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In this dissertation, I explore the impact of idiosyncratic risk on asset 

returns. The first essay examines how idiosyncratic risk affects the cross-section 

of stock returns. I use an exponential GARCH model to forecast expected 

idiosyncratic volatility and employ a combination of the size effect, value 

premium, return momentum and short-term reversal to measure relative 

mispricing. I find that stock returns monotonically increase in idiosyncratic risk 

for relatively undervalued stocks and monotonically decrease in idiosyncratic 

risk for relatively overvalued stocks. This phenomenon is robust to various 

subsamples and industries, and cannot be explained by risk factors or firm 

characteristics. Further, transaction costs, short-sale constraints and information 

uncertainty cannot account for the role of idiosyncratic risk. Overall, these 
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findings are consistent with the limits of arbitrage arguments and demonstrate 

the importance of idiosyncratic risk as an arbitrage cost. 

The second essay studies the cross-sectional determinants of delta-

hedged stock option returns with an emphasis on the pricing of volatility risk. 

We find that the average delta-hedged option returns are significantly negative 

for most stocks, and they decrease monotonically with both total and 

idiosyncratic volatility of the underlying stock. Our results are robust and cannot 

be explained by the Fama-French factors, market volatility risk, jump risk, or the 

effect of past stock return and volatility-related option mispricing. Our results 

strongly support a negative market price of volatility risk specification that is 

proportional to the volatility level. Reflecting this volatility risk premium, 

writing covered calls on high volatility stocks on average earns about 2% more 

per month than selling covered calls on low volatility stocks. This spread is 

higher when it is more difficult to arbitrage between stock and option.
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1. Introduction

Whether and how idiosyncratic risk a¤ects asset returns has drawn consider-

able attention recently. There has been a long and lively debate on the pricing

of idiosyncratic volatility in the cross-section of stock returns. For example,

modern �nance theory such as CAPM suggests that investors hold a portfolio

of stocks to diversify away idiosyncratic risk. Therefore, only systematic risk is

priced in equilibrium while idiosyncratic risk is not. However, Merton (1987)

proposes a capital market equilibrium model with incomplete information and

implies a positive relation between idiosyncratic risk and expected return if in-

vestors hold under-diversi�ed portfolios. Di¤erent from the view of classical

�nance, behavioral �nance research such as Shleifer and Vishny (1997) argues

that idiosyncratic risk is a large holding cost for risk adverse arbitrageurs. Pon-

ti¤ (2006) further points out that there should be no systematic cross-sectional

relation between expected return and arbitrage cost such as idiosyncratic risk.

However, the conditional relations, if any, should rely on the variables that are

related to mis-valuation and arbitrage opportunities.

Similar to the debate in the theoretical evidence, the existing empirical

�ndings are also mixed. For example, the unconditional relation between idio-

syncratic volatility and stock returns is uncertain. Some studies �nd a positive

relation, while others �nd a negative or insigni�cant relation. 1 Moreover, the

1Ang, Hodrick, Xing, and Zhang (2006, 2009) document that stocks with high past re-
alized idiosyncratic volatility of daily returns have low value-weighted average returns. Bali
and Cakici (2008) �nd that negative relation in Ang et al. (2006) is not robust under di¤erent
choices of data frequency, weighting scheme and breakpoints in the construction of idiosyn-
cratic volatility sorted portfolios. Fu (2009) and Spiegel and Wang (2006) use exponential
GARCH models to estimate idiosyncratic volatility and both document an unconditionally

1



conditional relation implied by the limits of arbitrage argument is also ques-

tioned. 2

In contrast to the vast literature on the cross-section of stock returns, few

studies have been conducted on the cross-section of the returns on stock options,

although options are more sensitive to changes in volatility than stocks. In sto-

chastic volatility option pricing models (e.g., (Heston (1993)), both the market

prices of the stochastic volatility risk and option depend on the total volatility

of the underlying asset rather than just the systematic risk exposure. That im-

plies that idiosyncratic risk may also a¤ect the cross-sectional option returns.

3 Therefore, understanding the role of idiosyncratic risk in asset pricing and

how idiosyncratic risk a¤ects both stock and option returns would not only help

investors to e¤ectively manage their risk, but also improve our understanding

of asset pricing model and marekt e¢ ciency.

This dissertation includes two essays that contribute to these literatures. In

particular, I examine the impact of the idiosyncratic risk of stock returns on

(1) the cross-section of stock returns and (2) the cross-section of stock option

returns.

The �rst essay examines the conditional relation between idiosyncratic risk

and cross-sectional of stock returns. I use an exponential GARCH model to

forecast expected idiosyncratic volatility and employ a combination of the size

positive relation.
2For example, Brav, Heaton, and Li (2009) document that value-weighted returns do not

increase in idiosyncratic volatility among "undervalued" stocks (small �rms, value �rms or
recent winners).

3Bakshi and Kapadia (2003b) report that idiosyncratic volatility at individual stock level
is negatively but insigni�cantly related to delta-hedged option returns.
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e¤ect, value premium, return momentum and short-term reversal to measure

relative mispricing. I �nd that stock returns monotonically increase in idio-

syncratic risk for relatively undervalued stocks and monotonically decrease in

idiosyncratic risk for relatively overvalued stocks. This pattern is consistent

with the limits of arbitrage arguments that idiosyncratic risk is an arbitrage

cost.

The second essay studies the cross-sectional determinants of delta-hedged

stock option returns with an emphasis on the pricing of volatility risk. We

�nd that the average delta-hedged option returns are signi�cantly negative for

most stocks, and they decrease monotonically with both total and idiosyncratic

volatility of the underlying stock. Our results are robust to other model speci�-

cations and cannot be explained by the Fama-French factors, market volatility

risk, jump risk, or the e¤ect of past stock return and volatility-related option

mispricing. Our results strongly support a negative market price of volatility

risk speci�cation that is proportional to the volatility level. Re�ecting this

volatility risk premium, writing covered calls on high volatility stocks on aver-

age earns about 2% more per month than selling covered calls on low volatility

stocks. This spread is higher when it is more di¢ cult to arbitrage between stock

and option.
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1.1. Idiosyncratic Risk, Costly Arbitrage, and the Cross-

Section of Stock Returns

It has been well established that stock returns are predictable in the cross-

section by a variety of �rm characteristics (e.g. the book-to-market ratio).

In contrast to risk-based explanations, behavioral �nance research commonly

interprets such return predictability as evidence of mispricing and market in-

e¢ ciency. To study the magnitude of mispricing, a number of authors have

examined settings with both rational and irrational investors. In these settings,

the investment choices of the rational investors partially o¤set the choices of

the irrational investors, who drive prices away from rational levels. However,

because of costs, i.e., limits to arbitrage, the rational investors do not fully o¤set

the choices of the irrational investors, so mispricing remains.

In this essay, I attempt to test the limits of arbitrage explanation by exam-

ining the impact of idiosyncratic risk on stock returns.4 Shleifer and Vishny

(1997) argue that idiosyncratic risk represents a large cost for risk-averse arbi-

trageurs, who cannot hedge the idiosyncratic risk of individual stocks. Ponti¤

(2006) further shows that risk-averse arbitrageurs will assign smaller portfolio

weights to stocks with higher idiosyncratic risk. Hence, idiosyncratic risk is

likely to deter arbitrage.

If idiosyncratic risk does prevent arbitrageurs from o¤setting the choices of

irrational inventors, then there are two main implications. First, the abnormal

returns associated with various anomalies will be greater among high idiosyn-

4Trading and holding costs create limits to arbitrage. Idiosyncratic risk is the most com-
mon proxy for holding cost.
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cratic risk stocks. Existing empirical studies (e.g. Ali, Hwang, and Trombley

(2003), Mendenhall (2004), Mashruwala, Rajgopal, and Shevlin (2006), andWei

and Zhang (2007)) take this approach.5 Second, the cross-sectional relation be-

tween idiosyncratic risk and stock returns should vary with the direction of mis-

pricing; idiosyncratic risk deters arbitrageurs from buying undervalued stocks

and short selling overvalued stocks. It implies that returns will monotonically

increase in idiosyncratic risk for relatively undervalued stocks and monotoni-

cally decrease in idiosyncratic risk for relatively overvalued stocks.6

To address these issues, I examine the conditional relation between idiosyn-

cratic risk and weekly stock returns.7 To capture the time-variation of expected

idiosyncratic risk, I use historical weekly returns and an exponential GARCH

model to forecast the conditional idiosyncratic volatility in the next week.8 In

addition to analyzing the interactions between idiosyncratic risk and individ-

5See Ali, Hwang, and Trombley (2003) for book-to-market e¤ect, Mendehall (2004) for
post-earnings-announcement drift, Mashruwala, Rajgopal, and Shevlin (2006) for accrual
anomaly, and Wei and Zhang (2007) for value-to-price anomaly. The empirical �ndings in
Zhang (2006) are also consistent with this prediction for momentum e¤ect.

6For the cross-sectional study, it is more appropriate to use the term of relative mispricing.
The cross-sectional distribution of absolute mispricing could vary over periods. There could be
more (less) undervalued stocks than overvalued stocks during certain periods. Nevertheless,
sophisticated arbitrageurs can always pro�t form buying relatively undervalued stocks and
selling relatively overvalued stocks.

7While previous papers on this topic mainly study annual returns, I focus on weekly returns
because it is more realistic that arbitrageurs care about the short-term time-varying risk of
their long and short positions. The resources of arbitrageurs are limited by risk aversion,
short horizons, and agency problems (see Shleifer (2000)). For example, arbitrageurs with
poor perform over even short time periods are subject to the pressure of fund out�ows. Even if
some variables (signals) forecasting returns are updated every year (e.g. the book-to-market
ratio), arbitrageurs may change the portfolio weights of mispriced stocks more frequently,
because expected idiosyncratic risk varies over the short-horizon.

8Exponential GARCH models are capable to capture both the clustering and asymmetric
properties of time-varying volatility. The idiosyncratic volatility estimate is relative to the
Fama-French (1993) three-factor model.
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ual anomalies, I measure the relative mispricing for each stock by combining

four prominent anomalies into an easily interpretable measure: the size e¤ect,

value premium, return momentum and the short-term reversal. I then examine

the conditional relation between idiosyncratic risk and returns among relatively

undervalued and relatively overvalued stocks, using this combined metric.

Consistent with the previous studies and the mispricing explanation, I �nd

that stock market anomalies such as the size e¤ect, value premium, return mo-

mentum and post-earnings-announcement drift are more pronounced for stocks

with higher idiosyncratic risk. However, when I measure the relative mispricing

using individual anomalies, there is no consistent evidence that returns increase

in idiosyncratic risk among relatively undervalued stocks or decrease in idiosyn-

cratic risk among relatively overvalued stocks. The results di¤er across various

anomalies and even depend on the weighting-scheme. For example, �rms with

higher idiosyncratic risk have signi�cantly higher equal-weighted returns among

small stocks, value stocks, and �rms with high earnings-announcement shocks.

But the signi�cance disappears after switching to value-weighted returns. In ad-

dition, �rms with higher idiosyncratic risk experience signi�cantly lower value-

weighted returns among recent losers and growth stocks, while such pattern is

not signi�cant for large stocks or �rms with low earnings-announcement shocks.

Using a single anomaly to de�ne mispricing might be inappropriate, since

the same stock could be subject to di¤erent anomalies which are not perfectly

correlated. For instance, small stocks could contain both recent losers and

growth �rms. To better capture the level of mispricing, I employ an arbitrage

score method based on the aggregate decile ranks of book-to-market ratio, past

6



one year return by skipping one month, negative size and negative return of

previous week.9 These four �rm characteristics, which are readily available on

most stocks, are known to forecast future returns and cannot be fully accounted

for by risk-based explanations.

This score method gives each anomaly an equal weight in predicting future

returns, such that no single anomaly dominates others.10 The arbitrage score

is highly correlated with all these four anomalies and strongly forecasts future

returns in the cross-section. I �nd that high score stocks outperform low score

stocks by 0.88% (0.59%) per week for equal-weighted (value-weighted) returns.

The di¤erence is statistically signi�cant and cannot be explained by common

risk factors.11

I then use the arbitrage score to proxy for the mispricing. Consistent with

the limits of arbitrage hypotheses, I �nd that stock returns strongly increase in

idiosyncratic risk among relatively undervalued (high score) stocks and decrease

in idiosyncratic risk among relatively overvalued (low score) stocks. For stocks

within the highest arbitrage score quintile, high idiosyncratic risk stocks outper-

form low idiosyncratic risk stocks by 0.96% (0.34%) per week for equal-weighted

(value-weighted) returns. In contrast, for stocks within the lowest arbitrage

score quintile, high idiosyncratic risk stocks underperform low idiosyncratic

9At the beginning of each week, all stocks are independently sorted into deciles from low
to high, based on book-to-market, the compound gross return from t-52 weeks to t-4 weeks,
negative size and negative return of previous week. Stocks obtain the corresponding score of
its decile rank. Arbitrage score is the total score based on four di¤erent rankings and ranges
from 4 to 40.
10For robustness, I conduct another method in the multivariate cross-sectional regression

framework, which allows each anomaly to have its own marginal e¤ect.
11The risk adjustments include the CAPM alphas, Fama-French (1993) three-factor alphas

and Carhart (1997) four-factor alphas.
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risk stocks by 0.67% (0.36%) per week for equal-weighted (value-weighted) re-

turns. For stocks within the middle arbitrage score quintile, I �nd no signi�cant

relation between idiosyncratic risk and returns.

In the �nal analysis, I investigate the robustness of the conditional relation.

First, I �nd a similar pattern for stocks traded on di¤erent exchanges, for stocks

with di¤erent levels of size, book-to-market ratio and trading volume, and for

stocks with price over $5. The results are also consistent over various subperi-

ods. Second, because some arbitrageurs may be limited to or specialize in �rms

within speci�c industry sectors, I repeat the tests among the Fama-French 12

industries and �nd similar results. Third, because idiosyncratic risk is highly

correlated with other arbitrage costs, I separate the e¤ect of idiosyncratic risk

from bid-ask spreads, illiquidity and short-sale constraints. I examine the in-

teractions among these measures for undervalued and overvalued stocks.12 The

results indicate that the strength of idiosyncratic risk as an impediment to ar-

bitrage extends transaction costs and short-sale constraints, even at the short

horizon.13 Fourth, the Fama-MacBeth regressions provide the same results at

the individual stock level and con�rm that this pattern cannot be explained by

systematic risk, �rm characteristics, or other arbitrage costs. Finally, the main

results hold for alternative estimates of expected idiosyncratic risk.

12I use price level to proxy for the bid-ask spreads. The proxy for illiquidity is the Amihud
(2002) measure. Following Nagel (2005), I use institutional ownership as a proxy for short-sale
constrains.
13Di¤erent from transaction costs, idiosyncratic risk and short-sale constraints are consid-

ered as holding costs (Ponti¤ (2006)). The relative importance of holding cost over transaction
costs increases with holding period. Prior empirical studies extensively emphasize the impact
of transaction costs on short-term mispricing and not much attention is given to idiosyncratic
risk.
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This essay contributes to a growing literature that examines the limits of

arbitrage. Ali, Hwang, and Trombley (2003), and Mendenhall (2004) empha-

size the impact of idiosyncratic risk on individual anomalies such as the value

premium and post-earnings-announcement drift. This essay not only con�rms

their results at weekly horizon but more importantly, goes further and tests

the relations between idiosyncratic risk and returns conditioning on the rela-

tive mispricing. A recent study by Brav, Heaton, and Li (2009) documents that

value-weighted annual returns do not increase in annually updated idiosyncratic

volatility among "undervalued" stocks (small �rms, value �rms or recent win-

ners), and thus they cast doubt on the existence of the limits of arbitrage. One

limitation of their approach is that the undervaluation or overvaluation is likely

to be determined by a combination of multiple factors. In this essay, I measure

the relative mispricing of stocks by combining four di¤erent anomalies and �nd

strong support that idiosyncratic risk is an arbitrage cost. Another study by

Duan, Hu, and McLean (2009) also argues that idiosyncratic risk deters arbi-

trages.14 However, they focus on the most heavily shorted stocks and I study

the full cross-section of stocks.

This study also sheds some light on the debate on the pricing of idiosyncratic

risk.15 For example, Fu (2009) and Spiegel and Wang (2006) use exponential

GARCH models to estimate idiosyncratic volatility and both document an un-

conditionally positive relation. Using a similar sample and the same method-

14Duan, Hu, and McLean (2009) assume that high short interest could proxy for overvalu-
ation. They �nd a negative relation between idiosyncratic risk and returns among high short
interest stocks, while no relation among low short interest stocks.
15For example, Merton (1987) implies a positive relation between idiosyncratic risk and

expected returns if investors hold under-diversi�ed portfolios.
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ology to calculate volatility, I �nd strong evidence of conditional relation. "All

cross-sectional asset pricing models whether risk based, tax based, or trans-

action cost based, should rely on unconditionally monotonic relations between

expected return and the variable that drive expected returns."16 Therefore, my

�ndings cast doubt on any argument that idiosyncratic risk is positively or

negative priced.17

1.2. Individual Stock Volatility Risk Premium and the

Cross-Section of Stock Option Returns

There has been a long and lively debate on the pricing of idiosyncratic volatil-

ity in the cross-section of stocks.18 Some essay �nd a positive relation between

idiosyncratic volatility and stock returns, while others �nd a negative or insignif-

icant relation. This study provides fresh evidence and new insights on this topic

by examining the pricing of idiosyncratic volatility risk using a cross-section of

individual stock options.

Despite the inherent link between stocks and stock options, studies of stocks

and stock options have distinct focuses and approaches. Central to equity

valuation is diversi�cation and exposure to systematic risks. On the other

hand, options are valued relative to the underlying stocks by replication and

16See Ponti¤ (2006), Page 49.
17Ang, Hodrick, Xing, and Zhang (2006, 2009) document that stocks with high past realized

idiosyncratic volatility of daily returns have low value-weighted average returns.
18See Lintner (1965), Miller and Scholes (1972), Fama and Macbeth (1973), Lehmann

(1990), Ang, Hodrick, Xing, and Zhang (2006, 2009), Spiegel and Wang (2006), Fu (2009)
and others.
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no-arbitrage. The option literature typically focuses on �tting the time-series

dynamics of option prices or explaining relative valuation of options of di¤er-

ent moneyness on the same stock. In contrast to the vast literature on the

cross-section of stock returns, there are no studies about the cross-sectional

determinants of individual stock option returns. Our study �lls this void.

One advantage of our study is that options are more sensitive to changes in

volatility than stocks. To ensure our �ndings are new rather than mere re�ec-

tions of known results from the stock market, we adjust option returns for their

exposure to the underlying stock returns using daily rebalanced delta-hedges.

Our test is motivated by stochastic volatility option pricing models (e.g., He-

ston (1993)). In these models, both market price of volatility risk and option

price depend on the total volatility of the underlying asset rather than just

the systematic risk exposure. We take advantage of a theoretic relation be-

tween volatility risk premium and delta-hedged option returns (see Bakshi and

Kapadia (2003a)). Our results speak directly about market price of volatility

risk.

In contrast, previous studies in the stock market do not model the volatility

dynamics or its implication for stock prices. They typically measure idiosyn-

cratic volatility as a �rm characteristic. The relation between idiosyncratic

volatility and stock return is interpreted as evidence of market imperfection

and mis-speci�cation of the factor model used to compute idiosyncratic volatil-

ity. It may not represent a priced risk factor. Even if it represents a risk factor,

it does not have to be the volatility risk. Thus, there are important di¤erences

between our study and previous studies of pricing of idiosyncratic volatility in

11



the stock market. This study is not merely an extension of previous studies to

a new asset class.

Our main empirical tests are Fama-MacBeth type cross-sectional regressions

with delta-hedged option returns as the dependent variable. Each month and

for each optionable stock, we choose one call option and one put option that

are closest to being at-the-money, because such options are the most sensitive

to changes in volatility. Each month, all chosen options (on di¤erent underlying

stocks) have the same expiration date (about one and a half month till matu-

rity). These short-term options are the most actively traded, and thus their

prices provide the most reliable information. We hold these options till matu-

rity. The delta-hedged call option return is measured as change in the value of

a self-�nancing portfolio which is long the call and short the underlying stock.

The portfolio is rebalanced daily so that it is not sensitive to stock price move-

ment. Our results are obtained from about 160,000 delta-hedged option returns

for more than 5,000 underlying stocks over 11 years.

If individual stock options are redundant such as the case under the Black-

Scholes model, then there should be no systematic pattern in the cross-section

of delta-hedged option returns. In contrast, we �nd signi�cant cross-sectional

determinants of the delta-hedged option returns. Our results con�rm that in-

dividual stock options are nonredundant, complementing previous �nding that

stock index options are not redundant (e.g., Buraschi and Jackwerth (2001),

Coval and Shumway (2001), Jones (2006)).

Consistent with the prediction of a stochastic volatility option pricing model

where market price of volatility risk is negative and proportional to the volatil-

12



ity level, we �nd that the average delta-hedged option returns are negative for

most stocks, and they decrease monotonically with the total volatility of the

underlying stock. This result is entirely driven by stock�s idiosyncratic volatility

(measured relative to Fama-French three factors model), as there is no signif-

icant relation between delta-hedged option returns and the betas with respect

to the Fama-French three factors. The same pattern holds for both call options

and put options. It holds after we control for the contemporaneous stock re-

turns and their higher order terms, as well as stock�s exposure to the market

volatility risk.

In addition to the Fama-MacBeth regressions, we also compare monthly

returns of portfolios of options sorted by the idiosyncratic or total volatility

of the underlying stocks. Covered call writing on top quintile idiosyncratic

volatility stocks signi�cantly outperforms covered call writing on bottom idio-

syncratic volatility stocks, with an average monthly return di¤erence ranging

from 1.59% (for stock value-weighted portfolio) to 2.32% (for equal-weighted

portfolio) which is both economically and statistically signi�cant.19 The dif-

ference can not be explained by CAPM, Fama-French three factors model, or

the Carhart four factor model. The superior return of writing covered calls

on high idiosyncratic volatility stocks remains signi�cant for all subsample of

stocks sorted by size, and holds in all sub-sample periods.

19We form covered call as a delta-neutral position that sells calls against a long position
of the underlying stock. It is essentially the opposite of delta-hedged call position (which
is long the call and short the underlying stock) except there is no daily rebalancing of the
delta hedge. Lakonishok, Lee, Pearson, Poteshman (2007) �nds that call writing is the most
important category of option trade, and a large percentage of call writing is part of covered
call positions.
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To further test the robustness of the negative relation between delta-hedged

option returns and stock�s idiosyncratic or total volatility, we control for several

variables (motivated by various option pricing models other than the stochastic

volatility model) that may be correlated with both stock�s volatility and delta-

hedged option return. First, previous studies have extended the stochastic

volatility model to incorporate the possibility of jumps in stock returns. We

include proxies for jump risk in stock return as additional independent variables

in the Fama-MacBeth regressions. The delta-hedged option return is stocks

more negative for stocks with high jump risk, but the regression coe¢ cient for

stock volatility is still signi�cant negative.

Second, the traditional option pricing models (including stochastic volatil-

ity model) abstract away from market imperfections such as transaction costs.

High volatility stocks tend to be more illiquid according to Amihud�s price

impact measure. Thus, options on high volatility stocks are more di¢ cult to

hedge, and any relative mispricing between stock and options are more di¢ cult

to arbitrage. Consistent with the impact of market friction and limits to arbi-

trage, we �nd that delta-hedged option return is signi�cantly related to Amihud

illiquidity measure of the underlying stock. However, the volatility coe¢ cient

is still signi�cant in the presence of Amihud illiquidity measure. The negative

relation between delta-hedged option return and stock volatility is also robust

to controlling for stock price level.

We also control for the open interests and trading volume of individual stock

options, to pick up the e¤ects of option demand and liquidity. Garleanu, Ped-

ersen, and Poteshman (2008) develop an option pricing model which considers
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liquidity provision by option market makers and captures the pricing e¤ect of

the demand pressure from option end-users. Consistent with the idea that op-

tion market makers charge higher premium for options with large end-users

demand, we �nd that delta-hedged option returns decrease with option open

interest. But again, the negative relation between delta-hedged option return

and stock volatility persists after controlling for option open interests.

