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Abstract

MIMD distributed-memory machines are capable of providing enormous compu-

tational power. However, the di�culty of developing parallel programs for these

machines has limited their use. The most di�cult part is essentially of determining

a suitable data distribution scheme for a program. Most of the current projects and

parallel tools leave this problem entirely to the user.

Our thesis is that even though completely automatic parallelization of a sequential

program may be extremely di�cult, the process of incorporating simple modi�ca-

tions to sequential code, given a formally documented parallel code for the original

sequential program, can be fully automated. To validate this thesis, we have imple-

mented an advanced tool that can e�ciently parallelize such a modi�ed sequential

code, given a formal description of the data-decomposition scheme employed in par-

allelizing the original sequential code.

Our system is organized around three major functions: program analysis and re-

structuring, data-decomposition determination and compile-time code generation.

Program analysis and restructuring is done with the aid of SIGMA II, a toolkit

for building parallelizing compilers and performance-analysis systems. Determina-

tion of data decompositions is achieved by alignment with those variables whose

decompositions are already known (from the given parallelization of the old sequen-

tial code). A novel strategy has been used for the purpose of alignment. E�cient

compile-time code generation is achieved by means of an advanced compiler that

performs compile-time resolution and interprocedural compilation. Some optimiza-

tions are also made to the generated parallel program.
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Chapter 1

Introduction

Distributed memory multiprocessors (multicomputers) are increasingly being used

for providing high levels of performance for scienti�c and engineering applications.

Distributed memory machines o�er signi�cant advantages over their shared memory

counterparts in terms of cost and scalability, but their power of massively-parallel

processing is hindered by the di�culty of parallel programming. Because of the

absence of a single global address space, the programmer has to distribute code and

data on processors himself. Automation of this process is therefore both desirable

and necessary for widespread use of these machines to become a reality.

1.1 Background

1.1.1 Machine-independent parallel programming

It is widely recognized that parallel computing represents the only plausible way to

continue to increase the computational power available to scientists and engineers.

Highly parallel supercomputers also provide the best cost/performance ratio of all

supercomputers. Despite their advantages, parallel machines have only enjoyed lim-

ited success because parallel programming is a di�cult and time-consuming task. To

obtain adequate performance, scienti�c programmers must write explicitly parallel

programs and solve many machine-dependent issues.

Because of the di�culty of writing parallel programs and making modi�cations to

2



CHAPTER 1. INTRODUCTION 3

it scientists are generally discouraged from utilizing parallel machines.

1.1.2 Compiler assistance

The goal of this thesis is to solve the parallel programming problem by developing

the technology needed to make the process of making modi�cations to an existing

parallel code easy. More precisely the objective is to automate the parallelization of

new sequential code which is a modi�ed version of old sequential code. It is assumed

that the old sequential code has been parallelized manually since we feel that the

e�ciency of the parallel program generated by an automatic parallelizing tool cannot

equal that obtained by hand parallelization (This statement is validated by the non-

existence of fully automatic parallelization tools.) Moreover hand parallelization of

the skeleton sequential code is a small price to pay for gaining facility to making any

modi�cations to this code easy. This process also �ts naturally into the practical

model of program development, wherein a programmer likes to incrementally build

his program.

Our approach would be to identify a data-parallel programming style for Fortran

that may be compiled to execute e�ciently. However in converting from a Fortran

program, the compiler simply is not able to always do a good job of picking the best

alternative in every tradeo�, particularly since it must work solely with the text of

the program. As a result, the programmer may need to add additional information

in the form of user annotations to the program for it to be correctly and e�ciently

parallelized. The programmer expresses the parallelism in terms of annotations and

data distribution functions for the various arrays of the program. Our tool then

uses these distribution functions to generate parallel code for this program.

1.2 Motivation

The goal of automatic parallelization of sequential code remains incomplete as long

as the programmer is forced to think about the issues such as coming up with the

right data partitioning scheme for each program. The task of determining a good

partitioning scheme manually can be extremely di�cult and tedious. However, most

of the existing projects on parallelization systems for multicomputers have so far

chosen not to tackle this problem at the compiler level (or tackle it in a very restricted
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sense) because it is known to be an extremely di�cult problem. Another related

problem, the component alignment problem has been discussed by [12], and shown

to be NP-complete. On the other extreme, recently several researchers [11] have

addressed the problem of automatically determining a data partitioning scheme, but

have largely restricted themselves to a small class of programs, which often does not

include scienti�c applications. Hence completely automatic determination of data

partitioning schemes has not been satisfactorily achieved till date. In this scenario

it becomes imperative to take an in-between course and automate the process of

making modi�cations to sequential code for the purpose of e�cient compile-time

parallelization of the modi�ed sequential code. This is the precisely the objective of

this thesis.

The immediate motivation for this project is derived from the ongoing Weather

Project in the department which involves parallelization of the T-80 Cray Fortran

code for the PARAM. The sheer size of this code {about 32,000 lines of Fortran{

coupled with its complexity makes the use of an automatic tool both desirable and

imperative.

1.3 Thesis

We believe that a fundamental ingredient required for compiling programs for dist-

ributed-memory machines is a speci�cation of the data decomposition of the pro-

gram. In others words, we assume that when data decompositions or some additional

information from which these can be inferred are provided for sequential programs,

an advanced compiler can generate parallel programs that execute e�ciently on

MIMD distributed-memory machines. When data distributions of all the variables

are not known, we can still generate e�cient parallel programs by doing program

analysis and �nding out the relation of these variables with those whose distributions

are known. Our thesis is that even though completely automatic parallelization of

a sequential program may be extremely di�cult, the process of making modi�ca-

tions to sequential code for generating parallel programs can be fully automated.

To validate this thesis, we have implemented an advanced tool that can e�ciently

parallelize such a modi�ed sequential code, given a formal description of the data-

decomposition scheme employed in parallelizing the original sequential code.
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1.4 Overview of the System

The basic aim is to automate the parallelization of sequential code using the SPMD

programming paradigm. Since completely automatic parallelization is still not pos-

sible, our system uses previously parallelized codes to aid itself in the process of

parallelization. Given a sequential code and its parallelized version (assumed to be

parallelized manually or interactively), the system (see �gure 1.1) will automati-

cally parallelize (e�ciently i.e. at compile-time) any new sequential code (that has

some relationship with the original code). This relationship can be in terms of some

modi�cations in the original sequential code like addition (deletion) of new (old)

variables, di�erent access patterns, addition (modi�cation) of new (old) subroutines

etc. The system uses information from the information �le which has description of

distributions of array variables in the original code.

The system is developed for the sequential code of the ongoing weather project and

hence some speci�c issues merit attention :

1. The resulting parallel code is desired to be communication free. This re-

striction is introduced to make the alignment procedure simpler. If this is not

assumed then the techniques mentioned in this thesis will still apply, though

with some modi�cations. The assumption of no communications merely adds

to our convenience in generating more e�cient parallel programs than would

have been otherwise possible, although the decision to introduce this restric-

tion arises partly from the belief that handling of communications is best (i.e.

most e�ciently) achieved when left to the programmer, since an automatic tool

would not be able to perform as many communication optimizations as might

be required/desired for the particular scienti�c or engineering application.

2. Linearized arrays (arrays whose dimensions have been collapsed for e�cient

storage utilization) require speci�c treatment.

3. It is assumed that some user annotations are present in the code which aid

the system in making decisions regarding data distributions and code genera-

tion.
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1.5 Organization of the thesis

We close this chapter by providing an overview of this thesis. Our work involves three

major functions : program restructuring and analyzing, determining distributions

and e�cient code generation.(see �gure 1.2) The organization of this thesis is as

follows. Chapters 2 to 4 are concerned with the purpose of program restructuring

and analyzing. Chapter 2 describes the Fortran D language that we have used for

the description of the distribution functions in the parallel program. Chapter 3 gives

a brief description to SIGMA II, the program restructurer and analyser that we have

built our system upon. Chapter 4 details the user annotations that are currently

required by our system. Chapter 5 describes the underlying theory for alignment and

detection of communication (our second major function). Chapter 6 describes the

underlying theory for the parallelization process (the third major function). Finally,

chapter 7 concludes with some observations on the future directions on which work

should be done.



Chapter 2

Fortran D Language

Fortran D [9] is a version of Fortran enhanced with data-decomposition speci�ca-

tions. It is designed to support two fundamental stages of writing a data-parallel

program : problem mapping using sophisticated array alignments, and machine map-

ping through a rich set of data distributions functions. We believe that Fortran D

provides a simple machine-independent programming model for most data-parallel

computations. We have decided to use Fortran-D for describing the distributions in

our information �le as we believe that Fortran D is both powerful and easy enough

for the user to understand and use e�ectively.

