XP with Acceptance-Test Driven Development :
A rewrite project for a resource optimization
system

Johan Andersson, Geoff Bache, and Peter Sutton

Carmen Systems AB, Odinsgatan 9, SE-41103 Goéteborg, Sweden
geoff.bache@carmensystems.com

Abstract. In his recent book ” Test-Driven Development” [1], Kent Beck
describes briefly the concept of ” Acceptance-Test Driven Development”,
and is broadly sceptical to whether it will work. After a successful project
that used this technique, we wish to argue in favour of it and the TextTest
[7] tool that we have built up around it. We have found that a working
XP process can be built based around using only automated acceptance
tests, and not doing any unit testing. In this paper we explain and analyse
our XP process, its strengths and limitations, and by doing so we hope
to inspire others to try and make it work for their projects too.

1 The project

Carmen Systems has been producing planning systems for the airline and rail-
way industries since 1994. By 2000 the C source code for one of the products was
showing signs of becoming increasing difficult to maintain. After some consider-
ation the decision was taken in 2001 to rewrite rather than to refactor the code,
re-using the code base of another Carmen product written in C++4. Therefore a
team was created consisting of four software engineers and one product manager
(acting as the customer). The team worked for over a year with the challenge
of both capturing the behaviour of the legacy system and dramatically improv-
ing its run time speed. We used a process that was heavily based on eXtreme
Programming.

2 The process

2.1 Description

On most points we have followed XP fairly faithfully, but in certain aspects we
have differed. These practices were followed more or less as described in Extreme
Programming Explained [2]:

— 2-week iterations following the Planning Game
— Daily stand-up meetings
— Pair programming mandatory for all production code



Simple Design
— Refactoring

Integration several times a day

Coding standards

— Collective ownership of all code

40-hour week (in keeping with Swedish working culture!)
— Co-location (in adjacent 2-person offices)

At this point the enthusiasts count up and work out that four of the twelve
practices remain. Here our process differed from Extreme Programming as you
know it.

On-site customer - as a product company we have many customers, and this
role hence became an internal one fulfilled by the product manager. His job
as customer was to establish the requirements based on what the old system
did, provide a rough priority order so that it could be implemented incre-
mentally and also liaise with the real customers about needed improvements
and features that could be dropped.

Metaphor - The legacy system served fairly well as a replacement for a
metaphor

Testing - This was based entirely upon acceptance tests written by the ”cus-
tomer” and a story was not regarded as done until he signed off the test
as working correctly. Acceptance tests had to run flawlessly before develop-
ment could continue - 100% or bust, unit-test style. Unit testing itself was
not used at all.

Small releases - really became continuous releases because of the way we
did testing. The philosophy was that we pretended the system was in pro-
duction with all features implemented so far at all times. Note that this
refers to "internal releases” due to the fact that the customer was an inter-
nal role. ” External release” only occurred relatively late in the project when
the system was as good as the one it was trying to replace.

And then we added some entirely new practices...

Diagnostic debugging - We implemented a logging framework in the spirit
of log4j [4], which allowed permanent debugging statements to describe in
detail what particular modules were doing. These module diagnostics could
be easily enabled independently of each other, and provided the fine-grained
analysis we needed in the absence of unit tests.

Usage-First Design - We simulated Test-First Design by insisting that new
code was always written ”usage-first”. This means that if a new class was
required, we would first pretend it existed and write the code that would
use it. Only when we were happy with this usage code would we attempt to
implement the class.



2.2 How the process came about

We evaluated several development methodologies including the Rational Unified
Process and XP, and the consensus proved heavily in favour of XP or something
like it.

However, a certain amount of process-related activities, chiefly the testing
approach and the emphasis on diagnostic debugging, came with the product
whose codebase we re-used. As these approaches had been working well there, a
decision was also taken to continue with them for the moment and to work on
adopting other aspects of XP, with the expectation that we would change over
when these aspects became our worst problem.

However, as time went on, the conviction that we had a process that worked
really well grew, and these aspects have therefore stayed. We made a brief ex-
periment at working with unit tests and CppUnit [5], but this felt to everyone
involved like it was slowing us down rather than speeding us up, so it was aban-
doned.

By the end of 2002 the project was a success with the software in use at several
major airlines with more to follow. The development team has now grown to
eight software engineers and has moved on to work with other Carmen software
products, using the same process.

2.3 Frequently Asked Questions

The practice of using Acceptance Tests alone was described in our XP2002 Prac-
titioner’s Report [6]. Space there did not really allow us to expand fully, and we
received many questions at last year’s conference on the subject. Here, then, is
a description based on the most common questions.

1. How did the customer manage to write acceptance tests?
The process is something like this: he finds appropriate input data for testing
the feature in question and informs the developers of broadly what he expects
it to do. They go off and implement it. When they have a result that satisfies
them, they come back to him and show him what it does. If he isn’t happy,
the process iterates. If he is, that input data, along with the output and the
log file produced by the program, is checked into the version-controlled test
suite.

