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Abstract
We give a denotational framework (a “meta model”) within which certain properties of models of

computation can be understood and compared. It describes concurrent processes in general terms as
sets of possible behaviors. A process is determinate if given the constraints imposed by the inputs there
are exactly one or exactly zero behaviors. Compositions of processes are processes with behaviors in
the intersection of the behaviors of the component processes. The interaction between processes is
through signals, which are collections of events. Each event is a value-tag pair, where the tags can
come from a partially ordered or totally ordered set. Timed models are where the set of tags is totally
ordered. Synchronous events share the same tag, and synchronous signals contain events with the same
set of tags. Synchronous processes have only synchronous signals as behaviors. Strict causality (in
timed tag systems) and continuity (in untimed tag systems) ensure determinacy under certain technical
conditions. The framework is used to compare certain essential features of various models of computa-
tion, including Kahn process networks, dataflow, sequential processes, concurrent sequential processes

with rendezvous, Petri nets, and discrete-event systems.

1. Introduction

A major impediment to further progress in modeling and specification of concurrent systems is the



confusion that arises from different usage of common terms. Terms like “synchronous”, “discrete
event”, “dataflow”, “signal”, and “process” are used in different communities to mean significantly
different things. To address this problem, we propose a formalism that will enable description and dif-
ferentiation of models of computation. It is not intended as a “grand unifying model of computation”
but rather as a “meta model” within which certain properties can be studied. To be sufficiently precise,
this language is a mathematical one. desotationalin the sense of Scott and Strachey [27], rather
than operational, to avoid associating the semantics of a model of computation with an execution pol-
icy. In many denotational semantics, ttenotationof a program fragment is a partial function or a
relation on the state. This approach does not model concurrency well [29], where the notion of a single
global state may not be well-defined. In our approach, the denotation of a process is a partial function

or a relation on signals, and hence we can model concurrency well.

We define precisely a process, signal, and event, and give a framework for identifying the essential
properties of discrete-event systems, dataflow, rendezvous-based systems, Petri nets, and process net-
works. Our definitions of these terms sometimes conflict with common usage in some communities,
and even with our own prior usage in certain cases. We have made every attempt to maintain the spirit
of that usage with which we are familiar, but have discovered that terms are used in contradictory ways
(sometimes even within a community). Maintaining consistency with all prior usage is impossible

without going to the unacceptable extreme of abandoning the use of these terms altogether.

Our objectives overlap somewhat with prior efforts to provide mathematical models for concurrent
systems, such as CSP [15], CCS [23], event structures [30], and interaction categories [1]. We do not
have a good answer for the question “do we really need yet another meta model for concurrent sys-
tems?” except perhaps that our objectives are somewhat different, and result in a model that has some

elements in common with other models, but overall appears to be somewhat simpler. It is more
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descriptive of concurrency models (more “meta”) than some process calculi, which might for example
assume a single interaction mechanism, such as rendezvous, and show how other interaction mecha-
nisms can be described in terms of it. We assume no patrticular interaction mechanism, and show how
to use the framework to describe and compare a number of interaction mechanisms (including rendez-
vous). We devote most of our attention, however, to interaction mechanisms in practical use for design-
ing electronic systems, such as discrete-event models and dataflow.

The prior frameworks closest to ours, Abramsky’s interaction categories [1] and Winskell's event
structures [30], have been presented as categorical concepts. We avoid category theory here because it
does not appear to be necessary for our more limited objectives, and because we wish to make the con-
cepts more accessible to a wider audience. But it would be wrong to not acknowledge the influence.

We limit the mathematics to sets, posets, relations, and functions.

2. The Tagged Signal Model

2.1 SIGNALS

Given a set ofaluesV and a set ofags T, we define an everg  to be a membeiTof V . lLe.,
an event has a tag and a value. We will use tags to model time, precedence relationships, synchroniza-
tion points, and other key properties of a model of computation. The values represent the operands and

results of computation.

We define asignal s to be a set of events. A signal can be viewed as a sub$et of ,orasa
member of thg@owerset (T x V) (the set of all subsets @fx V ).fAnctional signabr proper sig-
nal is a (possibly partial) function from 8 . By “partial function” we mean a function that may be

defined only for a subset af . By “function” we mean thatif= (t,v;) Os apck (t,v,)0Os ,

then v; = v, . Unless otherwise stated, we assume all signals are functional. We call the set of all sig-
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nalsS , where of courseé = O (T x V) . Itis often useful to form a collectidope s of N signals.

The set of all such tuples will be deno®d . Position in the tuple serves the same purposes as haming
of signals in other process calculi. Reordering of the tuple serves the same purposes as renaming. A

similar use of tuples is found in the interaction categories of Abramsky [1].
The empty signal (one with no events) will be denoted by , and the tuple of empty sighals by

where the numbel  of empty signals in the tuple will be understood from the context. These are sig-

nals like any other, sh 1S amdld s¥ . For any sigpak[JA = s (ordinary set union). For any

tuples,s A = s, where by the notatiei] A  we mean the pointwise union of the sets in the tuple.
In some models of computation, the $et  of values includes a special Védabed “bottom”),

which indicates the absence of a value. Notice that while it might seem intuitiyg thatl A for any

t O T, this would violatessO A = s (suppose that already contains an evént at ). Thus, it is impor-

tant to viewlL] as an ordinary member of the 8t like any other member.

2.2 PROCESSES

In the most general form,pocessP is a subset o' forsome . A particukal] s is said to

satisfythe process ISP . Ars that satisfies a process is calleehaviorof the process. Thus a

processs a set of possibleehaviors A process may also be viewed aslation between signals.

2.2.1 Composing processes
Since a process is a set of behaviors, a composition of processes should be simply the intersection
of the behaviors of each of the processes. A behavior of the composition process should be a behavior

of each of the component processes. However, we have to use some care in forming this intersection.

