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Abstract

Human Genome Project databases present a confluence of
interesting database challenges: rapid schema and data evo-
lution, complex data entry and constraint management, and
the need to integrate multiple data sources and software sys-
tems which range over a wide variety of models and formats.
While these challenges are not necessarily unique to biolog-
ical databases, their combination, intensity and complexity
are unusual and make automated solutions imperative. We
illustrate these problems in the context of the Philadelphia
Genome Center for Human Chromosome 22, and describe a
new approach to a solution for these problems, by means of a
deductive language for expressing database transformations
and constraints.

1 Introduction

Human Genome Project databases present a confluence
of interesting database challenges: rapid schema and
data evolution, complex data entry and constraint man-
agement, and the need to integrate multiple data sources
and software systems which range over a wide variety of
models and formats. These challenges are particularly
common to laboratory notebook databases, within the
Human Genome Project as well as within the broader
realm of biological databases, where their combination,
intensity and complexity make automated solutions im-
perative. Furthermore, techniques to aid in their solu-
tion either do not exist or are inadequate in this domain.
This paper illustrates these problems in the context
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of the database developed at the Philadelphia Genome
Center for Chromosome 22, and describes a first step to
solving what we perceive to be the core of these prob-
lems: a language in which to express data transforma-
tions and constraints.

The goal of the Human Genome Project (HGP) is to
sequence the 24 distinct chromosomes comprising the
human genome. Each chromosome is composed of a
long, double-stranded molecule of DNA (deoxyribonu-
cleic acid) made up of complementary pairs of four dif-
ferent nucleotides or bases (A, G, C, T), arranged like
beads on a string. Sequencing DNA means discover-
ing the exact sequence of A’s, C’s, T’s, and G’s on the
string. Although there are techniques for directly se-
quencing short DNA strings (approximately 400 bases),
current methods are not practical for sequencing the en-
tire genome (3 billion bases) at one time. Consequently
the HGP has set mapping the chromosomes as a less
ambitious intermediate goal. Mapping involves the or-
dering of identifiable DNA fragments as markers along
the chromosome, and anchoring markers at known po-
sitions to serve as landmarks. The database discussed
in this paper, Chr22DB, is the laboratory notebook for
the Philadelphia Genome Center for Chromosome 22,
located at the University of Pennsylvania and Children’s
Hospital of Philadelphia.

One of the major problems faced in HGP databases is
rapid schema evolution and the resulting need to mod-
ify existing applications. New and better experimental
techniques are constantly being developed and the ex-
perimental data being modeled is constantly changing,
forcing evolution of the laboratory notebook database
schema and related applications. This process must oc-
cur extremely rapidly, since investigators consult the
database to plan and guide ongoing experimentation.
Furthermore data integrity is crucial. However, the data
is very complex, hierarchically organized, and contains
an unusually large number of links among tables (inclu-
sion dependencies). This gives rise to a number of com-
plex, non-standard constraints that need to be specified
and enforced in order for the data to be correct.



Another major problem is that access to multiple,
heterogeneous remote databases and software packages
is frequently needed to augment the contents of the
laboratory notebook databases and to answer queries
posed by researchers. These include archival databases,
such as the nucleic acid sequence database, Genbank,
the protein sequence data base, PIR [1], the biomed-
ical bibliographic data base, Medline, and the human
genome map data base, GDB [2]; a growing number of
laboratory notebook databases; as well as software sys-
tems such as BLAST [3], FASTA [4], and Staden, which
perform complex data analysis involving such computa-
tional problems as pattern-matching, search and string
comparison. These databases include flat-relational
databases (Sybase), object-oriented databases (Ob-
ject Store, GemStone), complex-relational databases
(ASN.1), and personal-computer-based databases.

