
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720 January 30, 1997

A

•T

H
E

•U
N

IV
E

R
S I T Y • O F • C

A
L

I F
O

R
N

IA
•

•1868•

LE
T THE R E BE

LIG H T

-- Technical Memorandum UCB/ERL M97/11 --

A DENOTATIONAL FRAMEWORK FOR
COMPARING MODELS OF COMPUTATION

Edward A. Lee and Alberto Sangiovanni-Vincentelli
EECS, University of California, Berkeley, CA, USA 94720.

Abstract

We give a denotational framework (a “meta model”) within which certain properties of models of

computation can be understood and compared. It describes concurrent processes in general terms as

sets of possible behaviors. A process is determinate if given the constraints imposed by the inputs there

are exactly one or exactly zero behaviors. Compositions of processes are processes with behaviors in

the intersection of the behaviors of the component processes. The interaction between processes is

through signals, which are collections of events. Each event is a value-tag pair, where the tags can

come from a partially ordered or totally ordered set. Timed models are where the set of tags is totally

ordered. Synchronous events share the same tag, and synchronous signals contain events with the same

set of tags. Synchronous processes have only synchronous signals as behaviors. Strict causality (in

timed tag systems) and continuity (in untimed tag systems) ensure determinacy under certain technical

conditions. The framework is used to compare certain essential features of various models of computa-

tion, including Kahn process networks, dataflow, sequential processes, concurrent sequential processes

with rendezvous, Petri nets, and discrete-event systems.

1. Introduction

A major impediment to further progress in modeling and specification of concurrent systems is the

2 of 36 Edward A. Lee and Alberto Sangiovanni-Vincentelli

confusion that arises from different usage of common terms. Terms like “synchronous”, “discrete

event”, “dataflow”, “signal”, and “process” are used in different communities to mean significantly

different things. To address this problem, we propose a formalism that will enable description and dif-

ferentiation of models of computation. It is not intended as a “grand unifying model of computation”

but rather as a “meta model” within which certain properties can be studied. To be sufficiently precise,

this language is a mathematical one. It isdenotational,in the sense of Scott and Strachey [27], rather

than operational, to avoid associating the semantics of a model of computation with an execution pol-

icy. In many denotational semantics, thedenotation of a program fragment is a partial function or a

relation on the state. This approach does not model concurrency well [29], where the notion of a single

global state may not be well-defined. In our approach, the denotation of a process is a partial function

or a relation on signals, and hence we can model concurrency well.

We define precisely a process, signal, and event, and give a framework for identifying the essential

properties of discrete-event systems, dataflow, rendezvous-based systems, Petri nets, and process net-

works. Our definitions of these terms sometimes conflict with common usage in some communities,

and even with our own prior usage in certain cases. We have made every attempt to maintain the spirit

of that usage with which we are familiar, but have discovered that terms are used in contradictory ways

(sometimes even within a community). Maintaining consistency with all prior usage is impossible

without going to the unacceptable extreme of abandoning the use of these terms altogether.

Our objectives overlap somewhat with prior efforts to provide mathematical models for concurrent

systems, such as CSP [15], CCS [23], event structures [30], and interaction categories [1]. We do not

have a good answer for the question “do we really need yet another meta model for concurrent sys-

tems?” except perhaps that our objectives are somewhat different, and result in a model that has some

elements in common with other models, but overall appears to be somewhat simpler. It is more

Edward A. Lee and Alberto Sangiovanni-Vincentelli 3 of 36

descriptive of concurrency models (more “meta”) than some process calculi, which might for example

assume a single interaction mechanism, such as rendezvous, and show how other interaction mecha-

nisms can be described in terms of it. We assume no particular interaction mechanism, and show how

to use the framework to describe and compare a number of interaction mechanisms (including rendez-

vous). We devote most of our attention, however, to interaction mechanisms in practical use for design-

ing electronic systems, such as discrete-event models and dataflow.

The prior frameworks closest to ours, Abramsky’s interaction categories [1] and Winskell’s event

structures [30], have been presented as categorical concepts. We avoid category theory here because it

does not appear to be necessary for our more limited objectives, and because we wish to make the con-

cepts more accessible to a wider audience. But it would be wrong to not acknowledge the influence.

We limit the mathematics to sets, posets, relations, and functions.

2. The Tagged Signal Model

2.1 SIGNALS

Given a set ofvalues and a set oftags , we define an event to be a member of . I.e.,

an event has a tag and a value. We will use tags to model time, precedence relationships, synchroniza-

tion points, and other key properties of a model of computation. The values represent the operands and

results of computation.

We define asignal to be a set of events. A signal can be viewed as a subset of , or as a

member of thepowerset (the set of all subsets of). Afunctional signal or proper sig-

nal is a (possibly partial) function from to . By “partial function” we mean a function that may be

defined only for a subset of . By “function” we mean that if and ,

then . Unless otherwise stated, we assume all signals are functional. We call the set of all sig-

V T e T V×

s T V×

℘ T V×() T V×

T V

T e1 t v, 1() s∈= e2 t v, 2() s∈=

v1 v2=

4 of 36 Edward A. Lee and Alberto Sangiovanni-Vincentelli

nals , where of course . It is often useful to form a collection ortuple of signals.

The set of all such tuples will be denoted . Position in the tuple serves the same purposes as naming

of signals in other process calculi. Reordering of the tuple serves the same purposes as renaming. A

similar use of tuples is found in the interaction categories of Abramsky [1].

The empty signal (one with no events) will be denoted by , and the tuple of empty signals by ,

where the number of empty signals in the tuple will be understood from the context. These are sig-

nals like any other, so and . For any signal , (ordinary set union). For any

tuple , , where by the notation we mean the pointwise union of the sets in the tuple.

In some models of computation, the set of values includes a special value⊥ (called “bottom”),

which indicates the absence of a value. Notice that while it might seem intuitive that for any

, this would violate (suppose that already contains an event at). Thus, it is impor-

tant to view⊥ as an ordinary member of the set like any other member.

2.2 PROCESSES

In the most general form, aprocess is a subset of for some . A particular is said to

satisfy the process if . An that satisfies a process is called abehavior of the process. Thus a

process is a set of possiblebehaviors. A process may also be viewed as arelation between signals.1

2.2.1 Composing processes

Since a process is a set of behaviors, a composition of processes should be simply the intersection

of the behaviors of each of the processes. A behavior of the composition process should be a behavior

of each of the component processes. However, we have to use some care in forming this intersection.

1. A relation between setsA andB is simply a subset of .

S S ℘ T V×()= s N

S
N

λ Λ

N

λ S∈ Λ S
N∈ s s λ∪ s=

s s Λ∪ s= s Λ∪

V

t ⊥,() λ∈

t T∈ s λ∪ s= s t

V

P S
N

N s S
N∈

s P∈ s

A B×

Edward A. Lee and Alberto Sangiovanni-Vincentelli 5 of 36

Consider for example the two processes and in figure 1. These are each subsets of .

There, we can define a composite process as a subset of simply by forming the cross product1 of

the sets of behaviors . Since there is no interaction between the processes, a behavior of

the composite process consists of any behavior of together with any behavior of . A behavior of

Q is an 8-tuple, where the first 4 elements are a behavior of and the remaining 4 elements are a

behavior of .

More interesting systems have processes that interact. Consider figure 2. Aconnection is

a particularly simple process where two (or more) of the signals in the -tuple are constrained to be

identical. For example, in figure 2, where

 if . (1)

 can be given similarly as . There is nothing special about connections as processes, but

they are useful to couple the behaviors of other processes. For example, in figure 2, the composite pro-

1. This serves a similar purpose as the tensor product in the interaction categories of Abramsky [1].

P1 P2

FIGURE 1. Composition of independent processes.

