
Chapter 25

Planning and Executing a Genome Wide Association Study
(GWAS)
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Abstract

In recent years, genome-wide association approaches have proven a powerful and successful strategy to
identify genetic contributors to complex traits, including a number of endocrine disorders. Their success
has meant that genome wide association studies (GWAS) are fast becoming the default study design for
discovery of new genetic variants that influence a clinical trait or phenotype. This chapter focuses on a
number of key elements that require consideration for the successful conduct of a GWAS. Although many
of the considerations are common to any genetic study, the greater cost, extreme multiple testing, and
greater openness to data sharing require specific awareness and planning by investigators. In the section on
designing a GWAS, we reflect on ethical considerations, study design, selection of phenotype/s, power
considerations, sample tracking and storage issues, and genotyping product selection. During execution,
important considerations include DNA quantity and preparation, genotyping methods, quality control
checks of genotype data, in silico genotyping (imputation), tests of association, and replication of associa-
tion signals. Although the field of human genetics is rapidly evolving, recent experiences can help guide an
investigator in making practical and methodological choices that will eventually determine the overall
quality of GWAS results. Given the investment to recruit patient populations or cohorts that are powered
for a GWAS, and the still substantial costs associated with genotyping, it is helpful to be aware of these
aspects to maximize the likelihood of success, especially where there is an opportunity for implementing
them prospectively.
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wide, single nucleotide polymorphism.

1. Introduction

The sequencing of the human genome (1, 2), and SNP discovery
and genotyping efforts (3) led to the discovery that the human
genome is arranged in blocks of high linkage disequilibrium (LD),
separated by hotspots of recombination (4). Resources from the
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International HapMap Project (5�7) and affordable, accurate,
high-throughput genotyping technologies have permitted analysis
of the entire human genome using association methods, exploiting
the fact that common variation in the human genome can be
surveyed by genotyping only a fraction of the estimated 10�15
million single nucleotide polymorphisms (SNPs) that exist in the
human population (8–10). This approach, using either tagging
SNPs or protein coding non-synonymous SNPs, has revolutio-
nized human genetics over the past 5 years. Recent analyses have
identified loci for several endocrine measures and disorders,
including type 2 diabetes (11, 12), type 1 diabetes and other
autoimmune diseases (13), thyroid disease or thyroid measures
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(14, 15), bone mineral density and osteoporosis (16, 17), obesity
(18–20), and adult height (21–24). In many cases, the newly
identified associated genes and regions have provided insights on
novel pathways and potential therapeutic targets (25).

This chapter focuses on a number of key elements to consider
in the planning and successful conduct of a genome wide associa-
tion study (GWAS), summarized in Fig. 25.1. Although this is an
evolving and dynamic field of active research with many diverse
opinions on approaches, some general recommendations can be
made. Where possible, we point to in-depth reviews by other
authors that provide more detailed explanation of these issues.

2. Planning a
Genome Wide
Association Study
(GWAS)

2.1. Ethical

Considerations

The scope of existing consent documents is an important consid-
eration before embarking on a GWAS. Many studies were designed
and initiated prior to the availability of GWAS technology and did
not have to confront the issues of individual identifiability and
mandated sharing of data under national biobank policies. An
example of such a policy is the current National Institutes of Health
policy for awards that include a GWAS component (available at
http://grants.nih.gov/grants/gwas/) and the deposition of de-
identified data in the National Institutes of Health’s Database of
Genotype and Phenotype (dbGaP) (26). Recent policy changes
reflect new concerns over potential identification of individual par-
ticipants from summary data (27). Retrospective extension of exist-
ing clinical trial or observational studies to test genetic hypotheses
raises major and profound issues of the applicability of an existing
informed consent to the genetic study being considered. Consents
may contain language that restricts data sharing to investigators of
the trial or study only, or may preclude the use of the research data
for studying diseases other the main study outcome. It is important
to review consent wording in terms of participant intent and data
sharing potential. For new studies, the possibility that de-identified
data may be able to be matched against a second sample given by
the same participant should be explicitly stated and explained dur-
ing consent, since aggregated genetic data of this magnitude will
undoubtedly constitute a unique genetic profile. Investigators are
strongly urged to consult with local experts in ethics and genetics
on their local research review board.