This heterogeneity in schemas and models within the
HGP is likely to persist. As data complexity increases,
different databases may capture only partial, and per-
haps significantly different views of the data as a whole;
as analysis tasks increase in complexity beyond sim-
ple queries, it is often necessary to organize the data
to optimize a specific application to achieve acceptable
system performance. Thus, we find numerous indepen-
dent structurings of the same or similar information.
The GenBank family is a case in point: there is the
“standard” flat-file version with numerous trivial syn-
tactic variants, a relational version developed at the Los
Alamos National Laboratory [6], the ASN.1 version de-
veloped at NCBI, a relational version developed from
the ASN.1 version by the Philadelphia Center for Chro-
mosome 22 [7], and at least one knowledge base version,
also developed within our group [8], which transforms
the data from a sequence entry view to a biological con-
cept view. Each of these has its own advantages and dis-
advantages that include issues of representation, query
language expressiveness, and portability, among others.

Two recent papers underscore the problems that we
have been alluding to, and indicate that they are per-
vasive to HGP databases:

e A recent report of a Department of Energy In-
formatics “summit” [9] listed a number of simple
queries that were impossible to answer with the
current data sources, because the sources are dis-
tributed among various databases, programs and
structured files, and there is no effective technique
for combining them.

e Goodman et al [10] in an appraisal of their attempt
to create a genome information system listed two
major issues that they faced: (a) the lack of an
adequate query language for the DBMS they were
using; and (b) the fact that the underlying schema
was constantly evolving.

An important part of this is the problem of trans-
forming data into some form that is understandable by
users, a query language, or an applications program.
The problem of schema or data evolution calls for flex-
ible tools for rapidly re-mapping databases. We need

a principled approach to data transformations: trans-
formations between schemas in a single data model (as
with schema evolution), between different data models
(as with data entry screens, and as in the Genbank fam-
ily of databases), or across multiple data models (as in
the integration of data from multiple sources).

The purpose of this paper is to describe our approach
to specifying data transformations, and illustrate it us-
ing a sample problem of data transformations that has
arisen in Chr22DB. Our approach is based on a declar-
ative language, TSL, for specifying transformations and
constraints. While declarative query languages (datalog
and its extensions) have not yet gained universal accep-
tance as query languages, we believe they are the right
approach to data transformations. The reason for this is
that, while a data transformation can be thought of as a
query, it is one in which the computational forms used
are very simple and whose output is rather large and
structurally complex — a whole database rather than a
single relation. Furthermore, it is highly desirable to
have the query in a form that is easy to analyze and to
reason about in light of rapid evolution.

The remainder of this paper is organized as follows:
Section 2 illustrates a part of Chr22DB and a data trans-
formation problem that has been encountered. Section
3 describes our transformation language and shows how
it is used to capture the sample problem. We conclude
by arguing how current techniques fail to address the
problems we have encountered, and discussing future
research.

2 A Sample Data Transformation in Chr22DB

The data and schemas in the archival and laboratory
notebook databases for the HGP are highly complex
and difficult to understand, especially for those who
know little to nothing about molecular biology. We will
therefore start off by explaining a bit about what is be-
ing modeled and what some of the terms used mean.

2.1 A Databaser’s View of the Biological Back-
ground

The HGP’s intermediate goal is mapping: ordering
markers (fragments of DNA) along the human chromo-
some and locating them at known positions. A variety
of techniques are used to anchor markers to specific lo-
cations on the chromosome. For the sake of simplicity,
we will consider only one: physical mapping using cloned
probes and Sequence Tag Sites (STS’s).

The chromosome of interest is cut randomly into
overlapping pieces of experimentally manipulable size
(50,000-1 million bases). These pieces are then reassem-
bled into a linear ordering representing their order in the
original DNA string. To discover the relative ordering of
fragments, it is crucial to be able to ascertain when the
sequence of two pieces of DNA overlaps, that is, when
the pieces come from neighboring sites in the original
string. Sequence overlap between two pieces of DNA



can be detected by showing that their sequences contain
the sequence of a third, much shorter fragment, called
a probe. The linear ordering on the pieces yields a lin-
ear ordering on the probes whose sequence is contained
in them, and vice versa. The probes then become the
desired map landmarks and may be used to sequence
areas of special interest, such as regions thought to be
related to inheritable disease.