Q

P1

P2

s1

s2

s6

s5

s3

s4

s8

s7

S
4

S
8

Q P1 P2×=

P1 P2

P1

P2

C S
N⊂

N

C4 5, S
8⊂

s s1 s2 s3 s4, , , s5 s6 s7 s8, , ,,() C4 5,∈= s4 s5=

C2 7, s2 s7=

6 of 36 Edward A. Lee and Alberto Sangiovanni-Vincentelli

cess may be given as . That is, any that satisfies the composite pro-

cess must be a member of each of , , and .

Given processes in (some of which may be connections), a process composed of these

processes is given by

, (2)

whereP is the collection of processes , .

As suggested by the gray outline in figure 2, it makes little sense to expose all the signals of a com-

posite process. In figure 2, for example, since signals and are identical to and respectively,

it would make more sense to “hide” two of these signals and to model the composition as a subset of

 rather than .

Let be an ordered set of indexes in the range , and define theprojection

 of onto by . Thus, the ordered set of indexes

FIGURE 2. An interconnection of processes.

Q'

P1

P2

s1

C4 5,

s2

s6

s5

C2 7,

s3

s4

s8

s7

P1 P2×() C4 5, C2 7,∩ ∩ s S
8∈

P1 P2× C4 5, C2 7,

M S
N

Q

Q Pi
Pi P∈
∩=

Pi S
N⊆ 1 i M≤ ≤

s2 s5 s7 s4

S
6

S
8

I i 1 ... im, ,()= 1 i N≤ ≤

πI s() s s1 ... sN, ,() S
N⊆= S

m πI s() si1
... sim

, ,()=

Edward A. Lee and Alberto Sangiovanni-Vincentelli 7 of 36

defines the signals that are part of the projection and the order in which they appear in the resulting

tuple. The projection can be generalized to processes. Given a process , define the projection

 to be the set { such that there exists where }. Thus, in figure 2, we can define

the composite process , where .

If the two signals in a connection are associated with the same process, as shown in figure 3, then

the connection is called aself-loop. For the example in figure 3, , where

. For simplicity, we will often denote self-loops with only a single signal, obviating the

need for the projection or the connection.

Note that this projection operator is really quite versatile. There are several other ways we could

have used it to define the composition in figure 2, even avoiding connection processes altogether. The

operator can also be used to construct arbitrary permutations of signals, accomplishing the same end as

renaming in other process calculi. Some basic examples are shown in figure 4. Note that the numbering

of signals (cf. names) affects the expression for the composition. Note further that figure 4d shows that

the connection processes are easily replaced by more carefully constructed intersections.

2.2.2 Inputs and outputs

Many processes (but by no means all) have the notion of inputs, which are events or signals that

P S
N⊆

πI P() s' s P∈ πI s() = s'

Q' πI P1 P2×() C4 5, C2 7,∩ ∩() S
6⊆= I 1 3 4 6 7 8, , , , ,{ }=

FIGURE 3. A self loop.

P

Q

C1,3
s1

s2

s3

s4

Q πI P C1 3,∩()=

I 2 3 4, ,{ }=

8 of 36 Edward A. Lee and Alberto Sangiovanni-Vincentelli

are defined outside the process. Formally, aninput to a process in is an externally imposed con-

straint such that is the total set of acceptable behaviors. The set of all possible inputs

 is a further characterization of a process. Within this definition, there is a very rich set of

ways to model inputs. Inputs could be individual events, for example, or entire signals. Fortunately, the

latter case is more useful for most models of computation, and can easily be defined more precisely.

Given a process with input signals having indexes in the set , each element is a set

of tuples of signals for some . In other words, the input completely defines , a

tuple of input signals. By saying that is the set of acceptable behaviors, we simply say that

FIGURE 4. Examples of composition of processes.

Q P1 P2×=

P1

s1

s3 s4

Q

P1

P2

s1

s2 s3

s4

s6

s5

P2

s2

Q

(a)

Q π 1{ } P1() P2 π 2{ } P1()××=

P1

s1

s3

s4

P2

s2

Q

(b)

Q π 1 4,{ } P1 P2×() C2 3,∩()=

P1

s1 s3 s4
P2

s2

Q

(d)

C2 3,
C2 5,

Q π 1 3 4 6, , ,{ } P1 P2×() C2 5,∩()=

(e)

Q P1 S×=

P1

s1

s3

s2

Q

(c)

π 1 3,{ } P1 S×() S P× 2()∩()=

S
N

A S
N⊆ A P∩

B ℘ S
N()⊆

P S
N⊆ m I A B∈

s:πI s() s'={ } s' S
m∈ s'

m A P∩

Edward A. Lee and Alberto Sangiovanni-Vincentelli 9 of 36

the input signals must appear within any behavior tuple.

A process is said to beclosedif , a set with only one element, . Since

the set of behaviors is , there are no input constraints in a closed process. A process is

open if it is not closed.

So far, however, we have not captured the notion of a process “determining” the values of the out-

puts depending on the inputs. To do this, consider an index set for input signals and an index set

 for output signals. A processP is functional1 with respect to if for every and

where , it follows that . For such a process, there is a single-valued

mapping : such that for all , . A process istotal if .

In this case, is defined over all . It ispartial otherwise, i.e. .

Note that a given process may be functional with respect to more than one pair of index sets

. A connection, for example , is functional with respect to either or

. In both cases, is the identity function.

In figures 2, 3, and 4, there is no indication of which signals might be inputs and which might be

outputs. Figure 5 modifies figure 2 by adding arrowheads to indicate inputs and outputs. In this case,

 might be functional with respect to .

2.2.3 Determinacy

A process isdeterminate if for any input it has exactly one behavior or exactly no behav-

iors; i.e. or , where is the size of the set . Otherwise, it isnondetermi-

1. A relation is a function if for every and , .

m

Q S
N⊆ B S

N{ }= A S
N=

A P∩ P=

I m

O n I O,() s P∈ s' P∈

R A B×⊂ a b,() R∈ a c,() R∈ b c=

πI s() πI s'()= πO s() πO s'()=

F S
m

S
n→ s P∈ πO s() F πI s()()= πI P() S

m=

F S
m πI P() S

m⊂

I O,() s1 s2= 1{ } 2{ },()

2{ } 1{ },() F

P1 I O,() 1 2,{ } 3 4,{ },()=

A B∈

A P∩ 1= A P∩ 0= X X

10 of 36 Edward A. Lee and Alberto Sangiovanni-Vincentelli

nate. Thus, whether a process is determinate or not depends on our characterization of the set of

possible inputs.

A process in that is functional with respect to is obviously determinate if and

together contain all the indexes in . Given the input signals, the output signals are determined

(or there is unambiguously no behavior, if the function is partial).

In figure 4, if all processes are functional with inputs on the left and outputs on the right, then obvi-

ously the composition processes are also functional. Thus, the compositions in figure 4 preserve deter-

minacy. A slightly more subtle situation involvessource processes (processes with outputs but no

inputs), like the example in figure 6. This composition will be functional (and hence determinate) if

 is functional and has exactly one behavior.

A much more complicated situation involves feedback, as illustrated by the example in figure 7.

Whether determinacy is preserved depends on the tag system and more details about the process.

3. Tag Systems

So far, tags have had no explicit role in the description of processes. But we have also said nothing

FIGURE 5. A partitioning of the signals in figure 1 into inputs and outputs.