2. How did you automate the acceptance testing?
The program executes in batch mode: i.e. it takes a bunch of input data
(typically some flights and some crew), plans for a while, and then produces
some output data (a plan). This made automating acceptance testing easy:
it is fully text based. The log file and the output solution are compared us-
ing a diff tool against what it did when the customer accepted it, and any
difference at all (barring process ID, timestamps etc.) is registered as failure.
In addition, the performance is compared to the expected performance and
failure reported if it differs by more than a preset amount (say 10%).



Over time, our automated test suite has grown from a small, highly product-
specific UNIX shell script to become a fairly sophisticated application-independent
framework for this kind of testing. It is now called TextTest, is written in
Python, and is (or will soon be) available for free download from Carmen’s
website [7]. See the Appendix (section 5) for more details.

. How do you get the test suite to be fast enough to run reqularly?

Insist that lots of fast tests are added to the test suite, and ask the customer
not to provide large data sets (which imply long runtimes) unless they’re
really needed to prove that the functionality works. The tests are then run
in parallel over a network using the third party load-balancing software LSF
[3]. Because running all tests at every build would take too long, developers
pick a time up to 15 minutes and run all tests that take less than that time,
before checking in. This number depends on how radical they believe their
changes are, and averages around 3-5 minutes for “normal-risk” changes. All
tests that take less than 3 hours are run automatically overnight and a report
generated, and any failures are the first thing to be fixed in the morning.
Any tests longer than 3 hours are run only at the weekend.

In this way we maintain very short cycles in our development, and the ”time-
to-green-bar” is kept very low. Essentially the fastest acceptance tests are
treated by the developers in a similar way to unit tests: they are run at every
build and failure is treated as a sign to stop work and fix it.

. Doesn’t it take ages to find and fix bugs without Unit Tests?

Fortunately not, because the text-based philosophy extends to debugging,
in our practice of ”Diagnostic Debugging”. When we need to examine some
code in more detail, we write diagnostics for that code so that we can see
in detail what it is doing, and these diagnostics are kept so that they can
be reused in the future. Over time a large amount of these diagnostics are
written, and then new diagnostics are only needed for new code.

When debugging, the first behaviour difference from the log file tells you
what was going on when it went wrong, and hence which diagnostics should
be enabled (note that diagnostic data, unlike logfiles and solution data, is
not version-controlled, there would be way too much of it). It’s then a simple
matter of running the checked-in code with the diagnostics, then running the
new code, and seeing in detail what has changed. Hopefully this will lead to
the error. Sometimes it won’t, and then we must write new diagnostics, which
are checked in when the bug is fixed. To quote the log4j manual: ”Debugging
statements stay with the program; debugging sessions are transient.” [8]

. Without tests being isolated from each other, surely an error can break thou-
sands of tests at once?

Yes it can, and frequently does. The approach then is to take the simplest,
smallest test that failed and fix it. Then re-run the tests and repeat as re-
quired. So long as you don’t expect that one bug will always produce exactly
one test failure, it isn’t a problem.

. Don’t you miss the benefits of Test-Driven Development?

The practice of writing unit tests before writing the code (now known as
Test-Driven Development [1]) is understood to have five main benefits:



Verification that code works
e Low-level information about test failures making debugging easier
Design driven by tests tending to exhibit high cohesion and loose cou-
pling (” Test-first Design”)
Predictive specification of what code will do, independent of the existence
of the code itself.

e Documentation of the design
We have a testing approach that could perhaps best be described as Acceptance-
Test Driven Development (ATDD)[1] in contrast to the more standard XP
approach of driving development with Unit Tests. We believe that ATDD
has covered and in some cases surpassed the benefits described above in our
recent project. This is described in more detail below.

2.4 Comparison with Unit-Test Driven XP

Verification

Acceptance tests are written by the customer and utilise the system at a much
higher level. They are thus a far stronger verification of system correctness than
unit tests. Moving them into the centre of the process will therefore strengthen
the verification. Of course, even when development is drived by unit tests, accep-
tance tests are also meant to be present as verification. However, because they
are not central to the "rhythm of the process”, the verification they provide is
somewhat postponed at best, and in practice we believe many practitioners are
relying entirely on unit tests for verification.

Refactoring

Acceptance tests are entirely independent of the design, because they do not
interact with it. This means that they form a solid rock to lean on when do-
ing refactoring. Interface-changing refactorings, as has been pointed out [9], will
require the unit tests themselves to change, rendering them questionable as ver-
ification of the correctness of the refactoring, and in large numbers they will
therefore exhibit a tendency to act as a brake on the mobility of the design.

