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Abstract: As flying, camera-bearing drones get smaller and 
lighter, they increasingly choke on the common ciphers as 
they interpret their commands, and send back their footage. 
New paradigm cryptography allows for minimum power, 
adjustable randomness security to step in, and enable this 
emerging technology to spy, follow, track, and detect. E.g.: to 
find survivors in a collapsed structure. We describe here a 
cryptographic premise where intensive computation is 
avoided, and security is achieved via non-complex processing 
of at-will size keys. The proposed approach is to increase the 
role of randomness, and to build ciphers that can handle any 
size key without choking on computation.  Orthodox 
cryptography seeks to create a thorough mix between key bits 
and message bits, resulting in heavy-duty computation. Let’s 
explore simple, fast ciphers that allow their user to adjust the 
security of the ciphertext by determining how much 
randomness to use. We present “Walk in the Park” cipher 
where the “walk” may be described through the series of 
visited spots (the plaintext), or, equivalently through a list of 
the traversed walkways (ciphertext).  The “walking park” 
being the key, determines security by its size. Yet, the length 
of the “walk” is determined by the size of the plaintext, not the 
size of the “park”. We describe a use scenario for the proposed 
cipher: a drone taking videos of variable sensitivity and hence 
variable required security – handled by the size of the “park”. 

Keywords—low-power encryption, randomness, Trans-Vernam Cipher, 
User-Controlled Security. 

 

I. INTRODUCTION  
Flying drones are inherently invasive; they see what was 

previously hidden. There are many laudable applications for 
such invasive devices, e.g. search and rescue operations, 
catching fugitives, the war on terror, etc. Yet, very often drones 
violate someone’s privacy, or even endanger national security, 
and hence the visual vista exposed by them should be treated 
with proper sensitivity, namely encryption. Alas, as drones 
become smaller, power becomes an issue, and modern ciphers 
which churn and mix key bits and message bits tend to require 
too much power to function.  This challenge is addressed 
herein.  

We extend the introduction to discuss (i) the application 
environment, and (ii) the principles of the proposed solutions. 

 

A. Application Environment 
Flying drones can network, communicate, and coordinate 

movements and activities in support of a surveillance goal. 
They need to be securely controlled, securely coordinated, and 
securely deliver their collected data to their customer. This 
implies fast, effective cryptography. Alas, the drones are mini 
or micro size, lightweight, and short on power, so most of the 
mainstay ciphers will not be practical for them. A team at 
Harvard just presented a “bee size” drone that easiy perches on 
any surface, sending sensitive videos to its operators [Ulanoff]. 
Some attributes  of this new technology are discussed:  

Speed: High speed, high-resolution cameras fitted on 
flying drones may be required to transmit to an operational 
center, to serve an important rescue operation, or other proper 
assignment.  Similarly, an isolated device somewhere may be 
activated with a large stream of commands, most of them 
should be further transferred to devices down the line, 
exploiting directional microwave communication. All in all,  a 
swarm of drones may need to accommodate high volume, high 
speed information exchange. The existing popular ciphers slow 
down that flow rate, and are not friendly to this requirement.  

Maintenance: Quite a few flying drones will be placed in 
hard to access locations, and no physical maintenance will be 
feasible. They might use a solar power source and function 
indefintely. Hence the use of any specific cipher, which at any 
moment may be mathematically breached, is a risky practice. 
This applies to all algorithmic complexity ciphers. As Prof. 
Nigel Smith articulates in his book “Cryptography (an 
Introduction)”: “At some point in the future we should expect 
our system to become broken, either through an improvement 
in computing power or an algorithmic breakthrough.”   
Normally, cryptography gravitates towards very few ciphers 
considered 'secure'. If one of them is suddenly breached (e.g. 
GSM communication cipher), then all the “out of reach” nodes 
which rely on it, have lost their security, and physical attention 
is not practical.  