2.2. Study Design

Issues

Although family designs can be used for GWAS projects, and the
resulting data can be analyzed under family-based tests of associa-
tion (e.g., 28–29), many of the early successes with GWAS have
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come from retrospective case-control study designs. Case-control
designs offer advantages in relative efficiency of recruitment of
independent sampling units, ease of analysis, and power for tests
of common genetic variants that contribute only modest-to-low
relative risk.

For a case-control design, matching of samples is critical
to avoid biases that will inflate the overall type 1 error rate and
lead to the identification of thousands of apparently significant
SNPs. Matching can be performed at the individual level in a
1:1 or 1:M design (where M is an integer), or could be based
on equalizing the frequency of known study subpopulations.
For potential confounders for which matching may not be
feasible, post-hoc adjustments can be performed during statis-
tical analysis. It is critical that cases and controls are matched
for ethnicity as closely as possible to avoid confounding and
spurious associations. In this regard, GWA studies draw from
the same design principles employed for any observational or
clinical trial.

Several studies have demonstrated the utility of genotyping a
common set of population controls for analyses of multiple traits.
In particular, The Wellcome Trust Case-Control Consortium
(WTCCC) (30) genotyped 500,000 SNPs in a common set of
3,000 controls drawn from the 1958 British birth cohort and the
UK Blood Services collection, and have used these for a number of
disease-based GWAS. Tests of association using a Cochran-Armi-
tage additive trend statistic showed a high degree of concordance
of the separately ascertained, but ethnically matched, UK controls.
Similarly, use of previously genotyped population controls ascer-
tained from an independent study can result in a considerable cost
saving or increase in power (31), but the population must be
substantially free of the disease or phenotype under investigation,
and must be ethnically well-matched.

Many of the issues relating to study design, phenotype mea-
sures, and power are reviewed in (25, 32, 33). Considerations for
designing a study, including the genetic architecture of complex
traits, population stratification, and phenotype data are considered
in detail by (34), while the role of family study designs in GWAS is
reviewed in (35).

2.3. Selection

of Phenotype/s

Often under-appreciated aspects of GWAS are the choice of
phenotype definition and method of measurement of the pri-
mary phenotype and potential confounders. Large, well-
designed prospective cohort studies are often advantageous
since protocols are consistent across sites. However, even smaller
single-site investigations need to consider the spectrum of phe-
notypic data that may be useful for GWAS analyses in order to
provide insight into molecular mechanisms. Given the need for
large-scale, often international, collaborative efforts to establish
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replication or identify alleles of modest effect, it is helpful to
develop standardized phenotypic protocols to facilitate compar-
able cross-study analyses and meta-analyses of data.

2.4. Power

Considerations

The power to detect association is a function of the effect size,
sample size (number of cases and controls, or families), and the
tested association disease model. These factors are themselves
influenced by the prevalence of the disease, disease allele frequency
and the genotypic relative risk (GRR). For a typical study design
that plans to genotype 1,000 cases and 1,000 controls for 300,000
markers, a disease-predisposing variant with GRR = 1.415 under a
multiplicative model, with prevalence 0.1 and risk allele frequency
0.5 can be detected with 80% power. To reduce the high cost of
genotyping, a two-stage design has been proposed where a pro-
portion of samples are genotyped on every marker in stage 1, and a
proportion of these markers are later followed up by genotyping
them on the remaining samples in stage 2. For the above example,
nearly the same power (77%) can be achieved with only 34% as
many genotypes by using 30% of samples in stage 1 and 5% markers
in stage 2. The software package CaTS (36) provides a convenient
way for users to plan the sample size and power for their studies.