2.1 The Data-Parallel Programming Model

The data-decomposition problem can be approached by noting that there are two

levels of parallelism in data-parallel applications. First there is the question of

how arrays should be aligned with respect to one another, both within and across

array dimensions. This is called the problem mapping problem [9] induced by the

structure of underlying computation. It represents the minimal requirements for

reducing data movement for the program, and is largely independent of machine

considerations. The alignment of arrays in the program depends on the natural

�ne-grain parallelism de�ned by individual members of data arrays.

Second, there is the question of how arrays should be distributed onto the actual

parallel machines. This is the machine mapping problem caused by translating the

9
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problem onto the �nite resources of the machine. It is dependent on the topol-

ogy, communication mechanisms, size of local memory and number of processors in

the underlying machine. Data distribution provides opportunities to reduce data

movement. The distribution of arrays in the program depends on the coarse-grain

parallelism de�ned by the physical parallel machine.

Fortran D requires the user to specify data decomposition in terms of these two

levels of data parallelism. First, the ALIGN statement is used to describe a problem

mapping. Second, the DISTRIBUTE statement is used to map the problem and its

associated arrays to the physical machine.

2.2 DIMENSION Statement

The DIMENSION statement may be used to declare an array which declares the

name, dimensionality and size of array.

DIMENSION SEV(TWOJ1)

DIMENSION AP(LONF2,N)

In this example, SEV is declared as an one-dimensional array of size TWOJ1, with

elements indexed from 1 to TWOJ1. AP is a two-dimensional LONF2 x N array

(stored in memory in column major fashion.)

2.3 DECOMPOSITION Statement

(see �gure 2.2) The DECOMPOSITION statement may be used to declare a name

for each problem mapping. Arrays in the program are mapped to the decomposition

with the ALIGN statement. The result represents an abstract high level speci�cation

of the �ne-grain parallelism of a problem. There may be multiple decompositions

representing di�erent problem mappings, but an array may be mapped to only one

decomposition at a time.

Decompositions are designed to enable users to easily group data arrays associated

with solving a single problem. The decomposition statement declares the name,

dimensionality and size of a decomposition for later use.
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DECOMPOSITION SEVTEMP(TWOJ1)

DECOMPOSITION FLNTEMP(LNT2,N)

In this example, SEVTEMP is declared as an one-dimensional decomposition of size

TWOJ1, with elements indexed from 1 to TWOJ1. FLNTEMP is a two-dimensional

LNT2 x N decomposition.

2.4 LINEARIZED Statement

The LINEARIZED statement may be used to declare those dimensions of an array

which have been collapsed for storage e�ciency. This statement declares the di-

mension(s) that has(have) been collapsed, the number of dimensions that have been

collapsed into given dimension and section information.

LINEARIZED QLN(DIM = 1, NDIM = 2, FDIM = 162, SECTIONS :

81(0,-2,1))

LINEARIZED VLN(DIM = 1, NDIM = 2, FDIM = 162, SECTIONS :

1(0,0,1),81(0,-2,1))

In this example, QLN is declared as a linearized array with �rst dimension consisting

of two collapsed dimensions, with size of �rst collapsed dimension as 162 and second

collapsed dimension as 81. VLN is a linearized array with �rst dimension consisting

of two collapsed dimensions, with �rst collapsed dimension size as 162 and second

collapsed dimension size as 82.

The precise shape of the arrays are shown in �gure 2.1.

2.5 ALIGN Statement

(see �gure 2.2) The ALIGN statement is used to map arrays with respect to a

decomposition. Arrays mapped to the same decomposition are automatically aligned

with each other. Alignment can take place either within or between dimensions.

The alignment of arrays to decomposition is speci�ed by placeholders in the sub-

script expressions of both the array decompositions. I, J, K, etc. : : :are canonical

placeholders indicating the location of dimensions in the decomposition. Array
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subscripts are �xed; they always consist of the placeholders in alphabetical order

beginning with I. The decompositions subscripts can be functions of the placehold-

ers; they specify the alignment of array with respect to the decomposition. The

array which is aligned with a decomposition whose some dimensions are declared to

be linearized is automatically taken to be linearized for corresponding dimensions.

2.5.1 Exact match

The simplest alignment occurs when the array is exactly mapped onto the decom-

position. In the following example, the arrays SEV and SOD are mapped exactly

onto the equivalent dimensions in the decompositions SEVTEMP.

DIMENSION SEV(TWOJ1), SOD(TWOJ1)

DECOMPOSITION SEVTEMP(TWOJ1)

ALIGN SEV(I,J), SOD(I,J) WITH SEVTEMP(I,J)

For convenience, placeholders are not required where the mapping is exact. For

instance, the alignments in the previous example could also have been speci�ed

with the following syntax.

ALIGN SEV, SOD WITH SEVTEMP

2.5.2 Intra-dimension alignment

Intra-dimension alignment determines the data decomposition within each dimen-

sion. This section describes how o�set and stride may be speci�ed.

Alignment o�sets

The user can specify an alignment o�set for any dimension of an array. Constants

are added to the placeholders in the decomposition to indicate the o�set in that

dimension.

ALIGN FRN(I,J) WITH FIRNSTEMP(I-1,J)

In this example, FRN is aligned with respect to decomposition FIRNSTEMP by

�1.
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Alignment strides

Fortran D also allows a stride to be speci�ed when performing intra-dimensional

alignment. Alignment strides are used to determine the density of an array mapped

to a dimension. They are introduced as coe�cients of placeholders in the subscript

expressions of decompositions in an ALIGN statement. Strides may also be used in

combination with o�sets.

ALIGN FRN(I,J) WITH FIRNSTEMP(2*I-1,J)

In this example, array FRN has a stride of 2 with respect to decomposition FIRN-

STEMP and is mapped to odd element of FIRNSTEMP.

2.5.3 Inter-dimension alignment

Inter-dimension alignment determines the data decomposition between dimensions.

This section describes how permutation, collapse and embedding may be speci�ed.

Permutation

The user can arbitrarily permute the dimensional alignment between arrays and de-

compositions. Canonical placeholders must be used to mark the aligned dimensions.

ALIGN UFLIP(I,J) WITH UFLOPTEMP(J,I)

In this example, the transpose of UFLIP is mapped to the decomposition UFLOP-

TEMP.

Collapse

(see �gure 2.2) It is sometimes convenient to ignore certain dimensions of the array

when mapping an array to a decomposition. All data elements in the unassigned

dimensions are collapsed and mapped to the same location in the decomposition.

An array dimension may be collapsed in the ALIGN statement simply by excluding

its placeholder from the decomposition subscripts.

ALIGN QLN(I,J), FLN(I,J,K) WITH SEVTEMP(I)
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In this example the �rst dimension of QLN is mapped onto the decomposition

SEVTEMP. The second dimension of QLN is collapsed and stored on the same

processor.

Embedding

Conversely, it may be necessary to map arrays with fewer dimensions onto the de-

composition. In these cases it is necessary to specify both the mapping for each

dimension of the array and the actual position of the array in the unmapped di-

mensions of the decomposition. This determines the embedding of the array in the

decomposition.

ALIGN SEV(I) WITH QLNTEMP(I,2)

ALIGN SOD(I) WITH QLNTEMP(I,1:81)

In the �rst example, array SEV is mapped to the �rst dimension of decomposition

QLNTEMP, column. It is necessary to specify the actual column position with a

constant or a range for unmapped dimension.

2.6 DISTRIBUTE Statement

(see �gure 2.2) In Fortran D, the DISTRIBUTE statement can be used to specify

the mapping of the decomposition to the physical parallel machine. The distribution

speci�es the machine mapping for exactly one decomposition. The compiler then

applies the distribution to all the arrays mapped to the decomposition. The user

does not need to specify a distribution for each array.

DISTRIBUTE SEV(attribute)

DISTRIBUTE AP(attribute,attribute)

Each attribute describes the mapping of the data in that dimension of the decompo-

sition. Suppose there are P processors and N elements in the decomposition. The

four types of attributes for regular distributions in Fortran D are BLOCK, CYCLIC,

BLOCK CYCLIC and DISTRIBUTED. These distributions can be described as fol-

lows :

� BLOCK divides the decomposition into contiguous chunk of size N=P , assign-
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AP(I,J)

SEV(I)

ALIGN FRN(I)  WITH  FRNS(2*I-1)

DECOMPOSITION  FRNS(I)

ALIGN  FIN(I)  WITH  FRNS(2*I)

ALIGN  AP(I,J)  WITH  SEV(I)

Figure 2.2: Some Fortran D Constructs
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ing one block to each processor.

