
 1

 Drone Targeted Cryptography
Swarms of Tiny Surveyors fly, stick, hide everywhere, securely communicating via solar

powered new paradigm cryptography.

Gideon Samid
Department of Electrical Engineering and Computer Science

Case Western Reserve University, Cleveland, Ohio
BitMint, LLC

Gideon@BitMint.com

Abstract: As flying, camera-bearing drones get smaller and
lighter, they increasingly choke on the common ciphers as
they interpret their commands, and send back their footage.
New paradigm cryptography allows for minimum power,
adjustable randomness security to step in, and enable this
emerging technology to spy, follow, track, and detect. E.g.: to
find survivors in a collapsed structure. We describe here a
cryptographic premise where intensive computation is
avoided, and security is achieved via non-complex processing
of at-will size keys. The proposed approach is to increase the
role of randomness, and to build ciphers that can handle any
size key without choking on computation. Orthodox
cryptography seeks to create a thorough mix between key bits
and message bits, resulting in heavy-duty computation. Let’s
explore simple, fast ciphers that allow their user to adjust the
security of the ciphertext by determining how much
randomness to use. We present “Walk in the Park” cipher
where the “walk” may be described through the series of
visited spots (the plaintext), or, equivalently through a list of
the traversed walkways (ciphertext). The “walking park”
being the key, determines security by its size. Yet, the length
of the “walk” is determined by the size of the plaintext, not the
size of the “park”. We describe a use scenario for the proposed
cipher: a drone taking videos of variable sensitivity and hence
variable required security – handled by the size of the “park”.

Keywords—low-power encryption, randomness, Trans-Vernam Cipher,
User-Controlled Security.

I. INTRODUCTION
Flying drones are inherently invasive; they see what was

previously hidden. There are many laudable applications for
such invasive devices, e.g. search and rescue operations,
catching fugitives, the war on terror, etc. Yet, very often drones
violate someone’s privacy, or even endanger national security,
and hence the visual vista exposed by them should be treated
with proper sensitivity, namely encryption. Alas, as drones
become smaller, power becomes an issue, and modern ciphers
which churn and mix key bits and message bits tend to require
too much power to function. This challenge is addressed
herein.

We extend the introduction to discuss (i) the application
environment, and (ii) the principles of the proposed solutions.

A. Application Environment
Flying drones can network, communicate, and coordinate

movements and activities in support of a surveillance goal.
They need to be securely controlled, securely coordinated, and
securely deliver their collected data to their customer. This
implies fast, effective cryptography. Alas, the drones are mini
or micro size, lightweight, and short on power, so most of the
mainstay ciphers will not be practical for them. A team at
Harvard just presented a “bee size” drone that easiy perches on
any surface, sending sensitive videos to its operators [Ulanoff].
Some attributes of this new technology are discussed:

Speed: High speed, high-resolution cameras fitted on
flying drones may be required to transmit to an operational
center, to serve an important rescue operation, or other proper
assignment. Similarly, an isolated device somewhere may be
activated with a large stream of commands, most of them
should be further transferred to devices down the line,
exploiting directional microwave communication. All in all, a
swarm of drones may need to accommodate high volume, high
speed information exchange. The existing popular ciphers slow
down that flow rate, and are not friendly to this requirement.

Maintenance: Quite a few flying drones will be placed in
hard to access locations, and no physical maintenance will be
feasible. They might use a solar power source and function
indefintely. Hence the use of any specific cipher, which at any
moment may be mathematically breached, is a risky practice.
This applies to all algorithmic complexity ciphers. As Prof.
Nigel Smith articulates in his book “Cryptography (an
Introduction)”: “At some point in the future we should expect
our system to become broken, either through an improvement
in computing power or an algorithmic breakthrough.”
Normally, cryptography gravitates towards very few ciphers
considered 'secure'. If one of them is suddenly breached (e.g.
GSM communication cipher), then all the “out of reach” nodes
which rely on it, have lost their security, and physical attention
is not practical.

Magnetic Vulnerability: Many flying drones are placed in
very harsh environment, and are subject to lightening violence,

 2

as well as man made electromagnetic impacts. Software based
cipher may be at greater risk.