2.5. Sample Tracking

and Storage

A known potential source of error for any GWAS is sample hand-
ling within the laboratory. A number of sample tracking and
evaluation steps can be put in place to reduce the potential for
sample mishandling or mislabeling. The National Cancer Institute’s
Office of Biorepositories and Biospecimen Research (http://biospe
cimens.cancer.gov/) is a useful resource for best practices and poli-
cies for biospecimen storage and tracking, and has also developed a
suite of informatics tools available through the cancer Biomedical
Informatics Grid (caBIG). At entry into the lab, a digital photo-
graphic record showing original sample sources (e.g., tubes) and
label details is often useful. Allocation of a unique barcoded ID at
the point of sample receipt enables tracking within the laboratory.
Sample ID, receipt date, sample type, and storage location,
together with any other available information, should be electro-
nically logged into a secure database and, following DNA isola-
tion, the quality and quantity of the genetic material should be
assessed using standard methods (see Section 3.1). To enable
back-referencing as the sample moves through sample processing
stages (e.g., source sample, DNA isolation, aliquoting, dilution,
plating, and genotyping), a number of alternate and complemen-
tary strategies can be implemented, depending on sample volume
and financial resources. The simplest is to store a back-up sample of
the original source material, such as an aliquot of frozen whole
blood (or saliva, frozen tissue, etc.) or, for liquid samples, by
spotting onto an FTA card (Whatman, Kent, UK) or equivalent
product. These samples can be accessed later for DNA isolation
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and genotyping, or direct PCR, if a sample handling mix-up is
suspected. Another option is to conduct a simple PCR-based sex
check immediately following DNA isolation, since this approach
can often pick up mislabeling during recruitment, or wider sample
handling problems during DNA isolation. Finally, generating a
‘‘mini-fingerprint’’ of highly polymorphic genetic variants (SNPs
or microsatellites) on all incoming samples can serve as a more
specific sample reference, but typically requires additional financial
and personnel resources for sample processing and genotyping.
The forensic community typically uses 13 short tandem repeat
(STR) CODIS (Combined DNA Index System) markers that
have been developed for utilization in forensic casework, although
approximately 30 well-chosen SNPs would provide a similar infor-
mation content.

For long-term storage, stock DNA samples can be placed in a
�80�C ultra-low temperature freezers and should be stored in physi-
cally separate, duplicate locations on backup generator outlets (or in
freezers with CO2 backup). However, DNA samples that are accessed
frequently can be stored at 4�C in the short-term to avoid multiple
freeze-thaw cycles that can compromise DNA fragment length.

2.6. Genotyping

Product Selection

The molecular methods described in this chapter utilize the Illu-
mina Infinium assay (Illumina Inc., San Diego, CA) since we have
most experience with this platform, however other genotyping
platforms are available. The most commonly used alternative is
the Affymetrix platform (Affymetrix Inc., Santa Clara, CA). Selec-
tion of the appropriate fixed content Illumina BeadChip is gener-
ally based on coverage in the population of interest and cost
considerations. For example, the HumanCNV370-Quad Bead-
Chip provides mean genomic coverage at r2 > 0.8 for 0.87 of
the genome, and, when combined with imputation methods, is
generally adequate for populations of European ancestry where
financial resources are limited (37). The higher SNP density of the
Human1M-Duo BeadChip provides similar coverage (0.86
with r2>0.8) in the HapMap Yoruba (YRI) population from
Nigeria (http://www.illumina.com/pages.ilmn?ID=261).

3. Executing a
GWAS

3.1. DNA Quantity and

Preparation

Two key predictors of genotyping success are DNA quality and
quantity. The 260/280 nm ratio, although a good measure of
nucleic acid contamination of protein, is a poor measure of DNA
contamination by protein (38). Visualization of DNA samples on
gel to assess potential template degradation, and records of the
sample storage and extraction methods, are likely to yield a more
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accurate representation of overall quality. Although picogreen
quantitation methods are recommended by Illumina Inc., we
have had good success in GWAS assays using DNA samples quan-
titated using non-fluorescent methods, such as the NanoDrop-
8000 spectrophotometer (NanoDrop Technologies; Wilmington,
DE), provided input quantities exceed the specified minimum
DNA quantity requirement. Illumina’s fixed content GWAS pro-
ducts require a minimum input DNA of 400 ng for ‘‘Duo’’ pro-
ducts that process two samples per BeadChip, or 200 ng for
‘‘Quads’’ (four DNAs per BeadChip).