1. Arelation between sefsandB is simply a subset of x B
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Consider for example the two proces$gs Bpd in figure 1. These are each suB&ets of
There, we can define a composite process as a subsét of simply by forming the cross qfroduct
the sets of behaviol@ = P, xP, . Since there is no interaction between the processes, a behavior of
the composite process consists of any behaviéy;of  together with any beha¥jor of . A behavior of
Q is an 8-tuple, where the first 4 elements are a behaviBy of and the remaining 4 elements are a

behavior ofP, .

More interesting systems have processes that interact. Consider figucerthektionC [ S'is

a particularly simple process where two (or more) of the signals iNthe -tuple are constrained to be

identical. For example, in figure €, ¢ [] s®  where
S = (81,5553, S4: S5, S5 S Sg) UCy 5 if 54 = S5 (1)

C, ; can be given similarly as, = s; . There is nothing special about connections as processes, but

they are useful to couple the behaviors of other processes. For example, in figure 2, the composite pro-

FIGURE 1. Composition of independent processes.

1. This serves a similar purpose as the tensor product in the interaction categories of Abramsky [1].
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cess may be given §8, xP,) n C, 5n C, ; . Thatis, &y g that satisfies the composite pro-
cess must be a member of eactiPpk P, C, 5 ,@ag

Given M processes is" (some of which may be connections), a piQcess  composed of these
processes is given by

Q= Nk, (2)

whereP is the collection of processés [ SN 1<sisM

As suggested by the gray outline in figure 2, it makes little sense to expose all the signals of a com-
posite process. In figure 2, for example, since sighals sand  are identgal tos, and  respectively,

it would make more sense to “hide” two of these signals and to model the composition as a subset of
S° rather tharS® .

Letl = (i, ... 1,,) be an ordered set of indexes in the rahge <N , and defipeojleetion

m(s) of s = (s, ...5) O s" ontoS" by m,(s) = (Sil’ sim) . Thus, the ordered set of indexes

FIGURE 2. An interconnection of processes.
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defines the signals that are part of the projection and the order in which they appear in the resulting

tuple. The projection can be generalized to processes. Given a pIFUEeé% , define the projection

T, (P) to be the set§ such that there exists P wigKs) = s }. Thus, in figure 2, we can define

the composite procesg = 1 ((P,xP,) n Cy5n C, ;) U S ,whdre= {1,346 7 §

If the two signals in a connection are associated with the same process, as shown in figure 3, then

the connection is called aelf-loop For the example in figure 32 = m(Pn Cy ;) , where

I = {2, 3, 4}. For simplicity, we will often denote self-loops with only a single signal, obviating the
need for the projection or the connection.

Note that this projection operator is really quite versatile. There are several other ways we could
have used it to define the composition in figure 2, even avoiding connection processes altogether. The
operator can also be used to construct arbitrary permutations of signals, accomplishing the same end as
renaming in other process calculi. Some basic examples are shown in figure 4. Note that the numbering
of signals (cf. names) affects the expression for the composition. Note further that figure 4d shows that

the connection processes are easily replaced by more carefully constructed intersections.

2.2.2 Inputs and outputs

Many processes (but by no means all) have the notion of inputs, which are events or signals that

FIGURE 3. A self loop.
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are defined outside the process. Formallyingat to a process i s an externally imposed con-
straintA0 S' such thal n P is the total set of acceptable behaviors. The set of all possible inputs

BOO (SN) is a further characterization of a process. Within this definition, there is a very rich set of
ways to model inputs. Inputs could be individual events, for example, or entire signals. Fortunately, the

latter case is more useful for most models of computation, and can easily be defined more precisely.
Given a procesp [ S’ with input signals having indexes in the set , each element is a set
of tuples of signal§ s:m;(s) = s} for sonell S" . In other words, the input completely defines , a

tuple of m input signals. By saying thAtn P is the set of acceptable behaviors, we simply say that

S P Sy S /P\ Sq S b Sy
1 U 1
= () s, /P\ 55 53
2 &)
Q Q Q
Q=P xP, Q = 143 (Py) X Py x 15 (Py) Q=P xS
(a) (b) (©)

S1 S S3 Sy
C, 3
Q

Q =Ty 4((PLxPy)n Cy 9
= 11 5(PLxS) n (Sx R))
(d) Q =Ty 34((P1XP)nCy o

(e)

FIGURE 4. Examples of composition of processes.
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the m input signals must appear within any behavior tuple.

A processQ O S s said to losedif B = { SN} , a set with only one elemeng = S . Since
the set of behaviors i&in P = P, there are no input constraints in a closed process. A process is
openif it is not closed.

So far, however, we have not captured the notion of a process “determining” the values of the out-
puts depending on the inputs. To do this, consider an indéx setm for  input signals and an index set
O for n output signals. A proce8sis functional with respect tl, O) if foreverg D P  angl 1 P

wherem (s) = m(s) , it follows thatriy(s) = my(s) . For such a process, there is a single-valued
mappingF S" - S' such that for ai 0P 1i5(s) = F(T;(s)) . A processdsal if T (P) = S

In this caseF is defined over &' . Idartial otherwise, i.e.7; (P) 0 S"

Note that a given process may be functional with respect to more than one pair of index sets

(1,0). A connection, for examples; = s, , is functional with respect to eitf{e}, {2}) or
({2},{1}). In both cased; is the identity function.

In figures 2, 3, and 4, there is no indication of which signals might be inputs and which might be

outputs. Figure 5 modifies figure 2 by adding arrowheads to indicate inputs and outputs. In this case,

P, might be functional with respect {6, 0) = ({1, 2},{3, 4})

2.2.3 Determinacy
A process isleterminatdf for any input A B it has exactly one behavior or exactly no behav-

iors;i.e.]An Pl =1 orlAn P| = 0 ,wher¢X| isthe size of the ¥et . Otherwisenibigletermi-

1. ArelationR[ Ax B is a function if for everfa, ) R an@&, c)OR b,= ¢
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nate Thus, whether a process is determinate or not depends on our characteization  of the set of

possible inputs.

A process inS"  that is functional with respect(1oO) is obviously determindte if OCand
together contain all the indexesirk i <N . Given the input signals, the output signals are determined
(or there is unambiguously no behavior, if the function is partial).