Magnetic Vulnerability: Many flying drones are placed in 
very harsh environment, and are subject to lightening violence, 
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as well as man made electromagnetic impacts. Software based 
cipher may be at greater risk.  

In summary, flying drones in particular and IOT nodes in 
general  are vulnerable both to malicious attack, and to 
environmental punishment. These vulnerabilities may be 
remedied to a large extent if we come up with a new 
cryptographic approach: Cryptography of Things (CoT).  

 

B. Principles of the Proposed Solution 

Modern cryptography erects security around data using 
two parameters: (i) algorithmic complexity, and (ii) 
randomness. It's generally believed that the more complex an 
algorithm the more secure the ciphertext, and also the more 
randomness that is being used (the larger the key), the more 
secure the ciphertext. Randomness is in a way dull, and of no 
much interest mathematically (except of course with respect to 
its definition and to metrics of quality). By contrast, 
algorithmic complexity is an exciting math dilemma. 
Academic cryptographers are attracted to this challenge and 
develop new and newer complex algorithms. Unfortunately in 
today's state of affairs, we only manage to compare 
complexities one to the other, not to ascertain their level in an 
objective mathematical way. And even if it turns out that P ≠ 
NP as most complexity researchers believe, in cryptography 
complexity is used in combination with randomness, hence 
one is using a random key selected from a large key space. 
What is hard to know is how many specific keys when applied 
with specific plaintexts, offer some mathematical 
vulnerability, leading to effective extraction of the message. In 
other words, the de facto complexity, or security of algorithms 
cannot be ascertained. Worried about this, we come up with 
increasingly complex algorithms, which require more and 
more computational effort.  They in turn require more and 
more power -- which many IOT nodes simply don't have.  

Randomness, on the other hand, is passive memory, and 
even the smallest and most unsophisticated devices can be 
fitted with gigabytes of memory, serving as key. These 
realities lead one to aim to develop cryptography where the 
role of reliable, passive, manageable, secure randomness is 
enhanced, while the role of doubtful complex algorithms that 
are power hogs, is decreased.  

This thinking brings to mind the famous Vernam cipher: 
the algorithm could not have been simpler, and the key could 
easily be as large as hundreds of gigabytes. So what?  Memory 
is both cheap and light. It may be stored without requiring 
power. Too bad that Vernam is so impractical to use. Yet, can 
we re-analyze Vernam as a source of inspiration for security 
through more randomness and less algorithmic complexity?  

Let's envision a Vernam Inspired Cipher (VIC) where at 
any stage the user can 'throw in a few more key bits' and by 
that achieve a large increase of cryptanalytic burden, together 

with a modest increase of nominal processing burden 
(encryption, and decryption). Let us further demand from the 
VIC the Vernam property of achieving mathematical secrecy 
at the minimum key size required by Shannon's proof of 
perfect secrecy.  

To better analyze this vision let's regard any 
cryptographic key, k, as the natural number represented by 
binary interpretation of its bit sequence. Accordingly, the 
Vernam key space associated with n-bits long messages, will 
be: 1,2,....(2n-1) corresponding to {00....0}n to {11....1}n. We 
may further agree that any natural number N=K > 2n-1 will be 
hashed to an n-bits size string. Once we agree on the hashing 
procedure we have managed to recast Vernam cipher as a 
cipher that accepts any positive integer as a key, with which to 
encrypt any message m comprised of n bits to a corresponding 
ciphertext. We regard this as natural number key 
representation (NNKR).  