For a case-control study, case and control DNA samples
should be intercalated in the wells of the genotyping daughter
plates that will be used to prepare BeadChip assays. Case and
control samples that have been separately ascertained, or collected
and isolated, naturally lead to segregation of the case and control
DNA samples into separate stock plates. While it is easiest to
mirror this configuration of samples in daughter plates, plate-
level biases in the genotyping assay or laboratory handling can
lead to extreme plate-level effects that create spurious associations.
If the samples are mixed on plates in approximately equal numbers,
latent biases in the genotyping of an individual plate are less likely
to generate spurious association results. From our experience, it is
possible for a single plate to lead to spurious associations of more
than 5 orders of magnitude in the measured p-values of associa-
tion. Plate-level quality control checks of the samples in one plate
compared to its sample complement should reveal plate(s) that
appear to be outliers by SNP allele frequency or missing data.

3.2. Genotyping Illumina’s Infinium assay (39) is capable of multiplexing approxi-
mately 6,000 to 1 million SNPs/CNVs, either using fixed content
products for GWAS, or customizable focused-content products
(termed iSelect). At present, fixed content products for GWAS in
humans range from approximately 370,000 to over 1 million
markers per sample. Content is derived from HapMap data
(6, 7), with a higher density of tagSNPs within 10 kb of a gene
or in evolutionarily conserved regions.

In brief, Illumina’s Infinium assay (39) consists of four mod-
ular components: (a) a single-tube whole-genome amplification
step, (b) an array-based hybridization capture step, (c) an ‘on
array’ enzymatic single base extension (SBE) step, and (d) an
amplified-signal detection step. SBE uses a single 50 bp probe
designed to hybridize adjacent to the SNP query site. After hybri-
dization of target DNA to the BeadChip (a microelectromechani-
cal systems (MEMS)-patterned substrate on silica slides), the SNP
locus-specific primers, attached to 3-micron silica beads, are
extended in the presence of hapten-labeled dideoxynucleotides.
Biotin-labeled ddCTP and ddGTP, and 2,4-dinitrophenol
(DNP)-labeled ddATP and ddUTP are efficiently incorporated
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by polymerases and allow detection with a dual-color, orthogonal,
multi-layer immune-histochemical sandwich assay. Biotin and
DNP are simultaneously detected by staining with a combination
of Alexa555-labeled streptavidin (SA) and Alexa647-labeled rab-
bit primary antibody against DNP, counterstaining with biotiny-
lated anti-SA and DNP-labeled goat anti-rabbit secondary
antibody. The signal is amplified by re-staining with Alexa555-
SA/Alexa647-rabbit anti-DNP.

Physically separated pre- and post-PCR preparation areas are
recommended to minimize possible cross-contamination of SBE
primers from one assay to the next. It is advisable to use aerosol
pipette tips, with separate boxes for pre- and post-PCR areas, and
usual personal protective equipment such as latex gloves. Automa-
tion using robotics and incorporation of Laboratory Information
Management Systems (LIMS), such as the Illumina’s Infinium
LIMS, can further reduce the possibility of error and contamina-
tion during processing of the Infinium assay.

Visualization of the resulting signal and decoding of SNP posi-
tion is performed using a BeadArray Reader (Illumina Inc., San
Diego, CA) and Illumina’s proprietary data collection software.
Data are initially analyzed using BeadStudio software (Illumina
Inc., San Diego, CA), which automates clustering of genotypes
and allele calling, as well as providing quality metrics to assist user
inspection and removal of suspect data (see Section 3.4). This
approach can be scaled to unlimited levels of multiplexing without
compromising data quality, although in practical terms, the number
of SNPs that can be assayed is limited by the number of probes on
the array. Illumina has recently introduced a range of high-density
(HD) BeadChips and has made minor adjustments to the protocol
for this suite of products (40).