Q

P1

P2

s1

C4 5,

s2

s6

s5

C2 7,

s3

s4

s8

s7

B

S
N

I O,() I O

1 i N≤ ≤

P1 P2

Edward A. Lee and Alberto Sangiovanni-Vincentelli 11 of 36

about the operational interaction of processes. Do they synchronize? Are they causal? Under what con-

ditions exactly are they determinate? To answer these questions, we need structure in the system of

tags. This structure turns out to be the major distinguishing feature between various concurrent models

of computation.

Frequently, a natural interpretation for the tags is that they mark time in a physical system.

Neglecting relativistic effects, time is the same everywhere, so tagging events with the time at which

they occur puts them in a certain order (if two events are genuinely simultaneous, then they have the

same tag). Such a simple model of time is certainly intuitively appealing.

For specifying systems, however, the global ordering of events in a timed system may be overly

restrictive. A specification should not be constrained by one particular physical implementation, and

therefore need not be based on the semantics of the physical world. Thus, for specification, often the

tags should not mark time, but should instead reflect ordering induced by causality (this will be

FIGURE 6. Composition of a functional process with a source process..

Q

P1

P2

s1

s2 s3

s5

s4

C2 4,

Q π 1 3 5, ,{ } P1 P2×() C2 4,∩()=

FIGURE 7. Feedback (a directed self-loop).

P

Q

C1,2
s1

s2

12 of 36 Edward A. Lee and Alberto Sangiovanni-Vincentelli

explained below).

In amodel of a physical system, by contrast, tagging the events with the time at which they occur

may seem natural. They must occur at a particular time, and if we accept that time is uniform (i.e.

again neglecting relativistic effects), then our model should reflect the ensuing ordering of events.

However, when modeling a large concurrent system, the model should probably reflect the inherent

difficulty in maintaining a consistent view of time in a distributed system [10][17][22][26]. This diffi-

culty appears even in relatively small systems, such as VLSI chips, where clock distribution is chal-

lenging. If an implementation cannot maintain a consistent view of time across its subsystems, then it

may be inappropriate for its model to do so (it depends on what questions the model is expected to

answer).

The central role of a tag system is to establish ordering among events. An ordering relationon the

setT is a reflexive, transitive, antisymmetric relation on members of the set. We denote this relation

using the template “≤”. Reflexive means that ,transitive means that and imply that

, andantisymmetric means that and imply , for all in . Of course, we

can define a related irreflexive relation, denoted “<”, where if and . The ordering of

the tags induces an ordering of events as well. Given two events and , if

and only if . A setT with an ordering relationship is called anordered set. If the ordering relation-

ship is partial (there exist such that neither nor , thenT is called apartially-

ordered set or poset [7][28].

3.1 TIMED MODELS OF COMPUTATION

A timed model of computationhas a tag system where is atotally ordered set. That is, for any

distinct and in , either or . In timed systems, a tag is also called atime stamp. There

t t≤ t t′≤ t′ t″≤

t t″≤ t t′≤ t′ t≤ t t′= t t′ t″, , T

t t′< t t′≤ t t′≠

e t v,()= e′ t′ v′,()= e e′<

t t′<

t t′, T∈ t t′< t′ t<

T

t t′ T t t′< t′ t<

Edward A. Lee and Alberto Sangiovanni-Vincentelli 13 of 36

are several distinct flavors of timed models.

3.1.1 Metric time

Some timed models of computation include operations on tags. At a minimum, may be anAbe-

lian group, in addition to being totally ordered. This means that there is an operation ,

called addition, under which is closed. Moreover, there is an element, calledzero and denoted “0”,

such that for all . Finally, for every element , there is another element

such that . A consequence is that is itself a tag for any and in .

In a slightly more elaborate tag system, has ametric, which is a function , where

 is the set of real numbers, that satisfies the following conditions:

(3)

, (4)

, and (5)

(6)

for all . Such systems are said to havemetric time. In a typical example of metric time, is

the set of real numbers and , the absolute value of the difference. Metric time is fre-

quently used when directly modeling physical systems (without relativistic effects).

3.1.2 Continuous time

Let denote the set of tags in a signal . Acontinuous-time systemis a metric timed sys-

tem where is a continuum (a closed connected set) and for each signal in any tuple

 that satisfies the system. Aconnected set is one where no matter how it is partitioned into two dis-

T

+:T T× T→

T

t 0+ t= t T∈ t T∈ t– T∈

t t–()+ 0= t2 t1– t1 t2 T

T d:T T× ℜ→

ℜ

d t t′,() d t′ t,()=

d t t′,() 0= t⇔ t′=

d t t′,() 0≥

d t t′,() d t′ t′′,()+ d t t′′,()≥

t t′ t″, , T∈ T

d t t′–() t t′–=

T s() T⊆ s

Q T T s() T= s

s

14 of 36 Edward A. Lee and Alberto Sangiovanni-Vincentelli

joint sets, at least one of these contains limit points of sequences in the other. Aclosed set is one that

contains the limit points of any subset. Limit points, of course, are defined in the usual way using the

metric (more general topological definitions are also possible).

3.1.3 Discrete-event

Many simulators, including most digital circuit simulators, are based on a discrete-event model

(see for example [12]). Given a process , and a tuple of signals that satisfies the process, let

 denote the set of tags appearing in any signal in the tuple . Clearly and the ordering

relationship for members of induces an ordering relationship for members of . Adiscrete-event

model of computationhas a timed tag system, and for all processes and all , isorder-

isomorphic to a subset of the integers1. We explain this now in more detail.

A map : from one ordered set to another isorder-preserving or monotonic if

implies that , where the ordering relations are the ones for the appropriate set. A map

: is abijection if (the image of the domain is the range) and implies that

. An order isomorphism is an order-preserving bijection. Two sets are order-isomorphic

if there exists an order isomorphism from one to the other.

This definition of discrete-event systems corresponds well with intuition. It says that the time

stamps that appear in any behavior can be enumerated in chronological order. Note that it is not suffi-

cient to just be able to enumerate the time stamps (the ordering is important). The rational numbers, for

example, are enumerable, but would not be a suitable set of time stamps for a discrete-event system.

This is because between any two rational numbers, there are an infinite number of other rational num-

bers. Thus it is also not sufficient for to be merely isomorphic to a set of integers, since the ratio-

1.This elegant definition is due to Wan-Teh Chang.

P s P∈

T s() s T s() T⊆

T T s()

P s P∈ T s()

f A B→ A B a a′<

f a() f a′()<

f A B→ f A() B= a a′≠

f a() f a′()≠

T s()

Edward A. Lee and Alberto Sangiovanni-Vincentelli 15 of 36

nals are isomorphic to the set of integers. But they are not order-isomorphic. “Order-isomorphism”

captures the notion of “discrete” (indeed, Mazurkiewicz gives a considerably more complicated but

equivalent notion of discreteness in terms of relations [21]). It captures the intuitively appealing con-

cept that between any two finite time stamps there will be a finite number of time stamps.

Note further that while we insist that be discrete (which is stronger than enumerable), we do

not even constrainT to be enumerable. For example, it is common for discrete-event systems to take

to be the set of real numbers. We then insist that processes (and inputs) be defined in such a way that

 is always a discrete subset ofT.

If always has a least tag, then we say that the model is aone-sided discrete-event model of

computation. This simply captures the notion of starting the processes at some point in time. In this

case, will be order-isomorphic to a subset of , the set of non-negative integers with the usual

numerical order. Note in particular that might be finite, thus capturing the notion of stopping the

processes, or it might be infinite.