Physical mapping and its relationship to DNA se-
quence is illustrated in Figure 1. At the top of this
figure, a chromosome is depicted with the banding pat-
terns visible under a microscope, which themselves func-
tion as landmarks at the coarsest level of granularity.
Vertical lines denote markers (probes). Horizontal lines
denote larger, overlapping DNA fragments whose se-
quence contains marker sequence. Below, the sequence
of a tiny substring of DNA is shown.
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Figure 1: Physical Mapping of a Chromosome

Two types of probes used in physical mapping and
represented in Chr22DB are: 1) Cloned probes and 2)
Sequence Tag Sites (STS’s). Cloned probes are actual
physical reagents stored in freezers, and STS’s are in-
formation stored in a database. In what follows, we
briefly describe some of the information maintained
about probes by Chr22DB.

Cloned Probes. In cloning, a fragment or interval of
human DNA is inserted into carrier or vector DNA in
bacterial or yeast cells. When the host cells are cultured,
many exact replicas of the human DNA are produced,
to be used in future experiments.

Sequence Tag Sites (STS’s). An STS is an interval
of DNA defined by a primer pair: a pair of sequenced
nucleic acid intervals used as primers to start a chemi-
cal reaction called amplification by the polymerase chain
reaction (PCR amplification). The entire reaction com-
prises several stages, each proceeding at a different tem-
perature. An amplification reaction will not occur un-
less the primer sequences are found, properly spaced,
within the test sequence; therefore, a successful reaction
demonstrates sequence containment. Important data
items about an STS are: its name, including the labo-

ratory which named it; the name, sequence, and melt-
ing temperature of each of the primers; the expected
size range of the amplified product; the temperature
and time required for each stage of the process (PCR
conditions); a cross-reference to GDB; the name of the
cloned probe from which the primers were derived; and
the chromosomal location of the site.

2.2 A Sample Database Transformation

The data in Chr22DB comes from a variety of sources:
archival databases such as GDB, preexisting spread-
sheet databases, object-oriented laboratory notebook
databases from other centers, as well as directly from
experiments being carried out at the center. Importing
data from these sources involves data transformations,
and has to date been done largely by hand. Though
not particularly glamorous, data entry is a special case
of a data transformation, and provides a good illus-
tration of some of the complexity of structural trans-
formations. Rewriting the data entry applications is
enormously time consuming since application generator
tools can not handle the complexity of the data involved,
and the modification has to be done by hand.

In data entry applications, the data are captured on
a screen form that provides a specialized view of the
underlying database. The view and the database may
differ widely in structure, and the application must map
between these two schemas. An example of a form used
to enter STS lab notebook data is shown in Figure 2.
It consists of a complex relation (STS) with three sub-
relations (Primers, PCR_conditions, Location). Since
each screen enters a single STS, there will be one row
in the STS relation, two rows in the Primers relation
denoting the primer pair, and multiple rows in the
PCR_conditions and Location relations.

Data entered at the data-entry screen must be
transformed to the underlying (relational) Chr22DB
database. A conceptual (EER) schema' of the rele-
vant portion of Chr22DB is shown in Figure 3; this is
merely introduced to convey the linkages between re-
lations rather than to give a precise semantics of the
schema. Some of the relevant relational tables and at-
tributes for this schema are given below. Uppercase
attribute names denote primary keys.

names (MATERIAL_ID, LAB_CODE, NAME, public_name)
primer(ID, pname, picked from na_interval_id,
melting temp, pickmethod, date_picked, strand)
STS(ID, pril_primer_id, pr2_primer_id,
PCR_prod_size_lo, PCR_prod_size_hi)
PCR_conditions(STS_ID, AMPL_MACHINE, ANNEAL_TEMP,
init_denat_time, denat_temp, denat_time, ...)

In this database transformation a complex relation
with nested subrelations is flattened into a standard re-
lational schema with value-based pointers linking re-
lated tables. The atomic attributes of the top-level

1The schemas in this paper were all drawn using ERDRAW
[13].
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Figure 2: STS Data Entry Screen

screen relation are distributed over 6 relational tables
in the target schema: names, lab, material, interval,
na_interval, and STS. The Primers subrelation is de-
composed into 5 target tables: na_interval, interval,
material, primer, sequence. The two name fields in
the entry screen (STS_name and GDB_locus) are mapped
to two separate rows in the target names table, which
are linked by the internal identifier of the object being
inserted.