3.3. Quality Control

Checks of Genotyping

Data

Rigorous quality control is a crucial component of any GWAS
since subtle biases in raw data can lead to hundreds or thousands
of false positive results, confounding efforts to validate lead SNPs
at the replication stage. Quality control steps to reject SNPs or
samples are necessarily a trade-off between stringency to prevent
type 1 error against loss of data, reducing power. The thresholds
used in the individual steps reflect common values that are cur-
rently in use, but can be modified to be more or less tolerant of
type 1 error. This decision will depend on study design, availabil-
ity, and size of replication study samples, and willingness to include
downstream manual steps to review cluster patterns of many SNP
loci that appear to show significant association.

The first step involves use of vendor software to identify SNPs
or samples that have obviously failed the assay or have generated
significantly poorer quality data. Data checks from Infinium assays
are initially conducted using Illumina’s BeadStudio module. Given
differences in allele frequencies, it is often advantageous to cluster
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SNPs on the basis of individual race/ethnicity groups. Low-qual-
ity samples from the dataset can be identified and removed based
on low signal intensities (less than 1000), low p10GC score (a
quality metric, measuring distance from center of the cluster), and
poor call rates (<95%). After removal of problem samples, all SNPs
can be re-clustered and the call rates recalculated. SNPs with<95%
call rate are classified as poor quality and removed. A large propor-
tion of missing data indicates a non-robust SNP assay and is the
best correlate of genotyping error or miscalling. We recommend
the following pipeline of quality control checks:

1. Minor allele frequency (MAF): Retain only SNPs with MAF
> 1%. Very low MAF SNPs are more susceptible to small
biases in genotype calling algorithm.

2. Hardy Weinberg Equilibrium (HWE): Exclude SNPs with
exact HWE test (41) jointly p< 10–5. Deviations can indicate
systematic genotype miscalling.

3. Cryptic duplicates: Test for outlier samples by examining the
mean identity by state (IBS) between sample pairs by calculat-
ing the kappa coefficient. Pairs with extreme sharing suggest
cryptic biological relationships or sample duplication.

4. Mean heterozygosity: Plots of heterozygosity distribution can
reveal relative pairs (low) and contaminated samples (high).

5. X-linked heterozygosity: Plots of log odds ratio (sample is
male/sample is female) can detect mis-specified study sex ver-
sus genetically inferred sex, indicating sample or data mix-up.

A potential problem for a GWAS is the presence of undetected
population structure that may confound tests of association, leading
to an increased rate of false positives or to false negative true associa-
tions (42). The effects of population structure increase with sample
size, and for the size of study needed to detect typical genetic effects
in common diseases, even the modest levels of population structure
within population groups should not be ignored (43). A range of
statistical issues for GWAS, including population substructure, are
reviewed in (44). One approach is to use EIGENSTRAT (45, 46),
which will detect outliers that are more than 6 standard deviations in
any of 10 principal component (PC) dimensions by default, supple-
mented with a multivariate outlier detection algorithm. The optimal
reduced principal components can be used as stratification adjust-
ments in the generalized linear models for cross-sectional and long-
itudinal analysis (see Section 3.5). This approach has been shown to
dramatically reduce the effects of population admixture, although we
suggest carefully reviewing the principal components after computa-
tion and rationally choosing those to include as statistical model
adjustments, to prevent over-adjustment.

Further genotype quality control measures are performed fol-
lowing initial analysis of association; this may involve visual
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inspection of genotype cluster plots for the entire cohort for all
SNPs deemed significant and all SNPs that show a distribution
outside of HWE (at P < 0.001; this will include several thousand
SNPs). This analysis is performed to ensure that there are no errors
in automated calling and that any SNPs with potential errors can
be discarded. Only if cluster plots reveal an obvious and correctible
error is the SNP re-clustered and retained.