In some communities, notably the control systems community, a discrete-event model also

requires that the set ofvalues be countable, or even finite [6][14]. This helps to keep the state space

finite in certain circumstances, which can be a big help in formal analysis. However, in the simulation

community, it is largely irrelevant whether is countable [12]. In simulation, the distinction is techni-

cally moot, since all representations of values in a computer simulation are drawn from a finite set. We

adopt the broader use of the term, and will refer to a system as a discrete-event system whether is

countable, finite, or neither.

3.1.4 Discrete-event simulators

The discrete-event model of computation is frequently used in simulators for such applications as

T s()

T

T s()

T s()

T s() ω

T s()

V

V

V

16 of 36 Edward A. Lee and Alberto Sangiovanni-Vincentelli

circuit design, communication network modeling, transportation systems, etc. In a typical discrete-

event simulator, events explicitly include time stamps. These are the only types of systems we discuss

where the tags are explicit in the implementation. The discrete-event simulator operates by keeping a

list of events sorted by time stamp. The event with the smallest time stamp is processed and removed

from the list. In the course of processing the event, new events may be generated. These are usually

constrained to have time stamps larger than (or sometimes equal to) the event being processed. We will

return to this causality constraint later, where we will see that under appropriate circumstances, it

ensures determinacy.

In some discrete-event simulators, such as VHDL simulators, tags conceptually contain both a

time value and a “delta time.” Delta time has theinterpretation of zero time in the simulation, but is an

important part of the tag. It is not usually explicit in the simulation, but it affects the semantics. It is

used to ensure strict causality (to be defined precisely below), and thus to ensure determinism. A suit-

able tag system for such a discrete-event simulator would have , where is the set of non-

negative integers with the usual numerical order. The first component will typically be called the “time

stamp”, while the second component will be called the “delta time offset.” The ordering relation

between two tags and is given by if and only if or

and .

Note, however, that is not order isomorphic with or any subset. In principle,

between tags and where the time stamps and are finite, there could

be an infinite number of tags. This can occur in practice in a discrete-event simulation when a zero-

delay feedback loop is modeled and there is no fixed point (or the fixed point is not found). Events cir-

culate forever around the loop, incrementing the delta time component of the tag, but failing to incre-

ment the time stamp component. The simulation gets stuck, and time fails to advance. We will see later

T ω ω×= ω

t t1 t2,()= t′ t′1 t′2,()= t t′< t1 t′1< t1 t′1=

t2 t′2<

T ω ω×= ω

t t1 t2,()= t′ t′1 t′2,()= t1 t′1

Edward A. Lee and Alberto Sangiovanni-Vincentelli 17 of 36

in the paper that this flaw is a mathematical property of this system of tags.

3.1.5 Synchronous and discrete-time systems

Two events aresynchronous if they have the same tag. Two signals are synchronous if all events in

one signal are synchronous with an event in the other signal and vice versa. A process is synchronous

if every signal in any behavior of the process is synchronous with every other signal in the behavior. A

discrete-time system is a synchronous discrete-event system.

By this definition, the so-called Synchronous Dataflow (SDF) model of computation [18] is not

synchronous (we will say more about dataflow models below). The “synchronous languages” [2] (such

as Lustre, Esterel, and Argos) are synchronous if we consider , where (bottom) denotes the

absence of an event. Indeed, a key property of synchronous languages is that the absence of an event at

a particular “tick” (tag) is well-defined. Another key property is that event tags are totally ordered. Any

two events either have the same tag or one unambiguously precedes the other. The language Signal [3]

is called a synchronous language, but in general, it is not even timed. It supports nondeterminate oper-

ations that require a partially ordered tag model.Cycle-based logic simulators are discrete-time sys-

tems.

Note that many authors will dispute this definition of the term “synchronous.” For example, the

process algebra community (based on CSP [15] and CCS [23], for instance), refers to processes that

“synchronize” (rendezvous) as “synchronous.” However, by our definition, they are not even timed (we

will have more to say about rendezvous below). We believe that our definition captures the essential

and original meaning of the word, latinized from the Greek “sun” (together) and “khronos” (time).

3.1.6 Sequential systems

A degenerate form of timed tag systems is a sequential system. The tagged signal model for a

⊥ V∈ ⊥

18 of 36 Edward A. Lee and Alberto Sangiovanni-Vincentelli

sequential process has a single signal , and the tags in the signal are totally ordered. For exam-

ple, under the Von Neumann model of computation, the values denote states of the system and

the signal denotes the sequence of states corresponding to the execution of a program. Below we will

show several ways to construct untimed concurrent systems by composing sequential systems.

3.2 UNTIMED MODELS OF COMPUTATION

When tags are partially ordered rather than totally ordered, we say that the tag system isuntimed.

A variety of untimed models of computation have been proposed. In general, the ordering of tags

denotes causality or synchronization. Processes can be defined in terms of constraints on the tags in

signals.

We are not alone in using partial orders to model concurrent systems. Pratt gives an excellent moti-

vation for doing so, and then generalizes the notion of formal string languages to allow partial ordering

rather than just total ordering [24]. Mazurkiewicz uses partial orders in developing an algebra of con-

current “objects” associated with “events” [21]. Partial orders have also been used to analyze Petri nets

[25]. Lamport observes that a coordinated notion of time cannot be exactly maintained in distributed

systems, and shows that a partial ordering is sufficient [17]. He gives a mechanism in which messages

in an asynchronous system carry time stamps and processes manipulate these time stamps. We can

then talk about processes having information or knowledge at aconsistent cut, rather than “simulta-

neously”. Fidge gives a related mechanism in which processes that can fork and join increment a

counter on each event [11]. A partial ordering relationship between these lists of times is determined

by process creation, destruction, and communication. If the number of processes is fixed ahead of time,

then Mattern gives a more efficient implementation by using “vector time” [20]. Unlike the work of

Lamport, Fidge, and Mattern, we are not using partial orders in the implementation of systems, but

rather are using them as an analytical tool to study models of computation and their interaction seman-

s T s()

v V∈

Edward A. Lee and Alberto Sangiovanni-Vincentelli 19 of 36

tics. Thus, efficiency of implementation is not an issue.

3.2.1 Rendezvous of sequential processes

Thecommunicating sequential processes (CSP) model of Hoare [15] and thecalculus of communi-

cating systems (CCS) model of Milner [23] are key representatives of a family of models of computa-

tion that involve sequential processes that communicate with rendezvous. Similar models are realized,

for example, in the languages Occam and Lotos. Intuitively, rendezvous means that sequential pro-

cesses reach a particular point at which they must verify that another process has reached a corre-

sponding point before proceeding. This can be captured in the tagged signal model as depicted in

figure 8. In this case is totally ordered for each . Thus, each for ,

denotes a sequential process. Moreover, representing each rendezvous point there will be events ,

, and in signals , , and respectively, such that

, (7)

where is the tag of the event .

Note that although the literature sometimes refers to CSP and CCS as synchronous models of com-

putation, under our definition they are not synchronous. They are not even timed. Events directly mod-

eling a rendezvous are synchronous, but events that are not associated with rendezvous have only a

partial ordering relationship with each other. Indeed, this partial ordering is one of the most interesting

FIGURE 8. Communicating sequential processes.

s1

P1 P2

s2

s3

T si() i 1 2 3, ,= Pi si,() i 1 2,=

e1

e2 e3 s1 s2 s3

T e1() T e2() T e3()= =

T ei() ei

20 of 36 Edward A. Lee and Alberto Sangiovanni-Vincentelli

properties of these models of computation, particularly when there are more than two processes.

In some such models of computation, a process can reach a state where it will rendezvous with one

of several other processes (this sort of behavior is supported, for example, by the “select” statement in

Ada). In this case, a composition of such processes is often nondeterminate.

