
s

Technical Reference

Fixed-Point Arithmetic: An Introduction 1 (15)

Author Date Time Rev No. Reference

Randy Yates January 2, 2013 16:29 PA8 n/a fp.tex

Fixed-Point Arithmetic: An Introduction

Randy Yates

January 2, 2013

s

s i g n a l p r o c e s s i n g s y s t e m s

http://www.digitalsignallabs.com

Typeset using LATEX2ε

Digital Signal Labs Public Information

http://www.digitalsignallabs.com

s

Technical Reference

Fixed-Point Arithmetic: An Introduction 2 (15)

Author Date Time Rev No. Reference

Randy Yates January 2, 2013 16:29 PA8 n/a fp.tex

Contents

1 Introduction 3

2 Fixed-Point Binary Representations 3

2.1 Unsigned Fixed-Point Rationals . 4

3 The Operations of One’s Complement and Two’s Complement 5

4 Signed Two’s Complement Fixed-Point Rationals 5

5 Fundamental Rules of Fixed-Point Arithmetic 6

5.1 Unsigned Wordlength . 6

5.2 Signed Wordlength . 6

5.3 Unsigned Range . 6

5.4 Signed Range . 6

5.5 Addition Operands . 6

5.6 Addition Result . 7

5.7 Unsigned Multiplication . 7

5.8 Signed Multiplication . 7

5.9 Unsigned Division . 7

5.10 Signed Division . 8

5.11 Wordlength Reduction . 8

5.12 Shifting . 9

5.12.1 Literal Shift . 9

5.12.1.1 Multiplying/Dividing By A Power of Two . 9

5.12.1.2 Modifying Scaling . 9

5.12.2 Virtual Shift . 10

6 Dimensional Analysis in Fixed-Point Arithmetic 10

7 Concepts of Finite Precision Math 12

7.1 Precision . 12

7.2 Resolution . 12

7.3 Range . 12

7.4 Accuracy . 12

7.5 Dynamic Range . 12

8 Fixed-Point Analysis—An Example 13

9 Acknowledgments 14

10 Terms and Abbreviations 14

11 Revision History 14

12 References 14

List of Figures

List of Tables
1 Revision History . 15

Digital Signal Labs Public Information

s

Technical Reference

Fixed-Point Arithmetic: An Introduction 3 (15)

Author Date Time Rev No. Reference

Randy Yates January 2, 2013 16:29 PA8 n/a fp.tex

1 Introduction

This document presents definitions of signed and unsigned fixed-point binary number representations and develops basic

rules and guidelines for the manipulation of these number representations using the common arithmetic and logical

operations found in fixed-point DSPs and hardware components.

While there is nothing particularly difficult about this subject, I found little documentation either in hardcopy or on the

web. What documentation I did find was disjointed, never putting together all of the aspects of fixed-point arithmetic

that I think are important. I therefore decided to develop this material and to place it on the web not only for my own

reference but for the benefit of others who, like myself, find themselves needing a complete understanding of the issues

in implementing fixed-point algorithms on platforms utilizing integer arithmetic.

During the writing of this paper, I was developing assembly language code for the Texas Instruments TMS320C50

Digital Signal Processor, thus my approach to the subject is undoubtedly biased towards this processor in terms of

the operation of the fundamental arithmetic operations. For example, the C50 performs adds and multiplies as if the

numbers are simple signed two’s complement integers. Contrast this against the Motorola 56k series which performs

two’s complement fractional arithmetic, with values always in the range −1 ≤ x < +1.

It is my hope that this material is clear, accurate, and helpful. If you find any errors or inconsistencies, please email me

at yates@ieee.org.

Finally, the reader may be interested in the author’s related paper [1] on the application of fixed-point arithmetic to the

implementation of FIR filters.