Quantile-quantile (QQ) plots are a particularly effective way to
visually review the entire distribution of association or quality con-
trol statistics for all SNPs. These plots show the empirical distribu-
tion of statistics derived from the GWAS analysis plotted against the
expected value for each ranked SNP under the global null hypoth-
esis of no association or no significant test result for any SNP. A
systematic difference in the empirical versus expected values across a
fraction of the distribution may represent latent inflation of type 1
error through biases in the study populations, or may reflect true
associations. Under a common variant complex model we expect to
see true associated deviation from the expected null values for many
SNPs in the more highly significant tail of the distribution.

As an illustrative example, genome-wide association scans
were carried out using publicly available HapMap data (29, 47)
to study the genetic basis of natural variation in gene expression.
The data consist of gene-expression measurements (CHI3L2 in
this example) for 156 individuals in twenty 3-generation CEPH
pedigrees, each with 12–17 individuals. Genotypes for 864,360
SNPs were generated for a subset of 90 individuals in these families
in phase I of the International HapMap Project. Genotypes for
6,728 SNPs for the complete families, including 168 individuals,
were also genotyped previously by the SNP Consortium. The
GWA scan (see Fig. 25.2) maps gene CHI3L2 to chromosome 1
with p-value <10–9(29), and the cis-association has been con-
firmed by a functional assay analysis (47). The Q–Q plot for the
GWA test statistics shows that overall the p-values are distributed
uniformly between 0 and 1, and the log Q–log Q plot focuses
attention on the tail of the distribution.

3.4. In Silico

Genotyping

To improve genomic coverage of the selected marker panel, impu-
tation methods have been implemented in software packages
MACH (48) and IMPUTE (49) amongst others. Imputation
improves the coverage of SNP panels as well as the power of a
GWAS. Imputed SNPs are anticipated to lead to increased signal
strength (lower p-values) near a signal from a true typed SNP, and
also allow cross-genotyping platform analysis. The imputation
method in MACH uses Markov models to identify stretches of
shared chromosome between individuals, and then infer interven-
ing genotypes by contrasting study samples with densely typed
HapMap samples. Currently 2.5 million HapMap SNPs can be
imputed for each individual, regardless of different genotyping
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platforms used. The imputation is accurate: in a few studies exam-
ined (50), focusing on top 95% top quality (measured by a correla-
tion estimate between predicted and true genotypes) imputations,
the error rate per SNP is about 1.1%. African samples were the
most difficult to impute, with overall error rates ranging between
5.13% for the Yoruba and 11.86% for a sample from the San tribe
when the HapMap YRI panel was used as a reference. In contrast,
using the HapMap Centre d’Etude du Polymorphisme Human
(CEPH) sample for European populations, and Chinese and Japa-
nese HapMap samples for East Asian populations, resulted in
overall error rates of<3.34 and 2.89% respectively (50). However,
the accuracy can be further improved by tuning the quality metric
threshold. It is prudent to confirm associated imputed genotyped
by subsequent direct genotyping. For example, in a GWAS of

Fig. 25.2. Genome scan for CHI3L2expression levels. The gene maps to chromosome 1,
and the association has also been confirmed by a functional analysis. (A) Genome scan
using 90 individuals genotyped by the HapMap Consortium and 66 individuals with
imputed genotypes. (B) Q–Q plot. (C) log Q–log Q plot.
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fasting glucose, the imputed SNP with the strongest association in
gene G6PC2 was later genotyped and the discrepancy rate per
allele between the imputed and typed genotypes was 1.4% (51).

