ideal” was able to reach the A+ region, which corresponds to missing less requests

than BestRefetching(R), for modestR, while fetching less often than BestFixed. Such

dramatic success on a workload whose requests have been pre-filtered through an LRU

cache is very intriguing. This means that the previously difficult problem of choosing

good policies for arbitrary nodes in a distributed cache can be completely automated.

Experimenting with our master policies atall levels of a distributed cache will be part

of our future work.

As promised, we have demonstrated that, with a small amount of (clever) refetch-

ing, beating BestFixed possible, both in terms of misses (which reduce end-user la-

tency),and in terms of total I/O’s. It is even possible to achieve fewer misses than

BestRefetching! We have developed a way of combing caching policies that, depend-

ing on the amount of refetching affordable, approaches in miss rate the best possible

partition of policies into segments. Our master policies accomplish this using less ac-

tual cache space than that simulated by its virtual caches. Moreover, the framework is

very flexible. Any number of caching policies, of any flavor, can be included as base-

line policies. It is even conceivable that master policies themselves be included as a

baseline policies in a meta-master policy.

51

7. Conclusion

Operating systems have many hidden parameter tweaking problems which are ideal

applications for on-line Machine Learning algorithms. These parameters are often

set to values which provide good average case performance on a test workload. For

example, we have identified candidate parameters in device management, file systems,

and network protocols. Previously, on-line algorithms for predicting as well as the best

shifting expert were used to tune a time-out for spinning down the disk of a PC. Similar,

yet less mature, on-line algorithms have recently been developed to determine the order

in which pages should be discarded from a cache [4], and also to help choose the best

policy for nodes in a distributed cache [1].

In this paper we attempt to determine, dynamically, the best caching policy over

time, trading off past and current performance, measurable by many metrics. Virtual

caches are an ideal proving ground for policies, and the weights of Expert Framework

from on-line learning provide a good mechanism for judging the relative performance

of policies over time. Our algorithms are simple, scalable, and fare well when measured

against powerful off-line comparators. Viewing expert policies as rankings of the

objects they cache allows a master policy to combine the policies’ suggestions about

which objects to retain, which to discard, and which to refetch when appropriate. In

future work we plan to do a more thorough study of the feasibility of refetching in a

variety of scenarios by building actual systems which use our master policy.

52

Appendix A. Shifting Master Policy Managing the Real

Cache

The discussion in this section reviews our initial work [12] in developing adaptive

caching strategies with the help of the Expert Framework, and refetching. This ap-

proach involved exploring how the real cache could be managed by making use of the

advice of the best shifting expert. This older approach is much more complicated, and

gives less impressive results and has other obvious drawbacks. It is included here for

completeness and comparison. The basic protocol of the master policy goes as follows:

1. Each request is processed on each virtual cache, and then loss and share updates

of the expert framework are applied.

2. Next the request is processed on the real cache, based on the virtual cache con-

tents of the single policy with the highest weight.

Just as before, we discuss three “rollover” strategies– demand, instantaneous, and back-

ground. The policy with the highest weight is referred to as thegoverning policy.

A.1 Demand v.s. Instantaneous Rollover

At their core, each rollover strategy follows the same protocol: When space is

needed to cache a new request, the master policy discards objects not present in the

governing policy’s virtual cache1. This causes the content of the real cache to “roll

over” to the content of the current governing policy’s virtual cache. We call this baseline

strategydemand rolloverbecause objects in the governing virtual cache are refetched

into the real cache on demand. In Section A.3 we will show that a master policy based

on demand rollover typically does as well, or slightly worse than BestFixed.

1We update the virtual caches before the real cache, so there are always objects in the real cache that
are not in the governing virtual cache when the master policy goes to find space for a new request.

53

Given:N baseline policiesp1; : : : ; pN , and RealCache.size= C.
Init: w0 = 1=N , and Virtual Caches VC1; : : : ;VCN each of (virtual) sizeC.

Let GoverningPolicy(0) = p1.

Begin:
foreach request Objectt, t = 1; : : : ; T do

// Process Virtual Caches and update weights
foreach virtual cache VCn = 1; : : : ; N do

Process Objectt on VCn using policypn,
obtain misst;n 2 f0; 1g.

end foreach.
wt = ExpertFrameworkUpdates(wt�1 ;misst).

// Update Governing Policy
Letm = maxifwi;tg.
Let GoverningPolicy(t) = pm.

