
International Journal of Computer Applications (0975 – 8887)
Volume 33– No.9, November 2011

40

An Impact-based Analysis of Software Reengineering
Risk in Quality Perspective of legacy System

Er. Anand Rajavat
1Department of Computer Science & Engineering

SVITS, Indore, M. P., India

Dr. (Mrs.) Vrinda Tokekar
Information Technology

IET (DAVV), Indore, M. P., India

ABSTRACT
Reengineering of operational legacy system is a novel
technique for software rejuvenation. Reengineering is used
specifically to satisfy and even delight modern customers and
market with the value of our software products and services to
gain their loyalty and repeat business. However, it incurs
some overhead in terms of risk. The basic necessity for the
successful implementation of reengineering strategy is to
measure the overall impact of different reengineering risk
components that arises from system, managerial and technical
domain of legacy system. Quantifiable risk measures are
necessary for the measurement of reengineering risk to take
decision about when the evolution of legacy system through
reengineering is successful. We present a quantifiable
measurement model to measure comprehensive impact of
different reengineering risk arises from quality perspective of
legacy system. The model consists of five reengineering risk
component, including Maintainability risk, Project complexity
risk, Software architecture risk, Training Risk and Security
risk component .Proposed measurement model offers better
performance in terms of risk measurement to support the
decision-making process.

Keywords
Reengineering, Risk Engineering, Measurement.

1. INTRODUCTION
Legacy systems [1] and the data they process are vital assets
for the organization that use them. However, over the years
many changes have been incorporated in the system that
caused progressive degradation in the system quality.

This degeneration, together with the continual and often
evolutions of the market and user requirements, leads to a
high number of reasons for legacy system evolution. Over the
past few years, legacy system re-engineering has emerged as
an important system evolution strategy. A goal of software re-
engineering is to take an existing software system and
generate from it a new system that has the same quality as
software created by modern software engineering practices
[2].Reengineering is necessary, indeed indispensable, to
overcome many of the most serious flaws of legacy system. In
addition to improving the quality of the system, the
reengineering process should enable new functions to be
introduced and new technologies to be adopted, to satisfy
current needs of business environment [3].Unfortunately,
most of the reengineering projects are only concerned on
satisfaction of current needs of business environment and
usually ignore the reengineering risk components and factors
that will affect quality attributes in the evolution process of
the legacy systems. A feasible re-engineering process required
to measure overall impact of different reengineering risk

engenders from system, managerial and technical domains of
legacy system [4] [5].

Proposed measurement model analyze current state of legacy
system and desired state of target system to quantify different
reengineering risk components arises from quality perspective
of legacy system. A pentagram model is used to compute
comprehensive impact of all the risk components. The quality
perspective risk measurement model consists of five
reengineering risk components, including Maintainability risk,
Project complexity risk, Software architecture risk, training
Risk and Security Risk component. Different Measurement
metrics are used to examine and analyze different
reengineering risk components. .

2. RELATED WORK
As with any engineering discipline, software reengineering
requires a measurement mechanism for feedback and
evaluation of reengineering risk. Reengineering risk
measurement is a mechanism for creating estimation in
answering a variety of questions associated with the
enactment of any legacy system. Measurement allows us to
determine the strengths and weaknesses of the legacy system
that means what is the success rate of evolution strategy used
to modernize legacy system.

Victor R. Basili in [6] develops a Goal Question Metric
mechanism for defining and interpreting operational and
measurable software. It can be within the context of a more
general approach to software quality improvement. Whereas
Linda Westfall in [7] develops a Kiviat chart to summarize
different set of metrics. Kiviat chart can be used to compare
several different items like projects, products or Processes
across several parameters against the ideal. Yennun huang in
[8] present a model for analyzing software renovation in
running application and express downtime and costs due to
downtime during renovation using some parameters in that
model. On the other side Kishor S. Trivedi in [9] presents a
stochastic model to measure the effectiveness of proactive
fault management in software systems and determine optimal
times to perform rejuvenation, for different scenarios. Model
develops different methodologies to detect software aging and
estimate its effect on various system resources.