In order to accomplish the data transformations, ap-
propriate insert statements must be generated. The
normalized target schema relies on internal system-
generated identifiers to accomplish the links among re-
lated tables.

To maintain data integrity, the transformed data
must conform to the integrity constraints of the tar-
get database. Preeminent are key and inclusion depen-
dency constraints, but more complex constraints may
also hold. For example, each material must have at
least one GDB name (i.e., names.lab_code = “GDB”)
and at least one non-GDB name (i.e, names.lab_code
# “GDBW)‘

3 A Language for Database Transformations and
Constraints

We believe that a deductive approach is the best choice
for expressing data transformations. There are several
reasons for this: transformations should be easy to mod-
ify and reason about; the language should be able to
easily express the structural manipulation of complex
data types, though it does not need to have the compu-
tational expressiveness of a general purpose program-
ming language; and finally, the language should unify

transformations and integrity constraints since there is
a significant level of interaction between the two. Not
only do constraints play a part in determining trans-
formations between databases, but a transformation
may imply certain constraints on the source and tar-
get database.

Our language is based on Horn-clause logic and al-
lows for formal reasoning about database transforma-
tions, constraints and the interactions between the two.
Not only can transformations be expressed in this lan-
guage, but unambiguous and nonrecursive transforma-
tion programs can be implemented using code genera-
tors for a variety of database programming languages.
The proposed code generators will work in two stages:
First rules are converted to a normal form, each rule
specifying how a complete entry for the target database
is generated from the source database. The normalised
rules are then converted into code for the appropriate
DBMS. This approach means that logical inferences are
performed only once at the rule level, rather than many
times at the data level. Further it is straightforward to
re-use the core of the program, allowing easy adaptation
of the code generator for a variety of database systems.

We will start by explaining the underlying data
model, then giving the syntax of the language with sev-
eral examples of constraints and transformation clauses
that have been generated for the data entry application
described in the previous section. Finally, we describe
normal forms, and how they are used in implementing
transformation programs.
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Figure 3: Schema of Target Database for STS’s.

3.1 Data Model

The language is based around a nested relational data
model which allows us to describe and implement trans-
formations between a wide range of data models. The
model is similar to that of [14], and allows for arbitrary
nesting of set and tuple constructors, and for a repre-
sentation of object identities. It is a natural extension
of the relational data model, but also allows us to rep-
resent the complex data structures found in the various
semantic and object-oriented data models that are cur-
rently gaining popularity. In addition, the model allows
the attributes of records to be either required or optional
(not-null or null).

We use Skolem functions to generate object identities
as in [12]. Skolem functions can be applied to a group
of values in order to create an entirely new value, which
can then be used as an object identifier, or as a way of
referencing a row in some particular relation from other
relations. The type system for the language ensures that
the values generated by two distinct Skolem functions
can not be confused.

Many established data models incorporate various
kinds of constraints as primitives: relational data mod-
els may support keys or other functional dependen-
cies, certain existence dependencies and inclusion con-
straints, while object-oriented databases may support
some concept of inheritance and object identity. How-
ever there remain many important dependencies which
occur in biological and other databases but do not fall
into any of these categories. Rather than making any
such classes of constraints primitive in our data model,
our language provides a means to express a very general
family of constraints, including but not limited to those
mentioned above.

3.2 The Language

Our language allows independent access to the the indi-
vidual components of a relation or tuple, and variables
can be bound to simple values, tuples in a relation or
entire relations (sets of tuples). Individual clauses de-
scribe one conceptual part of a transformation, rather
than describing the construction of an entire tuple in a
relation. In this respect it differs from established logic-
based database query languages, such as Datalog and
ILOG, in which relation names are used as predicates,
and variables are bound to base values only; a practice
which becomes awkward when relations with many at-
tributes are being considered. When limited to the flat
relational case, the expressive power of the language
can be seen to be greater than that of Datalog or ILOG
without negation, but strictly less than that of Datalog
with stratified-negation. When dealing with database
transformations we are concerned with non-recursive
transformation programs only, though our concept of
recursion is weaker than that for Datalog ([15]), so that
clauses which we do not consider to be recursive could
not be expressed in non-recursive Datalog.