3.2.2 Kahn process networks

In a Kahn process network[16], processes communicate viachannels, which are one-way

unbounded FIFO queues with a single reader and a single writer. Let again denote the tags in sig-

nal . The first-in, first-out property of the channels implies that is totally ordered for each signal

. But the set of all tags is in general partially ordered. Moreover, signals are discrete, or more tech-

nically, is order-isomorphic with a set of integers for each signal .

For example, consider a simple process that produces one output event for each input event. Sup-

pose the input signal is , where is the set of non-negative integers with the usual

numerical order, and . Let the output be , similarly ordered. Then the

process imposes the ordering constraint that for all .

The importance of the tags in a particular signal is limited to the ordering that it imposes on

events. Let denote thesequence of values in (an ordered set, ordered according to the tags).

That is, the tags are discarded. Then two signals and aresequence equivalent if .

Thus induces a set of equivalence classes in , the set of signals, where each member of is

a set of signals all with the same sequence . This notion of sequence equivalence generalizes

trivially to tuples of signals.

A process issequence determinate if all of its behaviors are sequence equivalent. A process is

T s()

s T s()

s T

T s() s

s ei i ω∈;{ }= ω

i j< ei ej<⇒ s′ e′i i ω∈;{ }=

ei e′i< i ω∈

s

Σ s() s

s s′ Σ s() Σ s′()=

Σ EΣ S EΣ

s Σ s()

Edward A. Lee and Alberto Sangiovanni-Vincentelli 21 of 36

sequence functional if given a set of equivalent tuples of input signals, all possible outputs are

sequence equivalent. Thus, a sequence functional process with inputs and outputs has a mapping

: rather than : . Later in the paper we will study constraints on these

functions that ensure sequence determinacy.

Whether a sequence determinate process is also determinate depends on the tag system. Some-

times it is useful to have a tag system that represents more information than just the ordering of values

in sequences. For example, it might model the timing of the execution of a process network, in which

case the timing nondeterminism of a concurrent system is represented in the model even if the process

itself is sequence determinate.

3.2.3 Dataflow

Thedataflow model of computation is a special case1 of Kahn process networks [19]. Adataflow

process is a Kahn process that is also sequential, where the events on the self-loop signal denote thefir-

ings of the dataflow actor. The self-loop signal is called thefiring signal. Thefiring rules of a dataflow

actor are partial ordering constraints between these events and events on the inputs. Adataflow process

network, is a network of such processes.

The firing signal is ordered like all signals in the model. Consider two successive events in the fir-

ing signal (successive means there are no intervening events). An input event where

 is said to beconsumed by firing . An input event that is less than all firing events is

consumed by the first firing. An output event where is said to beproduced by firing

. An output event that is greater than all firing events is produced by the last firing (if there is one).

1. The term “dataflow” is sometimes applied to Kahn process networks in general, but this fails to reflect the heri-
tage that dataflow has in computer architecture. The dataflow model originally proposed by Dennis [8] had the
notion of a “firing” as an integral part. Our use of the term is consistent with that of Dennis.

m n

F′ EΣ()m
EΣ()n→ F S

m
S

n→

ei ei 1+< e′

ei e′ ei 1+< < ei 1+

e″ ei e″ ei 1+< <

ei

22 of 36 Edward A. Lee and Alberto Sangiovanni-Vincentelli

For example, consider a dataflow process with one input signal and one output signal, where

each firing consumes one input event and produces one output event, as shown in figure 9. Denote the

input signal by , where . The firings are denoted by the signal

, and the output by , which will be similarly ordered. Then the

inputs and outputs are related to the firings as (the -th firing consumes the

-th input) and (the -th firing produces the -th output) for all . Because of the

transitivity of the ordering relation, this implies that for all , an intuitive sort of causality

constraint. A network of such processes will establish a partial ordering relationship between the fir-

ings of the actors.

Consider modifying figure 9 with a connection as shown in figure 10. This establishes the identity

, but since , and must be empty. This is the only behavior for this process, and

it corresponds to deadlock.

P

s'
P

s

s''

FIGURE 9. A simple dataflow process that consumes and produces a single token on each firing.

1 1

s′ e′i i N∈;{ }= i j< e′i e′ j<⇒

s ei i N∈;{ }= s″ e″i i N∈;{ }=

ei e′i 1+ ei 1+< < i 1+

i 1+ ei e″i ei 1+< < i i i

e′i e″i< i

s'
P

s

s''

FIGURE 10. A deadlocked dataflow graph.

1 1

s′ s″= e′i e″i< s′ s″

Edward A. Lee and Alberto Sangiovanni-Vincentelli 23 of 36

More interesting examples of dataflow actors can also be modeled. The so-calledswitch andselect

actors, for example, are shown in figure 11. Each of them takes a Boolean-valued input signal (the bot-

tom signal) and uses the value of the Boolean to determine the routing oftokens (events). The switch

takes a single token at its left input and routes it the top right output if the Boolean in is true.

Otherwise, it routes the token to the bottom right output .

The partial ordering relationships imposed by the switch and select are inherently more compli-

cated than those imposed by the simple dataflow actor in figure 9. But they can be fully characterized

nonetheless. Suppose the control signal in the switch is given by , where the index

 denotes the first event on , the second, etc. Suppose moreover that the Booleans are

encoded so that . Let

 for . (8)

Denote the input signal by and the output signals by and

. Then the ordering constraints imposed by the actor are

(9)

S
W

IT
C

H

S
E

LE
C

T

T

F

T

F

s1

s1

s3

1 1

s2

s2

s3

1 1

s4

s4

FIGURE 11. More complicated dataflow actors.

s1 s3 s2

s4

s2 t2 i, v2 i,,(){ }=

i 1= s2 i 2=

v2 i, 0 1,{ }∈

bk v2 i,
i 1=

k

∑= k 0>

s1 e1 i, i N∈;{ }= s3 e3 k, i N∈;{ }=

s4 e4 m, i N∈;{ }=

e3 k, e1 bk,>

24 of 36 Edward A. Lee and Alberto Sangiovanni-Vincentelli

. (10)

3.2.4 Petri Nets

Petri nets can also be modeled in the framework. Petri nets are similar to dataflow, but the events

within signals need not be ordered. We associate a signal with each place and each transition in a Petri

net. Consider the trivial net in figure 12(a). Viewing the signals and as sets of events, there exists

a one-to-one function such that for all . This simply says that every firing

(an event in) has a unique corresponding token (an event in) with a smaller tag. In figure 12(b),

we simply require that there exist two one-to-one functions and such that

 and for all . In figure 12(c), which represents a nondeterministic choice,

we again need two one-to-one functions and such that for all

 and for all , but we impose the additional constraint that

, where the notation refers to the image of the function when applied to

members of the set . In figure 12(d), we note that if the initial marking of the place is denoted by the

set of events, then it is sufficient to define . Composing these simple primitives then

becomes a simple matter of composing the relevant functions. For example, in figure 12(e),

e4 m, e1 m bm–(),>

FIGURE 12. Some simple Petri nets.

s1

s2

s1 s2

s3

(a) (b)

s1

s2 s3

(c)

s2

s1

(d)

s3

(e)

s2

s1

i

i1

i2

f2

f3

s1

s2

(f)

f

s1 s2

f :s2 s1→ f e() e< e s2∈

s2 s1

f 1:s3 s1→ f 2:s3 s2→

f 1 e() e< f 2 e() e< e s3∈

f 1:s2 s1→ f 2:s3 s1→ f 1 e() e<

e s2∈ f 2 e() e< e s3∈

f 1 s2() f 2 s3()∩ ∅= f s() f

s

i s2 s1 i∪=

Edward A. Lee and Alberto Sangiovanni-Vincentelli 25 of 36

, , for all , and for all , so

 for all . In figure 12(f), is such that for all , and

 (the initial marking is empty), therefore . The Petri net is not live (it is deadlocked).