The existing risk measurement models used for the evolution
of legacy system really measure risk impact by considering
current state of legacy system and desired state of target
system. They are all based on the lower-level metrics needed
in order to obtain satisfactory measures of higher-impact risk
components. Henceforth it is required to measure
comprehensive impact of all reengineering risk components in
the evolution process of legacy system. The precondition to
measure the comprehensive impact of reengineering risk is, to

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.9, November 2011

41

measure impact of each risk component using different
measurement metrics. Finally we need to integrate these risk
components into a unified approach to get total risk impact..

3. QUALITY PERSPECTIVE RISK
MEASUREMENT MODEL

The purpose of measurement model is to design quantifiable
metrics for the evaluation of legacy system by measuring
different reengineering risk components materialize in the
evolution process of legacy system. Finally model is able to
design quantifiable metrics to measure comprehensive impact
of all reengineering risk arises from system, managerial, and
technical domains of legacy system.

Figure 1 Quality perspective measurement model

As shown in Figure 1 quality perspective
measurement model is presented through using a pentagram
diagram based on the measurement of its five risk
components. The total impact of each risk component is
measured based on the results of their metrics during
measurement process. Let us assume: the measurement results
of each risk component is a value from 0 to 1. The value “1”
indicates the maximum value for each risk component, and
“0” indicates the minimum value. The area of the pentagram
is used as the measurement of overall impact of five risk
components. Clearly, the smallest value of this pentagram
area is 0, and the maximum value is approximately 2.4. As the
pentagram consists of five triangles, the area of each triangle
can be computed 0.5 * L1 * L2 * Sinα where L1, L2
represent the sides of the triangle and α represents the 72-
degree angle between the two sides. The term TIMR, TICR,
TIAR, TITR, and TISR in Figure 1 are used to represent the
five risk components of Model respectively. Since each risk
component is measured using different quantifiable
measurement metrics the Total Risk Impact (TRI) of all risk
components can be computed as below:

Where a represents TIMR, b represents TICR, c represents
TIAR, d represents TITR, e represents TISR

The main advantages of pentagram area calculation are

• In the pentagram model, every estimate is equal and
independent.

• It adopts subjectively and objectively integrative
estimation.

• It is easy to show the difference of the sum. If one
dimension has a lesser change, and the other four
have no change, the area calculation method with
the influence on total scores will be more than
weighted average computing [10].

Quality perspective risk measurement model is used to
measure overall impact of five different reengineering risks
from technical domain of legacy system. The five most
important risk components of quality perspective risk
measurement model are presented in Table I. It shows Key
risk component and the most important measures of those
components. The purpose of quality perspective risk
measurement is to design a pentagram model used to measure
overall impact of different reengineering risk component in
quality perspective of legacy system.

Table 1 Most important measure

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.9, November 2011

42

4. MEASUREMENT METRICS
In this section, we describe the measurement metrics used to
measure impact of each risk component represented by each
side of the pentagram model

4.1 Maintainability Risk
Maintainability is the ease with which a program can be
correct if an error occurs. When the development of a
software product is completed and it is released to the market,
it enters the maintenance phase of its life cycle. During this
phase the defect arrivals by time interval and customer
problem calls (which may or may not be defects) by time
interval are the major issues. The main task during the
maintenance phase is to fix the defects as soon as possible and
with excellent fix quality. Such actions, although still not able
to improve the defect rate of the product, can improve
customer satisfaction to a large extent. Maintainability risk
component is the probability that the reengineered system
facilitate updates to satisfy new requirements in future.
Maintainability risk measurement model measure that the
software product that is maintainable should be well-
documented, should not be complex, and should have spare
capacity for memory, storage and processor utilization and
other resources.