/* // Instantaneous Rollover, optional
* if (GoverningPolicy(t) 6= GoverningPolicy(t� 1)) then
* Discard all objects in RealCache not in VCm.
* refetchobjects in VCm not in RealCache, to capacity
* highest priority first.
* end if.
*/

// Process the request on the real cache
if (Objectt =2 RealCache) then

discard from the RealCache an object not in VCm
until enough space is made for Objectt.

fetch Objectt into RealCache.
end if.

// Resize the real cache
RealCache.size= C � size(V C1; : : : ; V CN).
while (size of objects in RealCache> RealCache.size) do

if (RealCache� VCm) then
discard the object from RealCache

with the lowest priority underpm.
else

remove from the RealCache an object not in VCm
end if.

end while.

end foreach.

Figure A.1: Master policies employing demand or instantaneous rollover
(shown in C-style comment).

54

As before, we conjectured that “quicker” rollover strategies would improve overall

performance; and as before, our search for a better master policy began by considering

an extreme and unrealistic rollover strategy that assures no lag time: After each switch

of governing policy,instantaneouslyrefetch all the objects in the new governing virtual

cache that were not retained in the real cache. As expected, the miss rate was greatly

improved over demand rollover. This strategy was dubbedinstantaneous rollover.

Master policies employing both strategies, demand and instantaneous rollover, are

outlined explicitly via pseudocode in Figure A.1. Demand rollover is shown as a

baseline, and instantaneous rollover as commented out routine. Implementationally,

there are four stages to be completed for each request: process the request on each

virtual cache and update weights; if desired perform instantaneous rollover when the

governing policy changes; process the request on the real cache; and then resize the

real cache if necessary. In the code,m indexes the current governing policy, or the

governing policy’s virtual cache. Notice that the way we’ve set it up there is always

a (non-empty) disjunction (the set RealCache� VCm) between the real cache and

the governing policy’s virtual cache containing objects large enough such that when

discarded from the real cache enough room can be made for the new object. Finally,

whenever discarding or refetching objects, we prefer to proceed by priority rather than

arbitrarily.

A plot strikingly similar to Figure 5.6 in Section 5.2 shows how the master policy

based on instantaneous rollover tracks the best policy. Instantaneous rollover makes all

the same cost assumptions as continuous rollover from Section 5.2, and has all of the

same desirable properties– unlimited free refetching guarantees that the master will al-

ways perform as well as its current governing policy. As before, instantaneous rollover

outperforms BestFixed, and does almost as well as BestShifting(K), but is functionally

just another comparator representing what can be accomplished by switching policies.

55

Given:N baseline policiesp1; : : : ; pN , and RealCache.size= C.
rm = the number of refetches to be done for each miss.
rm = the number of refetches to be done for each hit.

Init: w0 = 1=N , and Virtual Caches VC1; : : : ;VCN each of (virtual) sizeC.
Let GoverningPolicy(0) = p1.

Begin:
foreach request Objectt, t = 1; : : : ; T do

// Process Virtual Caches and update weights
// Same as baseline in Figure A.1

// Update Governing Policy
// Same as baseline in Figure A.1

// Process the request on the real cache
// And, determine how many objects to refetch:r
if (Objectt =2 RealCache) then

discard from the RealCache an object not in VCm
until enough space is made for Objectt.

fetch Objectt into RealCache.
Let r = maxfrm; jRealCache� VCmjg.

else
Let r = maxfrh; jRealCache� VCmjg.

end if.

// Refetch, if appropriate
for (i = 1; i < r; i = i+ 1) do

LetOi be the priority object in VCm � RealCache.
discard from the RealCache objects not in VCm

until enough space is made forOi.
refetchOt into RealCache.

end for.

// Resize the real cache
// Same as baseline in Figure A.1

end foreach.

Figure A.2: Master policy employing background rollover.

A.2 Background Rollover

Our approach tobackground rolloverfor shifting policies was much more kludgey

in this work. The following (model) refetching strategies were examined: 1 refetch for

every cache miss; 1 for every hit; 1 for every request; 2 for every request; 1 for every

hit and 5 for every miss, etc. Essentially the same conclusions were reached here as

compared to our more graceful approach using draws from a Poisson in Section 5.3:

56

a small amount of refetching in the background, as time permits, is all that’s needed

to reap the benefits of switching policies. Moreover, we concluded that refetching is

essential for the master policy to outperform BestFixed. Figure A.2 shows background

rollover pseudocode embedded in the baseline master policy of Figure A.1.rm; rh � 0

specify the maximum number of refetches that should be attempted following each

miss, hit respectively. Using known priorities where applicable is desired here as well.