In summary, flying drones in particular and IOT nodes in
general are vulnerable both to malicious attack, and to
environmental punishment. These vulnerabilities may be
remedied to a large extent if we come up with a new
cryptographic approach: Cryptography of Things (CoT).

B. Principles of the Proposed Solution

Modern cryptography erects security around data using
two parameters: (i) algorithmic complexity, and (ii)
randomness. It's generally believed that the more complex an
algorithm the more secure the ciphertext, and also the more
randomness that is being used (the larger the key), the more
secure the ciphertext. Randomness is in a way dull, and of no
much interest mathematically (except of course with respect to
its definition and to metrics of quality). By contrast,
algorithmic complexity is an exciting math dilemma.
Academic cryptographers are attracted to this challenge and
develop new and newer complex algorithms. Unfortunately in
today's state of affairs, we only manage to compare
complexities one to the other, not to ascertain their level in an
objective mathematical way. And even if it turns out that P ≠
NP as most complexity researchers believe, in cryptography
complexity is used in combination with randomness, hence
one is using a random key selected from a large key space.
What is hard to know is how many specific keys when applied
with specific plaintexts, offer some mathematical
vulnerability, leading to effective extraction of the message. In
other words, the de facto complexity, or security of algorithms
cannot be ascertained. Worried about this, we come up with
increasingly complex algorithms, which require more and
more computational effort. They in turn require more and
more power -- which many IOT nodes simply don't have.

Randomness, on the other hand, is passive memory, and
even the smallest and most unsophisticated devices can be
fitted with gigabytes of memory, serving as key. These
realities lead one to aim to develop cryptography where the
role of reliable, passive, manageable, secure randomness is
enhanced, while the role of doubtful complex algorithms that
are power hogs, is decreased.

This thinking brings to mind the famous Vernam cipher:
the algorithm could not have been simpler, and the key could
easily be as large as hundreds of gigabytes. So what? Memory
is both cheap and light. It may be stored without requiring
power. Too bad that Vernam is so impractical to use. Yet, can
we re-analyze Vernam as a source of inspiration for security
through more randomness and less algorithmic complexity?

Let's envision a Vernam Inspired Cipher (VIC) where at
any stage the user can 'throw in a few more key bits' and by
that achieve a large increase of cryptanalytic burden, together

with a modest increase of nominal processing burden
(encryption, and decryption). Let us further demand from the
VIC the Vernam property of achieving mathematical secrecy
at the minimum key size required by Shannon's proof of
perfect secrecy.

To better analyze this vision let's regard any
cryptographic key, k, as the natural number represented by
binary interpretation of its bit sequence. Accordingly, the
Vernam key space associated with n-bits long messages, will
be: 1,2,....(2n-1) corresponding to {00....0}n to {11....1}n. We
may further agree that any natural number N=K > 2n-1 will be
hashed to an n-bits size string. Once we agree on the hashing
procedure we have managed to recast Vernam cipher as a
cipher that accepts any positive integer as a key, with which to
encrypt any message m comprised of n bits to a corresponding
ciphertext. We regard this as natural number key
representation (NNKR).

We can similarly recast any cipher according to NNKR.
We consider a cipher for which the series n1, n2,.....nmax
represents the allowable bit counts for the keys. E.g for DES
the series has one member n1=nmax=56; for AES the series
contains three members: n1=128, n2=192, n3=nmax=256. For a
cipher where the key is a prime number then the series is the
series of primes. For ciphers defined over every bit string of
length nmax all the natural numbers from 0 to 2n-1 qualify as a
nmax key. Larger keys will be hashed to a nmax bits long hash.
For ciphers where the series n1, n2, nmax represents discrete
possible keys, we may agree to hash any natural number to
highest member of the list n1, n2,.... which is lower than that
natural number. For all natural numbers smaller than n1, we
will "hash" them to the null key (|K|=0), and we may formally
agree that the case of K=NULL is the case of no encryption
(the ciphertext is simply the plaintext).

With the above definition we have recast all ciphers as
accepting every natural number as a key.