2 Fixed-Point Binary Representations

A collection of N (N a positive integer) binary digits (bits) has 2N possible states. This can be seen from elementary

counting theory, which tells us that there are two possibilities for the first bit, two possibilities for the next bit, and so

on until the last bit, resulting in

2× 2× . . .× 2
︸ ︷︷ ︸

Ntimes

= 2N

possibilities.

In the most general sense, we can allow these states to represent anything conceivable. In the case of an N-bit binary

word, some examples are up to 2N :

1. students at a university;

2. species of plants;

3. atomic elements;

4. integers;

5. voltage levels.

Drawing from set theory and elementary abstract algebra, one could view a representation as an onto mapping between

the binary states and the elements in the representation set (in the case of unassigned binary states, we assume there

is an “unassigned” element in the representation set to which all such states are mapped).

Digital Signal Labs Public Information

mailto:yates@ieee.org

s

Technical Reference

Fixed-Point Arithmetic: An Introduction 4 (15)

Author Date Time Rev No. Reference

Randy Yates January 2, 2013 16:29 PA8 n/a fp.tex

The salient point is that there is no meaning inherent in a binary word, although most people are tempted to think of

them (at first glance, anyway) as positive integers (i.e., the natural binary representation, defined in the next section).

However, the meaning of an N-bit binary word depends entirely on its interpretation, i.e., on the representation set

and the mapping we choose to use.

In this section, we consider representations in which the representation set is a particular subset of the rational numbers.

Recall that the rational numbers are the set of numbers expressible as a/b, where a, b ∈ Z, b 6= 0. (Z is the set of

integers.) The subset to which we refer are those rationals for which b = 2n. We also further constrain the representation

sets to be those in which every element in the set has the same number of binary digits and in which every element in

the set has the binary point at the same position, i.e., the binary point is fixed. Thus these representations are called

“fixed-point.”

The following sections explain four common binary representations: unsigned integers, unsigned fixed-point rationals,

signed two’s complement integers, and signed two’s complement fixed-point rationals. We view the integer representa-

tions as special cases of the fixed-point rational representations, therefore we begin by defining the fixed-point rational

representations and then subsequently show how these can simplify to the integer representations. We begin with the

unsigned representations since they require nothing more than basic algebra. Section 2.2 defines the notion of a “two’s

complement” so that we may proceed well-grounded to the discussion of signed two’s complement rationals in section

2.3.

2.1 Unsigned Fixed-Point Rationals

An N-bit binary word, when interpreted as an unsigned fixed-point rational, can take on values from a subset P of the

non-negative rationals given by

P = {p/2b | 0 ≤ p ≤ 2N − 1, p ∈ Z}.

Note that P contains 2N elements. We denote such a representation U(a, b), where a = N − b.

In the U(a, b) representation, the nth bit, counting from right to left and beginning at 0, has a weight of 2n/2b = 2n−b.

Note that when n = b the weight is exactly 1. Similar to normal everyday base-10 decimal notation, the binary point

is between this bit and the bit to the right. This is sometimes referred to as the implied binary point. A U(a, b)

representation has a integer bits and b fractional bits.

The value of a particular N-bit binary number x in a U(a, b) representation is given by the expression

x = (1/2b)

N−1∑

n=0

2nxn

where xn represents bit n of x . The range of a U(a, b) representation is from 0 to (2N − 1)/2b = 2a − 2−b.

For example, the 8-bit unsigned fixed-point rational representation U(6, 2) has the form

b5b4b3b2b1b0.b−1b−2,

where bit bk has a weight of 2k . Note that since b = 2 the binary point is to the left of the second bit from the right

(counting from zero), and thus the number has six integer bits and two fractional bits. This representation has a range

of from 0 to 26 − 2−2 = 64− 1/4 = 63 3/4.