Though the language does incorporate some novel
syntactic features, it could basically be thought of as an
evolution of existing deductive languages: for example it
could be considered to be an extension of ILOG ([12]) to
the nested relational model, or as a restriction of IQL
([11]) for dealing with structural data manipulations.
The most significant contributions of this work are in
the way the language is used to express and implement
transformations and constraints. In established deduc-
tive query languages, though they may involve some de-
gree of rule rewriting and optimization, the rules are ba-
sically used to describe the manipulations of data from
a database necessary to satisfy a query. Here we are
concerned primarily with the manipulation of the rules



themselves, and with converting them from a form in
which the transformations and constraints are logically
specified in a clear and meaningful manner, into a form
where the rules can then be easily translated into some
efficient database programming language.

3.2.1 Types

Types in our language are given by the following ab-
stract syntax:

t = {t} — set type
| (a1 " t1,...,an " tn) — record type
| int | string]... — base types

A set type, {t}, represents finite sets of values of type
t. A tuple type (a1 :" t1,...,an " tn) represents tuples
or records with required attributes ai,...,an, of types
t1,...,tn respectively: each symbol :* representing one
either :, for a required attribute, or :°?, for an optional
attribute. Base types int, string and so on represent
simple atomic values.

A relation is considered to be a set of tuples, so a
relation type is a type of the form {{a1 :* t1,...,an :*
tn)} In a flat-relation type the types ti,...,t, are all
base types.

As well as individual relations, we consider databases
as a whole to have types. A database type is a tuple type
with attributes for each of the relations or classes in the
database and going to the types of those relations. For
example a database type for the database whose schema
is shown in Figure 3, with relations such as STS, primer,
sequence and na-interval, will be a tuple type with
attributes STS, primer and so on, each of which would
be of an appropriate relation type.

Our language is strongly typed, in that, given types
for the source and target databases of a transformation,
a unique type can be inferred for each term in a trans-
formation program.

3.2.2 Terms and Atomic Formulae

The main syntactic elements of our language are terms,
ranged over by P,Q,..., and atoms, ranged over by
¢,,.... Terms represent values in a database, while
atoms are the basic building blocks of formulae. They
are defined by the following abstract syntax:

f(Py,.. .,Prf) — Skolem function
P{p1,..., ¢x)

P == Src — source database
| Tgt — target database
| ¢ — constant
| X — variable
| a — attribute
|  Pa — projection
|

— compound term

and
b = P=Q — equality

| P#Q — inequality

|  PEQ — set-inclusion

| P<LQ|P>Q — arithmetic predicates

| Undef(a) — undefined optional
attribute

| False — contradiction

Here the Src and Tgt represent the source and target
databases in a transformation, which are regarded as
tuples of relations. Constants are always of base type,
while variables can be bound to sets and tuples as well
as to values of base type.

If P is a term representing a tuple, then P.a is the
value of the a attribute of the tuple (if it is defined).

A compound term of the form P{¢1,...,¢$n) has the
same value as the term P but carries with it the atoms
1, ..., 0n which are to be interpreted relative to P: so
any attribute term, a, occurring in one of ¢1,...,¢n
(but not in any smaller compound term) is evaluated as
P.a. An attribute term, a, must occur within some com-
pound term. For example if the variable X represents
a tuple in the target relation STS, and the attribute
term Id occurs in an atom ¢; of the compound term
X{(1,...,0r), then the term Id represents the Id field
of the tuple X, or, equivalently, has the same value as
that of the term X.Id.

Atoms are built using the binary predicates = (equal-
ity), # (inequality) and € (set inclusion), and the Undef
predicates which check for the definedness of an optional
attribute of a tuple. The nullary predicate False repre-
sents an error situation, and is used in checking the
validity of a transformation.