In figure 4, if all processes are functional with inputs on the left and outputs on the right, then obvi-
ously the composition processes are also functional. Thus, the compositions in figure 4 preserve deter-
minacy. A slightly more subtle situation involveeurce processes (processes with outputs but no

inputs), like the example in figure 6. This composition will be functional (and hence determinate) if
P, is functional and®, has exactly one behavior.
A much more complicated situation involves feedback, as illustrated by the example in figure 7.

Whether determinacy is preserved depends on the tag system and more details about the process.

3. Tag Systems

So far, tags have had no explicit role in the description of processes. But we have also said nothing

FIGURE 5. A partitioning of the signals in figure 1 into inputs and outputs.
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about the operational interaction of processes. Do they synchronize? Are they causal? Under what con-
ditions exactly are they determinate? To answer these questions, we need structure in the system of
tags. This structure turns out to be the major distinguishing feature between various concurrent models
of computation.

Frequently, a natural interpretation for the tags is that they mark time in a physical system.
Neglecting relativistic effects, time is the same everywhere, so tagging events with the time at which
they occur puts them in a certain order (if two events are genuinely simultaneous, then they have the
same tag). Such a simple model of time is certainly intuitively appealing.

For specifyingsystems, however, the global ordering of events in a timed system may be overly
restrictive. A specification should not be constrained by one particular physical implementation, and
therefore need not be based on the semantics of the physical world. Thus, for specification, often the

tags should notmark time, but should instead reflect ordering induced by causality (this will be

v

Sg

Q=T 35(P1xP)nCy Y

FIGURE 6. Composition of a functional process with a source process..

51 >

Q
FIGURE 7. Feedback (a directed self-loop).
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explained below).

In amodelof a physical system, by contrast, tagging the events with the time at which they occur
may seem natural. They must occur at a particular time, and if we accept that time is uniform (i.e.
again neglecting relativistic effects), then our model should reflect the ensuing ordering of events.
However, when modeling a large concurrent system, the model should probably reflect the inherent
difficulty in maintaining a consistent view of time in a distributed system [10][17][22][26]. This diffi-
culty appears even in relatively small systems, such as VLSI chips, where clock distribution is chal-
lenging. If an implementation cannot maintain a consistent view of time across its subsystems, then it
may be inappropriate for its model to do so (it depends on what questions the model is expected to

answer).

The central role of a tag system is to establish ordering among evertlekimg relationon the

setT is a reflexive, transitive, antisymmetric relation on members of the set. We denote this relation
using the template<”. Reflexivemeans that <t transitivemeans that<t’ and <t" imply that
t<t”, andantisymmetrioneans that<t’ and<t imply=1t" ,fordllt',t" ih .Ofcourse, we

can define a related irreflexive relation, denoted “<”, wherd' t <if taht . The ordering of
the tags induces an ordering of events as well. Given two eventét, V) e andt',v') e<é€, if
and only ift <t' . A sefl with an ordering relationship is called amlered setlf the ordering relation-

ship is partial (there exigtt' 0T  such that neithert’ tior t , thea called apartially-

ordered sebr poset[7][28].

3.1 TIMED MODELS OF COMPUTATION
A timed model of computatidmas a tag system wheffe isosally ordered setThat is, for any

distinctt andt’' inT , eithet<t’ of <t .Intimed systems, a tag is also catlatkastampThere

12 of 36 Edward A. Lee and Alberto Sangiovanni-Vincentelli



are several distinct flavors of timed models.

3.1.1 Metric time

Some timed models of computation include operations on tags. At a minimum, maglbe-an
lian group in addition to being totally ordered. This means that there is an opetafionT - T ,
called addition, under whicli  is closed. Moreover, there is an element, oaitexhd denoted “0”,
suchthatt+0 =t foraltOT . Finally, for every element] T , there is another elemenil

such that + (-t) = O . A consequence is thatt; is itself a tag fotany tandT in

In a slightly more elaborate tag system, hase#ric which is a functiord: T x T - 0O , where

O is the set of real numbers, that satisfies the following conditions:

d(t, t) = d(t,t) @3)
d(t,t)=0=t=1t, (4)
d(t,t')=0 , and (5)

d(t, t) +d(t, ') = d(t, t) (6)

forallt,t’,t" O T. Such systems are said to hawetric time In a typical example of metric tim&, is

the set of real numbers addt—t') = |t—t'| , the absolute value of the difference. Metric time is fre-

guently used when directly modeling physical systems (without relativistic effects).

3.1.2 Continuous time
Let T(s) OT denote the set of tags in a sigral cdhtinuous-time systeim a metric timed sys-
tem Q whereT is a continuum (a closed connected setTésd= T for eachssignal in any tuple

s that satisfies the system.cAnnected sats one where no matter how it is partitioned into two dis-
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joint sets, at least one of these contains limit points of sequences in the atlised\sets one that
contains the limit points of any subset. Limit points, of course, are defined in the usual way using the

metric (more general topological definitions are also possible).

3.1.3 Discrete-event

Many simulators, including most digital circuit simulators, are based on a discrete-event model
(see for example [12]). Given a procd®s , and a tuple of sighal that satisfies the process, let
T(s) denote the set of tags appearing in any signal in the suple . Clg@)lyl T and the ordering
relationship for members @ induces an ordering relationship for memb&(s)of discrate-event
model of computatiohas a timed tag system, and for all procesdes arslafP T(s), ordes
isomorphicto a subset of the integériVe explain this now in more detail.

A mapf :A - B from one ordered sét to anotlBer orider-preservingor monotonicif a< a'
implies thatf(a) < f(a') , where the ordering relations are the ones for the appropriate set. A map
f:A - B is abijectionif f(A) = B (the image of the domain is the range) aw & implies that
f(a) # f(a'). An order isomorphisnms an order-preserving bijection. Two sets are order-isomorphic
if there exists an order isomorphism from one to the other.