Another variable correlated with stock volatility that we control for is past

stock return. Huang, Liu, Ghee, and Zhang (2009) �nd that the volatility-return

relation in the cross-section of stocks is insigni�cant when past one-month return

is used as a control variable. Amin, Coval, and Seyhun (2002) show that past

60 days stock market return a¤ects the index option prices: index call options

become more expensive and index puts become less expensive after the stock

has gone up. Our cross-sectional regressions show that delta-hedged option

return is positively related to the past return of the underlying stock. The

�option momentum" pattern holds for both individual stock call options and

put options, and for past returns of di¤erent horizons such as one month, one

year and three years. Thus, the positive relation between delta-hedged option

return and past stock return is not driven by the well-known short-term/long-

run reversal and intermediate-term momentum patterns in stock returns. It

does not change materially the negative relation between delta-hedged option

return and stock volatility.

Finally, the negative relation between delta-hedged option return and stock

volatility can not be explained by volatility-related mispricing in the stock op-

tions recently documented by Goyal and Saretto (2009). They �nd that expen-
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sive options with high implied volatility (relative to historical realized volatility)

earn low returns and cheap options with low implied volatility (relative to his-

torical realized volatility) earn high returns. In our Fama-MacBeth regressions,

we �nd that delta-hedged option return is signi�cantly and positively related

to the di¤erence between historical realized volatility and at-the-money implied

volatility, which is consistent with the �nding of Goyal and Saretto (2009). After

controlling for the di¤erence between historical realized volatility and implied

volatility, the coe¢ cient for stock�s total volatility becomes even more negative

and remains statistically signi�cant.

In summary, our study of the cross-sectional determinants of delta-hedged

option returns provides a new way to test option pricing model, and our results

provide useful insights for option valuation. In particular, our results strong

support a negative volatility risk premium speci�cation for individual stocks

that is proportional to the volatility level.

It is well known that at-the-money option implied volatilities are consis-

tently higher than their realized volatilities (e.g., Jackwerth and Rubinstein

(1996), Bakshi and Kapadia (2003b)). This has been informally interpreted as

evidence of a negative volatility premium. However, Goyal and Saretto (2009)

show that for individual stocks, the di¤erence between at-the-money option

implied volatility and historical realized volatility contains volatility mispricing

due to investors�failure to incorporate the information contained in the cross-

sectional distribution of implied volatilities when forecasting individual stock�s

volatility. Thus, caution is needed to draw conclusions about individual stock

volatility risk premium based on the di¤erence between at-the-money option
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implied volatility and historical realized volatility.

Several papers have studied the market volatility risk premium based on

delta-hedged option returns. Coval and Shumway (2001) examine the ex-

pected returns on delta-hedged index options, and �nd large deviations from the

CAPM, concluding that some other systematic factor, such as stochastic volatil-

ity, might be priced by the market. Bakshi and Kapadia (2003a) provide direct

evidence of negative price of market volatility risk by examining delta-hedged

S&P 500 index option returns.20 They conduct time-series tests and �nd that

the volatility risk premium is even more negative during periods of high market

volatility. Duarte and Jones (2007) analyze the market volatility risk premium

using a large cross section of individual stock option returns. They �nd that

unconditionally market volatility risk premium cannot reliably be distinguished

from zero, but they �nd strong conditional evidence that the market volatility

risk premium varies positively with the level of implied volatilities from S&P

500 index options. The key variable in their test is stock�s loading (i.e., beta)

to the market volatility risk, which we control for. They do not examine how

delta-hedged stock option return is related to the total or idiosyncratic volatility

of the underlying stock, which is the focus of our study. In addition, this study

tests many additional theory-motivated variables (not examined in studies) that

are expected to be related to delta-hedged stock option returns.

Bakshi and Kapadia (2003b) and Carr andWu (2009) are the only papers we

20There are also options studies documenting large negative premium for market volatility
risk without relying on delta-hedged option returns (see, e.g., Bates (2000), Chernov and
Ghysels (2000), Buraschi and Jackwerth (2001), Bakshi and Kapadia (2003a), Driessen and
Maenhout (2007), Jones (2003, 2006), and Pan (2002)).
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are aware of that present evidence on the idiosyncratic volatility risk premium

using data on individual equity options. Bakshi and Kapadia (2003b) report

that idiosyncratic volatility at individual stock level is negatively but insignif-

icantly related to delta-hedged option returns.21 This result is obtained from

a panel regression on 25 individual stock options between 1991 and 1995. Our

results are based on a more recent and comprehensive sample. Carr and Wu

(2009) also examine the pricing of individual stock volatility but using a di¤er-

ent approach from Bakshi and Kapadia (2003b) and this study. They quantify

the return variance risk premium on an asset using the notion of a variance

swap. Based on options on 35 individual stocks, they �nd that the premium

on individual stock volatility is negative and cannot be explained by traditional

pricing factors such as the market and the Fama and French (1993) three-factor

model. This is consistent with our result. They do not compare the magnitude

of the premium on individual stock volatility across stocks. We show that the

magnitude of the negative premium on individual stock volatility increase with

the stock volatility level.

Previous studies have estimated the market price of volatility risk by cali-

brating the option pricing models such as stochastic volatility models to best

�t the prices of options on the same underlying stock. In contrast, this study

takes advantage of the variation in the volatility and delta-hedged option returns

across di¤erent stocks. Duarte and Jones (2007) also adopts this approach. A

major advantage of this framework, besides its simplicity, is that it imposes

21The focus of Bakshi and Kapadia (2003b) is market volatility risk premium. They �nd
that individual equity options also embed a negative market volatility risk premium, but with
a much smaller magnitude than for the index options.
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minimal parametric structure, unlike most alternative approaches that rely on

a complete speci�cation of a stochastic volatility model for each underlying

stock.
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2. Idiosyncratic Risk, Costly Arbitrage, and

the Cross-Section of Stock Returns

This chapter is structured as follows. Subsection 1 describes the data and

presents summary statistics. Subsection 2 investigates the interaction between

idiosyncratic risk and individual anomalies. Subsection 3 describes the arbitrage

score computation method and examines the cross-sectional relation between

idiosyncratic risk and returns conditioning on the relative mispricing. Subsec-

tion 4 presents the results from robustness tests. Subsection 5 concludes.

2.1. Data and Measures

2.1.1. The Sample and Conditional Idiosyncratic Risk Measure

The data include daily stock returns for NYSE, AMEX, and NASDAQ stocks,

which are compounded to obtain weekly returns (Monday �Friday) from July

1963 to December 2006.22 I obtain stock level data such as price, return, trad-

ing volume and shares outstanding from the Center for Research in Security

Prices (CRSP). The weekly returns of common risk factors and risk-free rate

are taken from Kenneth French�s website. The annual accounting data and

22To be consistent with the public Fama-French weekly factors, I measure weekly stock
returns from Monday to Friday. To mitigate nonsynchronous trading or bid-ask bounce
e¤ects in daily prices, I also use Thursday-Wednesday weekly stock return and reconstruct
corresponding Fama-French weekly factors using the daily data. All results are robust to the
change.
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quarterly earnings-announcement data of all �rms are obtained from Compus-

tat. I obtain analyst coverage and earnings forecasts data from I/B/E/S. The

quarterly institutional holding data are from CDA/Spectrum Institutional (13f)

database. A stock is included in a particular week only if CRSP provides re-

turn, price and shares outstanding data histories of at least 260 weeks. In a

given week, there are between 1,021 and 6,946 common stocks in the sample,

where the mean (median) is 4,791 (4973). The sample covers 20,548 stocks and

7,405,088 stock-week observations.

Theoretically, idiosyncratic risk equals the return innovation�s standard de-

viation beyond what is expected, given that period�s market return. I follow

recent studies and assume that the Fama-French (1993) three-factor model is

the right model used by market for expected returns.23 Given this, idiosyncratic

risk equals the standard deviation of the regression residual from:

Rit � rt = �i + �i(Rmt � rt) + siSMBt + hiHMLt + "it;

Since volatility is time-varying, risk-averse arbitrageurs should care about the

expected idiosyncratic risk in the same period that the expected returns are

measured. Previous research mainly uses OLS model to calculate the realized

idiosyncratic volatility for empirical tests. However, Fu (2009) argues that

past realized idiosyncratic volatility is not an appropriate proxy for expected

23Practitioners may use models with more factors like Barron�s E3 model. The majority of
the extra factors are industry dummies (about 50). These extra factors help to model the risk
of under-diversi�ed portfolio. However, in the context of arbitrage, these models are most
likely over-speci�ed since it is di¢ cult to hedge out the systematic risk associated with so
many common factors.
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idiosyncratic risk, because the idiosyncratic volatility of a typical stock does

not follow a random walk.

To capture the time-variation of expected idiosyncratic risk, I use expo-

nential GARCH (EGARCH) models. GARCH models have been widely used

to model the conditional (expected) volatility of returns. Pagan and Schw-

ert (1990) �t a number of di¤erent models to monthly U.S. stock returns and

�nd that Nelson (1991)�s EGARCH model is the best in overall performance.

EGARCH models are able to capture the asymmetric e¤ects of volatility. More-

over, EGARCH models do not require restricting parameter values to avoid

negative variance as do other ARCH and GARCH models. Assuming that ar-

bitrageurs could utilize available historical information to forecast the expected

idiosyncratic risk of the next period, I employ EGARCH (1,1) and weekly re-

turns to estimate the out-of-sample conditional idiosyncratic volatility of next

week via:24

Rit � rt = �i + �i(Rmt � rt) + siSMBt + hiHMLt + "it; "it � N(0; �2it);

ln�2it = ai +
Pp

l=1 bi;l ln�
2
i;t�l +

Pq
k=1 ci;k

n
�
�
"i;t�k
�i;t�k

�
+ 


h��� "i;t�k�i;t�k

���� (2=�)1=2io :
At the beginning of each week during the holding period, I calculate each

stock�s conditional idiosyncratic volatility by estimating an EGARCH (1, 1)

model on the Fama-French three-factor model and all the available historical
24Using weekly returns to estimate idiosyncratic risk is a compromise compared with using

monthly or daily returns. The monthly return history is short for GARCH based estima-
tions and thus weekly returns could o¤er improved estimation accuracy (See Table 2.A1)).
Although daily or even intra-daily returns can improve precision further, they may also in-
troduce confounding microstructure in�uences (such as bid-ask bounce and nonsynchronous
trading). In addition, it is di¢ cult to use GARCH based conditional volatility models on
daily returns to provide precise volatility forecasts of longer horizons such as one week.
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data. To avoid the problem of short regression sample periods, estimates are

only conducted if at least 260 weekly return observations exist.25 The full sam-

ple is from July 1963 to December 2006, including 2269 weeks. Since �ve-year

return history is required to forecast volatility, the testing period starts from

June 1968, and covers 2010 weeks. A total of 7.4 million EGARCH estimations

are conducted with a mean (median) sample size of 724 (592) weekly observa-

tions.

Estimating EGARCH model each period for all individual stocks at a high

frequency is costly in practice.26 Since the estimation sample used to conduct

EGARCH for individual stock overlaps, the conditional idiosyncratic volatility

could be time-varying but very persistent. If conditional idiosyncratic volatility

is highly persistent across time and has a stable cross-sectional rank, then it

might not be necessary to update it each week.

Table 2.1 presents the time-series property of EGARCH (1,1) estimated

conditional idiosyncratic volatility (Eidio). Panel A reports the cross-sectional

distribution of the autocorrelation functions of Eidio, up to �ve lags. The

median correlation is 0.51 for the �rst lag and decays slowly to 0.24 for the

�fth lag. However, the correlation is lower and decays much faster for about

40% stocks. It indicates that the persistence of Eidio varies signi�cantly across

individual stocks.

Since the main focus in this study is on the cross-sectional ranking of Eidio,

25This is a compromise between having precise volatility estimates and keeping enough
young �rms. Table 2.A1 shows the relation between regression sample size and the accuracy
of EGARCH estimations.
26It incurs large computational burden for more than 7 million times EGARCH estimations.
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Panel B reports the likelihood of being independently included in the same Eidio

decile after 1 to 52 weeks. The likelihood value indicates the probability that a

stock will stay in the same Eidio decile in the later periods. The results show

that the likelihood is not very high even after just one week. For stocks in decile

1, 13.47% of them move to other groups and for stocks in decile 10, 28.66% of

them leave the group. The turnover is higher for middle deciles. Overall, the

results in Table 2.1 suggest that weekly updating the Eidio measure is necessary

for the cross-sectional analysis. Moreover, linking weekly Eidio to the future

returns of longer than one week could lead to imprecise inference.27

2.1.2. Arbitrage Costs and Firm Characteristics

2.1.2.1. Idiosyncratic Risk as An Arbitrage Cost Proxy

Several studies have argued that idiosyncratic risk will deter arbitrage.

Shleifer and Vishny (1997) argue the importance of arbitrage risk in the ex-

istence of mispricing. Arbitrageurs carefully analyze each stock they invest in

and include only a limited number of stocks in their arbitrage portfolios. Arbi-

trageurs get compensated for undertaking systematic risk, or they can eliminate

it by hedging. On the other hand, idiosyncratic risk cannot be hedged. Also,

since arbitrageurs are not well diversi�ed, idiosyncratic risk adds to total port-

folio risk, without a corresponding increase in expected returns. Therefore,

risk-averse arbitrageurs are concerned about idiosyncratic risk. Hence, Shleifer

and Vishny (1997) predict that idiosyncratic risk could deter arbitrage activi-

27For example if weekly Eidio is used to forecast monthly stock returns by portfolio sorting,
then it implicitly assumes that weekly Eidio never change its cross-sectional rank in the next
four weeks.
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ties.

Ponti¤ (2006) argues that idiosyncratic risk is the single largest impediment

to market e¢ ciency as it imposes an signi�cant holding cost for arbitrageurs.

Di¤erent from the view of Shleifer and Vishny (1997), he proposes a framework

in which idiosyncratic risk is important, regardless of whether arbitrageurs have

access to many or few arbitrage opportunities. The active portfolio management

theory such as Treynor and Black (1973) shows in a mean-variance framework

that the portfolio weights chosen by an informed arbitrageur are positively

related to a security�s alpha and negatively related to a security�s idiosyncratic

risk.28 Ponti¤ (2006) further points out that this implies an arbitrageur�s weight

in a given mispriced security is independent of the number of other mispriced

securities in her portfolio. As a result, the position an arbitrageur takes in any

individual security will be limited by the security�s idiosyncratic risk.

Furthermore, a recent study by Bennett and Sias (2008) �nds that the for-

mation of well-diversi�ed portfolios is essentially impossible and a large number

of stocks are required to diversify away idiosyncratic risk for portfolios. In de-

ciding which mispriced stocks to take positions in, all these studies contend that

risk-averse arbitrageurs would prefer or give more weights to stocks with lower

expected idiosyncratic risk. In this study, I use the conditional idiosyncratic

volatility (Eidio) based on EGARCH (1,1) to measure the expected idiosyn-

cratic risk over the next holding period (one week).

2.1.2.2. Transaction Costs, Short-Sale Constraint and Information Uncer-

28Bodie, Kane, and Marcus (2006) discuss these results of Treynor and Black (1973) in
Chapter 27, "The theory of active portfolio management."
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tainty

Prior studies have found that idiosyncratic risk is correlated with other

arbitrage cost measures such as transaction costs, short-sale constraints and

information uncertainty. The transaction costs usually have two types: direct

transaction costs and indirect transaction costs (illiquidity). The direct trans-

action costs are bid-ask spreads, de�ned as 2(ask-bid)/(ask+bid). However, due

to data limitations, I use stock price at the end of the previous week as an alter-

native measure since it is well established that stock prices are highly negatively

correlated with quoted bid-ask spreads as percentage of stock prices.29 Indirect

transaction costs or illiquidity are the adverse price impacts of the trade and the

delay in processing the transaction. Amihud (2002) contends that the absolute

value of daily return divided by daily dollar volume can be used as a proxy for

illiquidity. I de�ne illiquidity as the daily average Amihud measure over pre-

vious week. Like idiosyncratic risk, short-sale constraint induces an additional

holding cost. Prior studies posit that short-sale constraints are strongly linked

to the amount of shares available for borrowing.30 When institutional owner-

ship increases, short-sale constraints are relaxed. In this study, I follow Nagel

(2005) and use the percentage of institutional ownership at the end of the most

recent quarter as a proxy for the constraints of short-selling. 31

Information uncertainty is a risk that arbitrageurs are uncertain about the

true fundamental value of their arbitrage positions due to information or val-

29Bhardwaj and Brooks (1992) and Blume and Goldstein (1992) suggest that quoted bid-
ask spreads per share as percentage of share price are inversely related to the share price.
30Dechow, Hutton, Meulbroek and Sloan (2001), and Chen, Hong and Stein (2002).
31To purge the size e¤ects, Nagel (2005) also employs residual institutional ownership for

portfolio analysis.
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uation uncertainty. Following Zhang (2006), I evaluate this risk by using �rm

age, analyst coverage and dispersion in analyst forecasts. The �rst proxy is �rm

age, which is the number of years since the �rm appeared in the CRSP data-

base. Normally, �rms with a long history have more information available to

the market. Then I use two proxies based on analyst information. The second

proxy is analyst coverage, measured as the number of analysts following the �rm

in the previous month. There is evidence that high analyst coverage is likely

to correspond to more information available about the �rm, which implies less

uncertainty. The third proxy is dispersion in analyst earnings forecasts. The

value of stock could be ambiguous if there is large di¤erence of opinions among

investors. I follow Zhang (2006) and measure the forecast dispersion as the

standard deviation of analyst forecasts in the previous month scaled by the

prior year-end stock price to mitigate heteroskedasticity. 32

2.1.2.3. Other Firm Characteristics

The CAPM beta is estimated each week using OLS regressions applied to

previous 104 weeks return data. Firm size (ME) is measured as the market

value at the end of previous week. Following Fama and French (1992), I de�ne

BE/ME (BM) as the �scal-yearend book value of book equity divided by the

calendar-yearend market value of equity. The one year past return by skipping

a month (Ret (�52;�4)) is the compound gross return from week t-52 to week

t-4. Ret (�1; 0) is the raw return of previous week. Volume is the weekly total

32Following Diether, Malloy, and Scherbina (2002), I use the standard deviation of analyst
forecasts scaled by the absolute value of the mean forecast as an alternative measure. All
relevant results keep the same.
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trading volume of last week.

2.1.3. Summary Statistics

Panel A of Table 2.2 presents the pooled descriptive statistics of conditional

idiosyncratic volatility (Eidio) and other variables for all stocks in the sample.

To avoid giving extreme observations heavy weight in the return regressions,

the observations on Eidio, Ln(ME), BE/ME, Ret (�52;�4), Ret (�1;0), illiquidity,

institutional ownership, and analyst dispersion are winsorized each week at

0.5% level. Panel B of Table 2.2 further presents the �rm characteristics across

Eidio quintiles formed each week. The time-series averages of the cross-sectional

mean (median for BE/ME) are reported. The average Eidio in quintile 5 is 0.11,

almost �ve times higher than the number of 0.02 in quintile 1. Consistent with

previous studies, most market capitalization is concentrated in low Eidio stocks.

Quintile 1 has an average market share of 51.76% while quintile 5 contains only

1.87% of the CRSP market capitalization. Table 2.2 also indicates monotonic

relations between Eidio and many other variables, particularly other arbitrage

cost measures. For example, stocks with higher idiosyncratic risk tend to have

higher market beta, smaller size and lower price. These stocks also have higher

analyst dispersion and are generally more illiquid. Moreover, analyst coverage is

lower for stocks with higher Eidio, which indicates lower investor sophistication

on those stocks.

The pooled descriptive statistics cannot control for the time e¤ect of indi-

vidual variables, hence I run pooled OLS of �rm characteristics on idiosyncratic

28



risk quintile dummies and year dummies; I conducted two models, which are

essentially equivalent. Table 2.3 reports the coe¢ cients of each quintile dummy.

The results are quite similar to Table 2.2.

The correlations between Eidio and other variables are further documented

in Table 2.4. I estimate both Pearson and nonparametric Spearman correlations

each week and then compute their time-series means. The results are consis-

tent with Table 2.2. Eidio is highly correlated with most other arbitrage cost

measures, and these measures are also highly correlated with each other. As for

variables known to predict returns such as size, BE/ME, Ret (�52;�4), and Ret

(�1;0), their correlations with Eidio are mixed. Eidio is highly correlated with

size, but not obviously related to Ln(BE/ME) or Ret (�1;0).

2.2. Idiosyncratic Risk and Individual Anomalies

In this subsection I examine the interactions between idiosyncratic risk and

individual anomalies. Following Brav, Heaton, and Li (2009), I study the size

e¤ect, value premium, return momentum and the post-earnings-announcement

drift (PEAD). Size, book-to-market ratio and past return (Ret (�52;�4)) are

de�ned in subsection 2.1 Unlike Mendenhall (2004), which conducts event-time

analysis on PEAD, I employ a calendar time trading strategy based on earnings-

announcement shocks proposed in Frazzini (2005).33 To be consistent with prior

33The quarterly earnings-announcement shocks are measured using the market model cumu-
lative abnormal returns (CAR) for a [-1, 1] event window around the quarterly announcement
dates. The standard estimation windows is [-255, -46] with a minimum of 30 trading days
data available. The tests are repeated using alternative measures: CAR [-2, 2], CAR [-3, 3]
and earning surprise (SUE). The basic results are the same. Using Fama-French three-factor
model based CARs does not change the results.
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studies, stocks with price below $5 at the end of last week are dropped for the

tests on return momentum and PEAD. The data availability requirement leads

to di¤erent sample sizes for di¤erent anomalies. In the empirical analysis below,

I do not impose the requirement that all variables are jointly available, but only

those that are used in a particular test. 34

In Table 2.5, all stocks each week are independently sorted into quintiles

based on Eidio, size, BE/ME, Ret (�52;�4) and the most recent earnings-announcement

shocks. Panel A, B, C and D present the results of Eidio intersected with size,

BE/ME, Ret (�52;�4) and earnings-announcement shocks, respectively. Both

equal-weighed and value-weighted portfolio returns are reported.

Consistent with pervious studies using annual or monthly returns, all these

anomalies are strongly related to idiosyncratic risk at the weekly level. For

equal-weighed returns, large stocks underperform small stocks by only 0.04%

per week (P5-P1) in the low Eidio stocks (G1), but by 0.61% in the high Ei-

dio class (G5). The di¤erence in (P5-P1) premium between top and bottom

idiosyncratic risk group is 0.57% with a t-stat at 6.27. Similarly, high BE/ME

stocks outperform low BE/ME stocks by 0.07% per week (P5-P1) in the low

Eidio stocks, but by 0.39% in the high Eidio stocks. The di¤erence in (P5-P1)

premium between top and bottom idiosyncratic risk group is 0.33% with a t-stat

at 6.49. The similar patterns can also be observed for other return predictors.

The momentum e¤ect and PEAD pro�t become stronger both economically and

statistically when moving from low Eidio group (G1) to high Eidio group (G5).

34Due to the data availability, the sample of post-earnings-announcement drift is from 1980
to 2006.
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The di¤erence in momentum pro�t between top and bottom idiosyncratic risk

group is 0.28% with a t-stat at 6.15. In the same way, the di¤erence in PEAD

pro�t is 0.18% with a t-stat at 4.39. All results are robust to value-weighted

returns.

As discussed above, the e¤ect of idiosyncratic risk on individual anomalies is

very signi�cant. It seems to indicate that these anomalies are due to mispricing.

If the relative mispricing can be de�ned based on any single anomaly, then stock

returns should increase in idiosyncratic risk in small stocks, value �rms, recent

winners and �rms with positive earnings-announcement shocks. In addition,

stock returns should decrease in idiosyncratic risk among large stocks, growth

�rms, recent losers and �rms with negative earnings-announcement shocks.

However, Table 2.5 does not provide strong support to this prediction. The

results seem to di¤er across various anomalies and even depend on the weighting

scheme. For example, among small stocks, high Eidio stocks outperform low

Eidio stocks by 0.46% per week (t-statistic 5.23) for equal-weighted returns.

However, the return di¤erence (G5-G1) disappears for value-weighted returns

(0.12%; t-statistic 1.42). I �nd the same inconsistency for value �rms and

�rms with high earnings-announcement shocks. On the contrary, among recent

winners the return di¤erence (G5-G1) is signi�cant for value-weighted rather

than equal-weighted returns.