� CYCLIC speci�es a round-robin division of decomposition, assigning every

P

the

element to the same processor.

� BLOCK CYCLIC is similar to CYCLIC but takes a parameter B. It divides

the dimension into contiguous chunks of size B, then assigns these chunks in

the same fashion as CYCLIC.

� DISTRIBUTED takes parametersO;B and distributes array using the formula

2.7 Discussion

Fortran D is a powerful language for giving a formal and precise speci�cation of

the data distributions in a program. It is also simple enough that a sophisticated

compiler can produce e�cient programs for di�erent parallel architectures. It serves

our purpose for specifying the data distributions in the "information �le" exactly.



Chapter 3

SIGMA II

SIGMA II [10] is a system for building program transformation tools. Its in-

tended use is for building source to source program parallelization restructurers and

performance analysis instrumentation tools for application written in FORTRAN,

FORTRAN90, C, C++ and certain extensions of these languages including PCF

FORTRAN, Cedar FORTRAN and pC++. SIGMA II contains an interprocedu-

ral analysis system and symbolic data dependence procedures. We have built our

system on top of SIGMA II. We understood the SIGMA system at the source level

and performed additions/modi�cations according to our needs. Thus for example

we have added the grammar of user annotations to the fortran grammar of SIGMA.

The user annotations have been detailed in the next chapter. In this chapter we de-

scribe the SIGMA system for the purpose of using it e�ectively for any parallelizing

purpose such as program restructuring or analyzing or interpretation of the parse

tree built by SIGMA. The discussion found in this chapter is largely based on that

in [10] and [1].

3.1 Introduction

SIGMA II provides a tool kit for analyzing and restructuring application programs

intended for use on scalable parallel systems. Its intended use is for building end-

user tools to aid in the process of program parallelization and performance analysis.

Simply put, SIGMA II is a data base for accessing and manipulating program control

and data dependence information.

18
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The functions provided by the data base can be used by the end-user tool in one of

three ways.

� Extracting syntactic information : This includes symbol and type table infor-

mation, program control 
ow structure, user annotation and directive infor-

mation and access to the complete parse tree of the application.

� Extracting semantic information : This includes interprocedural de�nition and

use summaries for each function and procedure, data dependence analysis and

scalar propagation and symbolic analysis and simpli�cation of scalar expres-

sions.

� Restructuring the program by modifying the data case contents and to gener-

ating (unparsing) new versions of the source code based on modi�cations.

3.2 The SIGMA Architecture

The SIGMA systems consists of two basic components:

1. A set of parsers one each for FORTRAN, C and pC++ that translate the

source code into a special internal form.

2. A library of data base utility for extracting and modifying information stored

in the internal form generated by the parsers.

Parallel programming tools are designed to work with user application program

which are often very large and exist as multiple source �les. In Sigma terms each

application program de�nes a project which consists of a set of source �les, a set of

dependence �les and a project �le. The source �les are in our case Fortran. For each

source �le there is a corresponding dependence �le generated by the parser. (The

convention is that source �le end in ".f" or ".c" and the corresponding dependence

�le end in ".dep" with the same root name.) The project �le is an ascii �le containing

a list of all the associated dependence �les in the project. (The project �le has a

".proj" su�x and the dependence �les are listed one by line.)

The dependence �le for each source �le contains a complete parse tree and a symbol

table for the program fragment in that �le. In addition it contains a �rst pass

analysis of the interprocedural 
ow of the functions and subroutines in that module.
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The SIGMA Parsers are invoked as follows. For FORTRAN programs the command

line is

cfp filename.f

One way to think of the Sigma data base is as a repository of information about

the source code of an application. The data base can be thought of as a heavily

annotated parse tree and symbol table. The data base functions are tools to ex-

tract information about the program semantics or to modify the program structure.

Among the types of annotations supported are

1. Interprocedural information about variable and parameter uses and de�nitions.

2. Scalar propagation information.

3. Data Dependences and distance/direction vectors. This includes a fairly com-

plete symbolic analysis package for manipulating subscript expressions.

4. Source Annotations de�ned by a special assert comment that is understood

by the parsers.

5. User de�ned annotations supported by a SiPutProperty(), SiGetProperty()

function pair.

3.2.1 The database structures

In the Sigma model, each program is a collection of graphs and tables corresponding

to a collection of source �les. Each graph is a structured parse tree for the program.

The nodes correspond roughly to FORTRAN statements and the tree structure is

based on control constructs. The children of a statement are called the control

children of a node which is known as the control parent. The root of the graph is

called the global node for the �le. The nodes with control children correspond to

� the global node for a �le,

� subroutine or function headers,

� looping constructs.
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� conditionals (IF � then� else).

Because of pure conditionals like IF-then-else each set of control nodes has two sets

of children, the false branch and the true branch, but for most control nodes the

false branch is empty.

In the data base each statement, expression, symbol table and type table entry

is identi�ed with an integer. This node id is the principle means of access to the

information stored with a node. Each statement node has several potential attributes

including

� the type of the node which identi�es the statement type,

� the name and line number of the source �le containing this statement,

� the identi�er of the control parent of this node,

� a symbol reference such as a do loop parameter in FORTRAN or a subroutine

name in a call statement,

� a list of data dependences associated with the statement,

� the user de�ned properties,

� the comments that precede the statement (and the associated program anno-

tations),

� two or three expressions associated with the node (see the next sections for

details),

� the control children of the node.

Each of these attributes can be accessed for a given statement by one of the data

base The data type used by SIGMA II to communicate the structure of the programs

in the data base to the end-user applications is called an ELIST which is a Lisp type

s-expression. All library functions return values which are either integers or pointers

to ELIST values.
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3.2.2 Low-level expressions

A statement node can have up to three subexpressions associated with it. By expres-

sion we mean lists of or algebraic expressions of variables, constants or functions.

For example, a FORTRAN do loop has an index initialization expression, an index

termination expressions and an index increment expression. A FORTRAN assign-

ment statement has a left hand side expression and a right hand side expression.

(On the other hand, a C assignment statement, called an ASSIGN EXP has only

one expression because the assignment operator returns a value and the comma can

be used to generate a list of expressions to be evaluated in one statement The prim-

itive get both sides() from the data base provides access to the �rst two expressions

of a statement.

Each Expression node has four components. The �rst component is the type of the

node, the second component is an (optional) symbol reference. The third and fourth

components are the left and right operand expression nodes.

There are many functions that manipulate expressions and data dependence infor-

mation. The complete list of functions and their de�nitions is given in the SIGMA

documentation [10] and [1].

In addition to the data base of statement and expression trees, Sigma contains a full

symbol table that is indexed by the id and the name of the variable. A type table

is also provided.

3.3 Discussion

SIGMA II is a tool of substantial value in the construction of a number of parallel

programming tools and provides researchers an easy way to access language syntax

and semantics. It has been employed extensively by us in our system.
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User Annotations

User annotations in the sequential fortran program may be used to aid the compiler

in generation of correct and e�cient compile-time code. They may be used by the

compiler to deduce data decompositions of some arrays used in the code. All the

annotations start with reserved word cparl$. Here we give the description of each

user annotation along with the example from the weather code and the particular

routine where that particular annotation has been employed. These user annotations

have been integrated with the SIGMA parser and the useful semantic information

extracted from them is written in the dependence �le generated by the SIGMA

system to be later read and made use of by the distribution �nder and the code

generator. The lexical analyzer of SIGMA (fortran lexer) has also been altered in

order to allow for these special user comments.

4.1 DISTRIBUTION FILE IS Statement

The DISTRIBUTION FILE IS statement may be used to declare an information

�le which contains data decomposition information of the arrays used in the code

in the Fortran D language (see Chapter 2.)

cparl$ DISTRIBUTION FILE IS "sums2a.info"

In this example, sums2a.info is declared as a �le containing data decomposition

information of the arrays used in the code.

23
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4.2 IDENTICAL Statement

The IDENTICAL statement may be used to declare the fact that some array in the

code has identical data decomposition as an array in distribution �le. This may

be required if the dimensions and data access patterns of some array in this code

is identical to an array variable in the code whose distribution �le is speci�ed in

previous annotation.

cparl$ DISTRIBUTION FILE IS "sums2a.info"

cparl$ IDENTICAL FLN,VLN

In this example, VLN is declared to have an identical data decomposition as FLN

in distribution �le sums2a.info.