We define the concept of “normal cipher” i as a cipher
for which any valid metric of security, si, is never lower for
larger keys. Say, for two positive integers K1 and K2 used as
keys, and where K1 < K2, we may write:

si(K1) ≤ si(K2)

In other words, with normal ciphers we "buy" security,
and "pay" for it with a choice of a random number. Let si(K)
be the security achieved by a user of cipher i, "investing" key
K. The metric s, will reflect the average computational effort
required of the cryptanalyst for extracting the message m from
a captured ciphertext c, computed over the distribution of m
∈ M, where M is the message space from which m is
selected. Let pi(K) be the average combined processing effort
(encryption plus decryption) required of a user of cipher i,
while using key, K, over the distribution of message m ∈ M.

 3

For any cipher i, using a natural number K as key, we
may define the utility of the cipher at this point as the ratio
between the cryptanalytic effort and the nominal processing
effort:

(1)……Ui(K) = si(K)/pi(K)

We can now define a Vernam Inspired Cipher as one
where over some range of natural numbers K (K1.....K2) as
key, the utility of the cipher will be somewhat stable:

(2)...... U1, UK1+1,....... UK2 ~ U

In that case a user encrypting with K1 will be able to
increase the security he builds around the data, while still
using the same cipher, by simply ratcheting up the key from
K1 to K2. She will then -- again, using the same cipher --
increase its associated security from s(K1) to the higher value
of s(K2)

(3)... S(K2) = S(K1) + Σ (U(K+1) * P(K+1)- U(K) *P(K)) FOR K=K1 TO

K=K2

= S(K1) + (U(K2) * P(K2)- U(K1) *P(K1))

which is reduced to:

(4)......... S(K2) = S(K1) + U* (P(K2)-P(K1))

 Recasting cryptographic keys as natural numbers leads
to redefinition of the key space, #K, as a subset of the natural
numbers from 1 (or formally from zero) to the highest natural
number to be considered as a key, #K=Kmax:

(5)....... #K ≤ KMAX

And hence, for messages comprised of n bits, a key max
of value 2n (Kmax = 2n) will allow for a cipher where the user
could simply ratchet up the integer value used as key, K’ < 2n,
to the point of achieving mathematical security. We can define
a special case of a Vernam Inspired Cipher, as a Trans
Vernam Cipher (TVC), being a cipher where increase in the
integer value used as key will eventually reach "Vernam
Security Levels", or say, Shannon's security, for n-bits long
messages:

 (6)…….smax = s(Kmax = 2n) = s(K') + U(Kmax) * p(Kmax)- U(K’) * p(K’)

Existence: It's readily clear that DES, AES and their
like will not qualify as Vernam Inspired Ciphers. For DES:

(7)....... S(K < 256) = 0
S(K > 256) = S(K=256)

For AES:

(8)....... S(K < 2128) = 0
S(2128 ≤ K < 2192) = S(K=2128)
S(2192 ≤ K < 2256) = S(K=2192)

S(K > 2256) = S(K=2256)
The background ‘philosophy’ to casting key spaces onto the
the natural numbers is discussed in reference: [Samid 2001,
and Samid 2016 (b).]

II. “WALK-IN-THE-PARK” CIPHER

We present here a Trans-Vernam Cipher (TVC), that
runs by the name Walk-in-the-Park because both encryption
and decryption is taking place by “walking” – charting a path
determined by the message, and then describing it through
various entities in the “park” where the walk happens. It is
based on the idea that a ‘walk’ can be described either via the
places visited, or via the roads taken from one visited place to
another. One needs the “park” (the key) to convert one
description to the other.

The cipher is defined as follows:

We employ a four-letter alphabet: X, Y, Z, and W,
expressed via 01,10,11,00 respectively. The key is a table (or
matrix) of size u * 2v bits, which houses some arrangement of
the four alphabet letters (u*v letters in total). We regard every
letter as a node of a graph, and regard any two horizontally or
vertically contiguous letters as connected with an edge. So
every letter marked on the graph has between 2 to 4 edges
connecting it to other letters on the graph. (4 edges for middle
nodes, 3 edges for boundary nodes, and 2 edges for corner
nodes).

We define a path on the graph as a sequence of marked
letters such that any two contiguous letters on the path are
connected via an edge.