The following measurement metrics is used to measure the
total impact of maintainability risk component.

TIMR = BMI+FRT+PDF+FQ

Where

 BMI represents backlog management index

 FRT represents fix response time

 PDF represents Percent Delinquent Fixes

 FQ represent fix quality

• Backlog management index (BMI)

Fix backlog is a workload statement for software
maintenance. It is related to both the rate of defect arrivals and
the rate at which fixes for reported problems become
available. It is a simple count of reported problems that
remain at the end of each month or each week. Metric to
measure the backlog problems is the backlog management
index (BMI).

As a ratio of number of closed, or solved, problems to number
of problem arrivals during the month, if BMI is larger than
100, it means the backlog is reduced. If BMI is less than 100,
then the backlog increased.

• Fix Response Time (FRT)

For many software development organizations, guidelines are
established on the time limit within which the fixes should be
available for the reported defects. Usually the criteria are set
in accordance with the severity of the problems. For the
critical situations in which the customers’ businesses are at
risk due to defects in the software product, software
developers or the software change teams work around the
clock to fix the problems. For less severe defects for which
circumventions are available, the required fix response time is
more relaxed. The fix response time metric is usually
calculated as follows for all problems as well as by severity
level:

Mean time of all problems from open to closed

• Percent Delinquent Fixes (PDF)

The mean (or median) response time metric is a central
tendency measure. A more sensitive metric is the percentage
of delinquent fixes. For each fix, if the turnaround time
greatly exceeds the required response time, then it is classified
as delinquent:

• Fix Quality (FQ)

Fix quality or the number of defective fixes is another
important quality metric for the maintenance. From the
customer’s perspective, it is bad enough to encounter
functional defects when running a business on the software. It
is even worse if the fixes turn out to be defective. A fix is
defective if it did not fix the reported problem, or if it fixed
the original problem but injected a new defect. For mission-
critical software, defective fixes are detrimental to customer
satisfaction. The metric of percent defective fixes is simply
the percentage of all fixes in a time interval (e.g., 1 month)
that are defective [11].

4.2 Project complexity risk
Software complexity is defined as an important determinant of
software maintenance risk. Increased software complexity
means that maintenance and enhancement projects will take
longer, will cost more, and will result in more risk. Some
metrics are proposed to measure the complexity of software.
Cyclomatic complexity may be considered a broad measure of
soundness and confidence for the measurement of project
complexity risk. It measures the number of linearly-
independent paths through a program module. This measure
provides a single ordinal number that can be compared to the
complexity of other programs. Project complexity risk
component is the risk of loss associated with the complex
legacy system functions that are hard to evolve through
reengineering. Project complexity risk measurement Model
measures complexity of different functions of legacy system

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.9, November 2011

43

with the help of different software complexity measurement
tools.

The total impact of Project complexity risk (TICR) can be
measured using following metrics

TICR= CC+MDC+GDC+SDC

Where

CC represents Cyclomatic complexity
MDC represents Module design complexity
GDC represents Global data complexity
SDC represents Specified data complexity

• Cyclomatic complexity
Cyclomatic complexity is a measure of the logical complexity
of a module and the minimum effort necessary to qualify a
module. Cyclomatic is the number of linearly independent
paths and, consequently, the minimum number of paths that
one should (theoretically) test.

• Module Design Complexity
Module design complexity of a module is a measure of the
decision structure which controls the invocation of the
module’s immediate subordinate modules. It is a
quantification of the testing effort of a module as it calls its
subordinates. The module design complexity is calculated as
the cyclomatic complexity of the reduced graph. Reduction is
completed by removing decisions and nodes that do not
impact the calling control of the module over its subordinates.
Important factors of Module design Complexity

 Modules do not exist in isolation
 Modules call child modules
 Modules depend on services provided by other

modules

• Module Global Data Complexity
Global data complexity quantifies the complexity of a
module's structure as it relates to global and parameter data.
Global data is data that can be accessed by multiple modules.
This metric can show how dependent a module is on external
data and is a measure of the testing effort with respect to
global data. Global data complexity also measures the
contribution of each module to the system's data coupling,
which can pinpoint potential maintenance problems.