4.3 SIMILAR Statement

The SIMILAR statement may be used to declare the fact that some array in the code

has some similarity in decomposition as an array in distribution �le. This may be

required if the data access patterns of some array with respect to some dimensions

in this code is identical to an array variable in the code whose distribution �le is

speci�ed in previous annotation.

cparl$ DISTRIBUTION FILE IS "sums2a.info"

cparl$ SIMILAR FLN,VLN EXCEPT SIZE

cparl$ SIMILAR [1,2]AP,[2,1]QLN

In the �rst example, VLN is declared to have an identical data decomposition as

FLN in distribution �le sums2a.info except that it has di�erent size. In the sec-

ond example second and �rst dimensions of QLN are declared to have identical

distributions as �rst and second dimensions of AP respectively.

4.4 LINEARIZED Statement

The LINEARIZED statement may be used to declare those dimensions of an array

which have been collapsed for storage e�ciency. This statement declares the di-

mension(s) that has(have) been collapsed, the number of dimensions that have been
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collapsed into given dimension and section information.

cparl$ LINEARIZED QLN[DIM = 1, NDIM = 2, FIRSTSIZE = 162,

SECTIONS = 81(0,-2,1)]

In this example, QLN is declared as a linearized array with �rst dimension as col-

lapsed (we assume that when a dimension is collapsed it consists of two dimensions),

with size of �rst collapsed dimension as 162 and second collapsed dimension as 81.

The shape of QLN is same as that in �gure 2.1. The reason for including this

annotation is that the exact shape of the linearized array is recorded by our pro-

gram analyzer. When a reference occurs in the form of a speci�c access pattern

of a particular linearized array, we �rst delinearize it i.e. we compute the access

pattern relative to the array that is obtained if we assume that the dimensions of

the linearized array were not collapsed,

4.4.1 Delinearization

SECTION 1

SECTION 2

SECTION 3

Figure 4.1: A Linearized Array composed of several L-sections

The basic element used for delinearization is a trapezoid. A linearized array of com-

plicated shape is broken into a series of trapezoidal sections(see �gure 4.1). Suppose

QLN is a linearized array with two dimensions in the linearized form and one dimen-

sion in the delinearized form. Then our goal is to transform an expression QLN(ex)
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which refers to some element of the linearized array to an equivalent expression of

the form QLN(exi,exj) which will also refer to the same element in the delinearized

form of QLN. Consider an L-section (a linearized array is composed of many trape-

zoidal L-sections) for a linearized array (see �gure 4.2). The parameters completely

specifying this L-section are : 1) f , the size of the �rst strip 2) h, the height of this

section 3) the left and the right skips l and r respectively (which are constant for a

trapezoidal section) and 4) the stride s which indicates after the height of one strip.

(The L-section is composed of many strips, the last one of which may be of height

less than s.) Also let the linearized array be mapped to a two-dimensional array of

size A � B where B is the sum of heights of all the sections, and A is the distance

between the leftmost and the rightmost element in the linearized form of array.

.

.

.
.

.

.

.
.

f

h

r
s

i

j

0

0

l

A

f’

X

Figure 4.2: An L-section of a Linearized Array

Consider an index expression (I; J) of the delinearized array (see �gure 4.2). We will

calculate what this expression will be equivalent to in the one-dimensional linearized

array. Number of complete strips = b

h�1

s

c = t, with the last strip of height

h� sb

h� 1

s

c = (h� 1) (mod s) + 1

The length of the last strip is f

0

= f +(l+ r)� (b

h�1

s

c) Let the point X in the �gure

4.2 be (i

0

; j

0

). Then we have l

k

= l(k� 1) and r

k

= r(k� 1) 81 � k � (t+1) where

k denotes the strip number and l

k

and r

k

denote the displacement of the leftmost
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and rightmost points of the k

th

strip from the beginning strip (strip number j

0

) of

this L-section. The element (I; J) say P lies in the strip number b

J�j

0

s

c + 1 . First

we count the number of elements in c = b

J�j

0

s

c (complete) strips. This is given by

the sum of an arithmetic progression as

N

c

= s

c

X

k=1

ff + (l + r)(k � 1)g = sffc + (l+ r)c(c � 1)=2g

f

j

I-i+1

c+1

J

i
1

1

1

Figure 4.3: The (c+ 1)

st

Strip

Now the (c + 1)

st

strip is as shown in �gure 4.3 Then P (I; J) corresponds to

X+N

c

+(J�j

1

)f

c+1

+(I� i

1

) with f

c+1

= f +(l+r)c , j

1

= j

0

+cs and i

1

= i

0

� lc

Putting these values and simplifying, we get that the point P refers to the following

element in this L-section:

X + (I � i

0

+ lc) + (J � j

0

)(f + (l + r)c)� (l + r)c(c+ 1)s=2

where X is the number of elements in the array before the start of this section (X

= 1 for the �rst section). Now given any access pattern we match the coe�cients

of the subscript expression with the above obtained expression. More speci�cally,

taking the assumption that the subscript J moves in skips of s (i.e., that no more

than one strip of any L-section is referred to in one pass of the L-section) we get the

coe�cients in terms of the two enclosing loop induction variables (with I = Qi+R

and J = sMj +N + j

0

:

(coe�cient of j

2

) : s(l+ r)M=2
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(coe�cient of j) :M � (l + sf +N(l + r) � s(l+ r)=2)

(coe�cient of i) : Q

(constant coe�cient: ) : X +R� i

0

+ l �ns+ b(f +(l+ r)ns)� s(l+ r)ns(ns+1)=2

where ns is bN=sc So we equate these coe�cients with those of the used subscript

expression in the linearized array to solve for the parameters M;N;Q;R and obtain

the equivalent delinearized pair of indices (I; J).

4.5 TREAT AS NORMAL Statement

The TREAT AS NORMAL statement is used to specify that a given array whose

dimension has been collapsed is being treated as normal between the speci�ed labels.

cparl$ LINEARIZED QLN[DIM = 1, NDIM = 2, FIRSTSIZE = 162,

SECTIONS = 81(0,-2,1)]

cparl$ 10,20 TREAT LINEARIZED QLN AS NORMAL

In above example, array QLN whose �rst dimension has been collapsed is being used

as a normal array between the labels 10 and 20. When such a comment is seen, we

do not delinearize the particular linearized array i.e. it is treated as normal between

the speci�ed labels.

4.6 RECURRENCE Statement

The RECURRENCE statement is used to specify that fact that some variable is

dependent on induction variables between the speci�ed labels with the dependence

as speci�ed in the annotation. This dependence may be run-time or compile-time.

4.6.1 Compile-time recursion

The user may specify that given variable is dependent on some induction variable

but the dependence can be determined at compile-time. This is particularly useful in

the access of linearized arrays which are accessed primarily using recursion variables.

cparl$ 10,20 RECURRENCE IS IPLUS = 322 + (322 - 4*j)*(j - 1)
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In this example, variable IPLUS is declared to have compile-time dependence on

induction variable on j between the labels 10 and 20. The dependence is given by

the expression 322 + (322 � 4 � j) � (j � 1).

4.6.2 Run-time recursion

The user may specify that a variable has run-time dependence on some induction

variable.

cparl$ 10,20 RECURRENCE IS PROD : RUNTIME

PROD = PROD * Y(L)

In this example variable PROD is declared to have a run-time dependence on the

induction variable L whose loop starts at label 10. This annotation is required

because runtime recursions cannot be normally handled by compile-time resolution

and di�erent strategy has to be taken in such cases.

4.6.3 An extended example for the linearized and recur-

rence statements

Consider the following example from a section of the code from a routine "sums2a.f"

used in "pgloopa.f".

cparl$ linearized QLN [NDIM = 2,FIRSTSIZE = 162,SECTIONS =

81(0,-2,1)]

cparl$ linearized FLN [ NDIM = 3,FIRSTSIZE = 162,SECTIONS =

81(0,-2,1)]

IPLUS = TWOJ1*2 - 2

LEN = TWOJ1 - 4

cparl$ 31,40 recurrence is IPLUS = 322 + (322 - 4*j)*(j - 1)

cparl$ 31,40 recurrence is LEN = 162 - 4*j

31 DO 60 J=1,NPAIR

DO 40 I=1,LEN

SEV(I) = SEV(I) + QLN(I+IPLUS) * FLN(I+IPLUS,K)

40 CONTINUE
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IPLUS = IPLUS + LEN

LEN = LEN - 2

cparl$ 41,50 recurrence is IPLUS = 480 + (318 - 4*j)*(j - 1)

cparl$ 41,50 recurrence is LEN = 160 - 4*j

41 DO 50 I=1,LEN

SOD(I) = SOD(I) + QLN(I+IPLUS) * FLN(I+IPLUS,K)

50 CONTINUE

IPLUS = IPLUS + LEN

LEN = LEN - 2

60 CONTINUE

It is clear from the recurrences of iplus and len that the delinearized form of the ac-

cess QLN(I+IPLUS) is QLN(I,J). It is this linearized form that is used for alignment

and code generation purposes.