Informally, the cipher works by mapping the plaintext
into a sequence of X,Y,Z, and W; then using this sequence to
mark a pathway on the graph. Given an agreed upon starting
point, it is possible to describe the very same graph via
denoting the edges traversed by the pathway. Each node, or
vertex on the graph has up to four edges; let’s mark them Up,
Down, Right, Left: U,D,R,L, and assign the bit combinations
01,10,00,11 respectively to them. The translation of the
pathway from a sequence of vertices to a sequence of edges
amounts to encrypting the plaintext to the ciphertext. And
respectively for the reverse (decryption).

Why is this a Trans Vernam Cipher? Because the graph
may be large or small. The larger it is the more security it
provides. It may be so large that it will be a Vernam
equivalent, and it may be so small that brute force will extract
it relatively easily. The processing effort is not affected by the
size of the graph, only by the length of the pathway, which is

 4

the size of the encrypted message. By analogy given a fixed
walking speed, it takes the same time to walk, say, 10 miles on
a straight stretch of a road, or zigzagging in a small backyard.

Detailed Procedure:

1. Alphabet Conversion: Map a list of symbols to a
three letters alphabet: X, Y, Z. By mapping every symbol to a
string of 5 letters from the {X,Y,Z} alphabet. It is possible to
map 35=243 distinct symbols (a few less than the ASCII list of
256 symbols).

2. Message conversion: let m=m0 be the message to be
encrypted, written in the symbols listed in the 243 symbols list
(essentially the ASCII list). Using the alphabet conversion in
(1) map m0 to m3 - a sequence of the 3 letters alphabet: X, Y,
Z.

3. DeRepeat the Message: enter the letter W between
every letter repletion in m3, and so convert it to m4. m4 is a no-
repeat sequence of the letters {X,Y,Z,W}. Add the letter W as
the starting letter.

4. Construct a key: construct a u*v matrix with the
letters {X,Y,Z,W}as its elements. The matrix will include at
least one element for each of the four letters. The letters
marking will abide by the 'any sequence condition' defined as
follows: Let i ≠ j represent two different letters of the four
{X,Y,Z,W}. At any given state let one of the u*v elements of
the matrix be “in focus”. Focus can be shifted by moving one
element horizontally (right or left), or one element vertically
(up or down) – reminiscent of the Turing Machine. Such a
focus shift from element to an adjacent element is called “a
step”. The 'any sequence condition' mandates that for any
element of the matrix marked by letter i, it will be possible to
shift the focus from it to another element marked by the letter
j, by taking steps that pass only through elements marked by
the letter i. The 'any sequence condition' applies to any
element of the matrix, for any pair of letters (i,j).

5. Select a starting point: Mark any matrix element
designated as "W" as the starting point (focus element).

6. Build a pathway on the matrix reflecting the
message (m4): Use the {X,Y,Z,W} sequence defined by the
m4 version of the message, to mark a pathway (a succession of
focus elements) through the matrix. The "any sequence
condition" guarantees that whatever the sequence of m4, it
would be possible to mark a pathway, if one allows for as
much expansion as necessary, when an 'expansion' is defined
as repeating a letter any number of times.

7. Encrypt the pathway : Describe the identified
pathway as a sequence of edges, starting from the starting
point. This will be listed as a sequence of up, down, right, left
{U,D,R,L} to be referred to as the ciphertext, c.

The so generated ciphertext (expressed as 2 bits per
edge) is released through an insecure channel to the intended
recipient. That recipient is assumed to have in her possession
the following: (i) the alphabet conversion tables, (ii) the
matrix, (iii) the identity of the starting point, and (iv) the
ciphertext c. The intended recipient will carry out the
following actions:

8. Reconstruct the Pathway: Beginning with the
starting element, one would use the sequence of edges
identified in the ciphertext, as a guide to chart the pathway
that the writer identified on the same matrix.

9. Convert the pathway to a sequence of vertices:
Once the pathway is marked, it is to be read as a sequence of
vertices (the matrix elements identified by the letters
{X,Y,Z,W}), resulting in an expanded version of the message,
m4exp. The expansion is expressed through any number of
repetitions of the same letter in the sequence.