For example an atom X € STS would mean that X
is a tuple in the relation STS. We could use a compound
term to put further restrictions on X:

X(id = I,prl_primer_id = P1,
pr2_primer_id = P2) € Tgt.STS

which means that X is a tuple in the target relation
STS with id attribute I, pri_primer_id attribute P1
and pr2_primer_id attribute P2.

3.2.3 Clauses
A clause has the form

7/“—¢17---7¢n

The atom 7 is called the head of the clause, while
d1, ..., 02 form the body of the clause.

Not all syntactically correct clauses are meaningful.
A clause is said to be well-formed for source database
type Tsr. and target database type Tig: if it is well-
typed with respect to T and Tig¢, meaning that all
the types of terms occurring in the clause make sense
when we take the term Src to have the type Tsr. and



Tgt to have the type Tig:, and it is range-restricted.
The concept of range-restriction is taken from Datalog
([16]), and means that each variable in the clause is re-
stricted to range over some finite set of values. The
formal definitions of these restrictions, together with a
more detailed presentation of the semantics of the lan-
guage, can be found in [17]. All the clauses considered
in this paper will be well-formed for the relevant types.

The meaning of a well-formed clause, ©¥ <«
P1, ..., 0n, is that if, for some instantiation of the vari-
ables in the body, ¢1,..., ¢, are true, then there is an
instantiation of the remaining variables in the head of
the clause such that 1 is also true. Clearly the truth
of a clause is dependent on the values of the source and
target databases for which it is being evaluated. A pair
of database values p and v, of types Ty and Tig: re-
spectively, are said to satisfy a clause if it is true when
we take the term Src to denote the value p and Tgt to
denote v.

For example the clause
X=Y « X(id=1) € Tgt.STS, Y(id =I) € Tgt.STS

says that, for any two tuples X and Y in the relation
STS, if X and Y have the same value, I, on their id
attributes then they are equal. In other words the at-
tribute id is a key for STS. This clause is an example of
a constraint: a clause which concerns only one database
rather than the connection between a pair of databases.

The terms in a clause can be classified as source terms
which denote values in the source database, and target
terms which denote values in the target database. A
target constraint is then a clause containing only target
terms, while a source constraint contains only source
terms. Constraints may be tested after a transforma-
tion is carried out in order to ensure the validity of the
transformation. Constraints may also play a significant
part in determining transformations, and be counted as
part of a transformation program.

We will now look at some more examples of con-
straints for the database shown in Figure 3. Firstly an
inclusion dependency, that for every primer id in the
STS table there is a corresponding entry in the primer
table:

X (id = P) € Tgt.primer «
Y (pri_primer_id = P) € Tgt.STS

Next that each material has exactly one GDB name:

X=Y «
X (material_id = M, lab_code = “GDB”)
€ Tgt.names,
Y (material_id = M, lab_code = “GDB”)
€ Tgt.names

And, finally, that a public name cannot be a GDB name:

False < (public_name = “Yes”,lab_code = “GDB”)
€ Tgt.names

Note that the last two of these constraints could not
be expressed using the traditional functional and exis-
tence dependencies for the relational model.

In determining a transformation between two
databases, we are interested in a special class of clauses
called transformation clauses. A transformation clause
is one which contains only target terms in its head,
and which does not contain any Undef atoms for tar-
get terms.

For example, the following is a transformation clause
generating part of the STS relation of the schema shown
in Figure 3 from the data entry screen shown in Figure 2:

(id = £.STS(PI1, PI2),
pri_primer_id = PI1,
pr2_primer_id = PI2,
PCR_prod_size_lo = SL,
PCR_prod_size hi = SH) € Tgt.STS
— ((pname = PN1) € Primers,
(pname = PN2) € Primers,
PCR_prod_size_lo = SL,
PCR_prod_size_hi = SH) € Src.STS_screen,
(pname = PN1,id = PI1) € Tgt.primer,
(pname = PN2,id = PI2) € Tgt.primer,
PI1 < PI2

There are several points about this clause that deserve
comment. Firstly notice that the Skolem function £_STS
is used to generate ids for the STS relation. Also al-
though the STS_screen relation has only one attribute
Primers, it occurs in two separate atoms in the descrip-
tion of a tuple in the STS_screen relation. This is be-
cause the attribute is set valued and each of the two
atoms asserts the presence of a different tuple in the
Primers sub-relation.