A.3 Shifting Results, Graphically

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

205000 210000 215000 220000 225000 230000

M
is

s
R

at
e

Requests Over Time

Miss Rate Differences

bestF - demd
bestF - back
bestF - inst

Figure A.3: BestFixed�P , whereP 2 fInstantaneous, Demand, and Back-
ground Rolloverg. The baseline (y = 0) is BestFixed. Deviations from the
baseliney = 0 show how the performance of our online shifting policies dif-
fer in miss rate. Above (Below)y = 0 corresponds to fewer (more) misses
than BestFixed. (Snapshot of 30,000 requests from UMo, see Section 6.1).

Figure A.3 compares the performance of master policies based on demand, instan-

taneous, and background rollover with that of BestFixed by treating BestFixed as a

baseline and plotting differences in miss rates in a rolling window of 300 requests.

For any master policyP , BestFixed�P > 0 whenP is currently missing less objects

than BestFixed in the window ending at timex. Notice in the figure that the demand

rollover-based master policy is the only one of the three that dips (a little bit) under the

y = 0 line, and that instantaneous and background rollover-based policies are always

at or abovey = 0, often incurring many fewer misses than BestFixed.

57

0 200 400 600 800

2
3

4
5

6
7

8
9

WWk Master and Comparator Missrates

K = Number of Shifts

M
is

sr
at

es
 %

LRU
Best Fixed = SIZE
BestShift(K)
All Virtual Caches
Compulsory Missrate

BF=SIZE

LRU

All VC

Background 2
Background 1

Demand

Instantaneous

K = 76

Figure A.4: Online shifting master policies employing Demand, Instanta-
neous and Background rollover compared against off-line optimal compara-
tors, including LRU and AllVC.

Figure A.4 depicts the degree of “adaptivity” of each flavor of master policy by

showing their miss rates up against the comparators outlined in Section 3. It shows that

demand rollover does slightly worse than BestFixed, while background 1 (1 refetch

every request) and background 2 (1 refetch every hit and 5 every miss) do better than

BestFixed and almost as well as instantaneous rollover, which itself does almost as

well as BestShifting. All of the policies do significantly better than LRU. Discounting

compulsory misses, our best policies have about one third fewer “real” misses than

BestFixed and about half as many “real” misses as LRU.

Setting� = 1=e and� = 5=1000 resulted inK = 76 switches of governing policy

on the WWk request stream of 138,000 requests. This translates a switch of governing

policy every 1,800 requests (on average). BestShifting(K) on WWk (see Figures 3.1

& A.4) shows thatK � 30 shifts chosen off-line suffices to get about a 20% decrease

58

in misses over BestFixed, and asK ! 1 there is only marginal further improvement

totaling 29% fewer misses. Online refetching strategies like background 1 & 2 and

instantaneous rollover give miss rates�20% better than BestFixed with slightly more

shifts than necessary off-line.

Unfortunately, shifting policies online can be a double-edged sword. Like many

online algorithms, its easy to imagine an adversary who can thwart a switching policy

by altering the request stream’s characteristics as soon as a new governing policy is

realized. Master policy miss rates on adversarial data can not only be worse than

BestFixed, but we believe it is possible to produce request streams which cause the

master policy to perform worse than any of its baseline policies. This is possible

because the general theory– particularly, the loss bounds– for the updates we borrowed

from Expert Framework does not apply to caching.

A.4 Full Tabular Results on Filesystem Data

Table A.1 summarizes the performance of our algorithms over three large datasets

(see Section 6.1). We fixed� = 1=e, � = 5=1000 for all experiments.

A.4.1 Tuning �; �, & Adding Hysteresis

The same comments in Section A.4.1 about tuning� and� for slowing down the

weights’ exploration of the simplex in order to reduce the amount of refetching apply

here as well. However, a more intuitive and straightforward way to control the number

of rollovers, in this situation, is to add hysteresis. We put two kinds of thresholds on

the criteria used to decide when to switch to a new governing policy. Like reducing the

refetchable portion of the ideal cache, the general idea here is to keep the master policy

from changing governing policies too quickly. Minimum and maximum thresholds are

put on the weight vectorw which must be met before a new policy can govern the real

cache. Max-thresholds assert that a policy has to bereally goodbefore it can govern