4.7 REDUCE Statement

A reduction is an operation on a collection of data that results in new data of lesser

dimensionality, usually a single scalar value. User annotations provide the REDUCE

statement as an optional method of specifying reductions that the computer may

�nd di�cult to detect.

cparl$ REDUCE(RESULT : SEV; SIMPLE QLN; LINEARIZED FLN)

cparl$ REDUCE(RESULT : FUNEV(I); SIMPLE PLN(^ ),UFLIP(I,^

); LINEARIZED )

The �rst example declares that some dimension of QLN and FLN are being reduced

to produce the �nal result in array SEV. The second example declares that �rst di-

mension of PLN and second dimension of UFLIP are being reduced to produce result

in FUNEV. In addition �rst dimension of FUNEV is aligned with �rst dimension of

UFLIP.

4.8 Discussion

User annotations help the compiler to generate correct compile-time code. They

also help the distribution �nder to �gure out distributions of certain arrays. While
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it would be ideal to be possible to achieve the same purpose without any user

annotations, the fact remains that these user annotations are valuable in aiding

program analysis and reducing the execution time of our system.



Chapter 5

Determination of Data

Distributions

In this chapter we will discuss the main issues involved in the determination of

unknown data decompositions. When modi�cations are made to sequential code

and the system has to generate the parallel code, the primary task is to determine

data distributions of the new array variables which have been introduced in the

modi�cation of the sequential code. This is achieved by their alignment with those

variables whose distributions are known i.e., were described in the information �le.

After alignment is carried out, we �rst check whether the modi�cations made to

the sequential code would entail communication in the parallel code. As we will see

in this chapter the two problems : alignment and detection of communication are

closely related.

5.1 Data Distribution

In this section we describe our abstract machine and the kind of distributions arrays

may have in our scheme. The abstract target machine we assume is a D-dimensional

(D is the maximum dimensionality of any array used in the program) grid of N

1

�

N

2

� N

3

� : : : N

D

processors. Such a toplogy can easily be embedded on almost

any distributed memory machine. A processor in such a topology is represented

by the tuple (p

1

; p

2

; : : : ; p

D

); 0 � p

k

� N

k

� 1 for 1 � k � D: The correspondence

between a tuple (p

1

; p

2

; : : : ; p

D

) and the processor number in the range 0 to N � 1

32



CHAPTER 5. DETERMINATION OF DATA DISTRIBUTIONS 33

is established in the scheme which embeds the virtual processsor grid topology on

the real target machine. We have adapted the terminology of [11] for the data

distribution scheme. The representation is extended to make the replication of data

simpler to represent in this scheme. A processor tuple with an X appearing in the

i

th

position denotes the processors along the i

th

grid dimension. Thus for a 2x2 grid

of processors, the tuple (0;X) represents the processors (0; 0) and (0; 1), while the

tuple (X;X) represents all the four processors.

The scalar variables used in the program are assumed to be replicated on all process-

sors. For other arrays a separate distribution function is used with each dimension

to indicate how that array is distributed across processsors. The k

th

dimension of

an array A is referred to as A

k

. Each dimension A

k

is mapped to a unique dimen-

sion map(A

k

); 1 � map(A

k

) � D, of the processor grid. If N

map(A

k

)

, the number

of processors along that grid dimension is 0, we say that array dimension A

k

has

been sequentialized. The sequentialization of an array dimension implies that all

elements whose subscripts di�er only in that dimension are allocated to the same

processor. The distribution function for A

k

takes as its argument an index i and

returns the component map(A

k

) of the tuple representing the processor which owns

the element A[�;�; : : : ; i; : : :�], where "�" denotes an arbitrary value, and i is the

index appearing in the k

th

dimension. The array dimension A

k

may either be parti-

tioned or replicated on the corresponding grid dimension. The distribution function

is of the form:

f

k

A

(i) = b

i� o

b

c[ (mod N

map(A

k

)

)]

if A

k

is partitioned ; and is denoted X if A

k

is replicated. The square parentheses

surrounding mod N

map(A

k

)

indicate that the appearance of this part in the expression

is optional. At a higher level, the given formulation of the distribution function can

be thought of as specifying the following parameters: 1) whether the array dimension

is partitioned across processors or replicated, 2) method of partitioning {contiguous

or cyclic, 3) the grid dimension to which the k

th

array dimension gets mapped, 4)

the block size for distribution, i.e., the number of elements residing together as a

block on a processor, and 5) the displacement applied to the subscript value for

mapping.

Examples of some data distribution schemes possible for a 16x16 array on a four-

processor machine are shown in �gure 5.1. The numbers shown in the �gure indicate

the processor(s) to which that part of the array is allocated. The machine is con-
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Figure 5.1: Di�erent data partitions for a 16 * 16 array
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sidered to be an N

1

xN

2

mesh, and the processor number corresponding to the tuple

(p

1

; p

2

) is given by p

1

� N

2

+ p

2

. The distribution functions corresponding to the

di�erent �gures are given below. The array subscripts are assumed to start with the

value 1, as in Fortran.

a)N

1

= 4; N

2

= 1 : f

1

A

(i) = b

i� 1

4

c; f

2

A

(j) = 0

b)N

1

= 1; N

2

= 4 : f

1

A

(i) = 0; f

2

A

(j) = b

j � 1

4

c

c)N

1

= 2; N

2

= 2 : f

1

A

(i) = b

i� 1

8

c; f

2

A

(j) = b

j � 1

8

c

d)N

1

= 1; N

2

= 4 : f

1

A

(i) = 0f

2

A

(j) = (j � 1) (mod 4)

e)N

1

= 2; N

2

= 2 : f

1

A

(i) = b

i� 1

2

c (mod 2); f

2

A

(j) = b

j � 1

2

c (mod 2)

f)N

1

= 2; N

2

= 2 : f

1

A

(i) = b

i� 1

8

; f

2

A

(j) = X

The last example illustrates how our notation (taken from [11] allows us to specify

partial replication of data, i.e., replication of an array dimension along a speci�c

dimension of the processor grid. If the distribution function for each of its dimensions

takes the value X, then the array is completely replicated on all the processors.

Most of the arrays used in real scienti�c programs and all of the arrays used in

the weather code have atmost three dimensions. And hence we assume that our

underlying topology is a three-dimensional mesh.

5.2 Alignment and Detection of Communication

Requirements

Having introduced our notation for internally specifying data distributions, we now

present the theoretical issues involved in alignment and checking whether a partic-

ular statement can be executed in parallel without communication between proces-

sors. Consider the following statement:

for i = L to U by S do :

A(g(i)) � B(h(i))

The communication detection problem requires us to verify that the above loop can

be executed without any communication requirement i.e., both the arrays A and
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B get mapped to the same processor for all the subscript values occurring in the

loop. The alignment problem is only slightly di�erent from this. In the alignment

problem, we do not know the distributions of either A or B or both, and based on

the relation between the subscript functions g(i) and h(i) we have to deduce their

distributions, or record any relation between their distributions so that if at any

later point of time we are able to determine the distribution of one array, we can

determine the distribution of the other using the determined relation. Since we have

speci�ed the distributions in terms of three parameters, grid dimension, o�set and

block size, we have to carry out three alignments axis,o�set and stride.

5.2.1 Alignment

Existing Methods

The problem of determining the alignment of dimensions of various arrays has been

referred to as the component alignment problem by [12]. They prove the problem

NP-complete and give an e�cient heuristic algorithm for it. In their approach, an

undirected, weighted graph called a component a�nity graph (CAG) is constructed

from the source program. For every constraint on the alignment of two dimensions,

an edge having a weight equal to the quality measure of the constraint is generated

between the corresponding two nodes. The component alignment problem is de�ned

as partitioning the node set of the CAG into D ( D being the maximum dimension

of arrays) disjoint subsets so that the total weight of edges across nodes in di�er-

ent subsets is minimized, with the restriction that no two nodes corresponding to

the same array are in the same subset. Thus, the (approximate) solution to the

component alignment alignment problem indicates which dimensions of various ar-

rays should be aligned. A one to one correspondence between each class of aligned

array dimensions and a virtual dimension of the processor grid topology can then

be established. However we do not consider this algorithm to be suitable for our

purpose, mainly because it performs only axis alignment and the weather code has

very few, if any, instances where the dimension correspondence between two arrays

is not same. The main issue in alignment of variables used in the weather code is

that of o�set and stride alignment, and these issues are largely not dealt by the

component alignment algorithm of [12].