We can similarly recast any cipher according to NNKR. 
We consider a cipher for which the series n1, n2,.....nmax 
represents the allowable bit counts for the keys. E.g for DES 
the series has one member n1=nmax=56; for AES the series 
contains three members: n1=128, n2=192, n3=nmax=256. For a 
cipher where the key is a prime number then the series is the 
series of primes. For ciphers defined over every bit string of 
length nmax all the natural numbers from 0 to 2n-1 qualify as a 
nmax key. Larger keys will be hashed to a nmax bits long hash. 
For ciphers where the series n1, n2, .... nmax represents discrete 
possible keys, we may agree to hash any natural number to 
highest member of the list n1, n2,.... which is lower than that 
natural number. For all natural numbers smaller than n1, we 
will "hash" them to the null key (|K|=0), and we may formally 
agree that the case of K=NULL is the case of no encryption 
(the ciphertext is simply the plaintext).  

With the above definition we have recast all ciphers as 
accepting every natural number as a key.  

We define the concept of “normal cipher”  i as a cipher 
for which any valid metric of security, si, is never lower for 
larger keys. Say, for two positive integers K1 and K2 used as 
keys, and where K1 < K2, we may write: 

si(K1) ≤ si(K2) 

In other words, with normal ciphers we "buy" security, 
and "pay" for it with a choice of a random number. Let si(K) 
be the security achieved by a user of cipher i, "investing" key 
K. The metric s, will reflect the average computational effort 
required of the cryptanalyst for extracting the message m from 
a captured ciphertext c, computed over the distribution of m 
∈ M, where M is the message space from which m is 
selected. Let pi(K) be the average combined processing effort 
(encryption plus decryption) required of a user of cipher i, 
while using key, K, over the distribution of message m ∈ M.  
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For any cipher i, using a natural number K as key, we 
may define the utility of the cipher at this point as the ratio 
between the cryptanalytic effort and the nominal processing 
effort:  

(1)……Ui(K) = si(K)/pi(K) 

We can now define a Vernam Inspired Cipher as one 
where over some range of natural numbers K (K1.....K2) as 
key, the utility of the cipher will be somewhat stable:  

(2)...... U1, UK1+1,....... UK2 ~ U  

In that case a user encrypting with K1 will be able to 
increase the security he builds around the data, while still 
using the same cipher, by simply ratcheting up the key from 
K1 to K2. She will then -- again, using the same cipher -- 
increase its associated security from s(K1) to the higher value 
of s(K2)  

(3)... S(K2) = S(K1) + Σ (U(K+1) * P(K+1)- U(K) *P(K) ) FOR K=K1 TO 

K=K2   

= S(K1) + (U(K2) * P(K2)- U(K1) *P(K1) )  

which is reduced to:  

(4)......... S(K2) = S(K1) + U* (P(K2)-P(K1) )  

 Recasting cryptographic keys as natural numbers leads 
to redefinition of the key space, #K, as a subset of the natural 
numbers from 1 (or formally from zero) to the highest natural 
number to be considered as a key, #K=Kmax:  

(5)....... #K ≤ KMAX  

And hence, for messages comprised of n bits, a key max 
of value 2n (Kmax = 2n) will allow for a cipher where the user 
could simply ratchet up the integer value used as key, K’ < 2n, 
to the point of achieving mathematical security. We can define 
a special case of a Vernam Inspired Cipher, as a Trans 
Vernam Cipher (TVC), being a cipher where increase in the 
integer value used as key will eventually reach "Vernam 
Security Levels", or say, Shannon's security, for n-bits long 
messages:  

 (6)…….smax = s(Kmax = 2n) = s(K') +  U(Kmax) * p(Kmax)- U(K’) * p(K’)   

Existence:  It's readily clear that DES, AES and their 
like will not qualify as Vernam Inspired Ciphers. For DES:  

(7)....... S(K < 256) = 0  
S(K > 256) = S(K=256)  

For AES:  

(8)....... S(K < 2128) = 0  
S(2128 ≤ K < 2192) = S(K=2128)  
S(2192 ≤ K < 2256) = S(K=2192)  

S( K > 2256) = S(K=2256)  
The background ‘philosophy’ to casting key spaces onto the 
the natural numbers is discussed in reference: [Samid 2001, 
and Samid 2016 (b).]  