The body of this clause makes use of the target data-
base relation primer in order to look up the primer_id’s.
The tuples for this relation are in turn generated by
another clause:

(id = £ primer(PN), pname = PN,
melting_temp = MT,pick-method = PM,
date_picked = DP, strand = ST)

€ Tgt.primer
— ((pname = PN,melting temp = MT,
pmethod = PM, date_picked = DP,
strand = ST) € Primers)
€ Src.STS_screen

We will see in Section 3.3 that it is necessary to unfold
clauses like this, in order to get a clause that refers only
to source relations in its body and only to target rela-
tions in its head. Clauses of this form can be processed
in one-pass without referring to the target database.

3.2.4 Transformation Programs

A transformation program, from database type Tsrc to
database type Tig4¢, consists of a set A of transformation
clauses that are well formed for Ts,. and Tig¢.



If A is such a transformation program, and p is a
database value of type Ts». and v is a database value of
type Tig¢, then v is said to be a A-transformation of p
iff, for each clause C € A, u and v satisfy C.

A transformation program A from Tsyc to Tig¢ is said
to be complete iff, for any database value u of type Tsrc,
if there exists a A-transformation of p then there is a
unique smallest such transformation. The smallest A-
transformation is important because it represents the
data generated by the transformation program A from
the source database: in general a transformation pro-
gram will imply that certain data should be in the tar-
get database but does not exclude other additional data
from being in the database as well. If a transformation
program is complete then there is no ambiguity about
what this smallest transformation is. It is these unique
smallest transformations that we wish to compute.

We are particularly interested in non-recursive trans-
formation programs. These describe transformations
that can be done in “one pass”: that is, they can be
carried out by reading the source database and inserting
values into the target database, as opposed to recursive
transformations in which data which is inserted in to
the target database is then used to create more data for
the target database. The problem of testing whether a
transformation program is recursive in our nested rela-
tional model is a little more delicate than the problem
for the flat relational model and Datalog. Details can
be found in [17].

3.3 Normal Forms

We now limit our attention to the special case of
database transformations where the target database is
flat relational. In this case, we first convert a trans-
formation program into a normal form, which can in
turn easily be converted into a program in some (non-
recursive) query language.

Suppose our target database contains a relation R.
A transformation clause is said to be in normal form if
it has the form

X(a1 =P,...,ar = Py, b1 = Q1,...,b; :Ql> €ER
— ¢17 ey ¢7l
where a1, ...,ar are the required attributes of the re-
lation R, and b1,...,b; are a subset of the optional at-

tributes of the relation R; the atoms ¢1,...,¢, con-
tain only source terms and constants; and the terms
Pi,...,P,Q1,...,Q are built using only variables, con-
stant symbols and function symbols.

A transformation program is said to be in normal
form if all its clauses are in normal form.

We have an algorithm [17] which given a non-
recursive transformation program for a flat relational
target database type, if the program is complete will
return an equivalent program in normal form, and if
the program is not complete will fail, reporting an er-
ror. This algorithm forms the central part of our code
generators for transformation programs. If the source

database type is also flat relational then clauses in nor-
mal form can be directly translated into a join-and-
project expression in relational calculus or a “select-
from-where” expression in SQL. If the source database
is not flat-relational then normal form clauses can be
converted into CPL ([18, 19]) or some other suitable
query language.

The normal-form clauses are built by combining and
unfolding clauses of a transformation, in order to form
clauses which provide a complete description of a tuple
in the target database in terms of the elements of the
source database. Because our transformation programs
are not recursive it follows that this process will termi-
nate. If it is possible to build only a partial description
of a tuple for some relation, then it follows that the
transformation program is not complete.