Design
We have observed that the benefits described for Test-First Design - high
cohesion and loose coupling - have emerged with our practice of Usage-First
Design. We also feel that the pressure to isolate everything that comes with
TFD is in some sense an artificial pressure, resulting in the creation of many
"mock objects” [10]. Applied to extremes, it seems to lead to a system where
every class which is depended on by another class will need an interface, a real
version and a mock version, and we do not believe that constitutes a good design.
Isolation of classes from each other, we feel, is something that should be done
when the design demands it for some reason. It is not something that should
always be done up-front as an end in itself.



Help with time-to-error when debugging

Debugging with easily-disabled log statements has long been advocated in vari-
ous circles (e.g. [8]) and it has worked well for us. It has the advantage that effort
can be spent as it is shown to be necessary rather than up-front, and also that
it can be applied easily to any design, not just one of the form discussed above.
This makes it much easier to apply to legacy systems, amongst other things.

Predictive specification

A unit test makes a predictive specification about what the code will do. Applied
test-first, this prediction is made before the code is written. An acceptance test
may or may not: it can do anything from no prediction through vague general
predictions to very precise prediction of a test.

Its verification is chiefly regressional, of course: based on the fact that pro-
gram behaviour can be manually verified as correct by the Customer and then
maintained unchanging indefinitely. In practice we have made use of predictive
general specifications about what the system will do and not do in all tests -
for example enforcing that the text “Internal Error” is never produced, that all
solutions are reported as legal in the logfile, etc. We generally do not try to
predict what specific tests will do before code exists: partly because our domain
does not really allow solutions to the problems to be constructed by hand (which
is the whole point of the software).

There is no doubt that there is a psychological aspect of being able to ”test-
first” (as discussed in [1]). Going in to development knowing that a test is already
in place that will say immediately whether or not the behaviour is correct when
the code is written gives a powerful feeling of security. We, however, understand
predictive specification as a sliding scale: and verifying new features is nearly
always a mixture of prediction and reaction. Up-front prediction requires effort
spent on it: and we feel there comes a point when that effort is no longer justified
in terms of the gain versus reacting to the behaviour when you have it. Prediction
that can be applied to all conceivable tests is thus very good in terms of payback
versus effort invested.

We feel that the biggest problem in software quality is usually that changes
break existing behaviour. If your changes never do that, then the quality can
only go up, and then you will have very good quality pretty soon.

Documentation

A unit test is a design statement. An acceptance test is a statement of the
correct behaviour of the system. Therefore, it seems logical that unit tests act in
some sense as design documentation, whilst acceptance tests document system
behaviour.

Both of these things are of course valuable. In the absence of unit tests

another way to document the design is needed: in our case we have used ” Doxy-
gen”[11], which is a Javadoc-like tool for C++.



2.5 Applicability and limitations

The approach to testing proposed above is focussed on keeping an extremely firm
control on the behaviour of the program as it is currently used in practice. For
us, this has proven to be an excellent way to ensure the quality of the system
stays high, while moving quickly due to not investing lots of developer effort
thinking of tests up front. Of course, we cannot know how many defects exist
that no customer usage has yet found: our premise is simply that it is hard to
control this anyway and hence not worth investing the time trying. The evidence
from the few reported defects we have from production bears this out: almost
all were crashes on incorrect input to the system (and of course all resulted in a
new test, so in future will result in graceful exit-with-error instead)

The fact that this approach works well for us is in some way because it is
easy for us to manage and predict how the system will be used. Before it is taken
into production with a major airline, a controlled implementation process will
take place where we will have access to that airline’s data and will know broadly
what features they intend to use. This allows our ”XP customer” to create tests
accordingly. A company that, for example, developed ”shrink-wrapped” software
would be unable to do this: much more up-front effort on testing is required as
many people will be using the software in unpredictable ways.

The Carmen applications and their usage are well suited to writing auto-
mated acceptance tests. There are products which are much more dependent on
variations in hardware, operating system and network platform. For these, fully
automated acceptance tests are not possible without replicating many of those
variations, which might well be practically and economically impossible.

There are also products (such as interactive GUIs) whose natural mode of
operation is not batch. The challenge of being able to re-use the technique then
rests on being able to simulate the interactive part using some sort of script.
Tools (such as playback tools) exist to do this, though these have a reputation
of being somewhat fragile under code changes. We haven’t really tried them
ourselves beyond small prototypes.

As a bottom line, it can be done "by hand” by creating a scripting inter-
face that slots in just beneath the GUI layer itself. Carmen’s own user-interface
team has just completed creating such an interface, though more investigation
is clearly needed into the effectiveness of this.

3 Reflections

3.1 Reflections of a new team member (Johan Andersson)

In the autumn of 2002, Johan Andersson joined Carmen Systems and the team.
Here are his reflections based on his earlier experience with XP and more tradi-
tional unit tests.