II. “WALK-IN-THE-PARK” CIPHER  

We present here a Trans-Vernam Cipher (TVC), that 
runs by the name Walk-in-the-Park because both encryption 
and decryption is taking place by “walking” – charting a path 
determined by the message, and then describing it through 
various entities in the “park”  where the walk happens.  It is 
based on the idea that a ‘walk’ can be described either via the 
places visited, or via the roads taken from one visited place to 
another.  One needs the “park” (the key) to convert one 
description to the other. 

The cipher is defined as follows:  

We employ a four-letter alphabet: X, Y, Z, and W, 
expressed via 01,10,11,00 respectively. The key is a table (or 
matrix) of size u * 2v bits, which houses some arrangement of 
the four alphabet letters (u*v letters in total). We regard every 
letter as a node of a graph, and regard any two horizontally or 
vertically contiguous letters as connected with an edge. So 
every letter marked on the graph has between 2 to 4 edges 
connecting it to other letters on the graph. (4 edges for middle 
nodes, 3 edges for boundary nodes, and 2 edges for corner 
nodes). 

We define a path on the graph as a sequence of marked 
letters such that any two contiguous letters on the path are 
connected via an edge.  

Informally, the cipher works by mapping the plaintext 
into a sequence of X,Y,Z, and W; then using this sequence to 
mark a pathway on the graph. Given an agreed upon starting 
point, it is possible to describe the very same graph via 
denoting the edges traversed by the pathway. Each node, or 
vertex on the graph has up to four edges; let’s mark them Up, 
Down, Right, Left: U,D,R,L, and assign the bit combinations 
01,10,00,11 respectively to them. The translation of the 
pathway from a sequence of vertices to a sequence of edges 
amounts to encrypting the plaintext to the ciphertext. And 
respectively for the reverse (decryption).  

Why is this a Trans Vernam Cipher? Because the graph 
may be large or small. The larger it is the more security it 
provides. It may be so large that it will be a Vernam 
equivalent, and it may be so small that brute force will extract 
it relatively easily. The processing effort is not affected by the 
size of the graph, only by the length of the pathway, which is 
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the size of the encrypted message. By analogy given a fixed 
walking speed, it takes the same time to walk, say, 10 miles on 
a straight stretch of a road, or zigzagging in a small backyard.  

 

Detailed Procedure:  

1. Alphabet Conversion: Map a list of symbols to a 
three letters alphabet: X, Y, Z. By mapping every symbol to a 
string of 5 letters from the {X,Y,Z} alphabet.  It is possible to 
map 35=243 distinct symbols (a few less than the ASCII list of 
256 symbols). 

2. Message conversion: let m=m0 be the message to be 
encrypted, written in the symbols listed in the 243 symbols list 
(essentially the ASCII list). Using the alphabet conversion in 
(1) map m0 to m3 - a sequence of the 3 letters alphabet: X, Y, 
Z.  

3. DeRepeat the Message: enter the letter W between 
every letter repletion in m3, and so convert it to m4. m4 is a no-
repeat sequence of the letters {X,Y,Z,W}. Add the letter W as 
the starting letter.  

4. Construct a key: construct a u*v matrix with the 
letters {X,Y,Z,W}as its elements. The matrix will include at 
least one element for each of the four letters. The letters 
marking will abide by the 'any sequence condition' defined as 
follows: Let i ≠ j represent two different letters of the four 
{X,Y,Z,W}. At any given state let one of the u*v elements of 
the matrix be “in focus”. Focus can be shifted by moving one 
element horizontally (right or left), or one element vertically 
(up or down) – reminiscent of the Turing Machine. Such a 
focus shift from element to an adjacent element is called “a 
step”. The 'any sequence condition' mandates that for any 
element of the matrix marked by letter i, it will be possible to 
shift the focus from it to another element marked by the letter 
j, by taking steps that pass only through elements marked by 
the letter i. The 'any sequence condition' applies to any 
element of the matrix, for any pair of letters (i,j).  