• Module Specified Data Complexity
Specified data complexity quantifies the complexity of a
module's structure as it relates to user-specified data. It is a
measure of the testing effort with respect to specific data.
Data dictionary is used to select a single data element, all
elements with a specific data type, or a variety of other
selection criteria. The specified data complexity then
quantifies the interaction of that data set with each module's
control structure [12].

Structural Analysis

The higher the complexity the more risk. The more risk the
more risky to evolve legacy system using reengineering
strategy. Correlation between Cyclomatic complexities with

Reliability & maintainability Risk and Bad fix probability is
shown in the table 2

Table 2 Structural analysis

4.3 Software architecture Risk
Software architecture is typically documented using

multiple views. A “view” is a representation of a set of system
elements and the relationships associated with them.
Together, these definitions are saying that the software
architecture serves multiple purposes and hence cannot be
captured in a single model (i.e., a view).Any software
architecture has two elements – components and connectors.
Software could be adaptable with respect to either of these
two elements on any of the architectures for that software.
With respect to software adaptability, as defined above,
adaptability of either element carries equal significance or
weight.

Software architecture Risk Component is the risk of loss
associated with inconsistency between existing and desired
architecture of legacy and target system. Software architecture
risk measurement model analyzes legacy systems structure,
comprising software elements, the externally visible
properties of those elements, and the relationships between
them in accordance with architecture of target system.
Identification and resolution of architectural risk is one of the
key factors in successfully reengineering effort. Architectural
consistency risk often leads to project inefficiencies, poor
communication, and inaccurate decision making. Identifying
and controlling architectural risks can have a significant
impact on the overall success of a reengineering effort [13].

Total impact of software architecture risk (TIAR) can be
computed using following metrics

TIAR= AAI+SAI

Where AAI represents Architecture adaptability index (AAI)

 SAI represents Software adaptability index (SAI)

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.9, November 2011

44

Legacy Systems

In many cases, especially legacy code systems, only the
source code is available. In such cases using tools the code
architecture may be obtained. For software systems that have
only the code architecture,

SAI = AAI (code architecture).

An adaptable element of architecture has a unit element
adaptability index (EAI). A non-adaptable element of
architecture has zero EAI.

4.4 Training Risk
Training risk component is the risk of loss associated with the
lack of training for the existing work force on advanced tools
and technology which will be used to achieve target system
goals. Training risk measurement model measure the
requirements of customized and specialized training programs
and special consulting services for present user of the legacy
system so that they are comfortable with operations of target
system. The Training risk identifies the key elements and
steps necessary for training the various staff to use of the
relevant functionality of the target system.

Training effectiveness means how well the training inputs are
serving the intended purpose. This aspect is often neglected
by organizations, saying that measurement is difficult. There
are three kinds of training outputs that organizations need to
measure. They are:

• Relating to evolution planning, relevance,
comprehension and whatever defined goals in the
evolution process.

• Utilization ratio for enhanced functionality provided
by the target system

• Redeveloping legacy system in to target system by
considering skills competencies, decision making
and problem-solving abilities of the organization

• The changes in the mind set such as work related
attitudes, values, interpersonal competencies and
personal attributes towards target system.

The total impact of training risk component can be calculated
using following measure

TITR=R1+L+B+R2

Where

R1 represents level 1 evolution Reaction
L represents level 2 evolution Learning
B represents level 3 Behavior
R2 represents level 4 Results

• Reactions
This, the first “level” consists of information about the
trainees’ perceptions of the training: Do they see it as use-
full? Was their time well spent? Did the instructor know what
he or she was doing? All kinds of questions are asked and
answered as part of evaluating training at this level. A training
course that consistently and repeatedly fails the level1 is in
deep trouble. If trainees uniformly and consistently dislike or
claim that a particular training session (or instructor) is of
little or no value to them, it is doomed. The level1 must be
passed.

