
SIAM J. COMPUT.
Vol. 2, No. 1, March 1973

THE ENUMERATION OF MAXIMAL CLIQUES OF LARGE GRAPHS*

E. A. AKKOYUNLU"

Abstract. An algorithm for enumerating maximal cliques (complete subgraphs) is proposed.
The aim is to deal with the difficulties caused by the size of the problem.

Key words. Algorithms, clique, enumeration, graph.

1. Introduction. The problem considered here is best formulated in terms
of an undirected graph G (Fig. 1). If So is the set of nodes and E the set of edges,
the goal is to identify completely connected subgraphs (or cliques) which are
maximal, b

c

a

FIG.

More generally, So is a set of elements, and there is defined over pairs in So
a symmetric, nontransitive binary relation R. (E is a set of pairs which are in rela-
tion R.) A subset S of So is a maximal subset (ms) if

(i) every pair in S is in relation R, and
(ii) S is not a proper subset of any set with property (i).

The ms are of interest in many contexts: graph theory (the coloring problem),
switching theory (state minimization [1]), operations research (scheduling [2],
[3]), information systems, etc. There are several known algorithms [1], [4], [5],
[6] for enumerating these sets. As a rule, however, these algorithms cannot handle
large problems [3] efficiently. The difficulty arises because the terms generated
include duplications, or even submaximal sets. To avoid this, a list of all the terms
has to be kept and repeatedly scanned. In the worst cases, the list cannot be
accommodated in core.

This paper proposes a new algorithm which is especially efficient in dealing
with large problems, and has none of the shortcomings mentioned above. The set
generated corresponds precisely (and without duplications) to the set desired.

Received by the editors March 4, 1972, and in revised form November 20, 1972.
f Department of Computer Science, State University of New York at Stony Brook, Stony Brook,

New York 11790. This research was supported in part by the National Science Foundation under
Grants GK-1241 and GJ-243.

2 E. A. AKKOYUNLU

X X d

f

g

FG. 2

There is thus no need to refer to previously generated terms, and no need to
maintain a list in core. Even for the largest problems memory size is not a critical
limitation.

Let ///denote the set of ms. Certain subsets of /are also important. In the
state minimization problem where the relation R is mutual compatibility, what is
wanted is minimal cover, i.e., the smallest number of ms in which each element
occurs at least once. In scheduling, on the other hand, R is mutual exclusion, and
one is typically interested in finding a minimal pair-cover, i.e., the smallest subset
of ,//’ such that every pair in relation R occurs together in some term. This paper
is mainly concerned with an algorithm for enumerating the set ///.

The information contained in the graph G is normally represented in the
form of the table in Fig. 2. The somewhat redundant representation of Fig. 3 will
be used instead, for it displays certain features more saliently. In particular, each
element x divides the remaining elements into two sets: the set Cx of elements
which are in relation R to x, and the set Dx of elements which are not. This is
made explicit in Fig. 3.

2. Preliminaries. In Fig. 3, consider the row associated with c. For every ms,
exactly one of the following statements must be true"

1. The ms includes {c).
2. The ms includes at least one of {a, e, h).

bcefg
aefgh

aeh
h

abcfh
abe
ab

bbde

C

dh

bdfg
abcefg
dg
cdgh
cdefh
afg

FIG. 3

MAXIMAL CLIQUES OF LARGE GRAPHS 3

To verify if both statements were true, the ms would include one of the disallowed
pairs, ac, ce, ch. If neither were true, the addition of c to this term could not pos-
sibly violate a constraint, so that the term could not have been maximal.