5. Select a starting point: Mark any matrix element 
designated as "W" as the starting point (focus element).  

6. Build a pathway on the matrix reflecting the 
message (m4):  Use the {X,Y,Z,W} sequence defined by the 
m4 version of the message, to mark a pathway (a succession of 
focus elements) through the matrix. The "any sequence 
condition" guarantees that whatever the sequence of m4, it 
would be possible to mark a pathway, if one allows for as 
much expansion as necessary, when an 'expansion' is defined 
as repeating a letter any number of times.  

7. Encrypt the pathway : Describe the identified 
pathway as a sequence of edges, starting from the starting 
point. This will be listed as a sequence of up, down, right, left 
{U,D,R,L} to be referred to as the ciphertext, c.  

The so generated ciphertext (expressed as 2 bits per 
edge) is released through an insecure channel to the intended 
recipient. That recipient is assumed to have in her possession 
the following: (i) the alphabet conversion tables, (ii) the 
matrix, (iii) the identity of the starting point, and (iv) the 
ciphertext c. The intended recipient will carry out the 
following actions:  

8. Reconstruct the Pathway: Beginning with the 
starting element, one would use the sequence of edges 
identified in the ciphertext, as a guide to chart the pathway 
that the writer identified on the same matrix.  

9. Convert the pathway to a sequence of vertices: 
Once the pathway is marked, it is to be read as a sequence of 
vertices (the matrix elements identified by the letters 
{X,Y,Z,W}), resulting in an expanded version of the message, 
m4exp. The expansion is expressed through any number of 
repetitions of the same letter in the sequence.  

10. Reduce the Expanded Message (to m4): replace 
any repetition of any letter in m4exp with a single same letter:  
m4exp → m4  

11. Reduce m4 to m3: eliminate all the W letters from 
m4.  

12. Convert m3 to m0: use the alphabet conversion table 
to convert m3 to the original message m0.  

Illustration: . Let the message to be encrypted be: 
m=m0 ="love". Let the alphabet conversion table indicate the 
following:  

l –- XYZ 
o -- ZYX  
v -- XYZ  
e -- ZYY  

Accordingly we map m0 to m3 = XYZ ZYX XYZ ZYY.  

We now convert m3 to m4 = WXYZWZYXWXYZWZYWY.  

We build a matrix that satisfies the 'any sequence 
condition':  

1 2 3   X X Y 
4 5 6 = X W Y 
7 8 9   Z Z Z 
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Using m4 as a guide we mark a pathway on the matrix: 

Pathway =5,2,3,6,9,6,5,8,9,6,3,2,5,2,3,6,9,8,5,8,9,6,5,6 

The pathway may be read out through the traversed edges, 
regarded as the ciphertext, c: 

c = URDDULDRUULDULDDLUDLULR. 

 In order to decrypt c, its recipient will have to use the matrix 
(the graph, the key, or say, “the walking park”), and interpret 
the sequence of edges in c to the visited vertices:  

Pathway = 5,2,3,6,9,6,5,8,9,6,3,2,5,2,3,6,9,8,5,8,9,6,5,6. 

 This is the same pathway marked by the ciphertext writer. 
Once it is marked on the matrix it can be read as a sequence of 
the visited vertices:  

m4exp = WXYYZYWZZZYYXWXYYZZWZZYWY. 