This definition of discrete-event systems corresponds well with intuition. It says that the time
stamps that appear in any behavior can be enumerated in chronological order. Note that it is not suffi-
cient to just be able to enumerate the time stamps (the ordering is important). The rational numbers, for
example, are enumerable, but would not be a suitable set of time stamps for a discrete-event system.

This is because between any two rational numbers, there are an infinite number of other rational num-

bers. Thus it is also not sufficient fos)  to be merely isomorphic to a set of integers, since the ratio-

1.This elegant definition is due to Wan-Teh Chang.
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nals are isomorphic to the set of integers. But they are not order-isomorphic. “Order-isomorphism”
captures the notion ofdiscreté (indeed, Mazurkiewicz gives a considerably more complicated but
equivalent notion of discreteness in terms of relations [21]). It captures the intuitively appealing con-
cept that between any two finite time stamps there will be a finite number of time stamps.

Note further that while we insist th@f(s)  be discrete (which is stronger than enumerable), we do
not even constraif to be enumerable. For example, it is common for discrete-event systemsTo take
to be the set of real numbers. We then insist that processes (and inputs) be defined in such a way that

T(s) is always a discrete subsetTof

If T(s) always has a least tag, then we say that the modedne-sided discrete-event model of
computation This simply captures the notion of starting the processes at some point in time. In this
case,T(s) will be order-isomorphic to a subsetof |, the set of non-negative integers with the usual
numerical order. Note in particular th&{s) might be finite, thus capturing the notion of stopping the
processes, or it might be infinite.

In some communities, notably the control systems community, a discrete-event model also
requires that the set shluesV be countable, or even finite [6][14]. This helps to keep the state space
finite in certain circumstances, which can be a big help in formal analysis. However, in the simulation
community, it is largely irrelevant wheth®r is countable [12]. In simulation, the distinction is techni-
cally moot, since all representations of values in a computer simulation are drawn from a finite set. We
adopt the broader use of the term, and will refer to a system as a discrete-event systenMwvhether is

countable, finite, or neither.

3.1.4 Discrete-event simulators

The discrete-event model of computation is frequently used in simulators for such applications as
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circuit design, communication network modeling, transportation systems, etc. In a typical discrete-

event simulator, events explicitly include time stamps. These are the only types of systems we discuss
where the tags are explicit in the implementation. The discrete-event simulator operates by keeping a
list of events sorted by time stamp. The event with the smallest time stamp is processed and removed
from the list. In the course of processing the event, new events may be generated. These are usually
constrained to have time stamps larger than (or sometimes equal to) the event being processed. We will
return to this causality constraint later, where we will see that under appropriate circumstances, it

ensures determinacy.

In some discrete-event simulators, such as VHDL simulators, tags conceptually contain both a
time value and a “delta time.” Delta time has titerpretationof zero time in the simulation, but is an
important part of the tag. It is not usually explicit in the simulation, but it affects the semantics. It is
used to ensure strict causality (to be defined precisely below), and thus to ensure determinism. A suit-
able tag system for such a discrete-event simulator wouldThavew X w ,where s the set of non-
negative integers with the usual numerical order. The first component will typically be called the “time
stamp”, while the second component will be called the “delta time offset.” The ordering relation

between two tags = (t,,t,) amd = (t',,t',) is given by t’ if and only,ikt’;  tpr=1t';
andt, <t', .
Note, however, thall = wxw is not order isomorphic with or any subset. In principle,

between tags = (t;,t,) and = (t';,t',) where the time stamjps tand  are finite, there could

be an infinite number of tags. This can occur in practice in a discrete-event simulation when a zero-
delay feedback loop is modeled and there is no fixed point (or the fixed point is not found). Events cir-
culate forever around the loop, incrementing the delta time component of the tag, but failing to incre-

ment the time stamp component. The simulation gets stuck, and time fails to advance. We will see later
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in the paper that this flaw is a mathematical property of this system of tags.

3.1.5 Synchronous and discrete-time systems

Two events areynchronoudf they have the same tag. Two signals are synchronous if all events in
one signal are synchronous with an event in the other signal and vice versa. A process is synchronous
if every signal in any behavior of the process is synchronous with every other signal in the behavior. A
discrete-time system a synchronous discrete-event system.

By this definition, the so-called Synchronous Dataflow (SDF) model of computation [18] is not
synchronous (we will say more about dataflow models below). The “synchronous languages” [2] (such
as Lustre, Esterel, and Argos) are synchronous if we considey , Where  (bottom) denotes the
absence of an event. Indeed, a key property of synchronous languages is that the absence of an event at
a particular “tick” (tag) is well-defined. Another key property is that event tags are totally ordered. Any
two events either have the same tag or one unambiguously precedes the other. The language Signal [3]
is called a synchronous language, but in general, it is not even timed. It supports nondeterminate oper-
ations that require a partially ordered tag mo@gicle-basedogic simulators are discrete-time sys-
tems.

Note that many authors will dispute this definition of the term “synchronous.” For example, the
process algebra community (based on CSP [15] and CCS [23], for instance), refers to processes that
“synchronize” (rendezvous) as “synchronous.” However, by our definition, they are not even timed (we
will have more to say about rendezvous below). We believe that our definition captures the essential

and original meaning of the word, latinized from the Greeki*(together) and Khrono$ (time).

3.1.6 Sequential systems

A degenerate form of timed tag systems is a sequential system. The tagged signal model for a
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sequential process has a single signal , and theTtgg)s in the signal are totally ordered. For exam-

ple, under the Von Neumann model of computation, the valie¥ denote states of the system and
the signal denotes the sequence of states corresponding to the execution of a program. Below we will

show several ways to construct untimed concurrent systems by composing sequential systems.

3.2 UNTIMED MODELS OF COMPUTATION

When tags are partially ordered rather than totally ordered, we say that the tag systtimeid
A variety of untimed models of computation have been proposed. In general, the ordering of tags
denotes causality or synchronization. Processes can be defined in terms of constraints on the tags in

signals.