Consider next row b. An ms which includes b cannot include any of a, e, or h
since {a, e, h) Db. This, together with the above, means that every ms which
includes b must also include c. To generalize, we state:

If D
_

Dy, then x occurs in every ms where y occurs.
Further notation is introduced at this point in order to facilitate the manipula-

tion of subsets of f/ according to certain characteristics. For S
_

So, let L(S)
denote "the set of all ms which include at least one element of S." Similarly, let
E(S) denote "the set of all ms which include every element of S." Thus,

L(S) {M[M ./g, S M 4: },

E(S) {M[M ./g, S M}.
The following relations are direct consequences of these definitions:

(1) L({x}) ({x}),

(2) E(S1) 0 E(S2) E(S1 U S2),

(3) L(S1) L(S2) L(S1) if S c2 $2

(4) L() ,
Also, since any ms which includes x can only include elements in Cx, we can write

E({x})
E({x}) 0 L(S)=

E({x}) O L(S 0 C)

if xS,

otherwise.

More generally,

(5) E({x}) f3

3. Enumeration through disjoint subproblems. In the previous example, where

So {a, b, , d, e,f g, h}, the set of all ms can be written

/ L(So) L({a, b, c, d, e,f, g, h}),
which simply states that /g is the set of all ms which include at least one element.
As discussed above, g has two disjoint subsets,

(i) all ms which include {c},
(ii) all ms which include at least one of {a, e, h},

and this is expressed by writing,

,/g L(So) E({c}) U L({a, e, h}).
To formalize this notion, we write

(6) L(S U {x})= E({x})U (L(S) (’1 L(Dx)).

Here, the right-hand side is the union of disjoint sets: all ms which include x, and
all which exclude x but include some element in S.

4 E.A. AKKOYUNLU

In what follows, the notation will be simplified by writing L(a, b,..., x)
instead of the formally correct L((a, b, ..., x)), etc. Equations (1) through (6) can
be used to reduce the problem of enumerating /d into a series of smaller problems.
The key step is the substitution specified by (6) which is applied repeatedly. For
the problem in Fig. 3, we have

/// L(a, b, c, d, e,f, g, h) E(c) U L(a, e, h)

E(c) U E(a) U (L(e, h) L(b, c, e,f, g))

E(c) U E(a) U ((E(e) U L(h) L(a, b, c,f, h)) L(b, c, e,f, g)).

Since L(h) E(h), equation (5) allows the reductions

g(e) L(b, c, e, f, g) E(e),

E(h) L(a, b, c,f, h) L(b, c, e,f, g) E(h) f) L(./ g),

dd E(c) 1.3 E(a) U E(e) U (E(h) f3 L(. g)).

Now L(f, g) E(f) U (L(g) L(a, b, e)), so that we write,

E(h) L(f, g) (E(h) f"l E(f)) U (E(h) f"l L(g) f"l L(a, b, e)),

/d E(c) U E(a) U E(e) U (E(h, f) U (E(h) f"l L(g) f"l L(a, b, e))).

Using equation (5), we have

E(h) f"l L(g) f"l L(a, b, e) E(h) L(g) f"l L(a).

Finally, since L(g) ffl L(a) E(g) f"l L(a) , we obtain

’/ E(c) U E(a) U E(e) U E(h,f).

The problem is thus reduced to four smaller problems whose solutions correspond
to disjoint subsets of //. Each of these can now be solved separately and the
complete solution dd obtained.

In evaluating E(a), for example, only the set Ca need be considered. This
corresponds to Fig. 4 whose ms set is {d, h}. The addition of a to every member of
this set yields E(a) {ad, ah}. Similarly, E(h,f) is obtained by adding h and f to
each term of the ms set derived from Fig. 5 which consists of variables in Ca f) Cy
alone. This ms set is simply {g} so that E(h,f) {fgh}.

To generalize, let S be a set for which x, y e S implies x e Cy. Then,

S if f-lxs Cx ,
(7) E(S)

E(S) f’) L(f’) xs Cx) otherwise.

4. Enumeration algorithm. This section formalizes the approach outlined
above by giving an algorithm for enumerating rid. The algorithm manipulates

F6. 4

MAXIMAL CLIQUES OF LARGE GRAPHS 5

FG. 5

symbolic expressions composed of E- and L-sets. The data base consists of the
sets So, C, and Dx, for x So. The algorithm is organized around a pushdown
stack which serves to store partially formulated disjoint subproblems. Items on
the stack are expressions involving sets of the form E(S) and L(S). A possible item
on the stack could be

E(h) fq L(g) fq L(a, b, e).