The negative relation between idiosyncratic risk and returns is also ambigu-

ous. For instance, stocks with higher idiosyncratic risk experience signi�cantly

lower value-weighted returns in recent losers and growth �rms, while such pat-

tern is not signi�cant for large stocks or �rms with low earnings-announcement
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shocks. For equal-weighted returns, the pattern only holds for recent losers.

These results are comparable to Brav, Heaton, and Li (2009). They doc-

ument that the value-weighted annual returns do not increase in annually up-

dated idiosyncratic volatility among "undervalued" stocks (small �rms, value

�rms or recent winners). Using di¤erent volatility measure and horizon, I �nd

that value-weighted weekly returns signi�cantly increase in weekly updated

idiosyncratic risk only for recent winners while not for small stocks or value

�rms. However, these empirical results may not necessarily contradict limits-

to-arbitrage argument. Rather, it could mean that it might be inappropriate

to rely on a single measure of mispricing.

2.3. Idiosyncratic Risk and Arbitrage Score Strategy

2.3.1. Construction of Aggregate Mispricing: Arbitrage Score Strat-

egy

It is possible that using an individual anomaly to de�ne mispricing is problem-

atic, since the same stock could be subject to several anomalies simultaneously,

which are not perfectly correlated. For instance, small stocks could contain both

recent losers and growth �rms. As a result, simply attributing all small stock

as undervalued is not precise. To address this concern, I construct an arbitrage

strategy based on a mix of both quantitative and fundamental information, and

a mix of both long-term and short-term information. Similar to the statisti-

cal arbitrage recently used by hedge fund industry, I �rst include the return

of last week to pro�t from short-term return reversals, and then include size,
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book-to-market ratio and return momentum. These four �rm characteristics are

known to forecast future returns and are not fully accounted for by risk-based

explanations. Another reason to employ only these four variables is that they

are available for most of the stocks and for the entire sample period. Due to

data limitations, including other anomalies such as accruals and post-earning-

announcements drift will reduce the number of observations signi�cantly and

would induce sample selection bias. In addition, I keep stocks with price below

$5 in the sample because these stocks usually have the highest idiosyncratic

risk.

Because these four variables driving returns are not very correlated with

each other as shown in Table 2.4, I employ a simple method to combine them. I

expect that the generated aggregate mispricing measure could be highly corre-

lated with its four components. Speci�cally, At the beginning of each week, all

stocks are independently sorted into deciles from low to high, based on BE/ME,

the compound gross return from t-52 week to t-4 week, negative size and neg-

ative return of previous week. Stocks are given the corresponding score of its

decile rank. Arbitrage score is the total score based on four di¤erent rankings

and ranges from 4 to 40.35 Stocks with high arbitrage scores are more likely to

be relatively undervalued and arbitrageurs are more likely to buy them. In con-

35This simple method gives each anomaly an equal weight in predicting future returns, such
that no single anomaly dominates others. For robustness, I conduct another method in the
multivariate regression framework, which allows each anomaly to have its own marginal e¤ect.
Speci�cally, each week I run Fama-MacBeth regression of realized return on ex-ante variables:
�rm size, book-to-market, compound gross return from t-52 week to t-4 week and last week
return, by using previous 52-week rolling data. The time-series average of these coe¢ cients
are then used to predict next week return based on the �rm characteristics of current week. I
then sort stocks based on their predict returns, rather then their total arbitrage scores. The
main results are consistent.

33



trast, stocks with low arbitrage scores are more likely to be relatively overvalued

and arbitrageurs are more likely to short sell them.

Panel A of Table 2.6 shows the �rm characteristics across arbitrage score

quintiles. To avoid the impact from extreme values, both mean values and the

average decile ranks are reported. First, arbitrage score is slightly related to

idiosyncratic risk. The average Eidio is 0.05 in arbitrage score quintile 1 and

increases to 0.07 in quintile 5. However, the spread (0.02) is actually small

relative to the standard deviation of Eidio (0.04). Moreover, as anticipated, ar-

bitrage score is highly correlated with its four components, whose mean values

monotonically increase or decrease across arbitrage score quintiles. Further, as

shown by the average decile ranks, arbitrage score generates appropriate disper-

sion for all component anomalies, while no single anomaly dominates others.

This pattern is further con�rmed by the Spearman correlations. Arbitrage

score has high correlation coe¢ cients with its four components, ranging from

0.36 (BE/ME) to 0.56 (size).

I then examine whether the arbitrage score predicts future returns. As shown

in Panel B, stocks with higher arbitrage scores exhibit higher returns next week.

The (5-1) di¤erence is 0.88% (t-statistic 21.04) per week for equal-weighted

returns and 0.59% per week (t-statistic 14.65) for value-weighted returns. Both

are economically large and statistically signi�cant. The results change little

for CAPM alphas, Fama-French three-factor alphas and Carhart (1997) four-

factor alphas. It suggests that the arbitrage score does proxy for certain kind

of mispricing.
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2.3.2. Interaction between Idiosyncratic Risk and Arbitrage Score

Strategy

Each week, stocks are �rst sorted on their arbitrage scores into quintiles and

then sorted within each quintile into �ve portfolios based on expected idiosyn-

cratic risk (Eidio). I then investigate the relation between idiosyncratic risk

and returns across each arbitrage score quintile. Table 2.6 presents the results.

As shown in Table 2.6, stocks within the highest arbitrage score quintile have

higher future returns. Because idiosyncratic risk is an arbitrage cost, risk-averse

arbitrageurs are reluctant to buy stocks with high idiosyncratic risk. As a re-

sult, stock returns increase in idiosyncratic risk among those high score stocks.

On the other hand, stocks within the lowest arbitrage score quintile have lower

future returns and arbitrageurs want to short sell them. However, risk-averse

arbitrageurs are reluctant to sell stocks with high idiosyncratic risk. Therefore,

stock returns decrease in idiosyncratic risk among those low score stocks.

The empirical results in Panel A and Panel B of Table 2.7 exactly support

this prediction. When moving from low arbitrage score quintile to high arbi-

trage score quintile, the return di¤erences between high and low idiosyncratic

risk quintiles change from signi�cantly negative to insigni�cant, then to signif-

icantly positive. For instance, within arbitrage score quintile 1, stock returns

monotonically decrease in idiosyncratic risk. The (5-1) di¤erence is -0.67%

per week (t-statistic -8.36) for equal-weighted returns and -0.36% (t-statistic

-4.75) for value-weighted returns. In contrast, within arbitrage score quintile

5, stock returns monotonically increase in idiosyncratic risk. The (5-1) di¤er-
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ence is 0.96% per week (t-statistic 11.79) for equal-weighted return and 0.34%

(t-statistic 4.07) for value-weighted returns. Within arbitrage score quintile 3,

there is no clear relation between idiosyncratic risk and returns. The (5-1)

di¤erence is insigni�cant for both equal-weighted and value-weighted returns.

Moreover, the di¤erences in Fama-French three-factor alphas exhibit the similar

results. Adjusting for DGTW (1997) benchmark does not change the results,

either. These results suggest that common risk factors and �rm characteristics

cannot explain the conditional relation between idiosyncratic risk and returns.

This pattern on raw returns is also plotted in Figure 2.1.

An alternative explanation for the results in Table 2.7 is that the arbitrage

score is correlated with idiosyncratic risk within each arbitrage score quintile.

For instance, arbitrage score may be positively (negatively) correlated with

idiosyncratic risk among stocks with high (low) arbitrage score. To address

this concern, Panel C reports the average arbitrage score of each 5x5 portfolio.

Within each arbitrage score quintile, it is clear that the average arbitrage score

does not vary much with idiosyncratic risk. Therefore, the conditional relation

between idiosyncratic risk and returns is not caused by the variation of arbitrage

score itself.

Since idiosyncratic risk is only slightly correlated with the arbitrage score

(a correlation coe¢ cient of 0.18), the di¤erence between independent sorting

and dependent sorting is very small. Panel D and Panel E show the results for

portfolios independently sorted on arbitrage score and idiosyncratic risk. The

conditional relation between idiosyncratic risk and returns is quite similar to
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the results of dependent sorting. In addition, the abnormal returns associated

with arbitrage score strategy are strongly related to the level of idiosyncratic

risk, which is also consistent with the limits of arbitrage prediction.

2.4. Robustness

2.4.1. Subsample Evidence

In this subsubsection, I examine the robustness of my �ndings in various sub-

samples. I �rst repeat the tests for stocks traded on the NYSE only and NAS-

DAQ only, for S&P 500 stocks only, for stocks with prices over $5 only, and for

stocks with di¤erent levels of size, book-to-market ratio and trading volume.

There are two reasons to check the robustness among these subsamples. On

one hand, my results could be driven by cheap, tiny, or illiquid stocks which

are more prone to microstructure bias and thus not pro�table to trade. On

the other hand, arbitrageurs are not identical in practice. Due to competition,

some arbitrageurs may specialize in stocks with speci�c characteristics such as

small cap stocks and growth stocks. Because of regulations, some arbitrageurs

may be prevented from holding illiquid stocks.

Panel A of Table 2.8 presents the (5-1) spreads in value-weighted three-

factor alphas within each arbitrage score quintile. For all subsamples, the (5-1)

spreads monotonically increase from signi�cantly negative in arbitrage score

quintile 1, to signi�cantly positive in arbitrage score quintile 5. It demonstrates

that the conditional relation is quite robust. The main results are not driven

by cheap, tiny, or illiquid stocks.
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Moreover, the magnitude of (5-1) spreads in arbitrage quintile 1 and 5 appar-

ently varies across di¤erent samples. NASDAQ stocks, small �rms and �rms

with low trading volume usually have larger spreads than NYSE stocks, big

�rms and �rms with high trading volume. For example, undervalued NYSE

stocks have a low (5-1) spread of 0.23% (t-statistic 3.97), compared with 0.57%

(t-statistic 5.67) for undervalued NASDAQ stocks. Generally, it is consistent

with the notion that there is more mispricing among small or illiquid stocks.

Next, I examine the robustness of the conditional relation over di¤erent

subperiods. Panel B of Table 2.8 presents the (5-1) spreads in value-weighted

three-factor alphas within each arbitrage score quintile. The pattern is strik-

ingly similar during 1968-1980, 1981-1993, and 1994-2006 subperiods. In every

period, the (5-1) spreads are signi�cantly negative for overvalued stocks and

signi�cantly positive for undervalued stocks. The in�uence of idiosyncratic risk

on undervalued stocks increases over time while its impact on overvalued stocks

turns weak in the most recent period. It may re�ect the fact that there are

more short-selling activities in recent period.

Since the "stock market decimalization" in 2000 could encourage arbitrage

activities, I further compare 1994-2000 and 2001-2006 subperiods. The con-

ditional relation between idiosyncratic risk and return is very strong during

1994-2000, and turns much weaker during 2001-2006. As market becomes more

e¢ cient, the impact of idiosyncratic risk as an arbitrage cost diminishes.

Another concern is that my results only derive from the periods when the

average idiosyncratic risk is abnormally high.36 To address this issue, I repeat

36When the average idiosyncratic risk is high, the cross-sectional dispersion of idiosyncratic
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the same tests over the low Eidio and high Eidio periods, which refer to the

weeks with the lowest and highest 33% average idiosyncratic risk, respectively.

Again, I �nd that the conditional relation is strongly signi�cant over both pe-

riods, showing that they are not driven by high risk periods.

2.4.2. Industry Analysis

There are two reasons to examine whether the results are robust to di¤erent

industry sectors. First, I employ Fama-French three-factor model to estimate

idiosyncratic risk. If the true asset pricing model contains industry factors, then

the exposures to industry factors are not taken into account in my idiosyncratic

volatility measures. Therefore, the cross-sectional ranks based on my measure

would not be precise. However, this problem could be mitigated for stocks

within the same industry, since these stocks are likely to have similar exposures

to industry factors. Second, in practice some arbitrageurs are either restricted

to or specialize in stocks within speci�c industries. For example, the managers

of energy sector funds probably have no interests in a technology �rm, even if

they know that it is mispriced. As a result, it is necessary to investigate whether

the main results hold within di¤erent industries.

To examine the conditional relation within industries, at the end of June

of each year from 1963 to 2006, I assign all �rms in my sample to one of 12

industries based on their four-digit SIC code, following the industry de�nitions

obtained from Ken French�s website.37 Each week, stocks within each industry

risk is large.
37Assigning �rms into 12 industries represents a compromise between having a reasonable

number of distinct industries and having enough �rms within each industry so that sort-
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are �rst sorted on their arbitrage scores into quintiles and then sorted within

each quintile into �ve portfolios based on expected idiosyncratic risk (Eidio).

Table 2.9 reports the (5-1) spread in value-weighted three-factor alphas within

each arbitrage score quintile for Fama-French 12 industries. The results of

equal-weighted returns are similar.

As shown in Table 2.9, the conditional relation between idiosyncratic risk

and return are quite strong across industries. In arbitrage score quintile 1,

the (5-1) spread is signi�cantly negative for all industries except for the utility

sector. In arbitrage score quintile 5, the (5-1) spread is signi�cantly positive

for all industries except for �nance and utility sectors. Since utility �rms are

subject to regulations and �nance �rms have extremely high leverage ratios,

stocks within these two industries might be valued di¤erently from others. By

and large, the basic results are robust to di¤erent industry sectors.

2.4.3. Idiosyncratic Risk versus Transaction Costs and Short-Sale

Constraints

Table 2.4 shows that idiosyncratic risk is highly correlated with several other

proxies for arbitrage costs. Hence, the conditional relation between idiosyncratic

risk and stocks returns may actually re�ect the impact of other arbitrage cost

measures. In this subsubsection, I compare the strength of idiosyncratic risk

ing within industries will not produce portfolios that are too thin. The 12 industries are:
(1) consumer nondurables; (2) consumer durables; (3) manufacturing; (4) oil, gas, and coal
extraction and products; (5) chemicals and allied products; (6) business equipment; (7) tele-
phone and television transmission; (8) utilities; (9) wholesale, retail, and some services; (10)
healthcare, medical equipment, and drugs; (11) �nance; and (12) others.
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and other arbitrage costs in deterring arbitrage. The three alternative arbitrage

cost measures are price level as a proxy for bid-ask spreads, Amihud (2002)

measure as a proxy for illiquidity, and institutional ownership as a proxy for

short-sale constraints. Due to the high correlations among these measures,

each week I independently sort all stocks based on arbitrage score (5 groups),

price level (3 groups), illiquidity (3 groups), institutional ownership (3 groups

if available) and Eidio (5 groups). To investigate the impacts of these arbitrage

costs on undervalued and overvalued stocks, I focus on stocks within arbitrage

score quintile 1 and 5. Table 2.10 presents the portfolio sorting results using

value-weighted raw returns.

In Panel A, I compare price level with idiosyncratic risk. In arbitrage score

quintile 1 (overvalued stocks), returns strongly decrease in Eidio across all three

price level groups. In contrast, price level predicts returns only when Eidio is

high. In arbitrage score quintile 5 (undervalued stocks), Eidio also slightly

outperforms price level. Though both measures prevent arbitrage, the in�uence

of idiosyncratic risk seems to be stronger than price level. Previous studies

usually emphasize the impact of transaction costs on short-term mispricing and

not much attention is given to idiosyncratic risk. However, my results suggest

that idiosyncratic risk is equally or more important than transaction costs, even

at the short horizon.

Panel B reports the results comparing illiquidity with idiosyncratic risk.

Among overvalued stocks, both measures strongly predict returns in the an-

ticipated directions. Among undervalued stocks, the impact of Eidio exceeds

illiquidity to some extent. In both cases, illiquidity cannot explain the role of
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Eidio.38 In Panel C, I compare institutional ownership (IO) with idiosyncratic

risk. Di¤erent from other measures, short-sale constraints only prevent arbi-

trageurs from short-selling overvalued stocks. Consistent with this notion, IO

does not predict returns in undervalued stocks. Among overvalued stocks, IO

only matters when idiosyncratic risk is high. In either case, IO cannot account

for the role of Eido.

In summary, the horse races between idiosyncratic risk and other arbitrage

costs indicate that idiosyncratic risk is more important than transaction costs

and short-sale constraints, even if these di¤erent arbitrage costs are highly cor-

related.

2.4.4. Fama-MacBeth Regression Results

The results of the portfolio analysis show robust conditional relation between

idiosyncratic risk and returns among relatively undervalued and relatively over-

valued stocks. The shortcoming of the portfolio sorting approach is that I

cannot control for other related variables. In this subsubsection, I examine

whether such pattern exists at the individual stock level after taking various

controls into account. Each week, for each arbitrage score quintile, I regress

weekly stock returns on Eidio as well as other variables that vary across model

speci�cations. Table 2.11 reports the time-series average of these coe¢ cients

and the robust Newey-West (1987) t-statistics.

38Spiegel and Wang (2006) also argue that idiosyncratic risk outperforms liquidity in ex-
plaining returns. However, they assume that idiosyncratic risk or liquidity is systematically
priced and thus study the unconditionally relation for the full cross-section. In contrast, I
assume that both idiosyncratic risk and liquidity predict returns in opposite ways among
overvalued and undervalued stocks.
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Panel A presents the coe¢ cients of Eidio without other control variables.

Consistent with the portfolio sorting results in Table 2.7, Eidio predicts low

returns among low arbitrage score quintile and predicts high returns among high

arbitrage score quintile. In the middle arbitrage score quintile, Eidio cannot

predict returns. In more details, in arbitrage score quintile 1, Eidio has a

coe¢ cient of -10.979 with a t-stat of -10.55. In arbitrage score quintile 5, Eidio

has a coe¢ cient of 9.702 with a t-stat of 12.83. In arbitrage score quintile 3,

Eidio has a coe¢ cient of -1.381 with an insigni�cant t-stat of -1.46.

Since idiosyncratic risk is positively correlated with systematic risk, I then

control for the CAPM beta and the results are reported in Panel B. Including

beta almost causes no change to the coe¢ cients of Eidio and the associated

t-statistics. In addition, beta itself has a signi�cantly positive coe¢ cient from

quintile 2 to quintile 5. It con�rms that idiosyncratic risk is an arbitrage cost

while systematic risk can be hedged out by arbitrageurs.

In Panel C, I further control for �rm characteristics driving returns include

Ln(ME), Ln(BE/ME), Ret (�52;�4), and Ret (�1;0). Including these four vari-

ables seems to reduce the power of Eidio but cannot fully explain the e¤ect of

Eidio on returns.39 For instance, in arbitrage score quintile 1, the coe¢ cient of

Eidio reduces to -5.964 with a t-stat of -6.87. In arbitrage score quintile 5, Eidio

has a smaller coe¢ cient of 2.900 with a t-stat of 3.92. In arbitrage score quin-

39Huang, Liu, Rhee, and Zhang (2007) point out that the short term return reversals
could a¤ect the relation between idiosyncratic volatility (risk) and returns. They �nd that
the negative relation between past realized idiosyncratic volatility and returns in Ang et
al. (2006) is driven by monthly stock return reversals. In contrast, the conditional relation
between idiosyncratic risk and returns in this study cannot be explained by the weekly stock
return reversals.
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tile 3, Eidio does not predict returns just as before. Consistent with Fama and

French (1992), beta loses explanatory power after including �rm characteristics.

In contrast, Ln(ME), Ln(BE/ME), Ret (�52;�4), and Ret (�1;0) all have signi�-

cant impacts on returns across all �ve groups. Speci�cally, returns increase in

Ln(BE/ME) and Ret (�52;�4), while decreases in Ln(ME) and Ret (�1;0).

Moreover, idiosyncratic risk is highly correlated with many other arbitrage

cost measures, the conditional relation between idiosyncratic risk and stocks

returns may actually re�ect the impacts of other arbitrage costs such as trans-

action costs, short-sale constraints and information uncertainty on returns. To

address this concern, I repeat the regressions in Panel C and control for several

other arbitrage costs. Panel D shows the results and only reports the coe¢ cients

of Eidio. First, I control for price level, �rm age and illiquidity since they are

available for the full sample. The coe¢ cient of Eidio monotonically increases

from -4.783 (t-statistic -5.46) in arbitrages score quintile 1, to 2.105 (t-statistic

3.02) in arbitrage score quintile 5. Second, I control for institution ownership,

analyst coverage and analyst dispersion for the subsample of 1980-2006. This

sample is much smaller due to the availability of analyst forecasts data. The co-

e¢ cients of Eidio monotonically increase from -3.381 (t-statistic -3.09) to 2.916

(t-statistic 2.92) across arbitrage score quintiles. Finally, the results are quite

similar after including all these variables for the 1980-2006 subsample.

In summary, the multivariate regression tests are consistent with the results

of portfolio analysis. At the individual stock level, expected idiosyncratic risk

predicts high returns among relatively undervalued stock while predicts low

returns among relatively overvalued stocks. This pattern cannot be explained by
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systematic risk, �rm characteristics, or other arbitrage costs such as transaction

costs, short-sale constraints and information uncertainty.

2.4.5. Alternative Model Speci�cations for Idiosyncratic Volatility

Measures

To ensure that the results presented in this study are not driven by speci�c

model settings of volatility estimation, I address several potential concerns and

my solutions in this subsubsection. First, I examine the robustness of main

results to the lead-lag e¤ect at weekly horizon. Market frictions could delay the

information di¤usion, which will be more pronounced at the higher frequency.

It is possible that some stocks do not respond to the common risk factors

in a timely manner, particularly certain small stocks. Besides using Fama-

French three-factor model to estimate the idiosyncratic volatility, I also add

three lagged factors to control for the lead-lag e¤ect. The volatility measure

based on the six-factor model generates similar results.

Second, I examine the robustness of main results to di¤erent sets of EGARCH

parameters. In a general EGARCH (p,q) model speci�cation, the conditional

variance is a function of the past p-period of residual variance and q-period

of return shocks. Besides using EGARCH (1,1) in the main tests, I also ap-

ply alternative (p,q) speci�cations including EGARCH (1,2), EGARCH (1,3),

EGARCH (2,1), EGARCH (2,2), EGARCH (2,3), EGARCH (3,1), EGARCH

(3,2), EGARCH (3,3). The alternative EGARCH (p,q) volatility estimates do

not change the main empirical results described in the previous sections.

Third, I examine the robustness of the main results to di¤erent regression
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sample sizes. There are two possible channels that the regression sample size

in EGARCH may a¤ect the volatility measures and empirical results. On one

hand, at least 260 weeks of return data are required to conduct the EGARCH

regressions; it excludes a considerable amount of young �rms from the sample.

To address this concern, I include all stocks with at least 120 weeks of return

data into the sample. It increases the total observations from 7.4 million to 9.6

million.40 Although more noisy volatility estimates are mixed into the data,

the major empirical results do not change. On the other hand, each week the

EGARCH regressions use all available historical return data to estimate the

idiosyncratic volatility. It introduces the problem of structural breaks if a �rm

experiences substantial changes during the interval. To control for this problem,

I set the maximum regression sample size at 520 weeks (about 10-year return

history). Again, the major results are not sensitive to this change.

40Table 2.A1 presents the relation between regression sample size and the probability of
convergence for EGARCH Estimations.
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2.5. Conclusion

The evidence presented in this chapter supports the limit of arbitrage theory, an

important building block of behavioral �nance. The most commonly accepted

proxy for arbitrage cost is idiosyncratic risk. If idiosyncratic risk indeed prevents

arbitrageurs from buying undervalued stocks and short selling overvalued stocks,

then the cross-sectional relation between idiosyncratic risk and stock returns will

depend on the direction of mispricing.

The empirical �ndings in this study are consistent with this argument. I use

an exponential GARCH model to forecast expected idiosyncratic volatility and

construct arbitrage score by combining the size e¤ect, value premium, return

momentum and short-term reversal. I then use arbitrage score to de�ne the rel-

ative undervaluation and overvaluation in the cross-section. The results show

that stock returns monotonically increase in idiosyncratic risk for relatively

undervalued stocks and monotonically decrease in idiosyncratic risk for rela-

tively overvalued stocks. This pattern is consistent for both equal-weighted and

value-weighted returns and robust to various subsamples and industries. Fur-

thermore, systematic risk, �rm characteristics and other arbitrage cost measurs

cannot account for the role of idiosyncratic risk.