We are not alone in using partial orders to model concurrent systems. Pratt gives an excellent moti-
vation for doing so, and then generalizes the notion of formal string languages to allow partial ordering
rather than just total ordering [24]. Mazurkiewicz uses partial orders in developing an algebra of con-
current “objects” associated with “events” [21]. Partial orders have also been used to analyze Petri nets
[25]. Lamport observes that a coordinated notion of time cannot be exactly maintained in distributed
systems, and shows that a partial ordering is sufficient [17]. He gives a mechanism in which messages
in an asynchronous system carry time stamps and processes manipulate these tim&Vetaaups
then talk about processes having information or knowledgecahsistent cytrather than “simulta-
neously”. Fidge gives a related mechanism in which processes that can fork and join increment a
counter on each event [11]. A partial ordering relationship between these lists of times is determined
by process creation, destruction, and communication. If the number of processes is fixed ahead of time,
then Mattern gives a more efficient implementation by using “vector time” [20]. Unlike the work of
Lamport, Fidge, and Mattern, we are not using partial orders in the implementation of systems, but

rather are using them as an analytical tool to study models of computation and their interaction seman-
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tics. Thus, efficiency of implementation is not an issue.

3.2.1 Rendezvous of sequential processes

Thecommunicating sequential proces$€$P) model of Hoare [15] and tbalculus of communi-
cating system@CCS) model of Milner [23] are key representatives of a family of models of computa-
tion that involve sequential processes that communicate with rendezvous. Similar models are realized,
for example, in the languages Occam and Lotos. Intuitively, rendezvous means that sequential pro-
cesses reach a particular point at which they must verify that another process has reached a corre-

sponding point before proceeding. This can be captured in the tagged signal model as depicted in

figure 8. In this cas@(s) is totally ordered for each 1, 2, 3 . Thus, €Bgls;) i fod, 2 :
denotes a sequential process. Moreover, representing each rendezvous point there will lsg events

e,, ande; insignals; s, ,ans; respectively, such that

T(e) = T(e) = T(ey), (7)

whereT(g) is the tag of the evegt

Note that although the literature sometimes refers to CSP and CCS as synchronous models of com-
putation, under our definition they are not synchronous. They are not even timed. Events directly mod-
eling a rendezvous are synchronous, but events that are not associated with rendezvous have only a

partial ordering relationship with each other. Indeed, this partial ordering is one of the most interesting

FIGURE 8. Communicating sequential processes.
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properties of these models of computation, particularly when there are more than two processes.

In some such models of computation, a process can reach a state where it will rendezvous with one
of several other processes (this sort of behavior is supported, for example, by the “select” statement in

Ada). In this case, a composition of such processes is often nondeterminate.

3.2.2 Kahn process networks

In a Kahn process networkl6], processes communicate vidannels which are one-way
unbounded FIFO queues with a single reader and a single writdr( f)et again denote the tags in sig-
nal s. The first-in, first-out property of the channels implies THa) is totally ordered for each signal
s. But the set of all tagE  is in general partially ordered. Moreover, signals are discrete, or more tech-
nically, T(s) is order-isomorphic with a set of integers for each signal

For example, consider a simple process that produces one output event for each input event. Sup-

pose the input signal is = { g;iJw} , whete is the set of non-negative integers with the usual

numerical order, and<j O g < e . Let the output$e= {e';;i O w} , Similarly ordered. Then the

process imposes the ordering constraint ¢ghate’; far@ako

The importance of the tags in a particular signal is limited to the ordering that it imposes on
events. Let>(s) denote treequencef values ins (an ordered set, ordered according to the tags).
That is, the tags are discarded. Then two sigrals sand seqtence equivaleift (s) = 2(s').
ThusX induces as&s; of equivalence class& in , the set of signals, where each mé&gpber of is
a set of signals all with the same sequek(s) . This notion of sequence equivalence generalizes

trivially to tuples of signals.

A process issequence determinatéall of its behaviors are sequence equivalent. A process is
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sequence functionaf given a set of equivalent tuples of input signals, all possible outputs are

seguence equivalent. Thus, a sequence functional procesmiwith  inpats and  outputs has a mapping

F' :(Ez)m - (Ez)n rather thanF S" - S' . Later in the paper we will study constraints on these
functions that ensure sequence determinacy.

Whether a sequence determinate process is also determinate depends on the tag system. Some-
times it is useful to have a tag system that represents more information than just the ordering of values
in sequences. For example, it might model the timing of the execution of a process network, in which
case the timing nondeterminism of a concurrent system is represented in the model even if the process

itself is sequence determinate.

3.2.3 Dataflow

The dataflow model of computatids a special cadef Kahn process networks [19]. dataflow
procesds a Kahn process that is also sequential, where the events on the self-loop signal dénrote the
ings of the dataflow actor. The self-loop signal is calledfitlreg signal Thefiring rulesof a dataflow
actor are partial ordering constraints between these events and events on the ohgtaftov process

network is a network of such processes.
The firing signal is ordered like all signals in the model. Consider two successive events in the fir-

ing signale, <e,,; 6uccessivaneans there are no intervening events). An input esent  where
g <€ <g,, is said to beonsumedy firing g , ; . An input event that is less than all firing events is
consumed by the first firing. An output everit  wheree” <e, , ; is said frdmhucedby firing

e . An output event that is greater than all firing events is produced by the last firing (if there is one).

1. The term “dataflow” is sometimes applied to Kahn process networks in general, but this fails to reflect the heri-
tage that dataflow has in computer architecture. The dataflow model originally proposed by Dennis [8] had the
notion of a “firing” as an integral part. Our use of the term is consistent with that of Dennis.
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For example, consider a dataflow procBss  with one input signal and one output signal, where
each firing consumes one input event and produces one output event, as shown in figure 9. Denote the
input signal bys' = {€';;iON} , wheré <j O €,<e; . The firings are denoted by the signal

J

s = {g;iON}, and the output bys" = {€",;iON} , which will be similarly ordered. Then the
inputs and outputs are related to the firingsease’; ;<€ ., i(thé -th firing consumes the
i +1-th input) ande; <e";<e,,,; (the -th firing produces the -th output) foriall . Because of the

transitivity of the ordering relation, this implies theif < e”, for@ll , an intuitive sort of causality

constraint. A network of such processes will establish a partial ordering relationship between the fir-

ings of the actors.
Consider modifying figure 9 with a connection as shown in figure 10. This establishes the identity
s = g", butsincee’;<e"; s and” mustbe empty. This is the only behavior for this process, and

it corresponds to deadlock.