Digital Signal Labs Public Information

s

Technical Reference

Fixed-Point Arithmetic: An Introduction 5 (15)

Author Date Time Rev No. Reference

Randy Yates January 2, 2013 16:29 PA8 n/a fp.tex

The unsigned integer representation can be viewed as a special case of the unsigned fixed-point rational representation

where b = 0. Specifically, an N-bit unsigned integer is identical to a U(N, 0) unsigned fixed-point rational. Thus the

range of an N-bit unsigned integer is

0 ≤ U(N, 0) ≤ 2N − 1.

and it has N integer bits and 0 fractional bits. The unsigned integer representation is sometimes referred to as “natural

binary.”

Examples:

1. U(6, 2). This number has 6+2 = 8 bits and the range is from 0 to 26−1/22 = 63.75. The value 8Ah (1000,1010b)

is

(1/22)(21 + 23 + 27) = 34.5.

2. U(−2, 18). This number has −2 + 18 = 16 bits and the range is from 0 to 2−2 − 1/218 = 0.2499961853027. The

value 04BCh (0000,0100,1011,1100b) is

(1/218)(22 + 23 + 24 + 25 + 27 + 210) = 1212/218 = 0.004623413085938.

3. U(16, 0). This number has 16 + 0 = 16 bits and the range is from 0 to 216 − 1 = 65, 535. The value 04BCh

(0000,0100,1011,1100b) is

(1/20)(22 + 23 + 24 + 25 + 27 + 210) = 1212/20 = 1212.

3 The Operations of One’s Complement and Two’s Complement

Consider an N-bit binary word x interpreted as if in the N-bit natural binary representation (i.e., U(N, 0)). The one’s

complement of x is defined to be an operation that inverts every bit of the original value x . This can be performed

arithmetically in the U(N, 0) representation by subtracting x from 2N − 1. That is, if we denote the one’s complement

of x as x̃ , then

x̃ = 2N − 1− x.

The two’s complement of x , denoted x̂ , is determined by taking the one’s complement of x and then adding one to it:

x̂ = x̃ + 1

= 2N − x.

(1)

Examples:

1. The one’s complement of the U(8,0) number 03h (0000,0011b) is FCh (1111,1100b).

2. The two’s complement of the U(8,0) number 03h (0000,0011b) is FDh (1111,1101b).

4 Signed Two’s Complement Fixed-Point Rationals

An N-bit binary word, when interpreted as a signed two’s complement fixed-point rational, can take on values from a

subset P of the rationals given by

P = {p/2b | − 2N−1 ≤ p ≤ 2N−1 − 1, p ∈ Z}.

Digital Signal Labs Public Information

s

Technical Reference

Fixed-Point Arithmetic: An Introduction 6 (15)

Author Date Time Rev No. Reference

Randy Yates January 2, 2013 16:29 PA8 n/a fp.tex

Note that P contains 2N elements. We denote such a representation A(a, b), where a = N − b − 1.

The value of a specific N-bit binary number x in an A(a,b) representation is given by the expression

x = (1/2b)

[

−2N−1xN−1 +

N−2∑

0

2nxn

]

,

where xn represents bit n of x . The range of an A(a,b) representation is

−2N−1−b ≤ x ≤ +2N−1−b − 1/2b.

Note that the number of bits in the magnitude term of the sum above (the summation, that is) has one less bit than the

equivalent prior unsigned fixed-point rational representation. Further note that these bits are the N − 1 least significant

bits. It is for these reasons that the most-significant bit in a signed two’s complement number is usually referred to as

the sign bit.

Example:

A(13,2). This number has 13+2+1=16 bits and the range is from −213 = −8192 to +213 − 1/4 = 8191.75.

5 Fundamental Rules of Fixed-Point Arithmetic

The following are practical rules of fixed-point arithmetic. For these rules we note that when a scaling can be either

signed (A(a, b)) or unsigned (U(a, b)), we use the notation X(a, b).

5.1 Unsigned Wordlength

The number of bits required to represent U(a, b) is a + b.

5.2 Signed Wordlength

The number of bits required to represent A(a, b) is a + b + 1.

5.3 Unsigned Range

The range of U(a, b) is 0 ≤ x ≤ 2a − 2−b.