10. Reduce the Expanded Message (to m4): replace
any repetition of any letter in m4exp with a single same letter:
m4exp → m4

11. Reduce m4 to m3: eliminate all the W letters from
m4.

12. Convert m3 to m0: use the alphabet conversion table
to convert m3 to the original message m0.

Illustration: . Let the message to be encrypted be:
m=m0 ="love". Let the alphabet conversion table indicate the
following:

l –- XYZ
o -- ZYX
v -- XYZ
e -- ZYY

Accordingly we map m0 to m3 = XYZ ZYX XYZ ZYY.

We now convert m3 to m4 = WXYZWZYXWXYZWZYWY.

We build a matrix that satisfies the 'any sequence
condition':

1 2 3 X X Y
4 5 6 = X W Y
7 8 9 Z Z Z

 5

Using m4 as a guide we mark a pathway on the matrix:

Pathway =5,2,3,6,9,6,5,8,9,6,3,2,5,2,3,6,9,8,5,8,9,6,5,6

The pathway may be read out through the traversed edges,
regarded as the ciphertext, c:

c = URDDULDRUULDULDDLUDLULR.

 In order to decrypt c, its recipient will have to use the matrix
(the graph, the key, or say, “the walking park”), and interpret
the sequence of edges in c to the visited vertices:

Pathway = 5,2,3,6,9,6,5,8,9,6,3,2,5,2,3,6,9,8,5,8,9,6,5,6.

 This is the same pathway marked by the ciphertext writer.
Once it is marked on the matrix it can be read as a sequence of
the visited vertices:

m4exp = WXYYZYWZZZYYXWXYYZZWZZYWY.

Which is reduced m4exp → m4: WXYZWZYXWXYZWZYWY;
Which, in turn, is reduced to the three letters alphabet: m4 →
m3 = XYZ ZYX XYZ ZYY, which is converted to m = “love”

Walk-in-the-Park as a TVC: There are various
procedures, which would translate the matrix (the key) into a
natural number and vice versa. Here is a very simple one. Let
k be a square matrix (key) as described above, comprised of u2
letters. Each letter is marked with two bits, so one can list the
matrix row by row and construct a bit sequence comprised of
2u2 bits. That sequence corresponds to a non-negative integer,
k. k will be unambiguously interpreted as the matrix that
generated it. To transform a generic positive integer to a
matrix, one would do the following: let N be any positive
integer. Find u such that 2(u-1)2 < N ≤ 2u2. Write N in binary
and pad with zeros to the left such that the total number of bits
is 2u2. Map the 2u2 bits onto a u2 matrix, comprised of 2 bits
elements, which can readily be interpreted as u2 letters
{X,Y,Z,W}. If the resultant matrix complies with the 'any
sequence' condition, this matrix is the one corresponding to N.
If not, then increment the 2u2 bit long string, and check again.
Keep incrementing and checking until a compliant matrix is
found, this is the corresponding matrix (key) to N.

A more convenient way to map an arbitrary integer to a
“Park” is as follows: let N an arbitrary positive integer written
as bit string of Nb bits. Find two integers u ≤ v such that:

18uv ≥ Nb > 18u(v-1)

Pad N with leftmost zeros so that N is expressed via a
bit string of 18uv bits. Map these 18uv bits into a rectangular
matrix of (3u)*(6v) bits. This matrix may be viewed as a tile

of uv “park units”(or “unit parks”), where each unit is
comprised of 18 =3*6 bits, or say 3x3=9 letters: {X,Y,Z,W}.

 There are 384 distinct arrangements of park units,
when the bits are interpreted as letters from the {X,Y,Z,W}
alphabet, and each unit is compliant with the ‘any sequence
condition’. This can be calculated as follows: We mark a
“park unit” with numbers 0-8:

4 3 2
5 0 1
6 7 8

Let mark position 0 as W, positions 1,2,3 as X, positions
4,5 as Y, and positions 6,7,8 as Z. This configuration will be
compliant with the ‘any sequence condition’. We may rotate
the markings on all letter place holders: 1-8, 8 times. We can
also mark, 1 as X, 2,3,4 as Y, and 5,6,7,8 as Z and write
another distinct ‘any sequence compliant’ configuration. This
configuration we can rotate 4 times and remain compliant.
Finally we may mark 1 as X, 2,3,4,4 as Y, and 6,7,8 as Z, and
rotate this configuration also 4 times. This computes to
8+4+4=16 distinct configuration. Any such configuration
stands for the 4! permutations of the four letters, which results
in the quoted number 384 = 16*4! We can mark these 384
distinct configurations of “park units” from 0 to 383. We then
evaluate the ‘unit park integer’ (Np) as the numeric value
defined by stretching the 18 bits of the unit-park into a string.
We then compute x = Np mode 384, and choose configuration
x (among the 384 distinct unit-park configurations), and write
this configuration into this park unit. Since every ‘park unit’ is
‘any sequence compliant’ the entire matrix of (3u)*(6v)
{X,Y,Z,W} letters is also ‘any sequence’ compliant. The
resultant matrix of 18uv letters will challenge the cryptanalyst
with a key space of: 384uv keys. Alas, the cryptanalyst is not
aware of u and v, which are part of the key secret. This special
subset of ‘any sequence compliant’ matrices is a factor of 683
smaller than the number of all matrices (compliant and non-
compliant): 683 = 218/384

It is clear by construction that Walk-in-the-Park is a
TVC: the key (the map) gets larger with larger integer keys,
and for some given natural number kVernam a message m will
result in a pathway free of any revisiting of any vertex. The
resultant ciphertext can then be decrypted to any message of
choice simply by constructing a matrix with the traversed
vertices fitting that message.

Cryptanalysis: A 9-letters key as in the illustration
above will be sufficient to encrypt any size of message m,
simply because it is ‘any sequence compliant’. A large m will
simply zigzag many times within this single “park unit”. A
cryptanalyst who is aware of the size of the key will readily
apply a successful brute force cryptanalysis (there are only
384 ‘any sequence’ compliant configuration of a 3x3 key, as
is computed ahead). Clearly, the larger the size of the key the

 6

more daunting the cryptanalysis. Even if the pathway revisits
just one vertex twice, the resultant cipher is not offering
mathematical security, but for a sufficiently large map (key)
the pathway may be drawn without revisitation of same
vertices -- exhibiting Vernam, (or say, perfect) secrecy.
Proof: let c be the captured ciphertext, comprised of |c| letters
{U.D.R.L}. c marks a pathway on the matrix without re-
visiting any vertex, and hence, for every message m ∈ M
(where M is the message space) such that |c| ≥ |m|, we may
write:

Pr[M=m | C=c] = 0.25|c|

That is because every visited vertex may be any of the
four letters {X,Y,Z,W}. Namely the probability of any
message m to be the one used depends only on the size of the
ciphertext, not on its content, so we may write: Pr[M=m |
C=c] = Pr[M=m], which fits the Shannon definition of perfect
secrecy. Clearly, if the path undergoes even one vertex re-
visitation, then it implies a constraint on the identity of the
revisited vertex, and some possible messages are excluded.
And the more re-visitation, the more constraints, until all the
equivocation is washed away, entropy collapses, and only
computational intractability remains as a cryptanalytic
obstacle.

This “Walk in the Park” cipher, by construction, is
likely using only parts of the key (the graph) to encrypt any
given message, m. When a key K is used for t messages: m1,
m2,...mt, then we designate the used parts as Kt, and designate
the unused parts as K-t. For all values of t=0,1,2,.... we have
Kt+ K-t=K. And for t→∞ Lim K-t=0. By using a procedure
called “tiling” it is possible to remove from the t known
ciphertexts: c1, c2, ct, any clue as to the magnitude of K-t.
Tiling is a procedure whereby the key matrix is spread to
planar infinity by placing copies of the matrix one next to each
other. Thereby the ciphertext, expressed as a sequence of
U,D,R,L will appear stretched and without repetition,
regardless of how small the matrix is. The cryptanalyst will
not be able to distinguish from the shape of the ciphertext
whether the pathway is drawn on a tiled graph or on a truly
large matrix. Mathematically tiling is handled via modular
arithmetic: any address (x,y) on a tiled matrix is interpreted as
x mod u, and y mod v over the u*v matrix.

This tiling confusion may be exploited by a proper
procedure for determining the starting point of the pathway.

Determining the Starting Point of the Pathway: In
the simplest implementation, the starting point is fixed (must
be a W element by construction of the pathway), for all
messages. Alas, this quickly deteriorates the equivocation of
the elements near the starting point. Alternatively the next
starting point may be embedded in the previous encrypted
message. Another alternative is to simply expose the starting
point, and identify it alongside the ciphertext. This will allow

the user to choose a random W element each time. As long as t
<< uv the deterioration in security will be negligible.