FIGURE 9. A simple dataflow process that consumes and produces a single token on each firing.

FIGURE 10. A deadlocked dataflow graph.
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More interesting examples of dataflow actors can also be modeled. The sewiltbdndselect
actors, for example, are shown in figure 11. Each of them takes a Boolean-valued input signal (the bot-

tom signal) and uses the value of the Boolean to determine the routigen$(events). The switch

takes a single token at its left inpgyt ~ and routes it the top right osfput  if the Boolgan in s true.
Otherwise, it routes the token to the bottom right ousput

The partial ordering relationships imposed by the switch and select are inherently more compli-

cated than those imposed by the simple dataflow actor in figure 9. But they can be fully characterized
nonetheless. Suppose the control signal in the switch is given by{ (t, ;, v, i)} , Where the index
i = 1 denotes the firstevent® i = 2 the second, etc. Suppose moreover that the Booleans are
encoded so that, ; 0{0, 1} . Let

k

b, = sz,i for k>0. (8)
i=1

Denote the input signal by, = {e; ;;iDN}  and the output signalssby {e; ;i DN} and
s; = {e4 mii ON} . Then the ordering constraints imposed by the actor are

€3k~ €1, 9)

FIGURE 11. More complicated dataflow actors.
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€, m> €L (m-b) - (10)

3.2.4 Petri Nets
Petri nets can also be modeled in the framework. Petri nets are similar to dataflow, but the events

within signals need not be ordered. We associate a signal with each place and each transition in a Petri

net. Consider the trivial net in figure 12(a). Viewing the sigeals sand  as sets of events, there exists
a one-to-one functiori:s, - s; suchthéfe)<e foralls, . This simply says that every firing
(an event ins, ) has a unique corresponding token (an evept in ) with a smaller tag. In figure 12(b),
we simply require that there exist two one-to-one functiofis; — s; fang; - s, such that
f,(e)<e and f,(e)<e for alled s; . In figure 12(c), which represents a nondeterministic choice,
we again need two one-to-one functiohss, - s; ands; - s such thet) <e for all
els, and f,(e)<e for all eds;, but we impose the additional constraint that
f1(sy) n f5(s3) = O, where the notatiorii(s) refers to the image of the fundtion when applied to

members of the set . In figure 12(d), we note that if the initial marking of the place is denoted by the
seti of events, then it is sufficient to defige= s, O i . Composing these simple primitives then

becomes a simple matter of composing the relevant functions. For example, in figure 12(e),
S
! S % s 51 60
% S % S SZE b =3
@) (b) (c) (d) @ ()
3
f3
(e)

FIGURE 12. Some simple Petri nets.
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forsy, » s 00y, faisg-s,00,, fy(e)<e for all eds,, and fy(e)<e for alleds; , so
f,o(f5(e)) <e for all ed s;. In figure 12(f), f:s, — s; is such that(e)<e foralids, , and

s, = s; (the initial marking is empty), therefosg = [0 . The Petri net is not live (it is deadlocked).

3.3 HETEROGENEOUS SYSTEMS
It is assumed above that when defining a system, thél'sets V and include all possible tags and
values. In some applications, it may be more convenient to partition these sets and to consider the par-

titions separately. For instancé,  might be naturally divided into suliset¥, , , ... according to a

standard notion adata typesSimilarly, T might be divided, for example to separately model parts of

a heterogeneous system that includes continuous-time, discrete-event, and dataflow subsystems. This
suggests a type system that focuses on signals rather than values. Of course, processes themselves can
then also be divided by types, yieldingracess-level type systdhat captures the semantic model of

the signals that satisfy the process, something like the interaction categories of Abramsky [1].

4. The Role of Tags in Composition of Processes

In Section 2.2.1, where we composed processes according to equation (2), tags played no evident
role. Composition was treated there as combining constraints. Without considering tags, we were able
to give some simple conditions in Section 2.2.3 under which compositions of functional processes are
determinate. We can often do much more by taking the tags into account. We find that in doing so, we
can connect our tagged signal model to well-known results in semantics. We will do this now for two

special cases, discrete-event systems and Kahn process networks.

4.1 CAUSALITY IN DISCRETE-EVENT SYSTEMS

Causality is a key concept in discrete-event systems. Intuitively, it means that output events do not
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have time stamps less than the inputs that caused them. By studying causality rigorously, we can
address a family of problems that arise in the design of discrete-event simulators. These problems cen-
ter around how to deal with synchronous events (those with identical tags) and how to deal with feed-

back loops. But causality comes in subtly different forms that have important consequences.

Consider a discrete-event tag system where [ , the reals. We can define a metric on the set

S" of n-tuples of signals as follows:

| =

d(s, s) = (11)

T )

N

where 1 is the smallest tag whese agd differ.slf ad are identical, then we define

d(s, s) = 0, a sensible extrapolation from (11). Two -tuples of signals differ at a tag if any of the
component signals differ (pairwise). Two signals differ at a tag if one has an event with that tag and the
other does not, or if both have events with that tag but the values of these events differ. It is easy to ver-
ify that (11) is a metric by checking that it satisfies (3) through (6). In fact, itikrametric meaning

that in addition to satisfying (6), it satisfies the stronger condition
max d t t),d(t,t'"))=d(t, t'"). (12)

This metric is sometimes called tBantor metric.

The Cantor metric converts our setrof -tuples of signals into a metric space. In this metric space,
two signals are “close” (the distance is small) if they are identical up to a large tag. The metric there-
fore induces an intuitive notion of an open neighborhood. An open-neighborhood ofrradius  is the set
of all signals that are identical at least up to and including thka@g_l) . We can use this metric to

classify three different forms of causality.