The results are robust to certain alternative explanations, which suggest

that idiosyncratic risk predicts returns for systematic reasons that unrelated

to the arbitrageurs� decisions. First, I study the full cross-section of stocks

and use expected measures of idiosyncratic volatility. Hence, my evidence is

immune to sample selection bias and concerns about the precision of volatility
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estimation. Second, for stocks within the middle arbitrage score quintile, I �nd

that returns are unrelated to idiosyncratic risk. These fairly valued (relatively

speaking) stocks do not attract arbitrageurs�attentions and thus are unrelated

to their decisions. It suggests that idiosyncratic risk does not a¤ect returns in

the absence of arbitrageurs. 41

This work, however, might be subject to the joint hypotheses problem. One

important assumption in this study is that arbitrage score could proxy for mis-

pricing, but it is not possible to test mispricing without jointly testing some

model of expected returns (Fama (1970)). The arbitrage score may actually

proxy for the exposures to certain underlying risk factors and thus stocks with

high scores are more risky. However, the risk-based explanation is unlikely to

be convincing unless all four anomalies can be explained by the same risk-based

model. Furthermore, under the risk-based hypothesis, there is no reason why

idiosyncratic risk predicts high returns for more risky stocks while predicts low

returns for less risky stocks.

41The empirical evidence can be also consistent with other behavioral explanations. For
example, Zhang (2006) uses idiosyncractic risk as a proxy for information uncertainty. Han
and Kumar (2009) argue that idiosyncractic volatility could be a proxy for gambling and
speculation.
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3. Individual Stock Volatility Risk Premium

and the Cross-Section of Stock Option Returns

This chapter is organized as follows. Subsection 1 describes the data and the

methodology for the empirical tests. Subsection 2 presents test results. Sub-

section 3 provides further discussion of the results and concludes.

3.1. Data and Methodology

3.1.1. Data

We use data from both the equity option and stock markets. We obtain daily

and monthly split-adjusted stock returns, stock prices, and trading volume from

the Center for Research on Security Prices (CRSP). For each stock, we also

compute the book-to-market ratio using the book value from COMPUSTAT.

Further, we obtain the daily and monthly Fama-French factor returns and risk-

free rates from Kenneth French�s data library.42

For the 1996 to 2006 time period, we obtain data on U.S. individual stock

options from the Ivy DB database provided by Optionmetrics.43 The data

�elds we use include daily closing bid and ask quotes, trading volume and open

interest of each option, implied volatility as well as the option�s delta and vega

computed by OptionMetrics based on standard market conventions. At the end

of each month and for each optionable stock, we collect a pair of options (one

42The data library is available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/.
43OptionMetrics compiles the Ivy DB data from raw end-of-day pricing information pro-

vided by FT Interactive Data Corporation.
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call and one put) that are closest to being at-the-money and have the shortest

maturity among those with more than 1 month to expiration.

We apply several �lters to the extracted option data. First, U.S. individual

stock options are of the American type, so the option prices embed early exercise

premiums. Our main analyses use call options whose underlying stocks do not

have ex-dividend dates prior to option expiration (i.e., we exclude an option if

the underlying stock paid a dividend during the remaining life of the option).

These call options we analyze are e¤ectively European (e.g., Merton (1973)).44

Second, we exclude all option observations that violate obvious no-arbitrage

conditions such as S � C � max(0; S � Ke�rT ) for a call option C where

S is the underlying stock price, and K is the option strike price, T is time to

maturity of the option, and r is the riskfree rate. Third, to avoid microstructure

related bias, we only retain options that have positive trading volume, positive

bid quotes and where the bid price is strictly smaller than the ask price, and

the mid-point of bid and ask quotes is at least $1/8. Fourth, the majority

of the options we pick each month have the same maturity (with about one

and a half months of remaining life), but there are some options with longer

maturity. We ensure all options in our cross-sectional analysis each month have

the same maturity by dropping options whose maturity is longer than that of the

majority of options. Finally, although we pick options that are closest to being

at-the-money, there are a small sample of the chosen options whose moneyness

(S=K) is quite di¤erent from one. We exclude options whose moneyness is lower

44For the short-maturity options used in our study, the early exercise premium is small.
We verify that our results do not change materially when we include options for which the
underlying stock paid a dividend before option expire.
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than 0.8 or higher than 1.2. We control for any remaining di¤erence in option

moneyness using option�s vega.

Thus, we obtain, in each month, reliable data on a cross-section of options

that are approximately at-the-money with a common short-term maturity. Our

�nal sample in each month contains on average options on 1394 stocks. Table

3.1 shows that the average moneyness of the chosen options is 1, with a standard

deviation of only 0.05. The time to maturity of the chosen options range from

47 to 52 days across di¤erent months, with an average of 50 days. These short-

term options are the most actively traded, have the smallest bid-ask spread and

provide the most reliable pricing information. We utilize this option data to

study the cross-sectional determinants of expected option returns and pricing

of volatility risk.

3.1.2. Theory and Methodology

Under the assumption of no-arbitrage in a frictionless market, there exists a

pricing kernel m so that the price of a call option C on the underlying stock S

with a strike price K is

Ct =

Z 1

ST=K

(ST �K)mSf(ST )dST ;

where f(ST ) is the probability density of stock price at option expiration T ,

and mS = E[mT jST ] is the projection of the pricing kernel m on the underlying
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stock price. The expected return to holding till maturity a call option is

E[CT � Ct] =
Z 1

ST=K

(ST �K)(1�mS)f(ST )dST :

Thus, the expected option returns are determined by the pricing kernel, or

equivalently, the market prices of risks. For example, under the Black-Scholes

model, the only risk factor is the equity risk. Under extended models (e.g.,

with stochastic volatility or jumps), the expected option returns re�ect multiple

sources of priced risks. Our focus is on the volatility risk premium at individual

stock level. But we will control for other risks (such as jump risk or exposure

to market volatility risk). We also control for the possibility that the pricing

kernel depends on other variables such as the di¢ culty of option market makers

supplying enough options to meet customer demand (e.g., Garleanu, Pedersen,

and Poteshman (2008)) as well as option mispricing (e.g., Goyal and Saretto

(2009)).

We remove the part of option return that is due to the exposure to the

underlying stock. We delta-hedge the options and rebalance daily.45 Our con-

struct is also similar to Coval and Shumway (2001) who form daily-rebalanced

portfolios of index options that have zero market-beta.

To measure delta-hedged call option return, we �rst de�ne delta-hedged

option gain, which is change in the value of a self-�nancing portfolio consisting

of a long call position, hedged by a short position in the underlying stock so that

the portfolio is not sensitive to stock price movement, with the net investment

45We also examine delta-hedged option returns without daily rebalancing the hedges (see
Table 3.8).
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earning riskfree rate. Following Bakshi and Kapadia (2003a), we de�ne delta-

hedged gain for a call option portfolio over a period [t; t+ � ] as

�̂(t; t+ �) � Ct+� � Ct �
Z t+�

t

�udSu �
Z t+�

t

ru(Cu ��uSu)du; (1)

where Ct is the call option price, �t = @Ct=@St is the delta of the call option,

r is the riskfree rate.

Our empirical analysis uses a discretized version of (1). Speci�cally, consider

a portfolio of a call option that is hedged discretely N times over a period

[t; t+� ], where the hedge is rebalanced at each of the dates tn, n = 0; 1; � � � ; N�1

(where we de�ne t0 = t, tN = t+ �). The discrete delta-hedged call option gain

is

�(t; t+�) = Ct+��Ct�
N�1X
n=0

�C;tn [S(tn+1)�S(tn)]�
N�1X
n=0

anrtn
365

[C(tn)��C;tnS(tn)];

(2)

where �C;tn is the delta of the call option on date tn, rtn is annualized riskfree

rate on date tn, an is the number of calendar days between tn and tn+1. De�n-

ition for the delta-hedged put option gain is the same as (2), except with put

option price and delta replacing call option price and delta.

We de�ne delta-hedged call option return as delta-hedged option gain scaled

by the price of the underlying stock �(t; t+ �)=St.46 Merton (1973) shows that

option price is homogeneous of degree one in the stock price and the strike

46We verify that our results are robust when we scale the delta-hedged option gain by the
option price �(t; t+ �)=Ct (see Table 3.6).
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price. So for a �xed moneyness, the option price scales with the price of the

underlying stock. We scale the delta-hedged option gains by the prices of the

underlying stocks so that they are comparable across stocks.

Under the Black-Scholes model, the call option can be replicated by trading

the underlying stock and riskfree bond, and �̂(t; t+ �) = 0. The corresponding

discrete delta-hedged gain �(t; t + �) has a symmetric distribution centered

around zero (e.g., Bertsimas, Kogan, and Lo (2000)).

Consider a (generic) stochastic volatility model, where the dynamics of the

underlying stock and its return volatility under the empirical measure are given

by

dSt
St

= �t[St; �t]dt+ �tdW
1
t ;

d�t = �t(�t)dt+ �t(�t)dW
2
t ;

with Corr(dW 1
t ; dW

2
t ) = �dt. Without imposing restrictions on the pricing

kernel or the volatility process, Bakshi and Kapadia (2003a) show that delta-

hedged call option gain satis�es

�̂(t; t+ �) =

Z t+�

t

�u(�u)
@Cu
@�u

du+

Z t+�

t

�u(�u)
@Cu
@�u

dWu; (3)

where �t(�t) � �Covt(dmt

mt
; d�t) is the market price of volatility risk. Thus,

under the stochastic volatility model, the mean of �̂(t; t+ �) is determined by

54



the market price of volatility risk:

Et[�̂(t; t+ �)] =

Z t+�

t

Et

�
�u(�u)

@Cu
@�u

�
du: (4)

Equation (4) provides a method using short-term at-the-money options to

test whether volatility risk is priced in the equity options market, and if it is, the

sign and the magnitude of the volatility premium. We use at-the-money options

because they are the most sensitive to changes in the volatility of the underlying

asset. Further, short-term at-the-money option is almost linear in volatility

(e.g., Stein (1989)). Thus, vega of short-term at-the-money option is practically

independent of the volatility level.47 This implies that under stochastic volatility

model and for the options we use, the functional dependence of delta-hedged

option return on volatility is determined entirely by the volatility risk premium.

In Heston (1993), the volatility risk premium is linear in volatility �u[�u] =

��u, where � is a constant (see also Bates (2000) and Pan (2002)).48 Substitut-

ing this speci�cation of volatility risk premium into (4), expected delta-hedged

option return Et[�̂(t; t+ �)]=St is linearly related to the volatility of the under-

lying stock return.

In subsection 3.2, we test this relation using Fama-MacBeth type regressions.

Each month, regressions are run using the cross-section of short-term at-the-

money equity options. The dependent variable is delta-hedged option return

�(t; t + �)=St, where � is the common time-to-maturity of the options (about

47For example, it is straightforward to verify that the Black-Scholes option vega 1
S
@C
@� for

at-the-money options is practically a constant (equals to 0.14).
48All of these papers study stock index options.
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one and half month). The key independent variable is stock�s total volatility

�. The regression coe¢ cient on � provides an estimate of the market price of

volatility risk parameter �.

There are several practical issues in measuring delta-hedged option returns.

First, option delta has to be measured under a speci�c model, which leads to

potential error due to model mis-speci�cation. Like Carr and Wu (2009), Goyal

and Saretto (2009), our delta hedges rely on implied volatilities and �Greeks"

from the Black-Scholes model. This approach, while approximate, is standard

practice in industry and has been shown in academic research to be quite accu-

rate (e.g., Hull and Suo (2002)). Branger and Schlag (2004) �nd that using the

Black-Scholes delta when the true model is Heston (1993) stochastic volatility

model makes the expected discretized delta-hedged gain larger. Thus, our test

is biased against �nding negative volatility risk premium (i.e., the test too often

falsely concludes that the volatility risk premium is positive when it is actually

zero or negative). Yet as will be shown later, our empirical results strongly

support stochastic volatility model with negative volatility risk premium.

Second, discretely rebalanced hedge may introduce a bias in the expected

discrete delta-hedged gain. However, the bias is small, especially when the re-

balance is done frequently (such as daily). Bakshi and Kapadia (2003a) show

that when volatility is unpriced, the mean discrete delta-hedged gain is zero,

up to terms of O(1=N)2, where N is the frequency of discrete hedging. Branger

and Schlag (2004) show that under the Black-Scholes model, the expected dis-

cretized delta-hedged gain is positive for any non-vanishing equity risk premium

(although the theoretical value should be zero). Further, under Heston model
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with zero market price of volatility risk, the expected discretized delta-hedged

gain is also strictly positive. Thus, the bias in discretely rebalancing makes it

hard to �nd a negative volatility risk premium.

3.2. Empirical Results

Using the methodology in subsubsection 3.1.2, we compute delta-hedged op-

tion returns for a cross-section of stocks each month. First, we examine the

time-series average of delta-hedged option returns for individual stocks. Ta-

ble 3.1 Panel A and B show that for both call options and put options, the

cross-sectional mean and median of the time-series average delta-hedged option

returns are negative. For example, held to maturity, delta-hedged call option

position on average loses 0.49% (4.32%) of the the stock (call option) value at

the beginning of the period. This pattern is similar for delta-hedged gains of

one month holding period.

Table 3.1 Panel C reports results of t-test for the time-series mean of in-

dividual delta-hedged option returns. We have time series observations of call

options on 5,159 stocks. About 75% of them have negative average delta-hedged

gains and 40% of them have signi�cantly negative average delta-hedged gains,

with t-statistic less than two. In contrast, the average delta-hedged gains is

positive only for less than 20% of the sample. Further, it is signi�cantly posi-

tive (t >2) for about only 1% of the cases. The pattern for the put options is

almost the same.

Table 3.2 show the distribution of delta-hedged call option returns (scaled by

57



stock price), over size and stock price quintiles. The median values are negative

in all groups, and it tend to be more negative for small or cheap stocks. It is

consistent with the notion that small or cheap stocks are assoiated with more

frictions.

While the negative average delta-hedged option returns suggests that volatil-

ity risk premium is negative, our conclusions about the volatility risk premium is

not automatically drawn from the result in Table 3.1. Our main results (Table

3.3 to Table 3.6) are derived from Fama-MacBeth type regressions of delta-

hedged option returns on individual stock�s volatility V OL estimated from the

daily stock returns over the previous month, with many control variables.49 We

also provide results using portfolio sorting approach. Our results are robust

both for call options and put options, and for alternative measures of delta-

hedged option returns. To save space, our tables focus on delta-hedged call

option gain till maturity scaled by stock price as the dependent variable.

3.2.1. Basic Results

Table 3.3 Model (1) is the univariate regression of delta-hedged option returns

on V OL. The coe¢ cient estimate is -0.0113, with a signi�cant t-stat of -7.38.50

Thus, delta-hedged option return decreases with the total volatility of the un-

derlying stock. In Model (2), we control for option vega and contemporaneous

return (i.e., over the same period that the options are held) of the underlying

49In an unreported robustness check, we re-estimate our models using panel regressions
similar to Bakshi and Kapadia (2003b). The results are consistent with those obtained from
Fama-MacBeth regressions.
50In all tables, we report robust Newey-West (1987) t-statistics.
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stock. We control for vega to pick up potential e¤ect of di¤erence in the option

moneyness. We control for the contemporaneous stock return to pick up po-

tential measurement error in the Black-Scholes delta.51 In the presence of these

controls, the point estimate and t-stat of the V OL coe¢ cient barely change. In

unreported regressions, we �nd that the V OL coe¢ cient remains signi�cantly

negative even when we further control for higher power (up to order four) of

the contemporaneous stock return.

In Model (3) of Table 3.3, we decompose individual stock volatility into two

components: idiosyncratic volatility IV OL and systematic volatility SysV ol.

Following Ang, Hodrick, Xing, and Zhang (2006), we measure idiosyncratic

volatility IVOL as the standard deviation of the residuals of the Fama-French

3-factors model estimated using the daily stock returns over the previous month.

SysV OL is the square root of V OL2� IV OL2. We are motivated by Duan and

Wei (2009). Using option quotes on the S&P 100 index and its 30 largest

component stocks, they �nd that the proportion of stock�s total volatility that

is systematic can help di¤erentiate the price structure across individual equity

options. For example, a higher systematic risk proportion leads to a higher

level of option implied volatility. Thus, other things equal, options on stocks

with high systematic risk would tend to have higher prices and lower return.

Consistent with this, we �nd delta-hedged option return is negatively (but not

signi�cantly) related to stock�s systematic volatility. On the other hand, the

coe¢ cient of idiosyncratic volatility is highly signi�cant, with a t-stat of -18.6.

51We �nd delta-hedged call option return is positively related to the contemporaneous
return of the underlying stock. This can arise if the Black-Scholes model under-estimates the
true delta.
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In Model (4) of Table 3.3, we control for the stock�s exposure to the Fama-

French three factors as well as the market volatility risk factor. The MKTRF

Beta, SMB Beta and HML Beta are estimated on Fama-French 3-factors model.

Following Ang, Hodrick, Xing, and Zhang (2006), the market volatility risk fac-

tor is proxied by change of CBOE�s Volatility Index (VIX). 4VIX Beta is

estimated on a two factors model: market return and 4VIX. All these Betas

are estimated using daily data over the previous month. We �nd 4VIX Beta

is positive but insigni�cantly related to the delta-hedged option return. None

of the Fama-French 3-factors betas are signi�cant. More importantly, the co-

e¢ cient estimate for idiosyncratic volatility and its t-stat barely change from

Model (3).

We conclude that the negative relation between the delta-hedged option re-

turn and individual stock volatility comes entirely from stock�s idiosyncratic

volatility, and is not due to stock�s exposure to Fama-French factors or mar-

ket volatility risk. Though we use total volatility as the main variable in the

remaining tests, all results hold if using idiosyncratic volatility.

3.2.2. Controlling for Jump Risk

We interpret the negative volatility coe¢ cient as evidence that the market price

of volatility risk is signi�cantly negative and decrease with the level of volatil-

ity. But it could also re�ects, at least partially, a state-dependent jump risk

premium. For example, Pan (2002) speci�es the jump-arrive intensity to be

linear in the volatility level, which implies that the jump-risk premium is linear

in V OL.
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Following Bakshi and Kapadia (2003a), we control for the jump risk by in-

cluding the risk-neutral skewness and kurtosis of the underlying stock return in

Model (5) of Table 3.3. The appendix contains a brief account of the measure-

ment of risk-neutral skewness and kurtosis for each stock over a given horizon

from a cross-section of out of the money calls and puts. The method is orig-

inally proposed by Bakshi, Kapadia, and Madan (2003).52 We �nd that the

coe¢ cients of risk-neutral skewness and kurtosis are negative and statistically

signi�cant. However, after controlling for risk-neutral skewness and kurtosis,

there is still a signi�cant negative relation between delta-hedged option return

and individual stock return volatility. Thus, our �ndings are not driven by the

impact of possible jump risk in stock returns on option prices.

3.2.3. Controlling for Other Volatility-Related Variables

In Model (6) of Table 3.3, we control for two volatility related variables. One is

the log di¤erence between historical realized volatility and at-the-money Black-

Scholes implied volatility at the beginning of the formation of delta-hedged

portfolio. This variable has been shown to contain volatility mis-estimation

and help predict delta-hedged option return as well as return of option strad-

dles (see Goyal and Saretto (2009)). In the Table 3.3 Model (6) regression, this

variable has a signi�cant positive coe¢ cient. In other words, we �nd that delta-

hedged option return is higher for stocks whose historical realized volatility is

higher than at-the-money Black-Scholes implied volatility. This is consistent

52Due to data constraint, the option implied risk-neutral skewness and kurtosis are only
available for about half of the sample. Hence, the regression coe¢ cients in Model (5) are not
directly comparable to other models in Table 3.3.
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with Goyal and Saretto (2009)�s �nding that expensive options with high im-

plied volatility (relative to historical realized volatility) earn low returns and

cheap options with low implied volatility (relative to historical realized volatil-

ity) earn high returns. However, after controlling for the di¤erence between

historical realized volatility and implied volatility, the coe¢ cient for stock�s to-

tal volatility becomes even more negative and remains statistically signi�cant.

Thus, our results are not driven by volatility-related mispricing documented by

Goyal and Saretto (2009).

We also control for change in the at-the-money Black-Schles implied volatil-

ity over the same holding period as delta-hedged option return. Intuitively, the

delta-hedged option gains are positively related to contemporaneous change

in implied volatility. A high level of volatility may predict negative change

in volatility because volatility dynamics is mean reverting. This may explain

the negative relation between delta-hedged option return and (lagged) stock

volatility. However, our empirical result does not support this idea. While

the regression Model (6) of Table 3.3 con�rms that delta-hedged option gains

are positively related to contemporaneous change in implied volatility, the co-

e¢ cient for (lagged) stock volatility remains signi�cantly negative even after

controlling for contemporaneous change in implied volatility.

3.2.4. Controlling for Past Stock Returns

In Table 3.4, we control for stock returns over various past horizons. We have

several reasons to do so. First, it is well known that stochastic volatility of

stock return is correlated with the return itself. Volatility tends to be high
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when return is low. Second, Lo and Wang (1995) argue that stock return

predictability will have an e¤ect on option pricing through the estimation of

the variance of stock returns, although the option pricing formula is not af-

fected by the predictability in the drift term. In particular, the variance will

be underestimated when stock returns are negatively autocorrelated, and over-

estimated when stock returns are positively autocorrelated. This implies that

Black-Scholes underprices options when returns exhibit mean reversion, and

overprices options when returns exhibit momentum. Given individual stock re-

turns tend to display reversal at both short-horizon and long-horizon, as well

as intermediate-term momentum, we control for stock returns over past one

month, past one year (excluding past one month), as well as between three

years and one year ago.

Third, Amin, Coval, and Seyhun (2002) show past stock market return

a¤ects index option prices. They argue that in an imperfect market in which

options are nonredundant assets, option prices can be a¤ected by the past

return of the underlying asset through a number of channels, such as investors�

expectations about future returns, their demand for portfolio insurance, or their

attitude towards the higher moments of stock return distributions. Amin, Coval

and Seyhun (2002) use time series analysis to examine how past index returns

a¤ect di¤erences between the implied volatility of a pair of call and put index

options and the slope of index option implied volatilty smile. We examine how

the cross-section of delta-hedged option return depend on stock�s past return,

and whether it a¤ects the relation between delta-hedged option return and

individual stock volatility.
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We �nd that delta-hedged call option return is signi�cantly and positively

related to the underlying stock return over past one month, past one year as well

as between three years and one year ago. The same results hold in the case of

put options, except the coe¢ cient of past one month is negative (see Table 3.6

Panel B). We also use the portfolio approach (similar to the momentum strategy

documented by Jegadeesh and Titman (1993)) to con�rm the pro�tability of

the strategy that buys call options on past winner stocks and sells call options

on past loser stocks (both delta-hedged).

We leave it to future studies to explore the explanations for our "option

momentum" �ndings. What is important for the main theme of the current

paper is that the negative relation between delta-hedged option return and

individual stock volatility remains signi�cant after controlling for past stock

returns.

Further, we also control for the size (ME) and book-to-market ratio (BE/ME)

of the underlying stock in Table 3.4 Model (5) and (6). Following Fama and

French (1992), we measure ME as the product of monthly closing stock price

and the number of outstanding common shares in previous June. BE/ME is

the �scal-yearend book value of common equity divided by the calendar-yearend

market value of equity. We �nd that delta-hedged option return is signi�cantly

more negative for smaller �rms. There is no reliable relation between delta-

hedged option return and book-to-market ratio of the underlying stock. These

variables do not materially a¤ect the signi�cant negative coe¢ cient on the in-

dividual stock return volatility.
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3.2.5. Controlling for Limits to Arbitrage

The derivation of the relation between delta-hedged option return and stock

volatility in subsubsection 3.1.2 implicitly assumes perfect market and no-

arbitrage. However, in reality, there are limits to arbitrage in the options market

(see, e.g., Bollen and Whaley (2004) for recent evidence). One implication is

that investors�net buying pressure a¤ects option prices (see Bollen and Wha-

ley (2004), Garleanu, Pedersen, and Poteshman (2008)). Investors�demand for

stock options are likely higher when the underlying stock has higher volatility.

Such higher demand could arise both for hedging purpose and for speculative

motive. In Table 3.5, we control for the e¤ect of option demand pressure using

individual option�s open interest as a proxy,53 and examine how it a¤ects the

relation between delta-hedged option returns and stock volatility.