A modification of the above, amounts to setting the
address of the next starting point in the vicinity of the end
point of the previous message. This will result in a
configuration where consecutive pathways mark a more or
less stretched out combined pathway. A cryptanalyst will be
confounded as to whether this stretched combined pathway is
marked on a large matrix, or on a tiled matrix.

And hence, regardless of how many messages were
encrypted using the very same key, the cryptanalyst will face
residual equivocation, and be denied the conclusive result as
to the identity of the encrypted message.

Persistent Equivocation: A mistaken re-use of a
Vernam key, totally destroys the full mathematical
equivocation offered by a carefully encrypted message.
Indeed, Vernam demands a fresh supply of random bits for
each message used. By contrast, the “Walk in the Park” cipher
exhibits residual equivocation despite re-use of the same key.
Let us assume that the cryptanalyst knows the size of the key
(3u*3v letters), let us further assume that the cryptanalyst also
knows that the ‘any sequence condition’ was achieved by
using the “park unit” strategy. In that case the key space will
be of size: 384uv . Let us also assume that the cryptanalyst
knows the starting points for t encrypted messages. If by
charting the t pathways, no re-visitation occurrence is found,
then the cryptanalyst faces mathematical security. If there are
h vertices which are visited by the t pathways at least twice,
then even if we assume that the park units for all those h
vertices suddenly become known, then the key space is
reduced to 384uv-h which deteriorates very slowly with h.

This cipher targets drone as a primary application, but
clearly it extends its utility way beyond. In the present state
the “Walk in the Park” cipher is an evolution of the ciphers
described in reference [Samid 2002, Samid 2004].

 7

III. USAGE SCENARIOS

We describe here a use case that is taken from a project
under evaluation. It relates to swarms of tiny drones equipped
with a versatile video camera. Each drone is extremely light, it
has a small battery, and a solar cell. It is designed to land on
flat or slanted objects like roofs. The camera streams to its
operators a live video of the viewable vista. The drone
requires encryption for interpretation of commands,
communicating with other drones, and for transmitting videos.
The high-powered multi mega pixel camera may be taping
non sensitive areas like public roads; it may stream medium
sensitive areas, like private back yards, and it may also stream
down highly sensitive areas, like industrial and military zones.
The micro drone may be dropped in the vicinity of operation,
with no plans of retrieval. It should operate indefinitely.

Using Walk-in-the-Park the drone will be equipped with
three keys (matrices, graphs): 1. a small hardware key
comprised of square flash memory of 500x500 {X,Y,Z,W}
letters. This will amount to a key comprised of 500,000 bits.
2. A flash memory holding 1000x1000 {X,Y,Z,W} letters,
comprising 2,000,000 bits. 3. A flash memory holding
7500x7500 {X,Y,Z,W} letters comprising 112,500,000 bits.
The latter key should provide perfect secrecy for about 6
gigabytes of data.

The determination of the security sensitivity of the
photographed area (and the corresponding security level used)
may be determined onboard the drone, or communicated from
the reception center based on the transmitted pictures.

To achieve maximum speed the “Walk in the Park”
cipher is written with “Turing Machine” simplicity: minimum
number of operational registers, minimum operational
memory; for every state (particular focus element in the
matrix), the firmware reads the identity of the neighbors of the
focus to decide where to shift the focus to, and output the
direction of the shift as the next ciphertext letter. Decryption
is symmetrically in the opposite direction.

IV. SUMMARY NOTES

 We presented here a philosophy and a practice for Drone
Cryptography, or more broadly: “Cryptography of Things”
(CoT) geared towards Internet of Things applications.. The
CoT is mindful of processing parsimony, maintenance issues,
and security versatility. The basic idea is to shift the burden of
security away from power-hungry complex algorithms to
variable levels of randomness matching the security needs per
transmission. This paper presents the notion of Trans-Vernam
Ciphers, and one may expect a wave of ciphers compliant with
the TVC paradigm. It's expected that the IoT will become an
indispensable entity in our collective well being, and at the
same time that it should attract the same level of malice and
harmful activity experienced by the Internet of People, and so,
despite its enumerated limitations, the IoT will require new
horizons of robust encryption to remain a positive factor in
modern civil life.