1. The applicability of this metric in this context was pointed out to us by Gerard Berry.
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A functionF :S" - S" iscausalifforall s, s 0S",

d(F(s), F(s)) =d(s, s). (13)
In other words, two possible outputs differ no earlier than the inputs that produced them.

A function F :S" - §" isstrictly causalif for all s, s 0 S",

d(F(s), F(s)) <d(s, s). (14)
In other words, two possible outputs differ later than the inputs that produced them (or not at all).

A function F:S" - S isdelta causalif there exists a real number< 1 such that for all
s <09,

d(F(s), F(s')) £3d(s, €). (15)

Intuitively, this means that there is a delay of at |éast Iogz(é_l) , a strictly positive number, before
any output of a process can be produced in reaction to an input event. Equation (15) is recognizable as
the condition satisfied by@ntraction mapping

A metric space isompletéaf every Cauchy sequence of points in the metric space that converges,
converges to a limit that is also in the metric space. It can be verified that the set ofSignals in a dis-
crete-event system is complete. TB@nach fixed point theorefisee for example [5]) states that if
F: X - X is a contraction mapping ang is a complete metric space, then there is exactly one
x O X such thatF(x) = x . This is called faxed point Moreover, the Banach fixed point theorem
gives a constructive way (sometimes catleglfixed point algorithirto find the fixed point. Given any

Xg 0 X, x is the limit of the sequence

X; = F(Xp), X5 = F(Xq), X3 = F(X,) ... (16)
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Consider a feedback loop like that in figure 7 in a discrete-event tag system. The Banach fixed
point theorem tells us that if the procdds s functional and delta causal, then the feedback loop has
exactly one behavior (i.e. it is determinate). This determinacy result was also proved by Yates [31],
although he used somewhat different methods. Moreover, Banach fixed point theorem gives us a con-
structive way to find that behavior. Start with any guess about the signals (most simulators start with an
empty signal), and iteratively apply the function corresponding to the process. This is exactly what
VHDL, Verilog, and other discrete event simulators do. It is their operational semantics, and the
Banach fixed point theorem tells us that if every process in any feedback loop is a delta-causal func-
tional process, then the operational semantics match the denotational sémlaﬂt,idkle simulator
delivers the right answer.

The constraint that processes be delta causal is fairly severe. In particular, it is not automatically
satisfied by processes in VHDL, despite the fact that VHDL processes always exhibit “delta” delay.
The common term “delta” is misleading. The contraction mapping condition prevents soZeslted
conditions where between two finite tags there can be an infinite number of other tags. Such Zeno con-
ditions are not automatically prevented in VHDL.

It is possible to reformulate things so that VHDL processes are correctly modeled as strictly causal
(not delta causal). Fortunately, a closely related theorem (see [5], chapter 4) statés tKat.ifX : is

a strictly causal function anX  is a complete metric space, then thatamiaest ondixed point

x O X, F(x) = x. Thus, the “delta” delays in VHDL are sufficient to ensure determinacy, but not
enough to ensure that a feedback system has a behavior, nor enough to ensure that the constructive pro-
cedure in (16) will work.

If the metric space isompactrather than just complete, then strict causality is enough to ensure

1. This is sometimes called thdl abstractionproperty.
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the existence of a fixed point and the validity of the constructive procedure (16) [5]. In general, the
metric space of discrete-event signals is not compact, although it is beyond the scope of this paper to
show this. Thus, to be sure that a simulation will yield the correct behavior, without further constraints,

we must ensure that the function within any feedback loop is delta causal.

4.2 MONOTONICITY AND CONTINUITY IN KAHN PROCESS NETWORKS

Untimed systems cannot have the same notion of causality as timed systems. The equivalent intu-
ition is provided by the monotonicity condition. Monotonicity is enough to ensure determinacy of
feedback compositions. A slightly stronger condition, continuity, is sufficient to provide a constructive
procedure for finding the one unique behavior. These two conditions depend on a partial ordering of

signals called the prefix order.

A partially ordered tag systeris a system where the s&t  of tags is a partially ordered set or
poset, as defined in Section 3. We can also define an order such that the set of signals becomes a poset.
A signal is a set of events. Set inclusion, therefore, provides a natural partial order for signals. Instead

of the symbol &£ ” that we used for the ordering of tags, we use the symbbdfér an ordering based
on set inclusion. This is a reflexive antisymmetric transitive binary relation. Thus, for two signals

ands' , sl s ifeveryeventis is also 8

Recall that for Kahn process networks, wel¢s) denotedghjgencef values in the signa
which is itself always a totally ordered set of events. In this case, another natural partial ordering for
signals emerges; it is called theefix order For the prefix order, we writB(s) = 2(s') H(s) isa
prefix of Z(s") (i.e., if the first values di(s') are exactly those&is) ). LED) denote the set of
signals partially ordered by this ordering. ClearlyZi{5) , the empty sigfral is a prefix of every

other signal, at the bottom of the partial order, so it is sometimes baliean
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In partially ordered models for signals, it is often useful for mathematical reasons to ensure that

the poset is aomplete partial orde(CPO). To explain this fully, we need some more definitions. A

chainin Z(S) is a sef{ 0;;0; 0 2(S) andi DU} , wherd&) is a totally ordered set (ordereckby “

and foranyi and' itJ |,

o, =i<i'. 17

An upper boundf a subseW 0 2(S) is an element] Z(S)  where every elemet in s a prefix

of w. A least upper boun@_UB), writtenu W , is an upper bound that is a prefix of every other upper
bound. A lower bound and greatest lower bound are defined similarbmplete partial orde(CPO)

is a partial order with a bottom element where every chain has a LUB. From a practical perspective,

this usually implies that our s&{(S)  of sequences must include sequences with an infinite number of

values.
These definitions are easy to generalizeZ((S)N , the sdil of -tuples of sequences. For
o Z(S)N andao' O Z(S)N ,0 £ @' if each corresponding element is a prefix,d;eE o', for

eachl<i<N ,wher& = (04,..,0y) . With this definition, #(S) is a CPO, sd(§)N . We will

assume henceforth thﬁ(S)N is a CPO for\all

4.2.1 Monotonicity and continuity
We can now define the untimed equivalents of causality, connecting to well-known results origi-

nally due to Kahn [16]. Our contribution here is only to present these results using our notation. A pro-

cessP ignonotonidf it is sequence functional with functida , and

6 c o 0 F(B) c F(T'). (18)
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Intuitively, this says that if an input sequerie is extended with additional events appended to the end
to getd’ , then the outplE(G) can only be changed by extending it with additional events to get