For example a normal-form clause for the STS table in
the transformation from the STS data-entry screen (Fig-
ure 2) to Ch22DB (Figure 3) formed from the clauses
in section 3.2.3 would be:

(id = £ STS(PI1, PI2),
pril_primer_id = PI1,
pr2_primer_id = PI2,
PCR_prod_size_lo = SL,
PCR_prod_size hi = SH) € Tgt.STS

— ((pname = PN1) € primers,
(pname = PN2) € primers,
PCR_prod_size_lo = SL,
PCR_prod_size_hi = SH)

€ Src.STS_screen,
PI1 = £ _primer(PN1),
PI2 = f primer(PN2),
PI1 < PI2

Notice that this clause gives a complete description
of a tuple in the STS relation, and does not call on any
of the target relations in the body of the clause. In par-
ticular the calls to the primer relation which were in the
body of the clause in section 3.2.3 have been replaced
by applications of the Skolem function f_primer.

3.4 Transformation Tools

The transformation process is automated by means of
code-generators for a variety of database programming
languages. Initial implementation efforts are for a code
generator for CPL ([18]), since this language has in-
terfaces to SYBASE (the most immediate requirement
for Chr22DB) and several other biological data-sources.
However the core of the tool is an implementation of
the convert-to-normal-form algorithm, and further in-
terfaces to convert normal form programs to other data-
base programming languages can be constructed easily.

In addition tools to read meta-data from various
database systems, such as SYBASE, and schema-design
tools, such as ER-draw ([13]), and convert it into
TSL types and constraints are being developed. These
take much of the load of entering constraints off the
users, and allows them to concentrate on specifying the



substantial part of a transformation. Ultimately we
would like to build graphical schema-manipulation tools
which automatically generate the relevant constraints
and transformation clauses for a schema evolution.

4 Conclusions

The complexity of the data structures involved in Hu-
man Genome Project databases, together with the fre-
quency of schema evolutions and the large number of
incompatible heterogeneous databases with which data
must be exchanged, necessitates the development of new
tools and methodologies.

Although much has been written on the subject of
schema evolution (see [20]), existing works do not ad-
dress the problem of performing the corresponding trans-
formations on the underlying data. However it is essen-
tial to have all the previously entered data available for
the current schema, and consequently these transforma-
tions are necessary.

Some of these issues have also been addressed in [21],
although in the context of database integration and for
a more limited data model. Our proposed language al-
lows us to specify database transformations in a clear
and formal manner, and then implement the transfor-
mation for a variety of database systems by means of
code generators. In addition our language allows for
the specification of constraints that arise from Human
Genome data which are not representable using estab-
lished constraint languages.

Related work also includes that of schema merging
in heterogeneous databases (see [22, 23, 24, 25, 26]).
Central to all of these approaches is the need to have
some user manipulation of the underlying schemas to
indicate how the underlying databases are related to
the merged schema. To our knowledge, there has been
no principled, systematic approach proposed to do this
other than our proposed constraint language.

There are many areas of future research, some of
which we have already indicated, such as the completion
of normal form algorithms for target databases which
are not flat relational; the implementation of code gen-
erators from normal form transformation programs to
languages of interest, and the eventual development of
a window driven interface for specifying transformation
programs.

Another issue is that of composing transformations:
while some transformations will be applied only once,
many transformation programs will be applied repeat-
edly. The most frequent of these is probably data-
entry transformation programs; others involve transfor-
mation programs which import data from other archival
databases, such as GDB, which are run routinely in or-
der to reflect the continuous updates of the archival
databases. We do not want to rewrite these transfor-
mation programs every time there is a minor schema
evolution on the Chromosome 22 database, hence the
need to compose the transformations.

We have currently completely specified the data en-
try transformation, and have partially specified a trans-
formation from an archival genomic database, GDB, to
Chr22DB. Our experience is that the approach is ex-
tremely useful, since the relationships between struc-
tures in the source and target is clearly indicated in the
clauses of the program. Knowing first-hand how labori-
ous it was to transform SYBASE code for data entry as
Chr22DB evolved, this is an extremely important prac-
tical gain.

Acknowledgements: We are indebted to Peter
Buneman, Chris Overton and David Searls for their help
and advice in developing and presenting these ideas.
The really cool postscript diagram in Figure 1 is also
due to David Searls.
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