3.3 HETEROGENEOUS SYSTEMS

It is assumed above that when defining a system, the sets and include all possible tags and

values. In some applications, it may be more convenient to partition these sets and to consider the par-

titions separately. For instance, might be naturally divided into subsets , , ... according to a

standard notion ofdata types. Similarly, might be divided, for example to separately model parts of

a heterogeneous system that includes continuous-time, discrete-event, and dataflow subsystems. This

suggests a type system that focuses on signals rather than values. Of course, processes themselves can

then also be divided by types, yielding aprocess-level type system that captures the semantic model of

the signals that satisfy the process, something like the interaction categories of Abramsky [1].

4. The Role of Tags in Composition of Processes

In Section 2.2.1, where we composed processes according to equation (2), tags played no evident

role. Composition was treated there as combining constraints. Without considering tags, we were able

to give some simple conditions in Section 2.2.3 under which compositions of functional processes are

determinate. We can often do much more by taking the tags into account. We find that in doing so, we

can connect our tagged signal model to well-known results in semantics. We will do this now for two

special cases, discrete-event systems and Kahn process networks.

4.1 CAUSALITY IN DISCRETE-EVENT SYSTEMS

Causality is a key concept in discrete-event systems. Intuitively, it means that output events do not

f 2:s2 s1 i1∪→ f 3:s3 s2 i2∪→ f 2 e() e< e s2∈ f 3 e() e< e s3∈

f 2 f 3 e()() e< e s3∈ f :s2 s1→ f e() e< e s2∈

s2 s1= s2 ∅=

T V

V V1 V2

T

26 of 36 Edward A. Lee and Alberto Sangiovanni-Vincentelli

have time stamps less than the inputs that caused them. By studying causality rigorously, we can

address a family of problems that arise in the design of discrete-event simulators. These problems cen-

ter around how to deal with synchronous events (those with identical tags) and how to deal with feed-

back loops. But causality comes in subtly different forms that have important consequences.

Consider a discrete-event tag system where , the reals. We can define a metric on the set

 of -tuples of signals as follows:

, (11)

where is the smallest tag where and differ. If and are identical, then we define

, a sensible extrapolation from (11). Two -tuples of signals differ at a tag if any of the

component signals differ (pairwise). Two signals differ at a tag if one has an event with that tag and the

other does not, or if both have events with that tag but the values of these events differ. It is easy to ver-

ify that (11) is a metric by checking that it satisfies (3) through (6). In fact, it is anultrametric, meaning

that in addition to satisfying (6), it satisfies the stronger condition

. (12)

This metric is sometimes called theCantor metric1.

The Cantor metric converts our set of -tuples of signals into a metric space. In this metric space,

two signals are “close” (the distance is small) if they are identical up to a large tag. The metric there-

fore induces an intuitive notion of an open neighborhood. An open-neighborhood of radius is the set

of all signals that are identical at least up to and including the tag . We can use this metric to

classify three different forms of causality.

1. The applicability of this metric in this context was pointed out to us by Gerard Berry.

T ℜ=

S
n

n

d s s′,() 1

2τ-----=

τ s s′ s s′

d s s′,() 0= n

max d t t′,() d t′ t′′,(),() d t t′′,()≥

n

r

log2 r
1–()

Edward A. Lee and Alberto Sangiovanni-Vincentelli 27 of 36

A function : iscausal if for all ,

. (13)

In other words, two possible outputs differ no earlier than the inputs that produced them.

A function : isstrictly causal if for all ,

. (14)

In other words, two possible outputs differ later than the inputs that produced them (or not at all).

A function : is delta causal if there exists a real number such that for all

,

. (15)

Intuitively, this means that there is a delay of at least , a strictly positive number, before

any output of a process can be produced in reaction to an input event. Equation (15) is recognizable as

the condition satisfied by acontraction mapping.

A metric space iscomplete if every Cauchy sequence of points in the metric space that converges,

converges to a limit that is also in the metric space. It can be verified that the set of signals in a dis-

crete-event system is complete. TheBanach fixed point theorem (see for example [5]) states that if

: is a contraction mapping and is a complete metric space, then there is exactly one

 such that . This is called afixed point. Moreover, the Banach fixed point theorem

gives a constructive way (sometimes calledthe fixed point algorithm) to find the fixed point. Given any

, is the limit of the sequence

, , ... (16)

F S
m

S
n→ s s′, S

m∈

d F s() F s′(),() d s s′,()≤

F S
m

S
n→ s s′, S

m∈

d F s() F s′(),() d s s′,()<

F S
m

S
n→ δ 1<

s s′, S
m∈

d F s() F s′(),() δd s s′,()≤

∆ log2 δ 1–()=

S

F X X→ X

x X∈ F x() x=

x0 X∈ x

x1 F x0()= x2 F x1()= x3 F x2()=

28 of 36 Edward A. Lee and Alberto Sangiovanni-Vincentelli

Consider a feedback loop like that in figure 7 in a discrete-event tag system. The Banach fixed

point theorem tells us that if the process is functional and delta causal, then the feedback loop has

exactly one behavior (i.e. it is determinate). This determinacy result was also proved by Yates [31],

although he used somewhat different methods. Moreover, Banach fixed point theorem gives us a con-

structive way to find that behavior. Start with any guess about the signals (most simulators start with an

empty signal), and iteratively apply the function corresponding to the process. This is exactly what

VHDL, Verilog, and other discrete event simulators do. It is their operational semantics, and the

Banach fixed point theorem tells us that if every process in any feedback loop is a delta-causal func-

tional process, then the operational semantics match the denotational semantics1. I.e., the simulator

delivers the right answer.

The constraint that processes be delta causal is fairly severe. In particular, it is not automatically

satisfied by processes in VHDL, despite the fact that VHDL processes always exhibit “delta” delay.

The common term “delta” is misleading. The contraction mapping condition prevents so-calledZeno

conditions where between two finite tags there can be an infinite number of other tags. Such Zeno con-

ditions are not automatically prevented in VHDL.

It is possible to reformulate things so that VHDL processes are correctly modeled as strictly causal

(not delta causal). Fortunately, a closely related theorem (see [5], chapter 4) states that if : is

a strictly causal function and is a complete metric space, then there isat most one fixed point

, . Thus, the “delta” delays in VHDL are sufficient to ensure determinacy, but not

enough to ensure that a feedback system has a behavior, nor enough to ensure that the constructive pro-

cedure in (16) will work.

If the metric space iscompact rather than just complete, then strict causality is enough to ensure

1. This is sometimes called thefull abstraction property.

P

F X X→

X

x X∈ F x() x=

Edward A. Lee and Alberto Sangiovanni-Vincentelli 29 of 36

the existence of a fixed point and the validity of the constructive procedure (16) [5]. In general, the

metric space of discrete-event signals is not compact, although it is beyond the scope of this paper to

show this. Thus, to be sure that a simulation will yield the correct behavior, without further constraints,

we must ensure that the function within any feedback loop is delta causal.

4.2 MONOTONICITY AND CONTINUITY IN KAHN PROCESS NETWORKS

Untimed systems cannot have the same notion of causality as timed systems. The equivalent intu-

ition is provided by the monotonicity condition. Monotonicity is enough to ensure determinacy of

feedback compositions. A slightly stronger condition, continuity, is sufficient to provide a constructive

procedure for finding the one unique behavior. These two conditions depend on a partial ordering of

signals called the prefix order.