Recently another sophisticated alignment algorithm was proposed by Chatterjee et.
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al. in [6] where they consider the issue of automatic array alignment in data-

parallel programs. They also formulate the alignment problem as a constrained

optimization problem of the residual communication cost function. They build a

DAG from the source program and give a dynamic programming algorithm to solve

their optimization problem. However, the algorithm has the restriction that a new

temporary has to be generated for each occurrence of an array variable on the left

hand side. This is clearly a major problem in our case where the same array has

been assigned to a large number of times (in many routines of the weather code.)

Moreover their algorithm is designed to be e�cient when there are communications

involved and the algorithm thus incurs considerable overhead in order to perform

optimization of communications. In our case there are no communications, so an

algorithm that spends major e�ort in optimization of communications would not

suit our purpose.

Our algorithm

We basically follow two approaches towards the alignment problem.

� Solving 8i = L; : : : ; U by S

b

g(i)� o

A

b

A

c (mod N

A

) = b

h(i)� o

B

b

B

c (mod N

B

)

� Solving 8p

g

�1

(image

A

(p)) \ [L : U : S] = h

�1

(image

B

(p)) \ [L : U : S]

The �rst approach attempts to solve the equation obtained when we replace the

left and right sides of the statement in a loop by their corresponding distribution

formulations. By a careful analysis of the various cases of the functions g(i) and

h(i) we can derive relations between the parameters b

A

&b

B

, N

A

&N

B

and o

A

&o

B

. If

the form of the functions g(i) or h(i) is non-linear then this approach fails to derive

any useful relation between the distribution of the arrays. As an example, when

N

A

= N

B

, then one solution is b

A

= b

B

and o

A

� o

B

= 0 (mod b

A

�N

A

) in the case

when the functions g and h are identity functions.

In the second approach we attempt to equate the iteration sets of each processor

in the given loop. (see next chapter for a detailed discussion of image function
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and iteration sets ) The usefulness of this approach is that it simulatneously eases

the task of compile-time code generation because the local iteration sets computed

in this approach are used in the loop bounds reduction procedure of compile-time

resolution.

Our scheme for array alignment is an integrated form of the above two approaches.

The basic idea in our strategy is to consider all constraints of various arrays indicated

by the important components of the program, and combine them in a consistent

manner to obtain the overall data distribution. It is assumed that there are no

con
icts between mutually inconsistent constraints, since there is no communication

in the parallel code to be generated. For example consider the loop shown below:

for i = 1 to n by 1 do :

A(i; c

1

) � F(B(c

2

; i))

The data references in this loop suggest that A

1

should be aligned with B

1

, and A

2

should be sequentialized. Second, they suggest the following distribution function

for B

1

, in terms that for A

1

.

f

1

B

(c

2

� i) = f

1

A

(i) or f

1

B

(i) = f

1

A

(bi=c

2

c)

Thus given parameters regarding the distribution of A, like the block size, the o�-

set, and the number of processors, we can determine the corresponding parameters

regarding the distribution of B by looking at the relationship between the two dis-

tributions.

5.2.2 Detection of communication requirements

Detecting whether a particular statement inside a parallelizable loop can be executed

on the same processor is an easier problem than alignment, since in this problem

we know the distributions of the arrays on both sides of the assignment and we

have to verify whether there is any communication generated in that statement.

Clearly, if the statement is such that if it was considered while alignment was being

carried out, then it would not require any further consideration, since the fact that

no communication is generated has already been taken account while carrying out

the alignment procedure. However, when this statement was not considered while

alignment was carried out, it has to be considered here. Suppose we have

A(ai+ b) � B(ci+ d)
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to be considered for detection of communication, where i is the loop variable.

Suppose the distribution parameters of A are < o

A

; b

A

; N > and those of B are

< o

B

; b

B

; N >. Then if a divides b

A

and c divides b

B

, the equation:

b

ai+ b� o

A

b

A

c (mod N) = b

ci+ d � o

B

b

B

c (mod N)

becomes equivalent to solving the equation:

b

i� o

0

A

b

0

A

c (mod N) = b

i� o

0

B

b

0

B

c (mod N)

where

o

0

A

= d

o

A

� b

a

e

b

0

A

= b

A

=a

o

0

B

= d

o

B

� d

c

e

b

0

B

= b

B

=c

and now the equation can be easily solved by equating the corresponding o�sets and

block sizes (the newly computed ones.)

5.2.3 Solving the detection of communication problem pre-

cisely

The distribution function f

A

(i) of an array reference A(q(i)) is referred to as

f(i; q; o; b; n) = b

q(i)�o

b

c (mod n) We will solve in this subsection various partic-

ular cases of the problem :

given thatb

q

A

(i)� o

A

b

A

c (mod n

A

) = b

q

B

(i)� o

B

b

B

c (mod n

B

) 8i 2 fL : : : Ug

(5:1)

what is the relationship between the parameters o

A

; o

B

; b

A

; b

B

and n

A

; n

B

. In most

the cases discussed here n

A

= n

B

= n and the subscript functions q

A

(i) and q

B

(i)

are linear in i.

In many of the cases mentioned below we will use the following well-known fact:

Let g denote the gcd of a and m i.e (a;m). Then the equation ax � b (mod m)

has no solutions if g does not divide b. If gjb (i.e. g divides b), it has g solutions

: x = bx

0

=g + t(m=g) (mod m) for t = 0; 1; : : : ; g � 1 where x

0

is any solution of

ax=g � 1 (mod m=g).
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� Solving :

For i = L to U step s do A(i) � B(pi+ q)

with f

A

(i) being f(i; i; o

A

; b

A

; n) and f

B

(i) being f(i; pi+ q; o

B

; b

B

; n).

In this case b

A

= b

B

= 1. The claim is that the three necessary and su�cient

conditions for the equation to hold are : 1) g = gcd(p�1; n) divides o

B

�o

A

�q

i.e., (o

B

� o

A

� q) � 0 (mod n), 2) the equation is satis�ed for i = L and 3)

the step of the loop is given by s = n=g. In the proof let s = zn=g + w with

z;w being integers and 0 � w < n=g . Now

L �

b

g

i

o

+ t

n

g

(mod n) for some t

Hence

L+ s �

b

g

i

o

+ (t+ z)

n

g

+ w (mod n)

If L + s satis�es the constraint imposed by the loop then

L �

b

g

i

o

+ (t+ 
)

n

g

(mod n)

or (
 � z)n=g � w (mod n) or gcd(n=g; n)jw or (n=gjw) or w = 0 since

w < n=g. Hence proved.

� Solving

For i = L to U step s do A(i) � A(i+ F )

with f

A

(i) being f(i; i; o; b; n).

For solution we can say the following :

1. If F � 0 (mod nb) then the constraint is satis�ed forall i. For proof

note that under the assumption on F,

b

i� o+ F

b

c%n = b

i� o+ 
nb

b

c%n

which is equal to f

A

(i) for all i.

2. If F is not a multiple of nb then IRANGE (the range of i from L : : : U)

cannot cross any processor boundary, and vice-versa.

If IRANGE crosses a processor boundary then F � 0 (mod nb) is a

necessary and su�cient condition. For proof assume that F = �nb+�; 0 �

� < nb. Then

b

i� o+ �

b

c (mod n) = b

i� o

b

c (mod n) 8i 2 fL : : : Ug (5:2)
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assume that i = zb+ (o%b) satis�es 5.2. Then

z + b�=bc � z (mod n)

or

b�=bc � 0 (mod n)

since � < nb; �=b < n, hence 0 � � < b Now if IRANGE crosses a

processor boundary then i = zb + (o%b) � 1 also satis�es 5.2. Thus

� = 0.

If IRANGE does not cross a processor boundary i.e., U � L < b and

f

A

(L) = f

A

(U) then (i) if F � 0 (mod nb) say that there is no commu-

nication otherwise verify for i = L and i = U to determine communica-

tion.

3. Solving

For i = L to U step s do A(i) � B(i+ F )

with f

A

(i) being f(i; i; o

A

; b; n) and f

B

(i) being f(i; i+ F; o

B

; b; n).

For solution note that we can reduce to the previous case by changing F

to F + o

B

� o

A

.

4. Solving

For i = L to U step sdo A(i) � B(i+ F )

with f

A

(i) being f(i; i; 1; b1; n1) and f

B

(i) being f(i; i+F; 1; b2; n2). Let

R = U � L+ 1 Let z = b

R�1

b1

c = b

U�L

b1

c.