Specifically, each item on the stack is a multiple set intersection between one or
more L-sets and at most one E-set.

Starting with the expression L(So), the algorithm consists of repeated applica-
tions of equations (6) and (7), supplemented by the reduction equations (1)
through (5). Equation (6) is used to split an expression into two others which corre-
spond to disjoint subsets of the original set; these are then pushed on the stack,
and the process is repeated until an expression of the form E(S) is obtained. Equa-
tion (7)is then applied once.

ALGORITHM A.
Input: So, {Cxlx So}, {Dlx So}.
Output:
Step (Initialize). Place L(So)on the stack.
Step 2 (Prepare to split). (a) If the stack is empty, stop.
(b) Unload the top expression from the stack and call it T. T is a multiple

intersection whose form is either

(s’) f

or simply

In the first case set V S’, in the second case set V
Step 3 (Choose the L-term to be split). (a) Select k I so .that S has the

fewest elements possible. Also choose x S, and let S S {x}.
(b) If S 3 go to Step 5. (Equation (1) can be applied instead of equation

(6).)
Step 4 (Formulate the second subproblem). (a) Compute

if V=
Q=

Dx fq(fqrvCr) otherwise.

(b) If Q go to Step 5. (Every ms which covers V also covers {x}.)
(c) Make a copy of T with L(S) f3 L(Q) substituted for L(S,), and load this

copy on the stack.

6 E.A. AKKOYUNLU

Step 5 (Formulate the first subproblem). (a) Let J {j[je l, xeSj}. If
J go to Step 6. (Equation (7) is applicable.)

(b) For all j e J compute Wj Sj f"l C,,. If W 5 for any j J go to Step 2.
(No ms covers both V and {x} .)

(c) Place the expression

j6J

on the stack and go to Step 2.
Step 6 (Apply equation (7).) (a) Compute

P= Cy.
yeVw{x}

(b) If P output V U {x}, then go to Step 2.
(c) Load the stack with E(V U {x}) L(P), and go to Step 2. (End Algor-

ithm A.)
In practice, rather than compute the set

Cy
yeV

each time, it is more convenient to store it along with the associated item on
the stack.

5. Conclusion. Techniques for generating maximal subgraphs were discussed
with reference to the difficulties caused by the size of the problem. An effective
procedure was proposed for systematically reducing these problems into smaller
ones whose ms sets are disjoint. An important feature of the enumeration algor-
ithm is that it is organized around a stack, so that its core requirements are
minimal.

Acknowledgments. would like to thank Professor S. H. Unger of Columbia
University for the long discussions which helped focus this work.

REFERENCES

[1] M. C. PAULL AND S. H. UNGER, Minimizing the number ofstates in incompletely specified sequential
switching junctions, IRE Trans. Electronic Computers, EC-8 (1959), pp. 356-367.

[2] E. A. AKKOYUNLU, Allocating facilities to interdependent activities, Proc. Fifth Annual Princeton
Conference on Information Sciences and Systems, Princeton, N.J., 1971, pp. 86-87.

[3] A. D. HALL, JR. AND F. S. ACTON, Scheduling university course examinations by computer, Comm.
ACM, 10 (1967), pp. 235-238.

[4] P. M. MARCUS, Derivation ofmaximal compatibles using Boolean algebra, IBM J. Res. Develop., 8

(1964), pp. 537-538.
[5] G. D. MULLIGAN AND D. G. CORNEIL, Corrections to Bierstone’s algorithm for generating cliques,

J. Assoc. Comput. Mach., 19 (1972), pp. 244-247.
[6] R. M. BURSa’ALL, Tree searching methods with an application to a network design problem, Machine

Intelligence, (1967), pp. 65-85.