Before I joined Carmen Systems I was developing a network security product
within an 8 person development team. This team had been trying to use XP
as its development methodology for two years, and had been fairly successful in



doing so. As this team were doing traditional unit tests, I believe I am qualified
reflect on the differences in the approach of the Carmen Systems team.

Having done unit tests and Test First Design, I find the process of using
acceptance tests only (with ”Usage-first Design”) to be an application of the
"You Ain’t Gonna Need It’ principle. My experience is that the vast majority
of unit tests never break alone. From an error detection point of view, if a test
never breaks alone it is not needed. That is, if two tests always break in unison,
you need only one test. Therefore, if a broken unit test is always accompanied
by a broken acceptance test, then one of them is not needed.

You could argue that having many smaller tests would help in pinpointing
the cause of the error, but then you would be saying that some work now in
creating these tests could possibly save some debugging work later on. I do not
think that is in the spirit of XP.

In practice this speeds up the development process. The Carmen team gain
this speed by sacrificing detailed failure information and checking of borderline
cases in the code, as given by unit tests, while still keeping the failure indication
and verification of the actually used functionality as given by the acceptance
test.

3.2 Reflections from the Customer (Peter Sutton)

The customer accepts full responsibility for the behaviour of the system - even
under unusual circumstances. As a result the customer gains full control over
time spent developing all aspects of the system. If the customer wants the soft-
ware to act in a particular way when the input data is incorrect then the customer
needs to write a story specifying what that behaviour should be and provide a
test case.

The advantage of this approach is that these non-functional requirements are
made explicit and are prioritized along with other stories. The disadvantage is
that the customer has to think of all possible things that could go wrong - an
impossible job. The customer needs then to be able to accept that when some-
thing unexpected happens it is his responsibility to determine the significance of
the problem and determine whether to create a new story or not. There is thus
an attitude of ”learn as you go” and an assumption that it will be possible to
further update the software even after it has been deployed.

4 Conclusion

Given a business environment where implementation is a controlled process,
and an application that runs or can be made to run in batch mode, we believe
that Acceptance-Test Driven Development is an effective means of carrying out
testing within an XP project. We also believe that it is within the spirit of XP, in
that it is simpler and involves less effort invested up-front in the hope of a later
pay-off. We hope that our success can encourage others to try out this approach.



5 Appendix - TextTest

TextTest is an application-independent configurable framework for text-based
functional testing, primarily regression and performance testing, but also stress
testing.

The expectation is that tests are written, run and configured using simple
text files only, and that information in the file system itself is used wherever
possible. It is not intended that new code should need to be written when a new
test is created.

To be tested using TextTest, an application needs to be runnable from the
command line using standard options and/or information in standard input. It
needs to be runnable in batch mode so that fully automatic tests can be created.
It also needs to produce meaningful output that is, or can be converted to,
plain text. It will then use this text to monitor and control the behaviour of the
application.

Structurally, it is composed of a core framework that is mainly concerned with
managing and interpreting the files and directories that constitute a TextTest
test suite, and a range of extendable configurations that manage how tests are
run and when, which files are compared, how to create reports and so on. This
allows users to write their own configurations to take advantage of local circum-
stances, and also provide platform specific configurations.

It is written in Python. The intention is that it will be available for free down-
load from http://www.carmensystems.com by the time this paper is published:
at least a mailing list will be set up for interested people.

References

1. Beck, K.: Test-Driven Development, page 199. Addison-Wesley, 2003.

2. Beck, K.: Extreme Programming Explained : Embrace Change. Addison-Wesley,
1999.

3. LSF is available from Platform Computing at http://www.platform.com

4. log4j can be found at http://jakarta.apache.org/log4j/. A C++ version, logdcpp,

exists, but licensing difficulties meant that we were unable to use it.

CppUnit can be found at http://sourceforge.net/projects/cppunit/

6. Bache, G. and Bache E.: ”One Suite of Automated Tests: examining the
Unit/Functional divide” in Proceedings of the 3rd International Conference on
Extreme Programming and Flexible Processes in Software Engineering (XP2002).
Italy, 2002.

7. TextTest is free and can be found at http://www.carmensystems.com

8. http://jakarta.apache.org/log4j/docs/manual.html. The passage concerned is itself
quoting Brian W. Kernigan and Rob Pike’s book ”The Practice of Programming”

9. van Deursen, A. and Moonen, L.: " The Video Store Revisited - Thoughts on Refac-
toring and Testing” in Proceedings of the 3rd International Conference on Ex-
treme Programming and Flexible Processes in Software Engineering (XP2002).
Ttaly, 2002.

10. Mackinnon, T., Freeman, S. and Craig, P.: Endo-Testing: Unit Testing with Mock
objects, in Extreme Programming Examined. Addison-Wesley, 2001.
11. Doxygen can be found at http://www.doxygen.org

o