F(c"). l.e., giving additional inputs can only result in additional outputs. This is intuitively the

untimed equivalent of causality.
A processP isontinuousif it is sequence functional with functidh ()™ - £(S)"  and for

every chainw 0 £(S)™ F(W) has a least upper boun@(W) , and

F(uW)=uF(W). (19)

The notationF (W) denotes a set obtained by applying the funEtion to each elernvént of . Intu-
itively, this says that the response of the function to an infinite input sequence is the limit of its
response to the finite approximations of this input. “Continuous” here is exactly the topological notion
of continuity in a particular topology called tBeott topologyln this topology, the set of all signals

with a particular finite prefix is an open set. The union of any number of such open sets is also an open

set, and the intersection of a finite number of such open sets is also an open set.
A continuous process is monotonic [16]. To see this, suppos®(S)™ - Z(9)" is continuous,

and consider two signal§ anad' B(S)" whete E ¢ . Define the increasing chain
W = {6,6',6",0',...} . Thenu W =@’ , so from continuity,

F(@') =F@u W) =uFW) =u{F(0),F(T")} . (20)
ThereforeF (0) £ F(G') , so the process is monotonic.

Not all monotonic functions are continuous. Consider for example a system where the set of values

is binary,V = {0, 1} , and
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0]; if ois finite . 1)

O
Fo) =0 | _
010, 1]; otherwise

It is easy to show that this is monotonic but not continuous.

Compositions of continuous (or monotonic) functions without feedback, like those in figures 4 and
6, obviously yield continuous (or monotonic) functions. As before, it is only the feedback case that is

subtle.

Consider the feedback system of figure 7. In general, it may not be sequence determinate, even if
the process is sequence functional and continuous. Consider a trivial case, where thePprocess is
sequence functional with its functidh Z(S) - Z(S) being the identity function. This function is
certainly continuous. Then ang 0 2(S) satisfies the composite proQess because for any
o0 3(9S), F(o) = o. Since the process has many behaviors, it is not sequence determinate.

We will now show that there is an alternative interpretation of the compog&ition  that is sequence
determinate. Under this interpretation, any composition of continuous processes is sequence determi-
nate. Moreover, this interpretation is consistent with execution policies typically used for such systems

(their operational semantics), and hence is an entirely reasonable denotational semantics for the com-

position. This interpretation is called tleast-fixed-poinsemantics.

A well-known fixed point theorem states that a continuous funétiok - : X inaXPO hasa
least fixed poinx F(x) = x (see [7], page 89). By “least fixed point” we mean that foy any such
thatF(y) = y,x E vy . Moreover, the theorem gives us a constructive way to find the least fixed point.

Putting it into our context, suppose we have a continuous furitiafs)” - =(S)" . Then define the

sequence of sequences
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0y = Z(N), 0, = F(Gy), 0, = F(Ty), ... (22)

Since F is monotonic and the tuple of empty sequenRdes) is a prefix of all other tuples of

sequences, this sequence is a chain. SI&}" is a CPO, this chain has a LUB. The fixed-point the-
orem tells us that this LUB is the least fixed poinFof
This theorem is very similar to the so-calkedaster-Tarski fixed point theorenvhich applies to

complete lattices rather than CPOs [7]. For this reason, this approach to semantics is sometimes called

Tarskian

Note that the constructive technique given by (22) is exactly what one would expect in an imple-
mentation of Kahn process networks. Begin with all sequences empty, and start iteratively applying
functions. This theorem tells us that this operational semantics is consistent with the denotational
semantics (the least fixed point semantics), so again we have full abstraction.

Under this least-fixed-point semantics, the valus,of  in figureA7 is , the empty signal. Under
this semantics, this is the only signal that satisfies the composite process, so the composite process is
determinate. Intuitively, this solution agrees with a reasonable execution of the process, in which we
would not produce any output frofh  because there are no inputs. This reasonable operational seman-
tics therefore agrees with the denotational semantics. For a complete treatment of this agreement, see
Winskel [29].

In terms of the tagged signal modelXifQ) is the set of sequence tuples that satisfy the process
Q, we are declaring the behavior of the process tming>(Q)) , the smallest member (in a prefix
order sense) of the sE{Q) . This minimum exists and is in fact equal to the least fixed point, as long
as the composing processes are continuous.

Yet another fixed-point theorem deals with monotonic processes that are not continuous. This the-
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orem states that a monotonic function on a CPO has a unique least fixed point, but gives no construc-
tive way to find the least fixed point (see [7], page 96). Fortunately, this lack of constructive solution is
not a problem in practice since practical monotonic processes are invariably continuous. Of course,

non-monotonic processes create many problems.

5. Conclusions

We have given the beginnings of a framework within which certain properties of models of com-
putation can be understood and compared. Of course, any model of computation will have important
properties that are not captured by this framework. The intent is not to be able to completely define a
given model of computation, but rather to be able to compare and contrast its notions of concurrency,
communication, and time with those of other models of computation. The framework is also not
intended to be itself a model of computation, but rather as a “meta model,” so it should not be inter-
preted as some “grand unified model” that when implemented will obviate the need for other models.
It is too general for any useful implementation and too incomplete to provide for computation. It is
meant simply as an analytical tool. Of course, a great deal of work remains to be done to determine

whether it is useful as an analytical tool.
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