3.5. Tests of

Association

Although a variety of approaches can be used to analyze a GWAS, in
this section we suggest some widely used applications, as well as a
method uniquely capable of handling multivariate data. For single
SNP analyses in case-control datasets, PLINK (http://pngu.mgh.
harvard.edu/purcell/plink/) (52) has been developed specifically for
the analysis of GWAS data. For example, point tests of association can
be estimated for each SNP using standard allelic and inheritance
model association tests, or the Cochran-Armitage test for trend. For
both discrete and quantitative traits, univariate and multivariable
analyses can be performed to examine the contribution at each SNP
to the specific trait of interest, depending on the hypothesis. The
baseline linear regression framework allows for adjustment for envir-
onmental and other factors known or suspected to be confounding
variables (e.g., age, sex, EIGENSTRAT principal components), as
well as gene-by-gene and gene-by-environment interactions. Under a
model of stratification, Cochran-Mantel-Haenzsel tests the condi-
tional independence of the case-control disease status.

A multivariate trait GWA algorithm has been implemented the
software package Ghost (Chen WM, personal communication,
http://people.virginia.edu/�wc9c/ghost/). This implementa-
tion can help systematically identify genetic variants that are
responsible for multiple traits.

For longitudinal data, the generalized estimating equation
(GEE) method, using a sandwich estimator of the variance under
an exchangeable correlation and allowing adjustment for covari-
ates as well as gene-by-gene and gene-by-environment interac-
tions, can take into account correlations of repeated measures,
and association results will be less sensitive to the trait distribution
(and thus more robust). Note this GEE based GWAS does not add
computational complexity, and permutation testing can be easily
followed to adjust for multiple testing.

Although it is possible under disease models of SNP-SNP
interaction that haplotype tests could have greater power to
detect association than single SNP tests, genome wide haplotype
testing increases the total number of GWAS hypothesis tests
conducted, and leads to reduced power resulting from the neces-
sary increased stringency threshold for increased multiple testing.
The usual approach is to perform single SNP tests first, utilizing
the high accuracy of imputation methods to effectively increase
marker density, and follow-up with targeted haplotype analyses
where an associated SNP is contained within a haplotype block
(4). Few, if any, current studies have power to detect and fully
replicate genetic predisposition arising from gene–gene or SNP–
SNP interactions.
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To assess whether SNPs or haplotypes are associated with clin-
ical outcomes, the Kaplan–Meier method of survival analysis can be
used to estimate the survival functions for subjects with different
genotypes in the follow up period, and a logrank test performed to
compare the survival distributions. Cox’s proportional hazards
model can also be used by treating the genotype as a risk factor.

A number of analytical approaches for analyses of GWAS data
are reviewed in (53).

3.6. Replication Since the discovery stage of most GWAS designs is underpowered
to detect the modest effects observed for the majority of complex
diseases, such studies are anticipated to generate a substantial
number of false positive results (type 1 errors) (54). Additionally,
the initial effect estimates are likely to be inflated due to the
phenomenon known as the ‘‘winner’s curse’’ (55, 56). Replica-
tion in an independent population therefore remains a critical
step in a GWAS to confirm initial results (57). Several different
strategies have been employed, including the two-stage design
mentioned previously (see Section 2.4). However, due to the
large sample sizes required, large-scale meta-analyses across sev-
eral independent studies have been a mainstay of GWAS reports.
These studies frequently combine heterogeneous study designs,
ascertainment and recruitment criteria, genotyping platforms,
and QC metrics. A set of useful guidelines for imputation and
meta-analyses have been developed by (58), and many of the
relative merits, caveats, statistical approaches, and diagnostic
tests for meta-analyses are reviewed in (59). It should be noted
that lack of replication may reflect any one of a number of
possible scenarios, including appropriate refutation of a false
lead, false non-replication, or true genetic heterogeneity across
studies (60).

4. Summary and
Future Directions

Recent successes using GWAS approaches have generated con-
siderable enthusiasm about the utility of this approach to identify
variants that contribute to human variation and disease suscept-
ibility. In a relatively short space of time, considerable advances
have already been made in genotyping efficiency and cost, impu-
tation approaches, and analytical methods. In future, further
understanding of the roles of epistasis (gene–gene interactions),
gene–environment interactions, copy number variants, and epi-
genetic phenomena are anticipated to provide additional insights
into our understanding of complex human disorders.
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