Assume the notation [I] to mean that i = I satis�es the relevant commu-

nication determining equation and :[I] to mean that it does not . Also

let FALSE and TRUE denote that relevant equation has been determined

to be satis�ed and satis�ed respectively. Then we consider the following

subcases:

(a) z = 0

(1) :[L]) FALSE

(2) :[U ])FALSE

(3) b2 < R )FALSE

(4) TRUE

(b) z = 1

(1) n2 = 1) FALSE

(2) :[i

�

] ) FALSE where i* is the processor boundary index, i.e.
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the value of the loop variable i which is the last element belonging

to a processor in this block, in other words, i

�

+ 1 is with the next

processor.

(3) :[i

�

+ 1])FALSE

(4) b2 � max(i

�

� L;U � i

�

� 1)) FALSE

(5) TRUE

5.3 Overall strategy of distribution determina-

tion

When the user makes some modi�cations to sequential code, the unknown distribu-

tions of newly introduced array variables are determined by :

1. Matching the corresponding formal and actual parameters in the case of a

subroutine/function call. In this case the distribution is found out when inter-

procedural compilation is being carried out. (see next chapter for the various

phases of interprocedural compilation)

2. Matching the corresponding array variables in di�erent subroutines declared

under the same block. This case is also handled in a interprocedural compila-

tion phase.

3. Array alignment{carried out by us as detailed above.



Chapter 6

Theoretical Issues in Code

Generation

The third phase of our system, the code generator utilizes a code generation strat-

egy based on the owner computes rule { where each processor only computes values

of data it owns. Fortran D data decomposition speci�cations are translated into

mathematical distribution functions that determine the ownership of local data. By

composing these with subscript functions or their inverse, the compiler can parti-

tion the computation and determine nonlocal accesses at compile-time ( It may be

recalled that our system does not handle the generation of new communications).

This information is used to generate e�cient SPMD program for execution on the

nodes of the distributed-memory machine. The issues mentioned in this chapter are

discussed in detail in [9]

6.1 Compilation Example

We compare two di�erent approaches for compiling Fortran programs.

43
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6.1.1 Run-time resolution

A simple compilation technique known as run-time resolution yields code that ex-

plicitly calculates the ownership and communication for each reference at run-time.

Run-time resolution does not require much compiler analysis, but the resulting pro-

grams are likely to be extremely ine�cient. In fact, they may execute much slower

than the original sequential code.

There are several reasons for the poor performance of run-time resolution. First,

parallelism is mostly lost because each processor must execute the entire program.

Worse still, not only does the program have to explicitly check every variable refer-

ence, it has to generate a message for each nonlocal access.

6.1.2 Compile-time resolution

In comparison, when extensive compile-time analysis is performed, the compiler can

produce highly e�cient code by using a combination of reducing loop bounds and

guarding individual statements. Computations are partitioned e�ciently to exploit

parallelism.

6.2 Formal Model

In this section we provide formal description of the compilation model. Terminol-

ogy and notation used are described. We begin by examining the algorithm used

to compute a simple loop nest using the owner computes rule. Correct application

of the rule requires knowledge of the data decomposition for a program which is

provided by ALIGN and DISTRIBUTE statements of Fortran D language.
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6.2.1 Distribution functions

Data distribution functions specify the mapping of data arrays. The distribution

function �, de�ned below [9],

�

A

(

~

i) = (�

A

(

~

i); �

A

(

~

i)) = (p;

~

j)

is a mapping of the global index

~

i of the array A to a local index

~

j for a unique pro-

cessor p. Each distribution function has two component functions � and �. These

functions are used to compute ownership and location information. For a given ar-

ray A, the owner function �

A

maps the global index

~

i to its unique processor owner

p, and the local index function �

A

maps the global index

~

i to a local index

~

j.

6.2.2 Regular distributions

The formalism described for distribution functions are applicable for both regular

and irregular distributions. An advantage of the simple regular distributions is that

their corresponding distribution functions can be easily derived at compile-time. For

instance, given the following regular distributions,

DIMENSION SEV(N),AP(N,N)

DISTRIBUTE SEV(BLOCK(P))

DISTRIBUTE AP(BLOCK(P),:)

the distribution functions are :

�

(block)

SEV

(i) = (di=BlockSizee; (i� 1) mod BlockSize+ 1)

�

(block;:)

AP

(i; j) = (di=BlockSizee; ((i� 1) mod BlockSize+ 1; j))

where P indicates the number of processors, and

BlockSize = dN=P e

6.2.3 Computation

Computation is represented by the following simple loop nest:
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DO

~

i =

~

l to ~m by ~s

X(g(

~

i)) = Y (h(

~

i))

enddo

In this loop-nest

~

i is the set of loop iterations. It is also displayed as the triplet

[

~

l : ~m : ~s]. In addition, X and Y are distributed arrays, and g and h are the

subscript functions for the left hand side and right hand side array references, re-

spectively.

6.2.4 Image, local index sets

The image of an array X on a processor p is de�ned as follows [9]:

image

X

(p) = f

~

ij�

X

(

~

i) = pg

which is the set of all array indices that cause a reference to a local element of

array X, as determined by the distribution functions for that array. Hence, image

describes all the elements of array X assigned to a particular processor p. This

processor is denoted by t

p

.

6.2.5 Iteration sets

The iteration set of a reference R for a processor p is de�ned to be the set of loop

iterations

~

j that cause R to access data owned by p. The iteration set can be con-

structed in a very simple manner. The iteration set for a processor p with respect

to reference X(g(

~

k)) is simply g

�1

(image

X

(p)).

6.3 Parallel Code Generation

Once the parallelism in the sequential program has been expressed in terms of the

distribution functions, we need to use this information and apply the owner's com-

pute rule to cut the loops operating on the partitioned data and �nd out where
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communication needs to be introduced for non-local data accesses. This can be per-

formed in two ways with di�ering levels of sophistication. For loop-nests which can

be characterized at compile-time and have a relatively straightforward loop bound

structure (e.g. constant bounds), we can use compile-time resolution to parallelize

the code.

6.3.1 Run-time resolution

When the loop-nests cannot be characterized e�ectively at compile-time (e.g. be-

cause of non constant loop bounds, complicated subscript functions etc.), we need

to resort to run-time resolution. In this approach, the loops are not cut but the data

is cut. If the input program is :

do

~

k =

~

l to ~m by ~s

X(g(

~

k)) = Y (h(

~

k))

enddo

The parallel run-time code is:

do

~

k =

~

l to ~m by ~s

if myproc = owner(Y (h(

~

k))) then

sendY (h(

~

k))toowner(X(g(

~

k)))

if myproc = owner(X(g(

~

k))) then

recvY (h(

~

k))fromowner(Y (h(

~

k)))

X(g(

~

k)) = Y (h(

~

k))

endif

enddo

The feasibility of run-time resolution is based on the assumption that evaluation of

guards is much less expensive than a 
oating point operation. If this is true, run-

time resolution is a relatively straightforward parallelization strategy for those loop-

nests which cannot be handled by compile-time resolution e�ectively (this would

include the vast majority of loop-nests in typical real code). It may be be noted
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that compile-time resolution is not always possible and in such cases it is necessary

to use run-time resolution. We however do not generate new communications (the

above example has just been mentioned to illustrate the run-time resolution strat-

egy.)

6.3.2 Compile-time resolution

When the loop-nests can be characterized e�ectively at compile-time, e�cient code

can be generated at compile-time. This may be accomplished by a combination

of reducing loop bounds and guarding individual statements. Both algorithms are

presented below [9]

Loop bounds reduction

The algorithm for loop bounds reduction is given below. The algorithm works as

follows. First, the iteration sets for all the lhs are computed for the local processor

t

p

. The loop bounds are then set to the union of all these sets.

for each loop nest

~

k = [

~

l : ~m : ~s] do

ReducedIterSet = �

for each statement

i

in loop with lhs = X

i

(g

i

(

~

k)) do

IterSet = g

�1

i

(image

X

(t

p

)) \ [

~

l : ~m : ~s]

ReducedIterSet = ReducedIterSet [ IterSet

endfor

reduce bounds of loop nest to those in ReducedIterSet

endfor

Guard introduction

In the case when all assignment statements in a loop nest have the same iteration

sets, we do not need any individual statement masks. However, if this is not true,
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we need to introduce guards for individual statements. The algorithm given below

also clubs together successive statements having the same mask.

for each loop nest

~

k = [

~

l : ~m : ~s] do

PreviousIterSet = [

~

l : ~m : ~s]

for each statement

i

in loop in order do

if statement

i

= assignment and lhs = global array X

i

(g

i

(

~

k)) then

IterSet = g

�1

i

(image

X

(t

p

)) \ [

~

l : ~m : ~s]

else

IterSet = [

~

l : ~m : ~s]

endif

if IterSet = PreviousIterSet then

insert statement

i

after statement

i�1

else

terminate previous mask if it exists

create new mask for IterSet and insert statement

i

inside mask

PreviousIterSet = IterSet

endif

endfor

endfor
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6.4 Interprocedural Compilation

In this section we describe the phases of interprocedural compilation performed by

our system. We �rst build the call graph of the various routines in our project. This

call graph is used in the Reaching Decompositions procedure described next.