• Learning
This level deals with the acquisition of skill and knowledge
during the training, usually as evidenced by en-route and end-
of-course assessments. Can the trainees do what they’re being
trained to do? When used in conjunction with pre-tests, this
kind of assessment can do a reliable job of determining if the
training course or session is achieving its learning objectives.
It is, then, a reasonably good measure of the efficiency of the
training.

• Behavior
Behavior change on the job is indeed another important
measure; however, it is as much or more a measure of two
other factors than it is of training itself. One factor is the
extent to which the job environment supports applying what
was learned and the second factor is the applicability and
utility of what was learned.

• Results
The level 4 focuses on results in the workplace. These might
be operational such as reduced errors or increased
productivity and they might be financial such as reduced costs
or increased sales. But for training to lay claim to the credit
for any results in the workplace there is a bridge that must be
constructed spanning the gap between behavior changes and
business results. Finding the links between changes in human
behavior and changes in business results can be a taxing and
difficult task. It requires being able to identify the linkages
connecting the two and that requires being able to work your
way through the performance architecture of the organization
[14].

4.5 Security Risk
Security can be defines as ability to protect data against
unauthorized access and to withstand malicious or inadvertent
interference with its operations. Security ensures that
important data and information of present system is not
accessed by unauthorized persons during system evolution
process. Security risk component is the probability that the
important data and information of existing system is lost or
misused during system evolution process. Security risk
measurement model measures the effectiveness of the process
that will ensure the availability and confidentiality of
important data and information of legacy system after the
evolution through reengineering.

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.9, November 2011

45

Security in a software-intensive system is achieved and
preserved by a wide range of activities associated with the
original system development process and with system
operations in the use environment, including maintenance.
Security is defined in risk terms (likelihood and severity of
failures); all security related activity can be regarded as forms
of risk reduction. Strengthening engineering practices reduces
the risk of introducing faults during development. Engineering
security architecture and security-specific components
reduces the risk of failures due to common types of faults.
Assurance activity reduces uncertainty about risks, especially
for users and others not directly involved in development.

Two specific risk assessment activities are important in the
security field: threat modeling and vulnerability assessment.

• Threat modeling-

Factors involved in assessing the security risk posed by a
particular agent have been modeled in [15]. These factors can
be assessed on the basis of qualitative scales, enabling risks to
be prioritized.

• Vulnerability Assessment-

Assessing system and software designs and implementations
for potential vulnerabilities complements the threat-driven
approach. For software, vulnerability scanning tools are
available today to assist with the detection of defects
commonly associated with security events. The tracking of
potentially exploitable defects and vulnerabilities enables the
measurement of numbers of these over time, in different type
and status categories. In practice false positives can be a
severe problem, for legacy code.

 The total impact of Security risk component can be calculated
using following metrics

Where

T represents Threat
V represents Vulnerability
C represents Cost
K represents no. of modules in legacy system

Threat is the frequency of adverse events. Vulnerability is the
likelihood that a particular attack will be successful, and cost
is the total economic impact of a successful attack.

5. EXPERIMENT AND ANALYSIS
The purposes of this experiment is to check the correctness of
the referred quantitative risk measurement model for quality
perspective of legacy system and compare the result of two
legacy software of the same scenarios i.e. library management

system. The two different legacy library management systems
are used to check the correctness of proposed measurement
model. The total impact of five identified risk is calculated for
each legacy library management system using different
measurement metrics for respective risk components.

Applying pentagram model to five risk components we have
the following results as shown in table 3.