In the presence of market frictions (e.g., transaction cost and price impact),

cross-sectional di¤erence in the delta-hedged option returns would be related

to the liquidity of options and underlying stocks. On the other hand, one of

the reason a stock has high volatility is because it is less liquid and thus the

arbitrage between stock and option are more di¢ cult to implement. Thus, as

a robust check of the relation between delta-hedged option returns and stock

volatility, we control for various liquidity measures for options and underlying

stocks, such as option�s bid-ask spread, stock price and the Amihud (2002)

53More precisely, we use (option open interest / stock volume)�103, where open interest
is measured at the end of the month and stock volume is the monthly total trading volume.
We verify our results are qualitatively the same if we use option trading volume instead of
open interest, or if we scale by stock�s total shares outstanding. The scaling (by stock trading
volume or shares outstanding) is necessary so that the option open interest or trading volume
is comparable across di¤erent stocks.
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measure of the price impact for stocks. The Amihud illiquidity measure for

stock i at month t is de�ned as

ILi;t =
1

Dt

DtX
d=1

jRi;dj=V OLUMEi;d;

where Dt is the number of trading days in month t, Ri;d and V OLUMEi;d are,

respectively, stock i�s daily return and trading volume in day d of month t.

Table 3.5 Model (1) shows that delta-hedged option returns decrease with

option open interest, which has a signi�cantly negative coe¢ cient of -0.0266 (t-

stat -9.14). This is consistent with the idea that option market makers charge

higher premium for options with large end-users demand. Consistent with the

impact of market friction and limits to arbitrage, Model (3) shows that that

delta-hedged option return is negatively related to the Amihud measure of the

price impact for stocks (coef -0.0025; t-stat -11.29). Model (2) and (4) further

indicate that delta-hedged option return is lower (more negative) when option

bid-ask spread is high and underlying stock price is low. Importantly, the signif-

icant negative relation between delta-hedged option return and stock volatility

still holds in the presence of these controls. Thus, while our regression results

support the idea that limits to arbitrage plays an important role in determining

delta-hedged option return, it can not explain our main �nding, the negative

relation between delta-hedged option return and stock volatility.
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3.2.6. Further Regression Tests

In previous tests, we have demonstrated the strong negative impact of volatility

on delta-hedged option returns. Our analysis centers on call options. In Table

3.6, we re-run the regression tests for put options and use alternative measures

of delta-hedged option returns. Previously, delta-hedged option returns are

measured as delta-hedged option gain till maturity scaled by the initial stock

price. Now we measure it by delta-hedged option gain till next month scaled

by stock price, or delta-hedged option gain till maturity scaled by the initial

option price.

Table 3.6 Panel A reports the regression results for call options. We include

most of the control variables we have examined in the same regression model

speci�cation. The dependent variables in the �rst, second, and third column

are delta-hedged option gain till maturity scaled by stock price, gain till next

month scaled by stock price, and gain till maturity scaled by option price,

respectively. The corresponding coe¢ cients of stock volatility (V OL) are -0.264

(t-stat -18.81), -0.0174 (t-stat -17.98), and -0.2106 (t-stat -10.11). Therefore,

the strong negative impact of volatility is consistent across di¤erent measures

of delta-hedged option returns.

Results in Table 3.6 Panel B show that delta-hedged put option returns

are also negatively related to the volatility of underlying stock, and can not be

explained by all the control variables. We conclude that the signi�cant negative

relation between delta-hedged option return and stock volatility holds for both

call options and put options, and for alternative measures of delta-hedged option
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returns.

Moreover, Fu (2009) and Spiegel and Wang (2006) use exponential GARCH

models to estimate expected idiosyncratic volatility and both document a pos-

itive relation between idiosyncraric risk and stock returns. To ensure that the

results on option returns are not driven by speci�c model of volatility esti-

mation, we repeat the tests using EGARCH (1, 1) idiosyncraric risk measure

following Spiegel and Wang (2006) . Table 3.7 shows a consistent result for

both realized and expected idiosyncraric risk measures, with or without other

control variables.

3.2.7. Portfolio Analysis

So far our results are obtained from Fama-MacBeth regressions. Next, we con-

duct portfolio based analysis to provide additional robustness tests and shed

more lights on the individual stock volatility risk premium.

In the regression tests, the dependent variable is delta-hedged option gain

(scaled properly to make them comparable across stocks of di¤erent price levels).

The delta-hedged option gain measure is theoretically motivated, but it is not

convenient for portfolio analysis. First, because we use self-�nancing portfolio,

the delta-hedged option return in our regression analysis is not the return of

a portfolio in the traditional sense. Second, portfolio analysis takes the buy-

and-hold approach while our delta-hedged option gain measure involves daily

rebalancing.

In the portfolio analysis, we consider writing covered call options and hold it

for one month. We no longer daily rebalance the delta-hedges. Speci�cally, the

68



return to selling a covered call over [t; t+1] isHt+1=Ht�1; whereHt = �tSt�Ct,

with C and S denoting call option price and the underlying stock price, �t being

the Black-Scholes call option delta at initial t.

Table 3.8 reports the average return of portfolios of covered calls sorted by

the total volatility (Panel A) or by the idiosyncratic volatility (Panel B) of the

underlying stocks. We try three weighting schemes in computing the average

portfolio return: equal weight, weighted by the market capitalization of the

underlying stock (at the beginning of the period), or weighted by the market

value of total option open interest (at the beginning of the period). Our results

are consistent across di¤erent weighting schemes. Results are very similar for

total volatility sorts and for idiosyncratic volatility sorts.

Table 3.8 shows that the average return of covered call writing is positive.

This is consistent with the negative average delta-hedged call option gains re-

ported in Table 3.1, which is long the options and short the underlying stock,

just the opposite of covered call writing. Corresponding to the signi�cant nega-

tive relation between delta-hedged option return and stock volatility in the re-

gression tests, we �nd that the returns to writing covered calls on high volatility

stocks is on average signi�cantly higher than that on low volatility stocks. The

di¤erence ranges from 1.66% to 2.33% per month, depending on the weight-

ing scheme, when we sort on total stock volatility. It is between 1.59% and

2.32% per month when we sort on idiosyncratic stock volatility. All of these

return spreads are highly signi�cant statistically. Further, controlling for the

Fama-French factors or the momentum factor has almost no e¤ect on the aver-

age return spreads between writing covered calls on high versus low volatility
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stocks. Thus, our �nding is independent of the familiar factors from the stock

market.

Table 3.8 Panel C reports several subsample results. The average return

spread between writing covered calls on high versus low volatility stocks is sig-

ni�cantly positive in all subsample of stocks sorted by size, although its magni-

tude decreases monotonically with the market capitalization of the underlying

stock. It shows up both in January and in the rest of the year. It exists in

various sub-periods of our sample with about the same strength.

The returns of portfolios of covered calls are related to both the stock price

change and the option price change, hence we further decompose the portfolio

return as:

(�t � St+1 � Ct+1)� (�t � St � Ct)
(�t � St � Ct)

=
�t � (St+1 � St)
(�t � St � Ct)

+
(Ct+1 � Ct)
(�t � St � Ct)

;

where �t�(St+1�St)
(�t�St�Ct) is the part of return due to stock price movement, and

(Ct+1�Ct)
(�t�St�Ct)

is the part of return due to option price movement. Table 3.9 reports the equal-

weighted returns of two parts sorted by the idiosyncratic volatility (IV OL). For

the stock part, return increases with IV OL, however, the spread is insigni�cant.

For the option part, there is no relation.

The results could be further illustrated in Figure 3.1, in which we plot the

time-series of the (5-1) spread for total portfolio return, stock part, and option

part. It is clear that combing stock and option part generates a much more

stable pro�t over time. Overall, it indicates that the positive relation presented

in Table 3.8 is driven by the exact combination of stock and option, not by
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stock or option alone.

3.2.8. Volatility Risk Premium, Transaction Cost and Liquidity

To better understand the volatility risk premium, Table 3.10 Panel A examines

the impact of transaction cost on the magnitude of the average return spread

between writing covered calls on high versus low volatility stocks. Panel B

documents how does the return spread vary with liquidity measures of stock

and option.

In all of our previous results, we use the mid-point of the closing option bid

and ask quotes. Quoted bid-ask spreads (expressed in percentage) are larger

for options (even for at-the-money options used in our study) than for stocks.

In Table 3.10 Panel A, we consider the costs associated with buying or selling

options, assuming three e¤ective spread measures equal to 50%, 75%, and 100%

of the quoted spread, respectively. Corresponding to these transaction cost

assumptions, the average return spread between writing covered calls on high

versus low volatility stocks decreases from 2.33% per month when evaluated

at the mid-point of bid and ask to 1.25%, 0.73% and 0.22% respectively with

transaction costs. The t-stat of the return spread also declines as transaction

cost gets bigger. When the e¤ective spread equals the quoted spread, the 0.22%

monthly return spread is no longer statistically signi�cant.

Table 3.10 Panel B reports the average return spread between writing cov-

ered calls on high versus low volatility stocks for each quintile sorted by liquidity

measures of stock and option. Each month, we �rst sort the option sample into

�ve quintiles by the price or Amihud (2002) illiquidity measure of the underly-
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ing stock, or by option bid-ask spread. Then within each quintile, we further

sort by the volatility of the underlying stock. Panel B shows that the average

return spread between writing covered calls on high versus low volatility stocks

is signi�cantly higher for illiquid stocks, low priced stocks, as well as for options

with high bid-ask spread. We interpret these results as evidence of interactions

between the magnitude of volatility risk premium and liquidity measures of

stock and option. In unreported tables, we also verify these interaction e¤ects

using Fama-MacBeth regression. The regressors include V OL, stock price, Ami-

hud illiquidity measure, option bid-ask spread, as well as V OL� stock price,

V OL� Amihud measure, and V OL� option bid-ask spread together with other

controls.

3.3. Conclusion

This study provides the �rst comprehensive study of the cross-sectional deter-

minants for delta-hedged option returns. The focus is on the volatility risk

premium at the individual stock level. We are motivated by a theoretical rela-

tion between delta-hedged option return and volatility of the underlying stock.

Consistent with a negative market price of volatility risk that is proportional

to the volatility level, we �nd that the average delta-hedged option returns are

signi�cantly negative for most stocks, and they decrease monotonically with

the total volatility of the underlying stock. This result is driven entirely by

stock�s idiosyncratic volatility. It holds for both calls and puts. It is robust to

controlling for the contemporaneous stock returns and their higher order terms.

72



It can not be explained by stock�s exposure to the Fama-French factors, market

volatility risk, jump risk, e¤ect of past stock return, or volatility-related option

mispricing.

To quantify the magnitude of the volatility risk premium at individual stock

level, we examine the return spread between writing covered calls on high versus

low volatility stocks. This return spread averages to around 2% per month.

The superior returns to writing covered calls on high volatility stocks exist in

all subperiods and all subsamples sorted by size and various stock and option

liquidity measures. It is signi�cantly higher for small �rms, low priced and

illiquid stocks, as well as for options with high bid-ask spread.

There could be multiple economic forces underlying the market price of in-

dividual stock volatility risk implicit in the equity options data. One possibility

is that marginal investors hold undiversi�ed portfolios, and they are willing to

pay a premium for assets that are positively correlated with idiosyncratic (or

total) volatility of the stocks they hold. The reason is that such assets (e.g.,

delta-hedged options, option straddles, and variance swaps) provide valuable

hedges (i.e., they have high returns when stocks drop and volatility increases).

Volatility risk premium could also be related to market makers and supply of

options. Market makers practice delta-neutral trading to hedge their directional

risk. However, they are unable to costlessly and continuously rebalance an op-

tion portfolio, and this imposes undiversi�able risks on options market makers

(see Jameson and Wilhelm (1992)). Such risks are high for more volatile stocks.

Even if option sellers can perfectly delta-hedge option�s exposure to the underly-

ing asset, they are exposed to substantial volatility risk which can produce very
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large losses (see Figlewski and Green (1999)). Thus, volatility risk premium

could be compensation for option market makers who are unable to eliminate

volatility risk through hedging and diversi�cation.

We leave detailed economic explanation of the individual stock volatility risk

premium for future studies. This essay documents another new empirical �nd-

ing: delta-hedged call options on past winner stocks signi�cantly outperforms

delta-hedged call options on past loser stocks. We exclude several possible expla-

nations. Further research is need to better understand this option momentum

phenomena.
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Table 2.1: Time-Series Properties of Idiosyncratic Risk 
 
This table presents the relative persistence of individual stock idiosyncratic risk. The conditional 
expected idiosyncratic volatility (Eidio) is estimated from EGARCH(1,1) on Fama-French 3-
factor model by all the historical weekly data. Estimates are only conducted if at least 260 
observations exist. The autocorrelation functions up to lag 5 are calculated for each stock. Panel 
A reports the cross-sectional distribution of the autocorrelation functions. Panel B reports the 
likelihood that a stock will be independently included in the same Eidio decile after 1 to 52 
weeks. The sample period is from July 1963 to December 2006. The expected idiosyncratic 
volatility measure starts from June 1968. 

 
Panel A: Cross-Sectional Distribution of Autocorrelation Function of Eidio 

                   

LAG P10 P20 P30 P40 P50 P60 P70 P80 P90 

1 -0.12 0.05 0.20 0.36 0.51 0.65 0.76 0.85 0.92
2 0.04 0.15 0.26 0.37 0.48 0.59 0.70 0.80 0.89 
3 -0.08 0.01 0.09 0.19 0.31 0.45 0.59 0.72 0.84 
4 -0.01 0.07 0.14 0.23 0.34 0.45 0.57 0.69 0.82 
5 -0.06 0.00 0.07 0.14 0.24 0.36 0.50 0.64 0.78 

                    

 
 

Panel B: Likelihood (%) of Being Independently Included in the Same Eidio Decile 

Eidio Decile  
 

Week t 
Week 
t+1 

Week 
t+2 

Week 
t+3 

Week 
t+4 

Week 
t+9 

Week 
t+13 

Week 
t+52 

1-Low 86.53 84.45 81.50 80.49 75.55 73.54 65.69
2 71.70 66.52 61.64 59.47 51.76 48.84 40.01 
3 64.06 58.08 52.69 50.39 42.52 39.91 32.05 
4 59.26 53.40 47.89 45.81 38.44 36.12 28.86 
5 55.74 50.36 44.75 43.06 36.07 33.92 27.23 
6 52.94 48.20 42.80 41.46 35.09 33.12 26.79 
7 51.03 46.95 41.80 40.77 34.94 33.10 27.16 
8 51.04 47.73 42.61 41.93 36.38 34.74 29.30 
9 55.04 52.58 47.39 46.95 41.38 39.86 34.05 

10-High 71.34 71.11 65.87 66.30 60.81 59.19 51.69 
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Table 2.2: Summary Statistics 

This table reports the summary statistics of stocks traded in the NYSE, AMEX, or Nasdaq during July 1963 to December 2006. Panel A 
presents the pooled descriptive statistics. Panel B reports the firm characteristics across expected idiosyncratic risk (Eidio) quintiles. Time-series 
averages of the cross-sectional mean (median for BM) are reported in Panel B. Stocks are included if they have at least 260 weeks of return data. 
The sample contains 7,405,088 firm-week observations. There average 4701 stocks in each week over 2010 weeks from June 1968 to December 
2006. Eidio is the estimated weekly expected idiosyncratic volatility from EGARCH(1,1) on Fama-French 3-factor model. Every week, 
conditional volatility is estimated by all the historical weekly data. Estimates are only conducted if at least 260 observations exist. Beta is the 
weekly CAPM beta and estimated weekly over previous 104 weeks. ME is the firm’s market capitalization at the end of week t-1. BE/ME is the 
fiscal-yearend book value of common equity divided by the calendar-yearend market value of equity. Ret (-52,-4) is the compound gross return 
from t-52 weeks to t-4 weeks. Ret (-1,0) is the raw return of previous week. Price is the closing price at the end of week t-1. Firm age is defined as 
the number of years since a stock first appeared in the CRSP. Illiquidity is the weekly illiquidity measure calculated following Amihud (2002) 
and measured at week t-1. Institutional Ownership is the percentage of common stocks owned by institutions in the precious quarter. Analyst 
Coverage is the number of analysts following the firm in the previous month. Analyst Dispersion is the standard deviation of analyst forecasts in 
the previous month scaled by the prior year-end stock price. Market Shares (%) is the time-series average of portfolio market value relative to 
total market value at then end of week t-1. To avoid giving extreme observations heavy weight in the return regressions, the observations on 
Eidio, Ln(ME), BM, Ret (-52,-4), Ret (-1, 0), Illiquidity, Institutional Ownership, and Analyst Dispersion are winsorized each week at 0.5% level.  
 

 Panel A Pooled Descriptive Statistics  Panel B Across Idiosyncratic Risk Quintiles 

Variables Mean Std Dev Median Q1 Q3  Low Eidio 2 3 4 High Eidio

Eidio 0.06 0.04 0.05 0.03 0.07 0.02 0.04 0.05 0.07 0.11
Beta 0.94 0.75 0.89 0.48 1.35  0.68 0.90 1.00 1.07 1.09 
Ln(ME) 4.66 2.13 4.55 3.12 6.12  5.78 5.45 4.69 3.88 2.86 
BM 1.79 7.52 0.75 0.43 1.25  0.89 0.83 0.86 0.86 0.83 
Ret (-52,-4) (%) 15.16 53.14 7.88 -14.99 33.33  13.62 15.09 15.59 15.34 10.85 
Ret (-1, 0) (%) 0.36 8.00 0.00 -2.64 2.72  0.22  0.25  0.24  0.25  0.69  
Stock Price 18.94 18.18 14.01 5.88 26.25  30.40 27.43 19.48 12.66 6.59 
Age 13.93 8.15 11.38 7.63 17.96  14.78  14.96  13.36  11.76  10.45  
Ln(Volume+1) 4.29 2.35 4.23 2.66 5.92  3.93 4.12 4.10 3.94 3.81 
Illiquidity  4.95 23.83 0.10 0.01 0.93  0.53 1.06 2.31 5.37 16.43 
Institutional Ownership 0.31 0.27 0.24 0.07 0.50  0.29 0.39 0.36 0.27 0.15 
Analyst Coverage 7.41 7.33 5.00 2.00 11.00  10.30 8.40 6.67 5.08 3.39 
Analyst Dispersion (%) 1.19 4.88 0.21 0.08 0.63  0.34 0.54 1.06 2.06 5.45 
Market Shares (%)       51.76 27.48 13.17 5.72 1.87 
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Table 2.3: The Relation between Idiosyncratic Risk and Other Variables 

This table reports the pooled regression coefficients of firm variables on idiosyncratic risk quintile dummies, after controlling for the year-
fixed effect. Eidio is the estimated weekly expected idiosyncratic volatility from EGARCH(1,1) on Fama-French 3-factor model. Beta is 
the weekly CAPM beta and estimated weekly over previous 104 weeks. ME is the firm’s market capitalization at the end of week t-1. 
BE/ME is the fiscal-yearend book value of common equity divided by the calendar-yearend market value of equity. Ret (-52,-4) is the 
compound gross return from t-52 weeks to t-4 weeks. Ret (-1,0) is the raw return of previous week. Price is the closing price at the end of 
week t-1. Firm age is defined as the number of years since a stock first appeared in the CRSP. Institutional Ownership is the percentage of 
common stocks owned by institutions in the precious quarter. Analyst Coverage is the number of analysts following the firm in the 
previous month. To avoid giving extreme observations heavy weight in the return regressions, all variables are winsorized each week at 
0.5% level.  Every week, all stocks are sorted into quintiles based on Eidio. The Eidio quintile dummy Gi equals one for stocks in quintile 
i. Two models are conducted as follows: 

Model I:  firm variable ൌ α1·intercept ൅ α2·G2 ൅ α3·G3 ൅ α4·G4 ൅ α5·G5 ൅ year_dummies 
Model II: firm variable ൌ β1·G1 ൅ β2·G2 ൅ β3·G3 ൅ β4·G4 ൅ β5·G5 ൅ year_dummies 

 
 
 Estimates of Model I: αs  Estimates of Model II: βs 
Variables Intercept G2 G3 G4 G5  G1 G2 G3 G4 G5 

Beta 0.62 0.22 0.33 0.42 0.45  0.62 0.84 0.95 1.04 1.07 
Ln(ME) 7.64 -0.57 -1.34 -2.15 -3.10  7.64 7.07 6.30 5.50 4.55 

BM 1.69 0.75 0.43 -0.25 -0.41  1.69 2.43 2.12 1.44 1.27 

Ret (-52,-4) (%) 13.63 1.77 2.66 2.78 -2.19  13.63 15.40 16.29 16.42 11.45 

Ret (-1, 0) (%) 0.23 0.04 0.04 0.04 0.53  0.23 0.27 0.27 0.27 0.76 

Stock Price 35.08 -2.47 -10.47 -17.40 -23.59  35.08 32.61 24.61 17.68 11.50 

Ln(Volume+1) 6.27 0.05 -0.08 -0.18 -0.33  6.27 6.32 6.19 6.08 5.94 

Institutional Ownership 0.48 0.11 0.09 0.00 -0.14  0.48 0.59 0.56 0.47 0.34 

Analyst Coverage 10.63 -2.16 -3.76 -5.28 -6.92  10.63 8.47 6.88 5.36 3.71 
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Table 2.4: Correlations  
 
This table reports time-series average of both Pearson and Spearman correlations among listed variables. The Pearson correlations are 
shown above the diagonal with Spearman correlations below the diagonal.  Eidio is the estimated weekly expected idiosyncratic volatility 
from EGARCH(1,1) on Fama-French 3-factor model. Eidio is estimated by all the historical weekly data with at least 260 weeks of return 
data. Beta is the weekly CAPM beta and estimated weekly over previous 104 weeks. ME is the firm’s market capitalization at the end of 
week t-1. BE/ME is the fiscal-yearend book value of common equity divided by the calendar-yearend market value of equity. Ret (-52,-4) is 
the compound gross return from t-52 weeks to t-4 weeks. Ret (-1,0) is the raw return of previous week. Price is the closing price at the end 
of week t-1. VOL is weekly total trading volume of week t-1. Illiquidity is the Amihud (2002)’s illiquidity measure estimated at week t-1. 
IO is institutional ownership defined as the percentage of common stocks owned by institutions in the previous quarter. Analyst Cov. is 
analyst coverage defined as the number of analysts following the firm in the previous month. Analyst Disp. is the analyst dispersion 
defined as the standard deviation of analyst forecasts in the previous month scaled by the prior year-end stock price.  
 
 

 
Eidio Beta LnME LnBM Ret 

(-52,-4) 
Ret 

(-1, 0) Price LnVOL Illiquidity IO Analyst 
Cov. 

Analyst 
Disp. 

 
            

Eidio 1 0.17 -0.51 -0.08 -0.07 0.03 -0.45 -0.08 0.27 -0.28 -0.29 0.27 
Beta 0.22 1 0.11 -0.08 0.00 0.00 -0.01 0.25 -0.05 0.15 0.05 0.10 
LnME -0.53 0.14 1 -0.29 0.15 0.02 0.70 0.70 -0.33 0.61 0.78 -0.20 
LnBM -0.05 -0.10 -0.32 1 0.02 0.01 -0.16 -0.29 0.13 -0.01 -0.19 0.09 
Ret (-52,-4) -0.17 -0.02 0.21 0.03 1 0.01 0.21 0.07 -0.12 0.06 -0.03 -0.17 
Ret (-1, 0) -0.05 -0.01 0.06 0.01 0.03 1 0.03 0.05 -0.02 0.00 -0.01 -0.01 
Price -0.62 0.02 0.80 -0.23 0.34 0.09 1 0.32 -0.20 0.50 0.47 -0.21 
LnVOL -0.10 0.28 0.70 -0.32 0.06 0.06 0.36 1 -0.28 0.51 0.66 0.00 
Illiquidity 0.43 -0.12 -0.80 0.28 -0.19 -0.06 -0.65 -0.72 1 -0.17 -0.13 0.11 
IO  -0.25 0.21 0.65 -0.11 0.11 0.03 0.58 0.53 -0.56 1 0.46 -0.14 
Analyst Cov. -0.32 0.10 0.79 -0.23 0.02 0.01 0.51 0.69 -0.74 0.55 1 -0.10 
Analyst Disp. 0.28 0.14 -0.28 0.30 -0.29 -0.03 -0.47 -0.02 0.23 -0.17 -0.15 1 
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Table 2.5: Interaction of Idiosyncratic Risk with Stock Market Anomalies 

This table reports the interactions between idiosyncratic risk and stock market anomalies including the size effect, value premium, return momentum and 
post-earnings-announcement drift. Each week, stocks are independently sorted on each anomaly and expected idiosyncratic volatility into quintiles. 
Average return is measured in weekly percentage terms and applies to the out of sample returns. Eidio is the estimated weekly expected idiosyncratic 
volatility from EGARCH(1,1) on Fama-French 3-factor model. Eidio is estimated by all the historical weekly data with at least 260 weeks of return data. 
Size is the firm’s market capitalization at the end of week t-1. BE/ME is the fiscal-yearend book value of common equity divided by the calendar-
yearend market value of equity. Ret (-52,-4) is the compound gross return from t-52 weeks to t-4 weeks. Earnings-announcement shock is the market model 
cumulative abnormal return with a (-1, 1) event window around the most recent quarterly earnings announcement dates. Price is the closing price at the 
end of week t-1. The sample period is from July 1963 to December 2006 and the testing period starts from June 1968. To adjust for serial correlation, 
robust Newey-West (1987) t-statistics are reported in brackets. The symbols *, **, *** denote significance at the 10%, 5% and 1% levels, respectively.  
 