59

Dataset
Works Week User Month Server LRU

Shifts 88 485 93
DemandMiss Rate 0.063 0.076 0.450

%<LRU 28.1% 54.4% 48.5%
%<BestF -15.2% -4.3% -19.6%

BackRoll 1 Miss Rate 0.050 0.068 0.401
%<LRU 43.5% 59.4% 55.5%

%<BestF 12.0% 5.0% 12.1%
BackRoll 2 Miss Rate 0.047 0.067 0.349

%<LRU 46.8% 60.1% 60.3%
%<BestF 17.0% 8.7% 16.6%

Instant Miss Rate 0.046 0.065 0.322
%<LRU 49.1% 60.8% 63%

%<BestF 18.8% 13.6% 18.9%
BestShifting Miss Rate 0.042 0.039 0.312

%<LRU 52.2% 48.0% 30.1%
%<BestF 23.6% 48.7% 21.8%

Table A.1: Performance summary on CMU DFSTrace filesystem workloads.

the real cache. Min-thresholds prevent the situation where none of the policies have

extremely high fitness but somehow the policy governing the real cache starts doing

very poorly. When the min-threshold is met, control of the real cache transfers to

the current best policy. Only when one of these two thresholds are met can a switch in

governing policy occur. We have found that a good rule of thumb is to set the maximum

thresholds somewhere between 90% and 95%, and take1�max-thresh for the minimum

threshold. Figure A.5 shows code implementing this heuristic, replacing the part of the

code used to update the governing policy given in Figures A.1 and A.2.

Hysteresis thresholds like these are heuristics which help prevent oscillations be-

tween states in an attempt to find modes of operation with inertia. Threshold driven

hysteresis is rampant in control theory, implemented in thermostats, and used to help

model a wealth of naturally occurring phenomena. Of course, such heuristics can still

be thwarted by adversarial conditions. Still, we find that adding min/max thresholds

into the master policy helps it to select larger segments, resulting in less refetching.

The impact of thresholds on the on the miss rate is low, but not negligible. Thresh-

olds give master policies with less aggressive refetching strategies more time to resolve

60

...
Given: : : : , thresholds0 <maxthresh> minthresh< 1
...
foreach request Objectt, t = 1; : : : ; T do

...
// Update Governing Policy
Letm0 = maxifwi;tg.
if (wm0 >maxthresh ORwm <minthresh) then

Letm = m0.
Let GoverningPolicy(t) = pm.

end if.
...

end foreach.

Figure A.5: Master policy with hysteresis thresholds, augmenting Figures
A.1 & A.2.

virtual/real cache lag, making the miss rates of such policies less likely to fall below

BestFixed. Loose thresholds encourage policy switches, and may require aggressive

refetching for the best results. When refetching is costly, strict thresholds make the

master policy more conservative, switching its policy only when a potential candidate

has proven itself, or when the current governing policy has clearly fallen out of favor.

A.4.2 Comparing Ranking with Shifting

Everything else being equal, Figure A.6 shows why were prefer ranking to shift-

ing. The points labeled “Shift Dmd”, “B1”, “B2”, “Inst”, represent demand rollover,

background rollover strategy 1, and 2, and instantaneous rollover respectively. Shifting

gives master policies which fall into the B- and C regions labeled in Figure 3.4. We

prefer ranking because it refetches less often, gives lower miss rates, and seems more

natural (which is why it is easier to explain). Its as simple as that!

61

0 10 20 30 40

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

WWk Master and Comparator Missrates

Refetches as % of Total Requests

M
is

sr
at

es
 %

BestRefetching(R)
Rank Ideal
Rank 40% Ideal
Rank 60% Ideal
BestFixed = SIZE
AllVC

8.5% = LRU missrate
2.0% = Obligatory missrate

c

d

c

d

c

d

Shift Dmd

B1

B2
Inst

Figure A.6: Online shifting master policies employing Demand, Instanta-
neous and Background rollover compared against off-line optimal compara-
tors, including LRU and AllVC, plotted on the refetch scale.

62

References

[1] Ismail Ari, Ahmed Amer, Robert Gramacy, Ethan L. Miller, Scott A. Brandt,
and Darrell D. E. Long. ACME: adaptive caching using multiple experts. In
Proceedings of the 2002 Workshop on Distributed Data and Structures (WDAS
2002). Carleton Scientific, 2002. Extended version of the WDAS 2002 workshop
paper.

[2] Martin Arlitt, Ludmilla Cherkasova, John Dilley, Rich Friedrich, and Tai Jin.
Evaluating content management techniques for Web proxy caches. InProceedings
of the Workshop on Internet Server Performance (WISP99), May 1999.

[3] Avrim Blum. On-line algorithms in machine learning. InOnline Algorithms,
pages 306–325, 1996.