TRI (LS1) = 0.48 X

=0.48 X [(.35*.20) + (.20*.26) + (.26*.50) + (.50*.40) +
(.40*.35)]

=.284

 TRI (LS2) = 0.48 X

 =0.48 X [(.50*.40) + (.40*.60) + (.60*.50) + (.50*.60) +
(.60*.50)]

=.643

Where LS1 represents legacy system 1

 LS2 represents legacy system 2

 TRI Total Risk Impact

Table 2 Results

Based on the TRI values of two legacy library management
system the measurement results for both systems i.e. LS1 and
Ls2 tests are shown in Figure 2. It is clear that the TRI of LS2
(Right) is higher than the TRI of LS1 (Left).

 A mean opinion score is used to quantify and predict the
judgment based on total impact reengineering risk from
quality perspective of legacy system.

Table 3 Mean opinion score

We give comparative TRI values for LS1 and LS2
with the mean opinion score. The mean opinion scores and the
corresponding measurement model based impact values are
shown on the table 4. It shows that reengineering is successful
if the TRI value is less than or equals to 1 and the values
higher than this level required massive risk engineering or
tends to reengineering failure.

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.9, November 2011

46

Figure 2 Comparative analysis

6. CONCLUSION
Software reengineering is a revolutionizing technique used to
modify structure and values of the systems data.
Reengineering involves analysing the current state of the
legacy system and transforming the system state according to
the requirements of target system. The purpose of introducing
risk measurement in reengineering process is to facilitate the
developers and client of legacy system to be aware and
measure total impact of all the risk that could be identified in
system, managerial and technical domains of legacy system.
In this paper, we propose a measurement-based model to
estimate the comprehensive impact of reengineering risk
arises from quality perspective of legacy system. We also use
referred model to compare total risk Impact (TRI) for two
legacy systems of the same domain. These results are the
basic to lay the foundation for the inception of a decision
system to facilitate software reengineering as a system
evolution strategy. Finally a mean opinion score board is
developed based on TRI value to support decision making
system for a successful reengineering solution.

7. REFERENCES
[1] Brodie, M. L., Stonebraker, M., “Migrating Legacy

Systems: Gateways, Interfaces, & the Incremental
Approach,” Morgan Kaufmann Publishers, Inc.; 1995.

[2] Byrne, E.J. Gustafson, D.A.,” A software re-engineering
process model”, in Proceeding of, Sixteenth Annual
International Conference on Computer Software and
Applications, Digital Object Identifier:
10.1109/CMPSAC.1992.217608 , ISBN: 0-8186-3000-0
,1992 , PP 25-30.

[3] Bianchi, A., Caivano, D., Marengo, V., Visaggio, G.,”
Iterative reengineering of legacy functions”, Proceeding
of IEEE International Conference on Software

Maintenance, Digital Object Identifier:
10.1109/ICSM.2001.972780, ISBN: 0-7695-1189-9
2001, PP 632-641.

[4] Anand Rajavat, Dr. (Mrs.) Vrinda Tokekar, “SysRisk –A
Decisional Framework to Measure System Dimensions
of Legacy Application for Rejuvenation through
Reengineering”, Published in International Journal of
Computer Applications (IJCA), 16(2):16–19, February
2011, ISBN: 978-93-80747-56-8, Doi 10.5120/1985-
2674.

[5] Anand Rajavat, Dr. (Mrs.) Vrinda Tokekar, “ReeRisk –A
Decisional Risk Engineering Framework for Legacy
System Rejuvenation through Reengineering”, Published
in Proceedings of Second International Conference on
Recent Trends in Information, Telecommunication and
Computing – ITC 2011 by Springer LNCS-CCIS, March
10-11, 2011 in Bengaluru, India, CNC 2011, CCIS 142,
pp. 152 – 158, 2011, © Springer-Verlag Berlin
Heidelberg 2011.

[6] Victor R. Basili1, Gianluigi Caldiera1 H., Dieter
Rombach,” The Goal Question Metric Approach”,
technical report, department of computer science,
institute for advanced computer studies, university of
Maryland.