6.4.1 Reaching decompositions

Interprocedural compilation is necessary to know the data decomposition of a vari-

able at every point it is referenced in the program. Procedures inherit the data

decompositions of their callers. For each call to a procedure, formal parameters in-

herit the decompositions of the corresponding actual parameters passed at the call,

and global variables (passed through the COMMON statement) retain their decom-

position from the caller. When a user adds a new array variable to the sequential

code, it may be that its decomposition is provided only by matching the corre-

sponding actual and formal parameters of a particular subroutine. So the problem

is really circular. Not only do procedures inherit decompositions from their callers,

but distributions of arrays in the callers might also be determined only by reverse

inheritance from the corresponding formal parameter. We break this circularity by

making two passes of the reaching decompositions procedure (detailed below) over

the call graph. One a top-down pass and another in the reverse direction. In both

these passes the distributions are also determined for the corresponding COMMON

variables in all the procedures in the project. During local analysis we calculate the

decompositions that reach each call site C. Formally (see [9],

LOCALREACHING(X) = f< D;V > jD is the set of decomposition speci�cations

reaching actual parameter or global variable V at point Xg.

LOCALREACHINGmay include elements of the form< T; V > if V may be reached

by a decomposition inherited from a caller. Formally,

REACHING(P) = f< D;V > jD is the set of decomposition speci�cations reaching

formal parameter or global variable V at procedure Pg.
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Reaching Decompositions Algorithm [9]

f* Local analysis phase *g

for each procedure P do

initialize decomposition of all variables to T

for each call site C in P do

calculate LOCALREACHING(C)

endfor

endfor

f* Interprocedural propagation phase *g

for each procedure P do (in topological order)

calculate REACHING(P) =

[

P invoked at C

Translate(LOCALREACHING(C))

clone P if multiple decompositions found

for each call site C in P do

for each element < T;X >2 LOCALREACHING(C) do

replace with < D;X >2 REACHING(P)

endfor

endfor

endfor

f* Interprocedural code generation phase *g

for each procedure P do (in reverse topological order)

calculate LOCALREACHING for all variables in P

endfor

The function Translate maps actual parameters in the LOCALREACHING set of

a call to formal parameters in the called procedure. Global variables are simply

copied,and actual parameters are replaced by the corresponding formal parameters.

(Another issue is handling of array reshaping of array variables across the procedure

boundaries that we have also taken care of, albeit in the restricted sense.) REACH-

ING(P) is computed as the union of the translated LOCALREACHING sets for

all calls to P. We then update all LOCALREACHING sets in P that contain T.

Each element < T; V > is expanded to < D;V >, where D is the set of decomposi-

tions for variable V in REACHING(P). This step propagates decompositions along

paths in the call graph. During code generation the compiler needs to determine
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which decomposition reaches each variable reference. It repeats the calculation of

LOCALREACHING for each procedure, taking REACHING into account.

6.4.2 Array reshaping

Another involved issue with interprocedural compilation is of array reshaping across

procedure boundaries. We have also handled this issue, although to a limited ex-

tent. A simple case in which distributions of reshaped arrays may be mapped is

when a dimension has been collapsed to give a larger array. If the distribution of

the collapsed dimension is replicated or sequentialized then the distributions of the

reshaped array can be found out by simply multiplying the block size of the latter

array by the size of the collapsed dimension (in the latter case). Our system also

handles some other cases of array rehsaping in which a dimension may be exploded

to yield more dimensions.

6.5 Discussion

We have shown how the compiler utilizes compile-time analysis to avoid the ine�-

ciencies of run-time resolution. Its code generation strategy is based on the owner

computes rule. Fortran D data decomposition speci�cations are translated into

mathematical functions that determine the ownership of local data. By composing

these with subscript functions or their inverse, the compiler can partition the com-

putation and determine nonlocal access at compile-time. This information, along

with that obtained by various phases of interprocedural compilation, helps the third

component of our system (the code generator) to generate e�cient compile-time

parallel programs.



Chapter 7

Conclusion and Directions for

Future Work

The central idea of this thesis is that automating the process of making modi�cations

to sequential code into a given parallelization strategy is more feasible and desirable

than attempting completely automatic parallelization. Our tool demonstrates that

with minimal language and run-time support, e�cient distributed memory MIMD

programs can be produced with little e�ort. In this chapter we summarize the work

embodied in this thesis. We present the status of the tool as of now and consider

areas for future work.

7.1 Summary and Current Status

Our prototype tool for automatically incorporating modi�cations to sequential code

is at a fairly mature stage. The program analyzer and restructurer (the �rst compo-

nent of our system) is a sophisticated tool in itself that is capable of 1) understanding

the user annotations and utilizing them purposefully for code generation, 2) Build-

ing the annotated parse tree of a sequential fortran program and doing a �rst pass

analysis of the program. The second component that determines the unknown dis-

tributions has also been implemented and tested on a large number of programs.

The third component of our system, the compile-time code generator is an advanced

parallel compiler that performs interprocedural compilation and can generate e�-

cient compile-time code for the real ,for example, the weather code. Almost all
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subroutines of the routine PGloopa.f (those subroutines that do not involve any

communication) have been parallelized (using the parser for Fortran D) and tested

to yield correct results. We have been able to implement Compile-Time resolution

for complicated loop nests and subscript functions, including the complicated access

patterns of the linearized arrays.

7.2 Future Work

There are many ideas which can be realised on the basic platform provided by this

tool.

7.2.1 Removal of user annotations

Our system requires the user to guide it in the process of parallelization by providing

it with some directions in the form of user annotations described in Chapter 2.

Removal of the necessity of user providing these guidelines would be very desirable,

even though, as also mentioned previously, it would place considerable burden on

the system.

7.2.2 Removal of communication free restraint

Our system only considers programs that do not involve any communication. The

system needs to be extended to those cases when there are communications in the

parallel code. In such cases, di�erent alignment techniques will have to be used and

con
icting constraints will have to be weighted according to the quality measure of

the amount of communication generated by it. Another issue that would be needed

to be handled then will be the optimization of communications, the most important

factor when communications are introduced in a parallel program.

7.2.3 Optimizations

The SPMD program being generated at present is fairly e�cient. However, there is

scope of providing more optimizations. In our system we do perform some prelim-
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inary optimizations like taking the union of guards of consecutive statements and

dumping the unioned guard, rather than dumping the same guard for every consec-

utive statement. Possibility of optimization in terms of dumping of guards needs to

further investigated in case of FOR loops and procedure/subroutine calls.

7.2.4 Automatic data partitioning

The goal of an automatic data partitioner is to choose an e�cient data decomposi-

tion. Several researchers [2], [3], [4], [5], [12], [6] have focussed on this aspect, but

lot of work is still needed to be done.

7.2.5 Automatic parallelization

Ofcourse the most ideal thing would be to be able to develop a fully automatic

parallelizing tool that parallelizes any sequential code without any user intervention.

But till the time this objective is ful�lled, researchers will have to come up with less

ambitious systems. Our thesis can be considered to be a step in that direction.



Appendix A

Tutorial Introduction to Our

System

We have also built a Graphical User Interface for ease in using our system. The

system can be invoked by the command xdemo in the directory (at dhoop)

/others/nmittal/fparse/sage/sigma/code/xcode

The �le BT README in the same directory also gives some instructions in handling

our system. When one invokes xdemo, a screen similar to that shown in �gure A.1

(the �gure shows the screen when the File menu button has been selected) appears

on the screen. The menu options are explained as under:

� File Using this menu option, one can load, save and edit one's �les as in a

text editor. The editor supports most of the commands of the emacs editor

for insertion, deletion and other editing functions. The scrollbar or the arrow

keys can be used for scrolling the window.

� Options This menu option allows the user to change fonts so that he can see

the �le in a larger/smaller font than the default font.

� Parse Pressing this menu button invokes the �rst component of our system,

that performs program analysis and restructuring. If analysis is completed

successfully, then a small message box saying the same appears after some

time. Any errors in invocation are put on the window from where xdemo was

invoked.
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Figure A.1: Sample view of the user interface
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� Synthesize Pressing this menu button invokes the distribution �nder and then

the compile-time code generator. After the two functions have been completed

successfully, a message box indicating the same appears on the screen. Then

the user can view the generated parallel �le and run it on PVM to �nd out

the results. Any errors/messages in invocation are put on the window from

where xdemo was invoked.
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