A partially ordered tag systemis a system where the set of tags is a partially ordered set or

poset, as defined in Section 3. We can also define an order such that the set of signals becomes a poset.

A signal is a set of events. Set inclusion, therefore, provides a natural partial order for signals. Instead

of the symbol “≤ ” that we used for the ordering of tags, we use the symbol “⊆ ” for an ordering based

on set inclusion. This is a reflexive antisymmetric transitive binary relation. Thus, for two signals

and , if every event in is also in .

Recall that for Kahn process networks, we let denote thesequence of values in the signal ,

which is itself always a totally ordered set of events. In this case, another natural partial ordering for

signals emerges; it is called theprefix order. For the prefix order, we write if is a

prefix of (i.e., if the first values of are exactly those in). Let denote the set of

signals partially ordered by this ordering. Clearly, in , the empty signal is a prefix of every

other signal, at the bottom of the partial order, so it is sometimes calledbottom.

T

s

s′ s s′⊆ s s′

Σ s() s

Σ s() Σ s′() Σ s()

Σ s′() Σ s′() Σ s() Σ S()

Σ S() Σ λ()

30 of 36 Edward A. Lee and Alberto Sangiovanni-Vincentelli

In partially ordered models for signals, it is often useful for mathematical reasons to ensure that

the poset is acomplete partial order (CPO). To explain this fully, we need some more definitions. A

chain in is a set , where is a totally ordered set (ordered by “≤”)

and for any and in ,

⇔ . (17)

An upper bound of a subset is an element where every element in is a prefix

of . A least upper bound (LUB), written , is an upper bound that is a prefix of every other upper

bound. A lower bound and greatest lower bound are defined similarly. Acomplete partial order (CPO)

is a partial order with a bottom element where every chain has a LUB. From a practical perspective,

this usually implies that our set of sequences must include sequences with an infinite number of

values.

These definitions are easy to generalize to , the set of -tuples of sequences. For

 and , if each corresponding element is a prefix, i.e. for

each , where . With this definition, if is a CPO, so is . We will

assume henceforth that is a CPO for all .

4.2.1 Monotonicity and continuity

We can now define the untimed equivalents of causality, connecting to well-known results origi-

nally due to Kahn [16]. Our contribution here is only to present these results using our notation. A pro-

cess ismonotonicif it is sequence functional with function , and

⇒ . (18)

Σ S() σi ;σi Σ S() and∈ i U∈{ } U

i i ′ U

σi σi ′ i i ′≤

W Σ S()⊆ w Σ S()∈ W

w W

Σ S()

Σ S()N
N

σ Σ S()N∈ σ′ Σ S()N∈ σ σ′ σi σ′i

1 i N≤ ≤ σ σ1 ... σN, ,()= Σ S() Σ S()N

Σ S()N
N

P F

σ σ′ F σ() F σ′()

Edward A. Lee and Alberto Sangiovanni-Vincentelli 31 of 36

Intuitively, this says that if an input sequence is extended with additional events appended to the end

to get , then the output can only be changed by extending it with additional events to get

. I.e., giving additional inputs can only result in additional outputs. This is intuitively the

untimed equivalent of causality.

A process iscontinuous if it is sequence functional with function : and for

every chain , has a least upper bound , and

() = . (19)

The notation denotes a set obtained by applying the function to each element of . Intu-

itively, this says that the response of the function to an infinite input sequence is the limit of its

response to the finite approximations of this input. “Continuous” here is exactly the topological notion

of continuity in a particular topology called theScott topology. In this topology, the set of all signals

with a particular finite prefix is an open set. The union of any number of such open sets is also an open

set, and the intersection of a finite number of such open sets is also an open set.

A continuous process is monotonic [16]. To see this, suppose : is continuous,

and consider two signals and in where . Define the increasing chain

. Then = , so from continuity,

 = () = = . (20)

Therefore , so the process is monotonic.

Not all monotonic functions are continuous. Consider for example a system where the set of values

is binary, , and

σ

σ′ F σ()

F σ′()

P F Σ S()m Σ S()n→

W Σ S()m⊂ F W() F W()

F W F W()

F W() F W

F Σ S()m Σ S()n→

σ σ′ Σ S()m σ σ′

W σ σ′ σ′ σ′ …, , , ,{ }= W σ′

F σ′() F W F W() F σ() F σ′(),{ }

F σ() F σ′()

V 0 1,{ }=

32 of 36 Edward A. Lee and Alberto Sangiovanni-Vincentelli

. (21)

It is easy to show that this is monotonic but not continuous.

Compositions of continuous (or monotonic) functions without feedback, like those in figures 4 and

6, obviously yield continuous (or monotonic) functions. As before, it is only the feedback case that is

subtle.

Consider the feedback system of figure 7. In general, it may not be sequence determinate, even if

the process is sequence functional and continuous. Consider a trivial case, where the process is

sequence functional with its function : being the identity function. This function is

certainly continuous. Then any satisfies the composite process because for any

, . Since the process has many behaviors, it is not sequence determinate.

We will now show that there is an alternative interpretation of the composition that is sequence

determinate. Under this interpretation, any composition of continuous processes is sequence determi-

nate. Moreover, this interpretation is consistent with execution policies typically used for such systems

(their operational semantics), and hence is an entirely reasonable denotational semantics for the com-

position. This interpretation is called theleast-fixed-point semantics.

A well-known fixed point theorem states that a continuous function : in a CPO has a

least fixed point , (see [7], page 89). By “least fixed point” we mean that for any such

that , . Moreover, the theorem gives us a constructive way to find the least fixed point.

Putting it into our context, suppose we have a continuous function : . Then define the

sequence of sequences

F σ() 0[]; if σ is finite

0 1,[]; otherwise



=

P

F Σ S() Σ S()→

σ Σ S()∈ Q

σ Σ S()∈ F σ() σ=

Q

F X X→ X

x F x() x= y

F y() y= x y

F Σ S()n Σ S()n→

Edward A. Lee and Alberto Sangiovanni-Vincentelli 33 of 36

, , , ... (22)

Since is monotonic and the tuple of empty sequences is a prefix of all other tuples of

sequences, this sequence is a chain. Since is a CPO, this chain has a LUB. The fixed-point the-

orem tells us that this LUB is the least fixed point of .

This theorem is very similar to the so-calledKnaster-Tarski fixed point theorem, which applies to

complete lattices rather than CPOs [7]. For this reason, this approach to semantics is sometimes called

Tarskian.

Note that the constructive technique given by (22) is exactly what one would expect in an imple-

mentation of Kahn process networks. Begin with all sequences empty, and start iteratively applying

functions. This theorem tells us that this operational semantics is consistent with the denotational

semantics (the least fixed point semantics), so again we have full abstraction.

Under this least-fixed-point semantics, the value of in figure 7 is , the empty signal. Under

this semantics, this is the only signal that satisfies the composite process, so the composite process is

determinate. Intuitively, this solution agrees with a reasonable execution of the process, in which we

would not produce any output from because there are no inputs. This reasonable operational seman-

tics therefore agrees with the denotational semantics. For a complete treatment of this agreement, see

Winskel [29].

In terms of the tagged signal model, if is the set of sequence tuples that satisfy the process

, we are declaring the behavior of the process to be , the smallest member (in a prefix

order sense) of the set . This minimum exists and is in fact equal to the least fixed point, as long

as the composing processes are continuous.