 G1-Low 
Eidio G2 G3 G4 G5-High

Eidio G5-G1 t-stat 
 G1-Low

Eidio G2 G3 G4 G5-High
Eidio G5-G1 t-stat 

 Equal-Weighted Returns (%) 
 Value-Weighted Returns (%) 

Panel A: Intersection with Size: ME 
 

 

P1 Small 0.29 0.33 0.40 0.49 0.75    0.46*** (5.23)  0.32 0.35 0.41 0.43 0.44  0.12 (1.42) 
P2 0.31 0.36 0.35 0.33 0.11  -0.19*** (-2.58)  0.31 0.36 0.35 0.32 0.10  -0.21*** (-2.76)
P3 0.27 0.33 0.32 0.28 0.08 -0.19**    (-2.40)  0.27 0.33 0.32 0.28 0.09 -0.18** (-2.32)
P4 0.28 0.30 0.29 0.25 0.09 -0.19** (-2.36)  0.27 0.29 0.29 0.24 0.09 -0.18** (-2.29)
P5 Big 0.24 0.27 0.25 0.25 0.10 -0.11 (-1.15)  0.23 0.25 0.23 0.24 0.08 -0.12 (-1.24)
P5-P1 -0.04 -0.07 -0.15*** -0.24*** -0.61***  -0.57*** (-6.27)  -0.09** -0.10** -0.18*** -0.19*** -0.32***   -0.23*** (-2.76)
t-stat (-1.08) (-1.63) (-3.42) (-3.88) (-6.44)    (-2.20) (-2.37) (-3.94) (-3.02) (-3.57)   

                

Panel B: Intersection with Book-to-Market Ratio: BE/ME 

P1 Growth 0.26 0.27 0.25 0.23 0.25 -0.01 (-0.05)  0.22 0.23 0.23 0.23 0.01  -0.22*** (-2.67)
P2 0.26 0.27 0.31 0.33 0.39 0.13* (1.71)  0.23 0.25 0.27 0.29 0.17 -0.07 (-0.85)
P3 0.28 0.31 0.32 0.35 0.47 0.19** (2.38)  0.25 0.28 0.26 0.26 0.27 0.02 (0.26) 
P4 0.31 0.33 0.36 0.41 0.46 0.16* * (2.15)  0.27 0.29 0.32 0.34 0.18 -0.09 (-1.02)
P5 Value 0.32 0.36 0.39 0.43 0.65 0.32*** (4.63)  0.29 0.32 0.33 0.28 0.30 0.02 (0.19) 
P5-P1 0.07** 0.09*** 0.14*** 0.20*** 0.39*** 0.33*** (6.49)  0.06 0.09** 0.10** 0.05 0.30*** 0.23*** (2.98) 
t-stat (2.34) (2.72) (3.67) (4.37) (7.74)    (1.63) (2.14) (2.03) (0.84) (3.75)   
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 G1-Low 
Eidio G2 G3 G4 G5-High

Eidio G5-G1 t-stat 
 G1-Low

Eidio G2 G3 G4 G5-High
Eidio G5-G1 t-stat 

 Equal-Weighted Returns (%) 
 Value-Weighted Returns (%) 

Panel C: Intersection with Momentum (Price>$5): Ret (-52,-4) 
 

 

P1 Loser 0.21 0.21 0.18 0.15 -0.03  -0.24*** (-4.25)  0.20 0.17 0.12 0.09 -0.05  -0.25*** (-3.50)
P2 0.23 0.26 0.26 0.26 0.16 -0.07 (-1.23)  0.23 0.21 0.20 0.20 0.10 -0.13* (-1.82)
P3 0.26 0.28 0.31 0.29 0.20 -0.06 (-1.00)  0.21 0.21 0.23 0.20 0.15 -0.06 (-0.88)
P4 0.30 0.34 0.35 0.34 0.29 -0.01 (-0.13)  0.24 0.28 0.29 0.22 0.18 -0.06 (-0.87)
P5 Winner 0.34 0.39 0.42 0.46 0.38  0.04 (0.61)  0.29 0.33 0.36 0.35 0.38 0.09** (2.13) 
P5-P1 0.13*** 0.18*** 0.24*** 0.31*** 0.41***  0.28*** (6.15)  0.09 0.15*** 0.24*** 0.26*** 0.43***  0.34*** (4.69) 
t-stat (2.84) (4.95) (6.34) (7.46) (9.10)    (1.44) (2.71) (4.07) (4.25) (6.69)   

                

 
Panel D Intersection with Earnings-Announcement Shock (Price>$5 and 1980-2006) 

P1 Low 0.29 0.28 0.30 0.33 0.26 -0.03 (-0.44)  0.31 0.23 0.29 0.31 0.20 -0.10 (-1.02)
P2 0.32 0.32 0.35 0.31 0.33 0.01 (0.15)  0.27 0.30 0.34 0.28 0.33 0.06 (0.74) 
P3 0.34 0.37 0.38 0.37 0.38 0.05 (0.68)  0.29 0.35 0.32 0.28 0.24 -0.04 (-0.47)
P4 0.34 0.35 0.40 0.44 0.43 0.09 (1.21)  0.30 0.31 0.35 0.39 0.35 0.05 (0.57) 
P5 High 0.37 0.41 0.45 0.50 0.51  0.14** (1.99)  0.28 0.37 0.40 0.31 0.38 0.10 (1.16) 
P5-P1 0.08*** 0.13*** 0.15*** 0.17*** 0.25***  0.18*** (4.39)  -0.02 0.14*** 0.12** 0.00 0.18***   0.20*** (2.67) 
t-stat (2.77) (4.99) (5.90) (6.29) (8.50)    (-0.51) (3.35) (2.49) (0) (2.87)   
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 Table 2.6: The Arbitrage Score Strategy 

This table reports both firm characteristics and portfolio returns across arbitrage score quintiles. At the beginning of each week, all stocks are 
independently sorted into deciles from low to high, based on BE/ME, the compound gross return from t-52 weeks to t-4 weeks, negative size and 
negative return of previous week. Stocks obtain the corresponding score of its decile rank. Arbitrage score is the total score based on four different 
rankings and ranges from 4 to 40. Eidio is the estimated weekly expected idiosyncratic volatility from EGARCH(1,1) on Fama-French 3-factor model. 
Each week, stocks are sorted on their arbitrage scores into quintiles. Panel A reports the time-series averages of both the cross-sectional mean (median 
for BM) and average decile rank. Panel A also reports the time-series average of Spearman correlation coefficients between arbitrage score and other 
variables. Panel B reports the results for both the equal-weighted and value-weighted portfolio returns. Average return is measured in weekly percentage 
terms and applies to the out of sample returns. CAPM alphas, FF-3 alphas and Carhart-4 alphas are calculated using the CAPM, Fama-French 3-factor 
model and Carhart (1997) 4-factor model, respectively. The Sharpe ratio of weekly returns is defined as portfolio excess return over the standard 
deviation of portfolio raw returns. The sample period is from July 1963 to December 2006 and the testing period starts from June 1968. To adjust for 
serial correlation, robust Newey-West (1987) t-statistics are reported in brackets. The symbols *, **, *** denote significance at the 10%, 5% and 1% 
levels, respectively.  

Panel A: Firm Characteristics across Arbitrage Score Quintiles and Correlations 

Arbitrage Score 
Quintile 1-Low 2 3 4 5-High  1-Low 2 3 4 5-High

 Spearman 
Correlations 

 Mean Value (Median for BM)  Average Decile Ranks  Arbitrage Score
Eidio 0.05 0.05 0.06 0.06 0.07  5.00 5.00 5.34 5.68 6.49  0.18 
Ln(ME) 6.13 5.36 4.63 3.95 3.01  7.62 6.61 5.56 4.55 3.10  -0.56 
BM 0.44 0.68 0.86 1.08 1.51  2.90 4.48 5.52 6.65 8.12  0.64 
Ret (-52,-4) (%) -5.32 7.19 12.62 20.93 38.82  3.99 5.05 5.46 6.00 7.03  0.36 
Ret (-1, 0) (%) 4.00 1.54 0.37 -0.88 -3.41  7.52 6.17 5.47 4.81 3.50  -0.47 

              

 
Panel B: Weekly Portfolio Returns (%) across Arbitrage Score Quintiles 

Arbitrage Score 
Quintile 1-Low 2 3 4 5-High H-L t-stat 

 
1-Low 2 3 4 5-High H-L t-stat 

 Equal-Weighted Returns (%) 

 

Value-Weighted Returns (%) 

Raw returns -0.03 0.15 0.28 0.44 0.86 0.88*** (21.04)  0.12 0.30 0.38 0.47 0.71 0.59*** (14.65)
CAPM α -0.24 -0.05 0.08 0.24 0.67 0.91*** (21.92)  -0.10 0.09 0.17 0.26 0.50 0.59*** (14.58)
FF-3 α -0.26 -0.10 0.02 0.17 0.60 0.85*** (23.22)  -0.08 0.06 0.12 0.18 0.42 0.50*** (15.46)
Carhart-4 α -0.19 -0.07 0.04 0.18 0.60 0.79*** (23.92)  -0.05 0.05 0.09 0.14 0.38 0.43*** (15.55)
Sharpe Ratio -0.06 0.02 0.08 0.15 0.33 0.59     0.00 0.09 0.12 0.15 0.23 0.35  
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Table 2.7: Interaction of Idiosyncratic Risk with Arbitrage Score 
This table examines the relation between idiosyncratic risk and returns conditioning on arbitrage score. At 
the beginning of each week, all stocks are independently sorted into deciles from low to high, based on 
BE/ME,  the compound gross return from t-52 weeks to t-4 weeks, negative size and negative return of 
previous week. Stocks obtain the corresponding score of its decile rank. Arbitrage score is the total score 
based on four different rankings and ranges from 4 to 40. Eidio is the estimated weekly expected 
idiosyncratic volatility from EGARCH(1,1) on Fama-French 3-factor model. Eidio is estimated by all the 
historical weekly data with at least 260 weeks of return data. FF-3 alphas are calculated using Fama-
French 3-factor model. Characteristics-adjusted returns are calculated using DGTW (1997) benchmarks. 
Panel A reports the results of equal-weighted returns and Panel B reports the results of value-weighted 
returns for dependent sorting. Each week, stocks are first sorted on their arbitrage scores into quintiles and 
then sorted within each quintile into quintiles based on expected idiosyncratic volatility. Panel C reports 
the average arbitrage scores over each 5x5 portfolio. Panel D reports the results of equal-weighted returns 
and Panel E reports the results of value-weighted returns for independent sorting. Each week, stocks are 
independently sorted on arbitrage score and expected idiosyncratic volatility into quintiles. The sample 
period is from July 1963 to December 2006 and the testing period starts from June 1968. To adjust for 
serial correlation, robust Newey-West (1987) t-statistics are reported in brackets. The symbols *, **, *** 
denote significance at the 10%, 5% and 1% levels, respectively.  
 

Panel A: Equal-Weighted Portfolio Returns (%) of Dependent Sorting 

Arbitrage 
Scores 

G1-Low 
Eidio G2 G3 G4 G5-High 

Eidio 

G5-G1 
raw 

returns 

G5-G1 
FF-3 α 

G5-G1 
DGTW α

         

P1 Low 0.17 0.15 0.07 -0.02 -0.50 -0.67*** -0.67*** -0.66*** 
(Most Overpriced) (3.76) (2.75) (1.09) (-0.22) (-4.94) (-8.36) (-13.66) (-14.88)

P2 0.27 0.27 0.24 0.16 -0.17 -0.43*** -0.45*** -0.43*** 
 (6.55) (5.3) (3.87) (2.03) (-1.71) (-5.49) (-9.60) (-9.78) 

P3 0.29 0.33 0.29 0.26 0.23 -0.06 -0.08 -0.08 
 (7.30) (6.43) (4.6) (3.39) (2.28) (-0.72) (-1.44) (-1.55) 

P4 0.34 0.41 0.41 0.40 0.61 0.27*** 0.25*** 0.26*** 
 (8.36) (7.78) (6.34) (5.27) (6.14) (3.50) (4.88) (4.89) 

P5 High 0.47 0.63 0.76 1.00 1.43 0.96*** 0.91*** 0.90*** 
(Most Underpriced) (11.43) (11.28) (10.97) (12.15) (13.54) (11.79) (14.68) (13.93) 

         

 

Panel B: Value-Weighted Portfolio Returns (%) of Dependent Sorting 

Arbitrage 
Scores 

G1-Low 
Eidio G2 G3 G4 G5-High 

Eidio 

G5-G1 
raw 

returns 

G5-G1 
FF-3 α 

G5-G1 
DGTW α

         

P1 Low 0.15 0.13 0.10 0.05 -0.22 -0.36*** -0.36*** -0.36*** 
(Most Overpriced) (3.31) (2.44) (1.45) (0.66) (-2.20) (-4.75) (-6.55) (-7.13) 

P2 0.30 0.33 0.35 0.31 0.17 -0.12  -0.11** -0.12** 
 (7.20) (6.36) (5.52) (3.97) (1.80) (-1.54) (-2.19) (-2.30) 

P3 0.34 0.44 0.46 0.47 0.35 0.01 0.04  0.00 
 (8.27) (8.05) (7.12) (5.51) (3.34) (0.10) (0.60) (0.08) 

P4 0.44 0.52 0.55 0.50 0.53 0.10 0.12** 0.05 
 (9.25) (8.92) (7.81) (6.09) (5.35) (1.20) (2.17) (0.98) 

P5 High 0.60 0.69 0.78 0.90 0.95 0.34*** 0.34*** 0.33*** 
(Most Underpriced) (12.03) (10.79) (10.26) (10.26) (9.08) (4.07) (5.48) (4.95) 
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Panel C: Average Arbitrage Score across 5x5 Dependently Sorted Portfolios 

Arbitrage Scores G1- Low Eidio G2 G3 G4 G5- High 
Eidio 

P1 Low 14.10 13.81 13.64 13.61 13.74
P2 18.63 18.62 18.65 18.67 18.71 
P3 21.91 21.94 21.97 21.98 21.97 
P4 25.19 25.26 25.31 25.34 25.36 
P5 High 29.66 29.99 30.35 30.72 31.05 

 
Panel D: Equal-Weighted Portfolio Returns (%) of Independent Sorting 

Arbitrage 
Scores 

G1-Low 
Eidio G2 G3 G4 G5-High 

Eidio 

G5-G1 
raw 

returns 

G5-G1 
FF-3 α 

G5-G1 
DGTW α

         

P1 Low 0.16 0.11 0.02 -0.14 -0.67 -0.83*** -0.84*** -0.82*** 
(Most Overpriced) (3.67) (1.96) (0.30) (-1.57) (-6.27) (-9.65) (-14.99) (-15.86) 

P2 0.27 0.27 0.21 0.07 -0.22 -0.49*** -0.50*** -0.49*** 
 (6.50) (4.79) (3.23) (0.90) (-2.11) (-5.89) (-9.85) (-10.11) 

P3 0.30 0.33 0.30 0.25 0.23 -0.06 -0.08 -0.07 
 (7.40) (6.31) (4.55) (3.17) (2.28) (-0.74) (-1.47) (-1.40) 

P4 0.34 0.42 0.42 0.41 0.61 0.27*** 0.24*** 0.26*** 
 (8.73) (8.15) (6.66) (5.38) (6.21) (3.49) (4.74) (4.90) 

P5 High 0.46 0.53 0.67 0.87 1.33 0.87*** 0.81*** 0.81*** 
(Most Underpriced) (11.53) (10.97) (11.43) (11.63) (13.62) (11.49) (14.66) (13.46) 

         

P5-P1 raw returns 0.30*** 0.42*** 0.65*** 1.01*** 2.00*** 1.70***   
t-stat (9.27) (12.70) (17.43) (21.14) (28.22) (25.25)   

        
        

 

Panel E: Value-Weighted Portfolio Returns (%) of Independent Sorting 

Arbitrage 
Scores 

G1-Low 
Eidio G2 G3 G4 G5-High 

Eidio 

G5-G1 
raw 

returns 

G5-G1 
FF-3 α 

G5-G1 
DGTW α

         

P1 Low 0.15 0.10 0.06 0.01 -0.41 -0.56*** -0.56*** -0.52***

(Most Overpriced) (3.31) (1.77) (0.90) (0.08) (-3.94) (-6.61) (-9.15) (-9.07)
P2 0.30 0.34 0.32 0.30 0.07 -0.24*** -0.23*** -0.23***

 (7.28) (6.13) (4.77) (3.57) (0.65) (-2.77) (-4.15) (-4.25)
P3 0.35 0.44 0.46 0.45 0.35 0.01 0.03 -0.00 

 (8.40) (7.95) (6.93) (5.06) (3.35) (0.06) (0.44) (-0.07)
P4 0.42 0.51 0.55 0.51 0.56 0.14* 0.16*** 0.09* 

 (9.14) (9.08) (7.96) (6.22) (5.77) (1.74) (2.79) (1.69) 
P5 High 0.59 0.65 0.70 0.84 0.95 0.36*** 0.34*** 0.34***

(Most Underpriced) (11.54) (11.23) (10.57) (10.51) (9.73) (4.43) (5.66) (5.56) 
 

P5-P1 raw returns 0.44*** 0.55*** 0.64*** 0.83*** 1.36*** 0.92***   
t-stat (9.96) (12.55) (14.57) (14.36) (18.48) (11.74)   
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Table 2.8: Interaction of Idiosyncratic Risk with Arbitrage Score: Subsample 
  
This table examines the relation between idiosyncratic risk and returns conditioning on arbitrage 
score over subsamples. At the beginning of each week, all stocks are independently sorted into 
deciles from low to high, based on BE/ME,  the compound gross return from t-52 weeks to t-4 
weeks, negative size and negative return of previous week. Stocks obtain the corresponding score 
of its decile rank. Arbitrage score is the total score based on four different rankings and ranges 
from 4 to 40.  Each week, stocks within the specific subgroups are first sorted on their arbitrage 
scores into quintiles and then sorted within each quintile into quintiles based on expected 
idiosyncratic volatility. FF-3 alphas are calculated using Fama-French 3-factor model. Panel A 
reports the (5-1) spreads in value-weighted FF-3 alphas within each arbitrage score quintile for 
different group of stocks over the whole sample period. Panel B reports the (5-1) spreads in value-
weighted FF-3 alphas within each arbitrage score quintile for all stocks but over different 
subperiods. Volume is the weekly total trading volume of week t-1. The low Eidio and high Eidio 
periods refer to the weeks with the lowest and highest 33% average expected idiosyncratic 
volatility, respectively. The sample period is from July 1963 to December 2006 and the testing 
period starts from June 1968. To adjust for serial correlation, robust Newey-West (1987) t-statistics 
are reported in brackets. The symbols *, **, *** denote significance at the 10%, 5% and 1% levels, 
respectively.  
 

Panel A: (5-1) Spread in FF-3 α within Arbitrage Scores Quintiles for Subgroups 

 Value-Weighted (5-1) Spread in FF-3 α (%) 

 
Arbitrage 

Scores Low 2 3 4 Arbitrage 
Scores  High

      

NYSE Stocks Only -0.22*** -0.10** -0.01 0.11** 0.23*** 
 (-4.90) (-2.29) (-0.27) (2.05) (3.97) 
NASDAQ Stocks Only -0.91*** -0.25** 0.10 0.14 0.57*** 
 (-7.75) (-2.04) (0.88) (1.13) (5.67) 
S&P 500 stocks only -0.15*** 0.02 -0.01 0.11** 0.22*** 
 (-2.69) (0.30) (-0.26) (1.96) (3.59) 
Price>$5 -0.21*** -0.08* 0.02 0.09* 0.19*** 
 (-4.52) (-1.84) (0.36) (1.76) (3.62) 
Size-Small -0.89*** 0.04 0.16** 0.36*** 0.74*** 
 (-11.15) (0.58) (2.08) (5.20) (10.50) 
Size-Medium -0.68*** -0.15*** -0.06 0.09 0.29*** 
 (-11.69) (-2.73) (-1.13) (1.59) (5.29) 
Size-Big -0.21*** 0.05 0.01 0.15*** 0.20*** 
 (-4.29) (0.98) (0.29) (3.09) (3.97) 
Volume-Low -0.99*** -0.59*** -0.30*** -0.10* 0.57*** 
 (-15.20) (-9.44) (-5.52) (-1.70) (9.27) 
Volume-Medium -0.65*** -0.30*** -0.06 0.08 0.39*** 
 (-11.11) (-5.30) (-0.93) (1.34) (4.26) 
Volume-High -0.39*** -0.05 0.04 0.19*** 0.38***  

 (-6.33) (-0.91) (0.67) (2.82) (4.80) 
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BM-Low -0.53*** -0.23*** -0.23*** -0.14* 0.16* 
 (-7.42) (-3.10) (-3.28) (-1.65) (1.71) 
BM-Medium -0.36*** -0.09 -0.06 -0.11* 0.28*** 
 (-5.65) (-1.44) (-0.97) (-1.76) (3.61) 
BM-High -0.58*** -0.18** -0.15** 0.05 0.47*** 
 (-7.97) (-2.26) (-2.10) (0.56) (6.41) 
      

 
 

 Panel B: (5-1) Spread in FF-3 α within Arbitrage Scores Quintiles over Subperiods 

 Value-Weighted (5-1) Spread in FF-3 α (%) 

 
Arbitrage 

Scores Low 2 3 4 Arbitrage 
Scores  High

      

1968-1980 -0.47*** -0.16** 0.02 0.01 0.31*** 
 (-6.80) (-2.03) (0.20) (0.08) (3.15) 
1981-1993 -0.49*** -0.12* -0.09 0.13 0.28*** 
 (-6.25) (-1.67) (-1.08) (1.48) (3.00) 
1994-2006 -0.18* -0.08 0.15 0.18* 0.41*** 
 (-1.71) (-0.81) (1.20) (1.96) (3.30) 
1994-2000 -0.30** -0.13 0.17 0.31** 0.48*** 
 (-2.22) (-0.98) (1.00) (2.34) (2.67) 
2001-2006 0.13 0.09 0.11 0.06 0.34** 
 (0.85) (0.65) (0.57) (0.39) (2.05) 
Low Eidio Periods -0.42*** -0.05 0.01 0.05 0.18** 
 (-5.59) (-0.66) (0.16) (0.58) (2.07) 
High Eidio Periods -0.35*** -0.14 0.19 0.23** 0.55*** 
 (-3.13) (-1.34) (1.42) (2.30) (4.23) 
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Table 2.9: Interaction of Idiosyncratic Risk with Arbitrage Score across Industries  

This table examines the relation between idiosyncratic risk and returns conditioning on arbitrage 
score across all Fama-French 12 industries. At the beginning of each week, all stocks are 
independently sorted into deciles from low to high, based on BE/ME,  the compound gross return 
from t-52 weeks to t-4 weeks, negative size and negative return of previous week. Stocks obtain 
the corresponding score of its decile rank. Arbitrage score is the total score based on four 
different rankings and ranges from 4 to 40. Each week, stocks within each industry sector are first 
sorted on their arbitrage scores into quintiles and then sorted within each quintile into quintiles 
based on expected idiosyncratic volatility. FF-3 alphas are calculated using Fama-French 3-factor 
model. The (5-1) spreads in value-weighted FF-3 alphas are reported within each arbitrage score 
quintile for Fama-French 12 industries. The sample period is from July 1963 to December 2006 
and the testing period starts from June 1968. To adjust for serial correlation, robust Newey-West 
(1987) t-statistics are reported in brackets. The symbols *, **, *** denote significance at the 10%, 
5% and 1% levels, respectively.  