[4] Avrim Blum, Carl Burch, and Adam Kalai. Finely-competitive paging. InIEEE
Symposium on Foundations of Computer Science, pages 450–458, 1999.

[5] Allan Borodin, Nathan Linial, and Michael E. Saks. An optimal on-line algorithm
for metrical task system.Journal of the ACM (JACM), 39(4):745–763, 1992.

[6] Olivier Bousquet and Manfred K. Warmuth. Tracking a small set of experts by
mixing past posteriors. InCOLT/EuroCOLT, pages 31–47, 2001.

[7] Mudashiru Busari and Carey Williamson. Simulation evaluation of a hetero-
geneous web proxy caching hierarchy. InProceedings of the 9th International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommu-
nication Systems (MASCOTS ’01), pages 379–388, Cincinnati, OH, August 2001.
IEEE.

[8] Pei Cao, Edward W. Felten, Anna R. Karlin, and Kai Li. A study of integrated
prefetching and caching strategies. InACM SIGMETRICS, pages 171–182, June
1995.

[9] Pei Cao and Sandy Irani. Cost-aware WWW proxy caching algorithms. In
Proceedings of the 1997 Usenix Symposium on Internet Technologies and Systems
(USITS-97), 1997.

[10] N. Cesa-Bianchi, Y. Freund, D. Haussler, D. P. Helmbold, R. E. Schapire, and
M. K. Warmuth. How to use expert advice.Journal of the ACM, 44(3):427–485,
1997.

[11] Nicolò Cesa-Bianchi, Yoav Freund, David Haussler, David P. Helmbold, Robert E.
Schapire, and Manfred K. Warmuth. How to use expert advice.Journal of the
ACM, 44(3):427–485, 1997.

[12] Robert B. Gramacy, Manfred K. Warmuth, Sott A. Brandt, and Ismail Ari.
Adaptive caching by refetching. InAdvances in Neural Information Processing
Systems (NIPS 2002). Morgan Kauffman, 2003. (to appear).

[13] James Griffioen and Randy Appleton. The design, implementation, and evaluation
of a predictive caching file system.

[14] D. Haussler, J. Kivinen, and M. K. Warmuth. Sequential prediction of individual
sequences under general loss functions. IEEE Transactions on Information Theory,
44(2):1906–1925, September 1998.

[15] David P. Helmbold, Darrell D. E. Long, Tracey L. Sconyers, and Bruce Sherrod.
Adaptive disk spin-down for mobile computers.Mobile Networks and Applica-
tions, 5(4):285–297, 2000.

63

[16] Mark Herbster and Manfred K. Warmuth. Tracking the best expert. InInterna-
tional Conference on Machine Learning, pages 286–294, 1995.

[17] Shudong Jin and Azer Bestavros. Greedydual* web caching algorithm: Exploiting
the two sources of temporal locality in web request streams. Technical Report
2000-011, 4, 2000.

[18] J. Kivinen and M. K. Warmuth. Additive versus exponentiated gradient updates
for linear prediction.Information and Computation, 132(1):1–64, January 1997.

[19] J. Kivinen and M. K. Warmuth. Averaging expert predictions. In Paul Fischer
and Hans Ulrich Simon, editors,Computational Learning Theory: 4th European
Conference (EuroCOLT ’99), pages 153–167, Berlin, March 1999. Springer.

[20] N. Littlestone and M. K. Warmuth. The weighted majority algorithm.Information
and Computation, 108(2):212–261, 1994. An early version appeared in FOCS
89.

[21] Nimrod Megiddo and Dharmendra S. Modha. Arc: A self-tuning, low overhead
replacement cache. InUSENIX Conference on File and Storage Technologies
(FAST 03), March 2003.

[22] Lily Mummert and Mahadev Satyanarayanan. Long term distributed file reference
tracing: Implementation and experience.Software - Practice and Experience
(SPE), 26(6):705–736, June 1996.

[23] A. J. Smith. Sequential program prefetching in memory hierarchies.IEEE
Computer, 11(12):7–21, December 1978.

[24] V. G. Vovk. A game of prediction with expert advice. InProc. 8th Annu. Conf.
on Comput. Learning Theory, pages 51–60. ACM Press, New York, NY, 1995.

[25] Theodore M. Wong and John Wilkes. My cache or yours? making storage more
exclusive. InProceedings of the 2002 USENIX Annual Technical Conference,
pages 161–175, Monterey, CA, June 2002. USENIX.

64