Which is reduced m4exp → m4: WXYZWZYXWXYZWZYWY; 
Which, in turn, is reduced to the three letters alphabet: m4 → 
m3 = XYZ ZYX XYZ ZYY, which is converted to m = “love”  

Walk-in-the-Park as a TVC: There are various 
procedures, which would translate the matrix (the key) into a 
natural number and vice versa. Here is a very simple one. Let 
k be a square matrix (key) as described above, comprised of u2 
letters. Each letter is marked with two bits, so one can list the 
matrix row by row and construct a bit sequence comprised of 
2u2 bits. That sequence corresponds to a non-negative integer, 
k. k will be unambiguously interpreted as the matrix that 
generated it. To transform a generic positive integer to a 
matrix, one would do the following: let N be any positive 
integer. Find u such that 2(u-1)2 < N ≤ 2u2. Write N in binary 
and pad with zeros to the left such that the total number of bits 
is 2u2. Map the 2u2 bits onto a u2 matrix, comprised of 2 bits 
elements, which can readily be interpreted as u2 letters 
{X,Y,Z,W}. If the resultant matrix complies with the 'any 
sequence' condition, this matrix is the one corresponding to N. 
If not, then increment the 2u2 bit long string, and check again. 
Keep incrementing and checking until a compliant matrix is 
found, this is the corresponding matrix (key) to N.  

A more convenient way to map an arbitrary integer to a 
“Park” is as follows: let N an arbitrary positive integer written 
as bit string of Nb bits. Find two integers u ≤ v  such that: 

18uv  ≥  Nb > 18u(v-1) 

Pad N with leftmost zeros so that N is expressed via a 
bit string of 18uv bits. Map these 18uv bits into a rectangular 
matrix of (3u)*(6v) bits. This matrix may be viewed as a tile 

of uv “park units”(or “unit parks”), where each unit is 
comprised of 18 =3*6 bits, or say 3x3=9 letters: {X,Y,Z,W}.  

 There are 384 distinct arrangements of park units, 
when the bits are interpreted as letters from the {X,Y,Z,W} 
alphabet, and each unit is compliant with the ‘any sequence 
condition’.  This can be calculated as follows:  We mark a 
“park unit” with numbers 0-8: 

4  3  2 
5  0  1 
6  7  8 

Let mark position 0 as W, positions 1,2,3 as X, positions 
4,5 as Y, and positions 6,7,8 as Z. This configuration will be 
compliant with the ‘any sequence condition’. We may rotate 
the markings on all letter place holders: 1-8, 8 times. We can 
also mark, 1 as X, 2,3,4 as Y, and 5,6,7,8 as Z and write 
another  distinct ‘any sequence compliant’ configuration.  This 
configuration we can rotate 4 times and remain compliant. 
Finally we may mark 1 as X, 2,3,4,4 as Y, and 6,7,8 as Z, and 
rotate this configuration also 4 times. This computes to 
8+4+4=16 distinct configuration. Any such configuration 
stands for the 4! permutations of the four letters, which results 
in the quoted number  384 = 16*4!  We can mark these 384 
distinct configurations of “park units” from 0 to 383. We then 
evaluate the ‘unit park integer’ (Np) as the numeric value 
defined by stretching the 18 bits of the unit-park into a string. 
We then compute x = Np mode 384, and choose configuration 
x (among the 384 distinct unit-park configurations), and write 
this configuration into this park unit. Since every ‘park unit’ is 
‘any sequence compliant’ the entire matrix of (3u)*(6v) 
{X,Y,Z,W} letters is also ‘any sequence’ compliant. The 
resultant matrix of 18uv letters will challenge the cryptanalyst 
with a key space of:  384uv keys. Alas, the cryptanalyst is not 
aware of u and v, which are part of the key secret. This special 
subset of ‘any sequence compliant’ matrices is a factor of 683 
smaller than the number of all matrices (compliant and non-
compliant): 683 = 218/384 

It is clear by construction that Walk-in-the-Park is a 
TVC: the key (the map) gets larger with larger integer keys, 
and for some given natural number kVernam a message m will 
result in a pathway free of any revisiting of any vertex. The 
resultant ciphertext can then be decrypted to any message of 
choice simply by constructing a matrix with the traversed 
vertices fitting that message.  