 
 (5-1) Spread in FF-3 α within Arbitrage Scores Quintiles for Fama-French 12 Industries 

 Value-Weighted (5-1) Spread in FF-3 α (%) 

 
Arbitrage 

Scores Low 2 3 4 Arbitrage 
Scores  High

      

Consumer NonDurables -0.38*** -0.38*** -0.50*** -0.17* 0.35*** 
 (-5.01) (-4.25) (-5.00) (-1.71) (3.17)  

Consumer Durables -0.71*** -0.49*** -0.24 -0.29** 0.64*** 
 (-5.08) (-3.85) (-1.58) (-2.09) (4.02) 

Manufacturing -0.33*** -0.24*** -0.16* -0.04 0.55*** 
 (-4.30) (-3.14) (-1.86) (-0.44) (5.39) 

Energy -0.50*** -0.40*** -0.35*** -0.35*** 0.58*** 
 (-4.09) (-3.08) (-2.96) (-2.66) (4.08) 

Chemicals -0.30*** -0.34*** 0.13 -0.11 0.61*** 
 (-2.75) (-2.87) (0.97) (-0.75) (3.61) 

Business Equipment -0.55*** -0.53*** -0.23** 0.03 0.56*** 
 (-5.78) (-4.93) (-1.98) (0.29) (4.49) 

Telecom -0.37** -0.07 0.15 0.53*** 0.51*** 
 (-2.11) (-0.44) (0.85) (2.66) (2.71) 

Utilities -0.04 0.07 0.07 0.04 0.11 
 (-0.57) (1.07) (1.02) (0.52) (1.32) 

Wholesale & Retail -0.44*** -0.23*** -0.13 -0.12 0.39*** 
 (-5.09) (-2.65) (-1.28) (-1.20) (3.82) 

Healthcare -0.36*** -0.43*** -0.14 0.02 0.39** 
 (-2.80) (-3.73) (-1.05) (0.17) (2.48) 

Finance -0.26*** -0.10 -0.21** -0.21** 0.18 
 (-3.20) (-1.23) (-2.2) (-2.34) (1.49) 

Others -0.68*** -0.42*** -0.24** -0.08 0.51*** 
  (-7.38) (-4.22) (-2.21) (-0.84) (4.77)  

     

 

The Fama-French 12 industry definition is from Kenneth R. French’s website 
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Table 2.10: Idiosyncratic Risk and Other Arbitrage Costs 
 
This table examines the relation between idiosyncratic risk and other arbitrage cost measures among the most overvalued (low arbitrage 
score) stocks and the most undervalued (high arbitrage score) stocks, respectively. At the beginning of each week, all stocks are 
independently sorted into deciles from low to high, based on BE/ME, the compound gross return from t-52 weeks to t-4 weeks, negative 
size and negative return of previous week. Stocks obtain the corresponding score of its decile rank. Arbitrage score is the total score based 
on four different rankings and ranges from 4 to 40. Eidio is the estimated weekly expected idiosyncratic volatility from EGARCH(1,1) on 
Fama-French 3-factor model. The proxy for direct transaction cost is price level, measured as the closing price at the end of week t-1. The 
proxy for indirect transaction cost is illiquidity, calculated as daily average Amihud (2002) measure over week t-1. The proxy for short-
sale constraint is institutional ownership (IO), measured as the percentage of common stocks owned by institutions in the precious quarter. 
Each week, stocks are independently sorted on their arbitrage score (5 groups), price (3 groups), illiquidity (3 groups), institutional 
ownership (3 groups if available) and expected idiosyncratic volatility (5 groups). Panel A reports the results on the interaction between 
Eidio and price. Panel B reports the results on the interaction between Eidio and illiquidity. Panel C reports the results on the interaction 
between Eidio and institutional ownership. Value-weighted raw returns (%) are reported. The sample period is from July 1963 to 
December 2006 and the testing period starts from June 1968. To adjust for serial correlation, robust Newey-West (1987) t-statistics are 
reported in brackets. The symbols *, **, *** denote significance at the 10%, 5% and 1% levels, respectively. 

 
Panel A: Idiosyncratic risk and Direct Transaction Cost (Price Level) 

Value-Weighted Raw Returns (%) 

 1-Low 
Eidio 2 3 4 5-High

Eidio H-L t-stat 
 1-Low 

Eidio 2 3 4 5-High
Eidio H-L t-stat 

   Within Arbitrage Score Quintile 1 (Most Overvalued )                  Within Arbitrage Score Quintile 5 (Most Undervalued) 

1-Low Price 0.02 0.21 -0.05 -0.28 -0.78 -0.84*** (-6.12)  0.46 0.66 0.80 0.93 1.09 0.61*** (6.84) 
2 0.20 0.18 0.08 -0.00 -0.38 -0.57*** (-6.03)  0.54 0.65 0.67 0.78 0.78 0.24*** (2.77) 

3-High Price 0.14 0.08 0.06 0.01 -0.22 -0.38*** (-3.33)  0.57 0.61 0.67 0.77 0.60   0.08 (0.53) 
3-1 0.02 -0.08 0.11 0.30*** 0.54***    0.10 -0.05 -0.13* -0.15* -0.38***   

t-stat (0.23) (-0.80) (1.14) (3.21) (4.39)    (1.42) (-0.64) (-1.87) (-1.65) (-2.74)   
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Panel B: Idiosyncratic Risk and Indirect Transaction Cost (Illiquidity) 

Value-Weighted Raw Returns (%) 

 1-Low 
Eidio 2 3 4 5-High

Eidio H-L t-stat 
 1-Low 

Eidio 2 3 4 5-High
Eidio H-L t-stat 

   Within Arbitrage Score Quintile 1 (Most Overvalued )                  Within Arbitrage Score Quintile 5 (Most Undervalued) 

1-Low Price 0.15 0.10 0.06 0.05 -0.19 -0.33*** (-3.48)  0.60 0.61 0.73 0.79 0.73   0.10 (0.74) 
2 0.05 -0.00 -0.02 -0.20 -0.64 -0.69*** (-7.45)  0.54 0.65 0.70 0.88 0.90 0.36*** (4.07) 

3-High Price 0.22 -0.23 -0.17 -0.59 -1.31 -1.41*** (-11.87)  0.54 0.55 0.69 0.81 1.02 0.49*** (6.96) 
3-1 0.01 -0.32*** -0.24*** -0.64*** -1.12***    -0.05 -0.07 -0.05 0.02 0.30**   

t-stat (0.14) (-4.61) (-2.95) (-7.71) (-10.57)    (-0.75) (-0.90) (-0.65) (0.24) (2.44)   
                

 

Panel C: Idiosyncratic Risk and Short-Sale Constraints (Institutional Ownership): 1980-2006 

Value-Weighted Raw Returns (%) 

 1-Low 
Eidio 2 3 4 5-High

Eidio H-L t-stat 
 1-Low 

Eidio 2 3 4 5-High
Eidio H-L t-stat 

   Within Arbitrage Score Quintile 1 (Most Overvalued )                  Within Arbitrage Score Quintile 5 (Most Undervalued) 

1-Low Price 0.22 0.16 0.07 -0.00 -0.75 -0.96*** (-6.80)  0.61 0.55 0.67 0.83 0.94 0.33*** (3.19) 
2 0.25 0.19 0.12 0.06 -0.33 -0.58*** (-4.25)  0.50 0.59 0.61 0.82 1.02 0.52*** (4.41) 

3-High Price 0.20 0.14 0.10 0.07 -0.04   -0.24**  (-2.17)  0.59 0.67 0.74 0.88 0.83    0.24      (1.53) 
3-1 -0.02 -0.02 0.03 0.07 0.71***    -0.02 0.12 0.07 0.05 -0.11   

t-stat (-0.38) (-0.23) (0.32) (0.68) (5.98)    (-0.23) (1.61) (1.03) (0.49) (-0.65)   
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Table 2.11: Interaction of Idiosyncratic Risk with Arbitrage Score: 
Weekly Fama-MacBeth Regressions 

 

This table reports weekly Fama-MacBeth regressions of stock returns (constant not reported) 
among stocks with different arbitrage scores. At the beginning of each week, all stocks are 
independently sorted into deciles from low to high, based on BE/ME,  the compound gross return 
from t-52 weeks to t-4 weeks, negative size and negative return of previous week. Stocks obtain the 
corresponding score of its decile rank. Arbitrage score is the total score based on four different 
rankings and ranges from 4 to 40.  Each week, stocks are sorted on their arbitrage scores into 
quintiles and the Fama-MacBeth regressions are conducted within each quintile. The dependent 
variable is weekly stock return (%). Eidio is the estimated weekly expected idiosyncratic volatility 
from EGARCH(1,1) on Fama-French 3-factor model. Eidio is estimated by all the historical 
weekly data with at least 260 weeks of return data. Beta is the weekly CAPM beta and estimated 
weekly over previous 104 weeks. ME is the firm’s market capitalization at the end of week t-1. 
BE/ME is the fiscal-yearend book value of common equity divided by the calendar-yearend market 
value of equity. Ret (-52,-4) is the compound gross return from t-52 weeks to t-4 weeks. Ret (-1,0) is the 
raw return of previous week. Price is the closing price at the end of week t-1. Firm age is defined as 
the number of years since a stock first appeared in the CRSP. Illiquidity is the weekly illiquidity 
measure calculated following Amihud (2002) and measured at week t-1. Institutional Ownership is 
the percentage of common stocks owned by institutions in the previous quarter. Analyst Coverage 
is the number of analysts following the firm in the previous month. Analyst Dispersion is the 
standard deviation of analyst forecasts in previous month scaled by the prior year-end stock price. 
To avoid giving extreme observations heavy weight in the return regressions, all independent 
variables are winsorized each week at 0.5% level. Panel A reports the basic results within each 
arbitrage score quintile. Panel B reports the results after including the systematic risk. Panel C 
reports the results after including firm characteristics. Panel D reports the key results after 
including additional control variables to the model in Panel C. The sample period is from July 1963 
to December 2006 and the testing period starts from June 1968. Robust Newey-West (1987) t-
statistics are reported in brackets. The symbols *, **, *** denote significance at the 10%, 5% and 1% 
levels, respectively.  

Panel A: Stocks within Arbitrage Score Quintiles  

 
Arbitrage 

Scores 
Quintile 1 

Arbitrage 
Scores 

Quintile 2 

Arbitrage 
Scores 

Quintile 3 

Arbitrage 
Scores 

Quintile 4 

Arbitrage 
Scores 

Quintile 5 
      

Eidio -10.979*** -7.019*** -1.381 3.289*** 9.702*** 
 (-10.55) (-7.19) (-1.46) (3.55) (12.83) 

Average Adj. R2 2.20% 1.80% 1.50% 1.20% 1.10% 
 

Panel B: Controlling for Systematic Risk 

 Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 
      

Eidio -10.861*** -7.178*** -1.524 3.159*** 10.585*** 
 (-10.59) (-7.48) (-1.64) (3.53) (12.75) 
Beta 0.003 0.073*** 0.058** 0.068*** 0.052** 
 (0.11) (2.93) (2.49) (3.14) (2.47) 

Average Adj. R2 3.00% 2.60% 2.20% 1.80% 1.50% 
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Panel C: Controlling for Firm Characteristics  

 
Arbitrage 

Scores 
Quintile 1 

Arbitrage 
Scores 

Quintile 2 

Arbitrage 
Scores 

Quintile 3 

Arbitrage 
Scores 

Quintile 4 

Arbitrage 
Scores 

Quintile 5 
      

Eidio -5.964*** -3.627*** 0.217 1.853** 2.900*** 
 (-6.87) (-4.50) (0.26) (2.21) (3.92) 
Beta -0.015 0.023 -0.007 0.010 0.014 
 (-0.59) (0.94) (-0.31) (0.44) (0.68) 
Ln(ME) -0.048*** -0.046*** -0.071*** -0.082*** -0.146*** 
 (-4.29) (-4.49) (-6.50) (-7.20) (-10.59) 
Ln(BM) 0.045** 0.072*** 0.107*** 0.124*** 0.086*** 
 (2.42) (3.63) (5.18) (6.47) (5.64) 
Ret (-52, -4) 0.229*** 0.379*** 0.370*** 0.324*** 0.071* 
 (3.31) (7.08) (7.13) (7.17) (1.94) 
Ret (-1, 0) -6.024*** -7.451*** -10.049*** -10.943*** -16.244*** 
 (-20.28) (-20.39) (-27.9) (-26.36) (-32.54) 

Average Adj. R2 5.70% 5.20% 5.10% 4.40% 4.60% 
 
 

Panel D: Controlling for Other Arbitrage Cost Measures  

Basic control variables include Beta, Ln(ME), Ln(BM), Ret (-52, -4) and Ret (-1, 0) 

 Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5
      

 

Control for Price, Firm Age and Illiquidity: 1968-2006 

Eidio -4.783*** -2.426*** 0.367 1.259* 2.105*** 
 (-5.46) (-2.86) (0.43) (1.91) (3.02) 
      

Control for Institution Ownership, Analyst Coverage and Analyst Dispersion: 1980-2006 

Eidio -3.381*** -1.937* -0.162 2.583** 2.916*** 
 (-3.09) (-1.84) (-0.15) (2.32) (2.92) 
      

Control for All Above: 1980-2006 

Eidio -3.096*** -2.148** -0.361 1.879* 2.975*** 
 (-2.83) (-2.04) (-0.33) (1.70) (2.87) 
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Table 2.A1: Regression Sample Size and the Probability  
of Convergence for EGARCH Estimations 

 
This table shows the relation between the accuracy of EGARCH(1,1) estimations and the number 
of observations used in the regression. The probability of convergence is defined as cross-
sectional percentage of successful convergence in the MLE procedures. The time-series mean and 
other statistics are reported. The regression sample size intervals are listed in the square bracket, 
with a maximum of 2270 weeks. The sample period is from July 1963 to December 2006.  

 
 

Probability of 
Convergence Sample Size Intervals 

 [52,120] [120, 260] [260, 360] 
Min 60.64% 81.03% 91.47% 
Max 84.93% 93.16% 98.90% 

Median 73.49% 88.44% 95.21% 
Mean 73.52% 88.29% 95.04% 
Std 4.23% 2.30% 1.60% 

    
 [52, 2270] [120, 2270] [260, 2270] 

Min 60.64% 81.03% 91.47% 
Max 99.62% 99.62% 99.62% 

Median 90.87% 93.49% 97.75% 
Mean 89.65% 93.20% 97.38% 
Std 4.77% 2.41% 0.96% 

Total observations 12.6  
million 

9.6  
million 

7.4 
million 
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Table 3.1: Summary Statistics 
 

This table reports the descriptive statistics of delta-hedged option returns for the pooled data. The option sample period is from 
Jan 1996 to Dec 2006.  At the end of each month, we extract from the Ivy DB database of Optionmetrics one call and one put 
on each optionable stock. The selected options are approximately at-the-money with a common maturity of about one and a 
half month. We exclude the following option observations: (1) moneyness is lower than 0.8 or higher than 1.2; (2) option price  
violates obvious no-arbitrage option bounds; (3) reported option trading volume is zero; (4) option bid quote is zero or mid-
point of bid and ask quotes is less than $1/8; (5) the underlying stock paid a dividend during the remaining life of the option. 
Delta-hedged gain is the change in the value of a self-financing portfolio consisting of a long call position, re-hedged daily by 
shorting a proper amount of the underlying stock so that the portfolio is not sensitive to stock price movement, with the net 
investment earning riskfree rate. The total number of underlying stocks involved over the whole sample period is 5225. The 
average number of optionable stocks per month in our final sample is 1394. The pooled data has 159,346 observations for 
delta-hedged call returns and 143,017 observations for delta-hedged put returns. Days to maturity is the total number of 
calendar days till the option expiration. Moneyness is the ratio of stock price over option strike price. Vega is the option vega 
according to the Black-Sholes model scaled by stock price. Vega, moneyness and days to maturity are measured at the end of 
each month.  
 
 
 

Variable Mean Median StDev 10 Pctl Lower 
Quartile 

Upper 
Quartile 90 Pctl 

        

Panel A: Call Options (159,346 Obs)   
Delta-hedged gain till maturity / stock price       (%) -0.49 -0.65 3.66 -3.58 -1.90 0.51 2.24 
Delta-hedged gain till maturity / option price     (%) -4.99 -10.17 58.30 -44.65 -27.05 7.78 31.70 
Delta-hedged gain till month-end / stock price   (%) -0.38 -0.47 2.21 -2.51 -1.36 0.41 1.72 
Delta-hedged gain till month-end / option price (%) -4.32 -7.33 30.12 -31.86 -19.39 6.31 24.37 
Days to maturity 50 50 2 47 50 51 52 
Moneyness = S/K                                                (%) 100.51 100.11 5.10 94.72 97.25 103.36 106.51 
Vega 0.14 0.14 0.01 0.13 0.14 0.15 0.15 
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Variable Mean Median StDev 10 Pctl Lower 
Quartile 

Upper 
Quartile 90 Pctl 

Panel B: Put Options (139,285 Obs)   
Delta-hedged gain till maturity / stock price       (%) -0.54 -0.67 3.18 -3.58 -1.92 0.55 2.41 
Delta-hedged gain till maturity / option price     (%) -6.58 -11.12 44.97 -46.71 -28.87 8.51 34.72 
Delta-hedged gain till month-end / stock price   (%) -0.24 -0.42 2.38 -2.45 -1.31 0.52 2.00 
Delta-hedged gain till month-end / option price (%) -2.30 -6.92 35.26 -31.95 -19.66 8.25 29.06 
Days to maturity 50 50 2 47 50 51 52 
Moneyness = S/K                                                (%) 99.84 99.72 4.86 94.23 96.83 102.75 105.63 
Vega 0.14 0.14 0.01 0.13 0.14 0.15 0.15 

 
 
 

Panel C: Average Delta-hedged Gain till Maturity / Stock Price 
Option Type Total stocks mean<0 t<-2 mean>0 t>2 P10 P25 P50 P75 P90 

Call 5159 3890 1898 1269 62 -2.39% -1.28% -0.54% -0.10% 0.65% 
Put 5073 3975 1928 1098 68 -2.27% -1.21% -0.55% -0.10% 0.66% 
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Table 3.2: Distribution of Delta-Hedged Call Option Returns: Subsamples 
 

This table reports the descriptive statistics of delta-hedged call option returns for the 
pooled data. The option sample period is from Jan 1996 to Dec 2006.  At the end of each 
month, we extract from the Ivy DB database of Optionmetrics one call and one put on 
each optionable stock. The selected options are approximately at-the-money with a 
common maturity of about one and a half month. We exclude the following option 
observations: (1) moneyness is lower than 0.8 or higher than 1.2; (2) option price violates 
obvious no-arbitrage option bounds; (3) reported option trading volume is zero; (4) 
option bid quote is zero or mid-point of bid and ask quotes is less than $1/8; (5) the 
underlying stock paid a dividend during the remaining life of the option. Delta-hedged 
gain is the change in the value of a self-financing portfolio consisting of a long call 
position, re-hedged daily by shorting a proper amount of the underlying stock so that the 
portfolio is not sensitive to stock price movement, with the net investment earning 
riskfree rate.  
 
 

The Pooled Distribution of <Delta-Hedged Gain till Maturity of Call / Stock Price> (%)  

Subsamples Mean StDev 10 Pctl Lower 
Quartile Median Upper 

Quartile 
90 

Pctl
        

Full Sample -0.49 3.66 -3.58 -1.90 -0.65 0.51 2.24

Size Quintile 1 -1.31 4.45 -5.83 -3.56 -1.50 0.45 2.95
Size Quintile 2 -0.64 3.41 -3.89 -2.31 -0.89 0.59 2.61
Size Quintile 3 -0.35 3.31 -3.06 -1.78 -0.64 0.54 2.26
Size Quintile 4 -0.18 3.21 -2.48 -1.43 -0.50 0.49 1.86
Size Quintile 5 0.10 3.43 -1.79 -1.02 -0.30 0.48 1.66
   
Price Quintile 1 -1.51 4.53 -6.09 -3.81 -1.72 0.29 2.92
Price Quintile 2 -0.71 2.96 -3.76 -2.23 -0.86 0.54 2.35
Price Quintile 3 -0.35 2.66 -2.90 -1.65 -0.55 0.61 2.21
Price Quintile 4 -0.21 2.73 -2.41 -1.37 -0.47 0.51 1.93
Price Quintile 5 0.32 4.63 -2.00 -1.11 -0.34 0.51 1.92
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Table 3.3: Delta-Hedged Option Returns and Stock Volatility 
This table reports the average coefficients from monthly Fama-MacBeth regressions of delta-hedged call 
option gains till maturity scaled by the underlying stock price at the beginning of the period. Total 
volatility (VOL) is the standard deviation of daily stock returns over the previous month. Idiosyncratic 
volatility (IVOL) is the standard deviation of the residuals of the Fama-French 3-factors model estimated 
using the daily stock returns over the previous month. Systematic volatility (SysVOL) is the square root 
of (VOL2-IVOL2).  MKTRF Beta, SMB Beta and HML Beta are estimated on Fama-French 3-factors 
model. ΔVIX Beta is estimated on a two factor model: market return and the change of CBOE’s Volatility 
Index (VIX). All Betas are estimated using daily data over the previous month. IV is the at-the-money 
Black-Sholes option implied volatility at the end of each month. Vega is the Black-Scholes option vega 
scaled by the underlying stock price at the beginning of the period. Contemporaneous stock return is the 
return of the underlying stock over the same period as the dependent variable. Option implied skewness 
and kurtosis are the risk-neutral skewness and kurtosis of stock returns inferred from a cross-section of 
out of the money calls and puts at the end of previous month following Bakshi and Kapadia (2003a). All 
independent variables are winsorized each month at 0.5% level. To adjust for serial correlation, robust 
Newey-West (1987) t-statistics are reported in brackets.  

 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Intercept 0.0007 0.0250 0.0136 0.0137 0.0162 0.0136
            (0.85) (8.03) (4.65) (4.74) (3.49) (4.56) 
VOL -0.0113 -0.0124   -0.0066 -0.0271 
            (-7.38) (-8.62)   (-4.67) (-15.13) 
IVOL   -0.0279 -0.0291   
              (-18.60) (-19.52)   
SysVOL   -0.0058    
              (-1.36)    
ΔVIX Beta    0.0200   
    (1.53)   
MKTRF Beta    -0.0002   
    (-0.91)   
SMB Beta    -0.0001   
               (-1.32)   
HML Beta    -0.0003   
               (-1.64)   
Ln (VOLt-1 / IVt-1)   0.0219 0.0217  0.0223 
              (20.63) (20.41)  (20.71) 
Ln (IVt / IVt-1)   0.0341 0.0341  0.0340 
   (23.68) (24.16)  (23.55) 
Option Implied Skewness     -0.0019  
                (-7.88)  
Option Implied Kurtosis     -0.0565  
                (-9.86)  
Vega  -0.1825 -0.0485 -0.0485 -0.1410 -0.0469 
  (-8.38) (-2.43) (-2.50) (-4.48) (-2.30) 
Contemporaneous stock return  0.0326 0.0302 0.0306 0.0403 0.0300 
  (11.46) (11.36) (11.91) (10.25) (11.10) 
Average Adj. R2 0.0160 0.0500 0.1464 0.1496 0.0927 0.1445 
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Table 3.4: Controlling for Past Stock Returns 
 

This table reports the average coefficients from monthly Fama-MacBeth cross-sectional 
regressions of delta-hedged call option returns (delta-hedged option gain till maturity scaled by 
the underlying stock price at the beginning of the period). Ret (-1, 0) is the stock return in the prior 
month. Ret (-12, -1) is the cumulative stock return from the prior 2nd through 12th month. Ret (-36, -13) 
is the cumulative stock return from the prior 13th through 36th month. ME is the product of 
monthly closing price and the number of outstanding shares in previous June. Book-to-market is 
the fiscal-yearend book value of common equity divided by the calendar-yearend market value 
of equity. Total volatility (VOL) is the standard deviation of daily stock returns over the 
previous month. IV is the at-the-money Black-Sholes option implied volatility at the end of each 
month. Vega is the Black-Scholes option vega scaled by the underlying stock price at the 
beginning of the period. Contemporaneous stock return is the return of the underlying stock over 
the same period as the dependent variable. All independent variables are winsorized each month 
at 0.5% level. The sample period is from January 1996 to December 2006. To adjust for serial 
correlation, robust Newey-West (1987) t-statistics are reported in brackets.  