[7] Linda Westfall,” Kiviat Charts”, technical report, the
west fall team, partnering for software excellence.

[8] Huang, Y.; Kintala, C.; Kolettis, N.; Fulton, N.D.,”
Software rejuvenation: Analysis, Modeling, and
applications”, Twenty-Fifth International Symposium on
Fault-Tolerant Computing, 1995. FTCS-25. Digest of
Papers, Digital Object Identifier:
10.1109/FTCS.1995.466961, 1995, Pp381-390.

[9] Trivedi, K.S.; Vaidyanathan, K.; Goseva-Popstojanova,
K,” Modeling and analysis of software aging and
rejuvenation”, Proceedings. 33rd Annual Simulation

http://www.ijcaonline.org/�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7668�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7668�
http://dx.doi.org/10.1109/ICSM.2001.972780�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3246�
http://dx.doi.org/10.1109/FTCS.1995.466961�
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=844925&queryText%3DModeling+and+Analysis+of+Software+Aging+and+Rejuvenation%26openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All�
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=844925&queryText%3DModeling+and+Analysis+of+Software+Aging+and+Rejuvenation%26openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All�
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=844925&queryText%3DModeling+and+Analysis+of+Software+Aging+and+Rejuvenation%26openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.9, November 2011

47

Symposium, 2000, Digital Object Identifier:
10.1109/SIMSYM.2000.844925, 2000, pp270-279.

[10] Yan Gong; Fangchun Yang; Lin Huang; Sen Su,”
Model-Based Approach to Measuring quality Of
Experience”, First International Conference on Emerging
Network Intelligence, Digital Object Identifier:
10.1109/EMERGING.2009.17,2009,PP:29-32.

[11] Stephen H. Kan,” Metrics and Models in Software
Quality”, Addison-Wesley Professional, 2 nd Edition,
ISBN-10: 0-201-72915-6, 2003.

[12] Thomas J. McCabe, “Design complexity measurement
and testing”, Communications of the ACM, doi
10.1145/76380.76382, Volume 32 Issue 12, Dec. 1989.

[13] Nary Subramanian, Lawrence Chung,” Metrics for
Software Adaptability”, Technical report, Applied
Technology Division, Anritsu Company, 1999.

[14] Robert O. Brinkerhoff, Dennis Dressler,” Using
evaluation to build organizational performance and
learning capability: A strategy and a method”, Article,
Performance Improvement,
DOI: 10.1002/pfi.4140410605, Volume 41, Issue 6,
pages 14–21, July 2002.

[15] John Murdoch,” Security Measurement”, White Paper,
V3.0 13 January 2006.

http://www.ijcaonline.org/�
http://dx.doi.org/10.1109/SIMSYM.2000.844925�
http://dx.doi.org/10.1109/EMERGING.2009.17�
http://www.informit.com/authors/bio.aspx?a=c41bebe2-117e-4e90-b0dd-c99d5406f6cb�
http://www.awprofessional.com/�
http://dl.acm.org/author_page.cfm?id=81100034090&coll=DL&dl=ACM&trk=0&cfid=39387518&cftoken=98232939�
http://dx.doi.org/10.1145/76380.76382�
http://onlinelibrary.wiley.com/doi/10.1002/pfi.v41:6/issuetoc�
http://onlinelibrary.wiley.com/doi/10.1002/pfi.v41:6/issuetoc�
http://onlinelibrary.wiley.com/doi/10.1002/pfi.v41:6/issuetoc�

	INTRODUCTION
	RELATED WORK
	QUALITY PERSPECTIVE RISK MEASUREMENT MODEL
	MEASUREMENT METRICS
	4.1 Maintainability Risk
	4.2 Project complexity risk
	4.3 Software architecture Risk
	4.4 Training Risk
	4.5 Security Risk

	EXPERIMENT AND ANALYSIS
	CONCLUSION
	REFERENCES