Cryptanalysis: A 9-letters key as in the illustration 
above will be sufficient to encrypt any size of message m, 
simply because it is ‘any sequence compliant’. A large m will 
simply zigzag many times within this single “park unit”. A 
cryptanalyst who is aware of the size of the key will readily 
apply a successful brute force cryptanalysis  (there are only 
384 ‘any sequence’ compliant  configuration of a 3x3 key, as 
is computed ahead). Clearly, the larger the size of the key the 
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more daunting the cryptanalysis. Even if the pathway revisits 
just one vertex twice, the resultant cipher is not offering 
mathematical security, but for a sufficiently large map (key) 
the pathway may be drawn without revisitation of same 
vertices -- exhibiting Vernam, (or say, perfect) secrecy.  
Proof: let c be the captured ciphertext, comprised of |c| letters 
{U.D.R.L}. c marks a pathway on the matrix without re-
visiting any vertex, and hence, for every message m ∈ M 
(where M is the message space) such that |c| ≥ |m|, we may 
write: 

Pr[M=m | C=c] = 0.25|c| 

That is because every visited vertex may be any of the 
four letters {X,Y,Z,W}. Namely the probability of any 
message m to be the one used depends only on the size of the 
ciphertext, not on its content, so we may write:  Pr[M=m | 
C=c] = Pr[M=m],  which fits the Shannon definition of perfect 
secrecy. Clearly, if the path undergoes even one vertex re-
visitation, then it implies a constraint on the identity of the 
revisited vertex, and some possible messages are excluded. 
And the more re-visitation, the more constraints, until all the 
equivocation is washed away, entropy collapses, and only 
computational intractability remains as a cryptanalytic 
obstacle. 

This “Walk in the Park” cipher, by construction, is 
likely using only parts of the key (the graph) to encrypt any 
given message, m. When a key K is used for t messages: m1, 
m2,...mt, then we designate the used parts as Kt, and designate 
the unused parts as K-t. For all values of t=0,1,2,.... we have 
Kt+ K-t=K. And for t→∞ Lim K-t=0.  By using a procedure 
called “tiling” it is possible to remove from the t known 
ciphertexts: c1, c2,   ct, any clue as to the magnitude of K-t. 
Tiling is a procedure whereby the key matrix is spread to 
planar infinity by placing copies of the matrix one next to each 
other. Thereby the ciphertext, expressed as a sequence of 
U,D,R,L will appear stretched and without repetition, 
regardless of how small the matrix is. The cryptanalyst will 
not be able to distinguish from the shape of the ciphertext 
whether the pathway is drawn on a tiled graph or on a truly 
large matrix. Mathematically tiling is handled via modular 
arithmetic: any address (x,y) on a tiled matrix is interpreted as 
x mod u, and y mod v over the u*v matrix.  

This tiling confusion may be exploited by a proper 
procedure for determining the starting point of the pathway. 

Determining the Starting Point of the Pathway: In 
the simplest implementation, the starting point is fixed (must 
be a W element by construction of the pathway), for all 
messages. Alas, this quickly deteriorates the equivocation of 
the elements near the starting point. Alternatively the next 
starting point may be embedded in the previous encrypted 
message. Another alternative is to simply expose the starting 
point, and identify it alongside the ciphertext. This will allow 

the user to choose a random W element each time. As long as t 
<< uv the deterioration in security will be negligible.  

A modification of the above, amounts to setting the 
address of the next starting point in the vicinity of the end 
point of the previous message. This will result in a 
configuration where consecutive pathways mark a more or 
less stretched out combined pathway. A cryptanalyst will be 
confounded as to whether this stretched combined pathway is 
marked on a large matrix, or on a tiled matrix.  

And hence, regardless of how many messages were 
encrypted using the very same key, the cryptanalyst will face 
residual equivocation, and be denied the conclusive result as 
to the identity of the encrypted message.  