 
 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Intercept 0.0227 0.0229 0.0230 0.0222 0.0030 0.0045
            (8.98) (9.31) (8.91) (9.27) (1.27) (1.93) 
VOL -0.0138 -0.0138 -0.0130 -0.0157 -0.0100 -0.0313 
            (-10.36) (-10.63) (-10.36) (-13.49) (-8.50) (-20.44) 
Ret (-1,0) 0.0117   0.0125 0.0130 0.0046 
            (8.29)   (9.16) (9.53) (3.25) 
Ret (-12,-1)  0.0033  0.0035 0.0035 0.0035 
             (9.97)  (10.78) (11.58) (12.30) 
Ret (-36, -13)   0.0006 0.0007 0.0005 0.0006 
              (4.00) (4.53) (3.96) (5.03) 
Ln (ME)     0.0024 0.0008 
                (10.73) (4.54) 
Ln (BE/ME)     0.0001 -0.0009 
     (0.33) (-4.48) 
Ln (VOLt-1 / IVt-1)      0.0217 
                 (22.54) 
Ln (IVt / IVt-1)      0.0333 
      (26.60) 
Vega -0.1690 -0.1727 -0.1718 -0.1688 -0.1736 -0.0316 
 (-9.15) (-9.62) (-9.15) (-9.73) (-9.89) (-2.13) 
Contemporaneous stock return 0.0345 0.0345 0.0346 0.0351 0.0355 0.0327 
 (12.86) (12.97) (13.04) (13.44) (13.43) (13.28) 
Average Adj. R2 0.0564 0.0576 0.0530 0.0656 0.0784 0.1631 
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Table 3.5: Controlling for Option Demand Pressure and Liquidity 
 

This table reports the average coefficients from monthly Fama-MacBeth cross-sectional 
regressions of delta-hedged call option returns (delta-hedged gain till maturity scaled by the 
underlying stock price at the beginning of the period). Open interest is the option open interest at 
the end of the previous month. Stock volume is the monthly total stock trading volume of last 
month. Option bid-ask spread is the ratio of bid-ask spread of option quotes over the mid-point of 
bid and ask quotes.  Illiquidity is the daily average of the Amihud (2002) illiquidity measure over 
the previous month. Stock price is closing price at the end of last month. Total volatility (VOL) is 
the standard deviation of daily stock returns over the previous month. Ret (-12, -1) is the cumulative 
stock return from the prior 2nd through 12th month. ME is the product of monthly closing price 
and the number of outstanding shares in previous June. IV is the at-the-money Black-Sholes 
option implied volatility at the end of each month. Vega is the Black-Scholes option vega scaled 
by the underlying stock price at the beginning of the period. Contemporaneous stock return is the 
return of the underlying stock over the same period as the dependent variable (delta-hedged 
option return). All independent variables are winsorized each month at 0.5% level. The sample 
period is from January 1996 to December 2006. To adjust for serial correlation, robust Newey-
West (1987) t-statistics are reported in brackets.  

 
 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Intercept 0.0240 0.0249 0.0082 0.0078 0.0026 0.0029
            (8.74) (9.04) (3.28) (2.53) (0.84) (1.00) 
VOL -0.0125 -0.0125 -0.0077 -0.0059 -0.0053 -0.0236 
 (-9.11) (-9.37) (-5.51) (-4.67) (-4.49) (-13.69) 
(Option open interest /  
stock volume) *103 

-0.0266    -0.0197 -0.0167 
(-9.14)    (-8.89) (-8.39) 

Option bid-ask spread (%)  -0.0059   0.0140 0.0070 
             (-3.68)   (8.61) (5.09) 
Ln (Illiquidity)   -0.0025  -0.0016 -0.0023 
              (-11.29)  (-6.99) (-11.36) 
Stock price    0.0002 0.0002 0.0001 
    (16.01) (13.94) (9.96) 
Ret (-12,-1)     0.0015 0.0014 
                (6.07) (5.95) 
Ln (ME)     -0.0004 -0.0022 
                (-1.86) (-10.46) 
Ln (VOLt-1 / IVt-1)      0.0190 
                 (20.66) 
Ln (IVt / IVt-1)      0.0349 
      (27.33) 
Vega -0.1733 -0.1775 -0.1903 -0.1423 -0.1656 -0.0194 
 (-8.72) (-9.12) (-9.51) (-6.26) (-7.42) (-1.08) 
Contemporaneous stock return 0.0342 0.0340 0.0348 0.0352 0.0375 0.0336 
 (11.91) (11.73) (12.18) (12.35) (13.24) (12.73) 
Average Adj. R2 0.0556 0.0548 0.0692 0.0775 0.0907 0.1716 
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Table 3.6: Alternative Measures of Delta-Hedged Option Returns 
This table reports the average coefficients from monthly Fama-MacBeth cross-sectional 
regressions, using alternative measures of delta-hedged option returns as the dependent variable, 
for both call options (Panel A) and put options (Panel B). The first model uses delta-hedged 
option gain till maturity defined in Equation (2) scaled by stock price at the beginning of the 
period. In the second model, delta-hedged option positions are held for one month rather than till 
option maturity. In the third model, the dependent variable is delta-hedged option gains till 
maturity divided by the option price at the beginning of the period. All independent variables are 
the same as defined in Table 2 to 4, and winsorized each month at 0.5% level. The sample period 
is from January 1996 to December 2006. To adjust for serial correlation, robust Newey-West 
(1987) t-statistics are reported in brackets.  
\ 

Panel A: Delta-Hedged Call Option Returns 

Dependent Variables   Gain till maturity  
stock price 

 Gain till month-end   
stock price 

  Gain till maturity  
option price 

Intercept 0.0036 -0.0038 0.0973 
            (1.35) (-2.18) (2.33) 
VOL -0.0264 -0.0174 -0.2106 
            (-18.81) (-17.98) (-10.11) 
Ret (-1,0) 0.0016 -0.0003 0.0130 
            (1.20) (-0.38) (0.68) 
Ret (-12,-1) 0.0017 0.0010 0.0204 
            (7.50) (8.13) (6.07) 
Ret (-36, -13) 0.0005 0.0002 0.0044 
 (3.87) (4.00) (3.23) 
(Option open interest /  
stock volume) *103 

-0.0162 -0.0142 -0.2009 
(-8.54) (-10.24) (-10.57) 

Option bid-ask spread (%) 0.0070 0.0007 -0.0395 
            (5.34) (0.92) (-2.09) 
Ln (Illiquidity) -0.0022 -0.0010 -0.0162 
            (-11.05) (-9.42) (-5.90) 
Stock price 0.0001 0.0000 0.0024 
 (10.11) (0.93) (8.85) 
Ln (ME) -0.0021 -0.0008 -0.0232 
 (-9.97) (-7.52) (-6.93) 
Ln (VOLt-1 / IVt-1) 0.0197 0.0129 0.1956 
            (20.09) (24.92) (12.69) 
Ln (IVt / IVt-1) 0.0340 0.0476 0.5337 
 (27.56) (28.63) (38.46) 
Vega -0.0184 0.0452 -0.6067 
 (-1.06) (4.51) (-2.14) 
Contemporaneous stock return 0.0336 0.0034 0.4569 
 (13.85) (4.50) (11.05) 
Average Adj. R2 0.1749 0.4432 0.1205 
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Panel B: Delta-Hedged Put Option Returns 

Dependent Variables   Gain till maturity  
stock price 

 Gain till month-end   
stock price 

  Gain till maturity 
option price 

Intercept -0.0179 -0.0077 0.0029 
            (-6.00) (-3.61) (5.23) 
VOL -0.0266 -0.0159 -0.0039 
            (-18.40) (-13.96) (-8.07) 
Ret (-1,0) -0.0025 -0.0019 -0.0019 
            (-1.89) (-1.90) (-3.76) 
Ret (-12,-1) 0.0015 0.0010 0.0002 
            (8.20) (8.50) (1.86) 
Ret (-36, -13) 0.0004 0.0002 0.0001 
 (5.21) (4.99) (3.64) 
(Option open interest /  
stock volume) *103 

-0.0241 -0.0191 -0.0034 
(-9.54) (-12.10) (-5.04) 

Option bid-ask spread (%) 0.0133 0.0024 -0.0007 
            (9.03) (2.59) (-1.32) 
Ln (Illiquidity) -0.0028 -0.0010 -0.0004 
            (-11.69) (-8.86) (-6.66) 
Stock price 0.0000 0.0000 -0.0000 
 (1.41) (0.34) (-4.35) 
Ln (ME) -0.0020 -0.0008 -0.0003 
 (-10.40) (-7.84) (-6.18) 
Ln (VOLt-1 / IVt-1) 0.0211 0.0126 0.0044 
            (23.57) (23.59) (15.21) 
Ln (IVt / IVt-1) 0.0367 0.0507 0.0101 
 (26.77) (29.67) (23.09) 
Vega 0.1172 0.0633 -0.0054 
 (7.17) (5.53) (-1.40) 
Contemporaneous stock return -0.0242 -0.0021 0.0001 
 (-7.64) (-2.70) (0.39) 
Average Adj. R2 0.2394 0.4400 0.1184 
 
  



100 
 

Table 3.7: Delta-Hedged Option Returns and Volatility: EGARCH Measures 

This table reports the average coefficients from monthly Fama-MacBeth regressions of delta-hedged call 
option gains till maturity scaled by the underlying stock price at the beginning of the period. Realized 
idiosyncratic volatility (IVOL) is the standard deviation of the residuals of the Fama-French 3-factors 
model estimated using the daily stock returns over the previous month. Expected idiosyncratic volatility 
(Eidio) is the estimated monthly expected idiosyncratic volatility from EGARCH(1,1) on Fama-French 3-
factor model. Ret (-1, 0) is the stock return in the prior month. Ret (-12, -1) is the cumulative stock return from 
the prior 2nd through 12th month. Ret (-36, -13) is the cumulative stock return from the prior 13th through 36th 
month. ME is the product of monthly closing price and the number of outstanding shares in previous June. 
Open interest is the option open interest at the end of the previous month. Stock volume is the monthly 
total stock trading volume of last month. Option bid-ask spread is the ratio of bid-ask spread of option 
quotes over the mid-point of bid and ask quotes.  Illiquidity is the daily average of the Amihud (2002) 
illiquidity measure over the previous month. Stock price is closing price at the end of last month. IV is the 
at-the-money Black-Sholes option implied volatility at the end of each month. Vega is the Black-Scholes 
option vega scaled by the underlying stock price at the beginning of the period. To adjust for serial 
correlation, robust Newey-West (1987) t-statistics are reported in brackets.  
 

Dependent Variables Model 1 Model 2 Model 3 Model 4 

Intercept 0.0019 0.0309 0.0022  0.0101
            (2.46) (11.05) (2.7) (3.44) 
IVOL -0.0162 -0.0367   
            (-11.74) (-26.58)   
Eidio   -0.0152 -0.0081 
   (-10.72) (-8.74) 
Ret (-1,0)   0.0013   0.0044 
             (0.72)  (2.78) 
Ret (-12,-1)   0.0014   0.0015 
             (3.94)  (4.25) 
Ret (-36, -13)   0.0003   0.0001 
  (2.14)  (0.61) 
(Option open interest /  
stock volume) *103 

 -0.0028  -0.0009 
 (-10.16)  (-3.58) 

Option bid-ask spread (%)  -0.0192  -0.0197 
             (-10.46)  (-10.29) 
Ln (Illiquidity)  -0.0050   0.0008 
             (-4.16)  (0.63) 
Stock price  -0.0020  -0.0015 
  (-7.42)  (-5.76) 
Ln (ME)   0.0001   0.0002 
  (5.77)  (11.33) 
Ln (VOLt-1 / IVt-1)   0.0247   0.0110 
             (21.3)  (12.9) 
Vega  -0.0918  -0.1286 
  (-4.62)  (-6.44) 
Average Adj. R2 0.0196 0.0950 0.0170 0.0707 
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Table 3.8: Returns to Covered Call and Stock Volatility: Portfolio Analysis 
 

This table reports the average return of portfolios of covered calls sorted by the total volatility (Panel A) or by the idiosyncratic volatility 
(Panel B) of the underlying stocks. We continue to use the sample of short-term at-the-money call options on individual stocks. Each 
covered call involves selling a call option against Delta shares of the underlying stock owned, where Delta is the Black-Scholes call 
option delta at initial date. Each covered call position is held for one month (without rebalancing the delta-hedge) and then closed. Total 
volatility is the standard deviation of daily stock returns over the previous month. Idiosyncratic volatility is the standard deviation of the 
residuals of the Fama-French 3-factors model estimated using the daily stock returns over the previous month. All the numbers in this 
table are expressed in percent. We try three weighting schemes in computing the average portfolio return: equal weight, weighted by the 
market capitalization of the underlying stock (at the beginning of the period), or weighted by the market value of total option open 
interest (at the beginning of the period). Besides the average raw returns of portfolios of covered calls, we also report their CAPM alphas, 
FF-3 alphas and Carhart-4 Alphas. Panel C reports some subsample results. The sample period is from January 1996 to December 2006. 
To adjust for serial correlation, robust Newey-West (1987) t-statistics are reported in the brackets.  
 

Quintile Option 
Type 1-Low 2 3 4 5-High 5-1 CAPM 

Alpha 
FF-3 

Alpha 
Carhart-4 

Alpha 

Panel A: Return to Covered Call Writing Sorted on Total Volatility 
Equal-weighted C 1.62 2.05 2.56 2.98 3.95 2.33 2.32 2.32 2.31 
  (13.18) (13.24) (14.01) (12.32) (15.05) (10.37) (9.69) (9.23) (9.64) 
Stock-value-weighted C 1.52 1.65 2.02 2.41 3.18 1.66 1.61 1.70 1.77 
  (11.43) (10.94) (12.81) (9.21) (11.52) (6.77) (5.83) (5.77) (6.32) 
Option-value-weighted C 1.45 1.71 2.27 2.55 3.76 2.31 2.25 2.31 2.31 
  (9.72) (9.61) (11.86) (7.66) (12.16) (7.87) (7.03) (6.47) (6.90) 
           

Panel B: Return to Covered Call Writing Sorted on Idiosyncratic Volatility  
Equal-weighted C 1.62 2.03 2.52 3.05 3.94 2.32 2.32 2.30 2.27 
  (13.55) (12.73) (12.87) (13.65) (15.43) (11.37) (10.72) (9.82) (10.01) 
Stock-value-weighted C 1.53 1.70 2.10 2.52 3.12 1.59 1.54 1.61 1.64 
  (11.28) (11.87) (10.38) (10.85) (11.40) (7.00) (6.04) (5.83) (6.32) 
Option-value-weighted C 1.53 1.64 2.51 2.92 3.40 1.87 1.81 1.73 1.65 
  (10.25) (9.06) (11.15) (10.03) (9.17) (5.44) (4.97) (3.77) (3.44) 
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Panel C: Subsample Evidence: Equal-weighted Portfolio Returns (%) Sorted  on VOL 

 
Option 
Type 1-Low 2 3 4 5-High 5-1 t-stat 

Size Quintile 1 C 2.78 3.52 3.67 4.15 5.00 2.22 (8.15) 
Size Quintile 2 C 2.15 2.59 2.91 3.04 3.94 1.79 (6.90) 
Size Quintile 3 C 1.78 2.18 2.28 2.64 3.39 1.61 (6.34) 
Size Quintile 4 C 1.43 1.77 2.04 2.39 2.92 1.49 (5.59) 
Size Quintile 5 C 1.36 1.56 1.59 1.83 2.58 1.23 (5.74) 
         

January C 1.85 2.24 2.54 3.31 4.62 2.76 (3.87) 
Feb-Dec C 1.60 2.03 2.56 2.95 3.89 2.29 (9.03) 
1996 - 1999 C 1.62 1.98 2.45 2.95 4.02 2.40 (6.69) 
2000 - 2003 C 1.91 2.43 2.98 3.38 4.12 2.22 (4.82) 
2004 - 2006 C 1.25 1.63 2.15 2.49 3.64 2.38 (14.76) 
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Table 3.9: Returns to Covered Call and Stock Volatility: Decomposition 
 

This table reports the average return of portfolios of covered calls sorted by the idiosyncratic 
volatility of the underlying stocks. We use the sample of short-term at-the-money call options on 
individual stocks. Each covered call involves selling a call option against Delta shares of the 
underlying stock owned, where Delta is the Black-Scholes call option delta at initial date. Each 
covered call position is held for one month (without rebalancing the delta-hedge) and then closed. 
The returns to covered call are decomposed into two parts:  return generated by stock price 
change, and return generated by option price changes. Idiosyncratic volatility (IVOL) is the 
standard deviation of the residuals of the Fama-French 3-factors model estimated using the daily 
stock returns over the previous month. All the numbers in this table are expressed in percent. The 
sample period is from January 1996 to December 2006. To adjust for serial correlation, robust 
Newey-West (1987) t-statistics are reported in the brackets.   
 

Total Return to Covered Call Writing  =  Stock Part + Option Part  
 

ሺ∆௧ · ܵ௧ାଵ െ ௧ାଵሻܥ െ ሺ∆௧ · ܵ௧ െ ௧ሻܥ
ሺ∆௧ · ܵ௧ െ ௧ሻܥ

ൌ
∆௧ · ሺܵ௧ାଵ െ ܵ௧ሻ

ሺ∆௧ · ܵ௧ െ ௧ሻܥ
 ൅  

௧ܥ െ ௧ାଵܥ

ሺ∆௧ · ܵ௧ െ ௧ሻܥ
 

 
 

Equal-Weighted Return to Covered Call Writing (%) Sorted on Idiosyncratic Volatility (IVOL) 

 
Option 
Type 1-Low 2 3 4 5-High 5-1 

Total Return C 1.62 2.03 2.52 3.05 3.94 2.32 

  (13.55) (12.73) (12.87) (13.65) (15.43) (11.37) 

Stock Part C 2.01 2.61 3.06 3.34 3.57 1.56 

  (7.67) (7.49) (6.11) (4.92) (3.91) (1.89) 

Option Part C -0.39 -0.58 -0.54 -0.29 0.38 0.77 
  (-1.31) (-1.48) (-0.98) (-0.39) (0.38) (0.87) 
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Table 3.10: Volatility Risk Premium, Liquidity and Transaction Costs 

This table reports the impact of liquidity and transaction costs on volatility risk premium. Each 
number of the columns under 5-1 is the difference in the average return of covered calls on stocks 
in the top quintile versus bottom quintile ranked by total volatility. The returns are computed 
using the mid-point of bid and ask quotes (MidP) or assuming an effective bid-ask spread (ESPR) 
equal to 50%, 75%, and 100% of the quoted spread (QSPR). Panel B reports the average return 
spread between writing covered calls on high versus low volatility stocks for each quintile sorted 
by liquidity measures of stock and option. Each month, we first sort the option sample into five 
quintiles (G1 to G5) by the price or Amihud (2002) illiquidity measure of the underlying stock, or 
by option bid-ask spread. Then within each quintile, we further sort by the volatility of the 
underlying stock. Total volatility is the standard deviation of daily stock returns over the previous 
month. Illiquidity is the daily average of the Amihud (2002) illiquidity measure over the previous 
month. Stock price is closing price at the end of last month. Option bid-ask spread is the ratio of 
bid-ask spread of option quotes over the mid-quotes. All the numbers in this table are expressed 
in percent. The sample period is from January 1996 to December 2006. To adjust for serial 
correlation, robust Newey-West (1987) t-statistics are reported in the brackets. 
 

Panel A: Equal-Weighted Portfolio Returns (%) Sorted on Total Volatility (VOL) 
 5-1  10-1 

  ESPR/QSPR   ESPR/QSPR 

Sorted on MidP 50% 75% 100% 
 

MidP 50% 75% 100% 

Average Return 2.33 1.25 0.73 0.22  2.87 1.61 1.00 0.41 
 (10.37) (5.58) (3.22) (0.95)  (10.42) (5.91) (3.65) (1.46) 
          

FF-3 Alpha 2.32 1.25 0.73 0.22  2.90 1.65 1.04 0.45 
 (9.23) (5.17) (3.05) (0.93)  (9.15) (5.46) (3.50) (1.51) 
 

Panel B: Equal-Weighted (5-1) Spread (%) Sorted on Total Volatility (VOL) 

 Illiquidity Stock Price Option Bid-ask 
Spread 

    

G1- Low 1.07 2.92 1.63 
 (3.44) (9.64) (5.25) 

G2 1.85 1.93 2.43 
 (6.56) (8.39) (7.80) 

G3 1.92 1.48 2.70 
 (6.77) (6.10) (10.69) 

G4 2.26 1.13 2.68 
 (8.99) (4.34) (10.87) 

G5 –High 2.54 0.82 2.79 
 (10.02) (2.24) (9.67) 
    

G5 – G1 1.47 -2.10 1.16 
 (4.33) (-4.83) (2.66) 
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Figure 2.1: Cross-Section of Stocks Returns and Idiosyncratic Risk across Arbitrage Score Quintiles 
At the beginning of each week, all stocks are independently sorted into deciles from low to high, based on BE/ME, the compound gross 
return from t-52 weeks to t-4 weeks, negative size and negative previous week return. Stocks obtain the corresponding score of its decile 
rank. Arbitrage score is the total score based on four different rankings and ranges from 4 to 40.  Each week, stock are first sorted on their 
arbitrage scores into quintiles and then sorted within each quintile into quintiles based on expected idiosyncratic volatility. Expected 
idiosyncratic volatility is estimated weekly from EGARCH(1,1) on Fama-French 3-factor model by all the historical weekly data. 
Estimates are only conducted if at least 260 observations exist. The left and right figures corresponds to Panel A and Panel B in Table 2.7, 
respectively.  
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Figure 3.1: Returns to Covered Call and Stock Volatility: Time-Series Analysis 
This figure plots the time-series (5-1) spread of covered calls sorted by the idiosyncratic volatility. We use the sample of short-term at-
the-money call options on individual stocks. Each covered call involves selling a call option against Delta shares of the underlying stock 
owned, where Delta is the Black-Scholes call option delta at initial date. Each covered call position is held for one month (without 
rebalancing the delta-hedge) and then closed. The returns to covered call are decomposed into two parts:  return generated by stock price 
change, and return generated by option price changes.  
 

Total Return to Covered Call Writing  =  Stock Part + Option Part 
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Appendix: Risk-neutral Skewness and Kurtosis

We use a model-free and ex-ante measure of risk-neutral skewness and kurtosis

given by Bakshi, Kapadia, and Madan (2003). For each stock on date t, the

skewness and kurtosis of the risk-neutral density of the stock return over the

period [t; t+ � ] can be inferred from the contemporaneous prices of out-of-the-

money call options and put options as follows:

Skew(t; �) =
er�W (t; �)� 3�(t; �)er�V (t; �) + 2�(t; �)3

[er�V (t; �)� �(t; �)2]3=2 ; (5)

where

�(t; �) = er� � 1� e
r�

2
V (t; �)� e

r�

6
W (t; �)� e

r�

24
X(t; �); (6)

and V (t; �), W (t; �) and X(t; �) are the weighted sums of OTM call option

prices C(t; � ;K) and put option prices P (t; � ;K), with time-to-maturity � and

strike price K, given the underlying asset price St:

V (t; �) =

Z 1

St

2(1� ln(K
St
))

K2
C(t; � ;K)dK +

Z St

0

2(1 + ln(St
K
))

K2
P (t; � ;K)dK;

(7)

W (t; �) =

Z 1

St

6ln(K
St
)� 3[ln(K

St
)]2

K2
C(t; � ;K)dK�

Z St

0

6ln(St
K
) + 3[ln(St

K
)]2

K2
P (t; � ;K)dK;

(8)

X(t; �) =

Z 1

St

12[ln(K
St
)]2 � 4[ln(K

St
)]3

K2
C(t; � ;K)dK+

Z St

0

12[ln(St
K
)]2 + 4[ln(St

K
)]3

K2
P (t; � ;K)dK:

(9)

The integrals are approximated in (7), (8) and (9) using the trapezoidal

method. For accuracy, we require at least three out-of-the-money call options
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and three out-of-the-money put options. Due to this data constraint, the option

implied skewness and kurtosis are only available for about half of the sample.
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