Yet another fixed-point theorem deals with monotonic processes that are not continuous. This the-

σ0 Σ Λ()= σ1 F σ0()= σ2 F σ1()=

F Σ Λ()

Σ S()n

F

s2 λ

P

Σ Q()

Q min Σ Q()()

Σ Q()

34 of 36 Edward A. Lee and Alberto Sangiovanni-Vincentelli

orem states that a monotonic function on a CPO has a unique least fixed point, but gives no construc-

tive way to find the least fixed point (see [7], page 96). Fortunately, this lack of constructive solution is

not a problem in practice since practical monotonic processes are invariably continuous. Of course,

non-monotonic processes create many problems.

5. Conclusions

We have given the beginnings of a framework within which certain properties of models of com-

putation can be understood and compared. Of course, any model of computation will have important

properties that are not captured by this framework. The intent is not to be able to completely define a

given model of computation, but rather to be able to compare and contrast its notions of concurrency,

communication, and time with those of other models of computation. The framework is also not

intended to be itself a model of computation, but rather as a “meta model,” so it should not be inter-

preted as some “grand unified model” that when implemented will obviate the need for other models.

It is too general for any useful implementation and too incomplete to provide for computation. It is

meant simply as an analytical tool. Of course, a great deal of work remains to be done to determine

whether it is useful as an analytical tool.

6. Acknowledgments

We wish to acknowledge useful feedback from Gerard Berry, Frédéric Boussinot, Wan-Teh Chang,

Stephen Edwards, Simon Gay, Alain Girault, Luciano Lavagno, Praveen Murthy, Rajagopal Nagara-

jan, and Dick Stevens. All remaining errors and omissions are the fault of the authors.

This work was partially supported under the Ptolemy project, which is sponsored by the Advanced

Research Projects Agency and the U.S. Air Force (under the RASSP program, contract F33615-93-C-

1317), the National Science Foundation (MIP-9201605), the State of California MICRO program, and

the following companies: Bell Northern Research, Cadence, Dolby, Hitachi, LG Electronics, Lockheed

Edward A. Lee and Alberto Sangiovanni-Vincentelli 35 of 36

Martin, Mentor Graphics, Mitsubishi, Motorola, NEC, Philips, and Rockwell.

7. References

[1] S. Abramsky, S. J. Gay, and R. Nagarajan, “Interaction Categories and the Foundations of Typed
Concurrent Programming,” In:Deductive Program Design: Proceedings of the 1994 Marktober-
dorf International Summer School,(M. Broy, ed.), NATO ASI Series F, Springer-Verlag, 1995.

[2] A. Benveniste and G. Berry, “The Synchronous Approach to Reactive and Real-Time Systems,”
Proceedings of the IEEE, Vol. 79, No. 9, pp. 1270-1282, 1991.

[3] A. Benveniste and P. Le Guernic, “Hybrid Dynamical Systems Theory and the SIGNAL Lan-
guage,”IEEE Tr. on Automatic Control, Vol. 35, No. 5, pp. 525-546, May 1990.

[4] F. Boussinot, R. De Simone, “The ESTEREL Language,”Proceedings of the IEEE, Vol. 79, No.
9, September 1991.

[5] V. Bryant,Metric Spaces, Cambridge University Press, 1985.

[6] C. Cassandras,Discrete Event Systems, Modeling and Performance Analysis, Irwin, Homewood
IL, 1993.

[7] B. A. Davey and H. A. Priestly,Introduction to Lattices and Order, Cambridge University Press,
1990.

[8] J. B. Dennis, “First Version Data Flow Procedure Language”, Technical Memo MAC TM61,
May, 1975, MIT Laboratory for Computer Science.

[9] E. Dijkstra, “Cooperating Sequential Processes”, inProgramming Languages, E F. Genuys, edi-
tor, Academic Press, New York, 1968.

[10] C. Ellingson and R. J. Kulpinski, “Dissemination of System-Time,”IEEE Trans. on Communica-
tions, Vol. Com-23, No. 5, pp. 605-624, May, 1973.

[11] C. J. Fidge, “Logical Time in Distributed Systems,”Computer, Vol. 24, No. 8, pp. 28-33, Aug.
1991.

[12] G. S. Fishman,Principles of Discrete Event Simulation, Wiley, New York, 1978.

[13] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The Synchronous Data Flow Programming
Language LUSTRE,”Proceedings of the IEEE, Vol. 79, No. 9, 1991, pp. 1305-1319.

[14] Y.-C. Ho (Ed.),Discrete Event Dynamic Systems: Analyzing Complexity and Performance in the
Modern World, IEEE Press, New York, 1992.

[15] C. A. R. Hoare, “Communicating Sequential Processes,”Communications of the ACM, Vol. 21,
No. 8, August 1978.

[16] G. Kahn, “The Semantics of a Simple Language for Parallel Programming,”Proc. of the IFIP
Congress 74, North-Holland Publishing Co., 1974.

[17] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed System,”Communica-
tions of the ACM, Vol. 21, No. 7, July, 1978.

36 of 36 Edward A. Lee and Alberto Sangiovanni-Vincentelli

[18] E. A. Lee and D. G. Messerschmitt, “Synchronous Data Flow,”IEEE Proceedings, September,
1987.

[19] E. A. Lee and T. M. Parks, “Dataflow Process Networks,”Proceedings of the IEEE, May 1995.
(http://ptolemy.eecs.berkeley.edu/papers/processNets)

[20] F. Mattern, “Virtual Time and Global States of Distributed Systems,” in Parallel and Distributed
Algorithms, M. Cosnard and P. Quinton, eds., North-Holland, Amsterdam, 1989, pp. 215-226.

[21] A. Mazurkiewicz, “Traces, Histories, Graphs: Instances of a Process Monoid,” inProc. Conf. on
Mathematical Foundations of Computer Science, M. P. Chytil and V. Koubek, eds., Springer-Ver-
lag LNCS 176, 1984.

[22] D. G. Messerschmitt, “Synchronization in Digital System Design,”IEEE Journal on Selected
Areas in Communications, Vol. 8, No. 8, pp. 1404-1419, October 1990.

[23] R. Milner,Communication and Concurrency, Prentice-Hall, Englewood Cliffs, NJ, 1989.

[24] V. R. Pratt, “Modeling Concurrency with Partial Orders,” Int. J. of Parallel Programming, Vol. 15,
No. 1, pp. 33-71, Feb. 1986.

[25] W. Reisig,Petri Nets: An Introduction, Springer-Verlag (1985).

[26] M. Raynal and M. Singhal, “Logical time: Capturing Causality in Distributed Systems,”Com-
puter, Vol. 29, No. 2, February 1996.

[27] J. E. Stoy,Denotational Semantics: The Scott-Strachey Approach to Programming Language The-
ory, The MIT Press, Cambridge, MA, 1977.

[28] W. T. Trotter,Combinatorics and Partially Ordered Sets, Johns Hopkins University Press, Balti-
more, Maryland, 1992.

[29] G. Winskel,The Formal Semantics of Programming Languages, the MIT Press, Cambridge, MA,
USA, 1993.

[30] G. Winskel, "An Introduction to Event Structures," inLinear Time, Branching Time and Partial
Order in Logics and Models for Concurrency, J. W. de Bakker,W.-P. de Roever, and G. Rozenberg
(Eds.), REX School/Workshop, Noordwijkerhout, The Netherlands, May 30-June 3, 1988. LNCS
354, pp. 364-397, Springer-Verlag, 1989.

[31] R. K. Yates, “Networks of Real-Time Processes,” in Concur ‘93,Proc. of the 4th Int. Conf. on
Concurrency Theory, E. Best, ed., Springer-Verlag LNCS 715, 1993.