Persistent Equivocation: A mistaken re-use of a 
Vernam key, totally destroys the full mathematical 
equivocation offered by a carefully encrypted message. 
Indeed, Vernam demands a fresh supply of random bits for 
each message used. By contrast, the “Walk in the Park” cipher 
exhibits residual equivocation despite re-use of the same key. 
Let us assume that the cryptanalyst knows the size of the key 
(3u*3v letters), let us further assume that the cryptanalyst also 
knows that the ‘any sequence condition’ was achieved by 
using the “park unit” strategy. In that case the key space will 
be of size:  384uv .  Let us also assume that the cryptanalyst 
knows the starting points for t encrypted messages. If by 
charting the t pathways, no re-visitation occurrence is found, 
then the cryptanalyst faces mathematical security.  If there are 
h vertices which are visited by the t pathways at least twice, 
then even if we assume that the park units for all those h 
vertices suddenly become known, then the key space is 
reduced to 384uv-h which deteriorates very slowly with h. 

This cipher targets drone as a primary application, but 
clearly it extends its utility way beyond. In the present state 
the “Walk in the Park” cipher is an evolution of  the ciphers 
described in reference [Samid 2002, Samid 2004].  
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III. USAGE SCENARIOS  

We describe here a use case that is taken from a project 
under evaluation.  It relates to swarms of tiny drones equipped 
with a versatile video camera. Each drone is extremely light, it 
has a small battery, and a solar cell. It is designed to land on 
flat or slanted objects like roofs. The camera streams to its 
operators a live video of the viewable vista. The drone 
requires encryption for interpretation of commands, 
communicating with other drones, and for transmitting videos. 
The high-powered multi mega pixel camera may be taping 
non sensitive areas like public roads; it may stream medium 
sensitive areas, like private back yards, and it may also stream 
down highly sensitive areas, like industrial and military zones. 
The micro drone may be dropped in the vicinity of operation, 
with no plans of retrieval. It should operate indefinitely.  

Using Walk-in-the-Park the drone will be equipped with 
three keys (matrices, graphs):  1.  a small hardware key 
comprised of square flash memory of 500x500 {X,Y,Z,W} 
letters.  This will amount to a key comprised of  500,000 bits.  
2. A flash memory holding 1000x1000 {X,Y,Z,W} letters, 
comprising 2,000,000 bits.  3. A flash memory holding 
7500x7500 {X,Y,Z,W} letters comprising 112,500,000 bits.  
The latter key should provide perfect secrecy for about  6 
gigabytes of  data. 

  

The determination of the security sensitivity of the 
photographed area (and the corresponding security level used) 
may be determined onboard the drone, or communicated from 
the reception center based on the transmitted pictures.  

To achieve maximum speed the “Walk in the Park” 
cipher is written with “Turing Machine” simplicity: minimum 
number of operational registers, minimum operational 
memory; for every state (particular focus element in the 
matrix), the firmware reads the identity of the neighbors of the 
focus to decide where to shift the focus to, and output the 
direction of the shift as the next ciphertext letter.  Decryption 
is symmetrically in the opposite direction. 

 

IV. SUMMARY NOTES  

 We presented here a philosophy and a practice for Drone 
Cryptography, or more broadly: “Cryptography of Things” 
(CoT) geared towards Internet of Things applications.. The 
CoT is mindful of processing parsimony, maintenance issues, 
and security versatility. The basic idea is to shift the burden of 
security away from power-hungry complex algorithms to 
variable levels of randomness matching the security needs per 
transmission. This paper presents the notion of Trans-Vernam 
Ciphers, and one may expect a wave of ciphers compliant with 
the TVC paradigm. It's expected that the IoT will become an 
indispensable entity in our collective well being, and at the 
same time that it should attract the same level of malice and 
harmful activity experienced by the Internet of People, and so, 
despite its enumerated limitations, the IoT will require new 
horizons of robust encryption to remain a positive factor in 
modern civil life.  
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