REFERENCES

 M. Hellman. 1977 “An extension of the Shannon theory
approach to cryptography”. IEEE Transactions on Information
Theory, V. 23 , 3 1977 , pp. 289 - 294

 Ma ́t ́e Horva ́th, 2015 “Survey on Cryptographic
Obfuscation” 9 Oct 2015 International Association of Cryptology
Research, ePrint Archive https://eprint.iacr.org/2015/412

 Masanobu Katagi and Shiho Moriai "Lightweight
Cryptography for the Internet of Things" Sony Corporation 2011
https://www.iab.org/wp-content/IAB-uploads/2011/03/Kaftan.pdf

 Menezes, A. J., P. van Oorschot and S.A. Vanstone. The
Handbook of Applied Cryptography. CRC Press, 1997.

 Rein Canetti, Cynthia Dwork, Moni Naor, Rafail Ostrovsky
“Deniable Encryption” CRYPTO '97Volume 1294 of the series
Lecture Notes in Computer Science pp 90-104Date: 17 May 2006

 8

 S. Zhou (ZTE Corporation) Z. Xie (ZTE Corporation)
2011 "On Cryptographic Approaches to Internet-Of-Things Security"
http://www.lix.polytechnique.fr/hipercom/SmartObjectSecurity/paper
s/ZhouSujing.pdf

Samid 2016 “To Increase the Role of Randomness”
http://classexpress.com/IncreaseRandomness_H6327.pdf

 Samid, 2016 “Shannon’s Proof of Vernam Unbreakability”
https://www.youtube.com/watch?v=cVsLW1WddVI

 Samid, G. "Re-dividing Complexity between Algorithms
and Keys" Progress in Cryptology — INDOCRYPT 2001 Volume
2247 of the series Lecture Notes in Computer Science pp 330-338

 Samid, G. 2001 "Anonymity Management: A Blue Print
For Newfound Privacy" The Second International Workshop on
Information Security Applications (WISA 2001), Seoul, Korea,
September 13-14, 2001 (Best Paper Award).

 Samid, G. 2001 "Encryption Sticks (Randomats)" ICICS
2001 Third International Conference on Information and
Communications Security Xian, China 13-16 November, 2001

 Samid, G. 2002 " At-Will Intractability Up to Plaintext
Equivocation Achieved via a Cryptographic Key Made As Small, or
As Large As Desired - Without Computational Penalty " 2002
International Workshop on CRYPTOLOGY AND NETWORK
SECURITY San Francisco, California, USA September 26 -- 28,
2002

 Samid, G. 2003 "Intractability Erosion: The Everpresent
Threat for Secure Communication" The 7th World Multi-Conference
on Systemics, Cybernetics and Informatics (SCI 2003), July 2003.

 Samid, G. 2003 "Non-Zero Entropy Ciphertexts (Stochastic
Decryption): On The Possibility of One-Time-Pad Class Security
With Shorter Keys" 2003 International Workshop on
CRYPTOLOGY AND NETWORK SECURITY (CANS03) Miami,
Florida, USA September 24 - - 26, 2003

Samid, 2004 "Denial Cryptography based on Graph
Theory", US Patent #6,823,068

 Samid, G. 2016 “Stupidity + Randomness = Smarts”
https://www.youtube.com/watch?v=TYgNdoAAfkE

 Shannon, Claude, 1949 “Communicaiton Theory of
Secrecy Systems”
http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf

 Smart, Nigel “Cryptography (an Introduction)” 3rd Edition
http://www.cs.umd.edu/~waa/414-F11/IntroToCrypto.pdf

Stallings Williams, 2002 “Introduction to Cryptography”
http://williamstallings.com/Extras/Security-
Notes/lectures/classical.html

Ulanoff Lance, 2016 “New Robot Bee May Soon Become
a Spy’s Secret Weapon” http://mashable.com/2016/05/19/perching-
robot-bee/#YyrAVNEMmgqI

Vernam 1918; Gilbert S. Vernam, US Patent 1310719 Filed 13
September 1918.

.