5.4 Signed Range

The range of A(a, b) is −2a ≤ α ≤ 2a − 2−b.

5.5 Addition Operands

Two binary numbers must be scaled the same in order to be added. That is, X(c, d) + Y (e, f) is only valid if X = Y

(either both A or both U) and c = e and d = f .

Digital Signal Labs Public Information

s

Technical Reference

Fixed-Point Arithmetic: An Introduction 7 (15)

Author Date Time Rev No. Reference

Randy Yates January 2, 2013 16:29 PA8 n/a fp.tex

5.6 Addition Result

The scale of the sum of two binary numbers scaled X(e, f) is X(e + 1, f), i.e., the sum of two M-bit numbers requires

M + 1 bits.

5.7 Unsigned Multiplication

U(a1, b1)× U(a2, b2) = U(a1 + a2, b1 + b2).

5.8 Signed Multiplication

A(a1, b1)× A(a2, b2) = A(a1 + a2 + 1, b1 + b2).

5.9 Unsigned Division

Let U(a3, b3) =
U(a1,b1)
U(a2,b2)

and consider the largest possible result:

largest result =
largest dividend

smallest divisor

=
2a1 − 2−b1

2−b2
.

= 2a1+b2 − 2b2−b1 . (2)

Thus we require

2a3 − 2−b3 ≥ 2a1+b2 − 2b2−b1 . (3)

It is natural to let a3 = a1 + b2, in which case the inequalities below result:

2a3 − 2−b3 ≥ 2a3 − 2b2−b1

−2−b3 ≥ −2b2−b1

2−b3 ≤ 2b2−b1

−b3 ≤ b2 − b1

b3 ≥ b1 − b2. (4)

Thus we have a constraint on b3 due to b1 and b2.

Now consider the smallest possible result:

smallest result =
smallest dividend

largest divisor

=
2−b1

2a2 − 2−b2
. (5)

This then requires b3 to obey the following constraint:

2−b3 ≤
2−b1

2a2 − 2−b2

b3 ≥ b1 + log2(2
a2 − 2−b2)

(6)

Digital Signal Labs Public Information

s

Technical Reference

Fixed-Point Arithmetic: An Introduction 8 (15)

Author Date Time Rev No. Reference

Randy Yates January 2, 2013 16:29 PA8 n/a fp.tex

If we assume b2 is positive, (6) is the more stringent of the two constraints (4) and (6) on b3. We then express (6) in

a slightly simpler form:

b3 ≥ log2(2
a2+b1 − 2b1−b2). (7)

The final result is then

U(a1, b1)/U(a2, b2) = U(a1 + b2, ⌈log2(2
a2+b1 − 2b1−b2)⌉). (8)

5.10 Signed Division

Let r = n/d where n is scaled A(an, bn) and d is scaled A(ad , bd). What is the scaling of r (A(ar , br))?

|rM | =
|nM |

|dm|
(9)

=
2an

2−bd
(10)

= 2an+bd . (11)

Since this maximum can be positive (when the numerator and denominator are both negative), ar = an + bd + 1.

Similarly,

|rm| =
|nm|

|dM |
(12)

=
2−bn

2ad
(13)

= 2−(ad+bn). (14)

This implies br = ad + bn.

Thus

A(an, bn)

A(ad , bd)
= A(an + bd + 1, ad + bn). (15)

5.11 Wordlength Reduction

Define the operation HIn(X(a, b)) to be the extraction of the n most-significant bits of X(a, b). Similarly, define the

operation LOn(X(a, b)) to be the extraction of the n least-significant bits of X(a, b). For signed values,

HIn(A(a, b)) = A(a, n − a − 1) and

LOn(A(a, b)) = A(n − b − 1, b). (16)

Similarly, for unsigned values,

HIn(U(a, b)) = U(a, n − a) and

LOn(U(a, b)) = U(n − b, b). (17)

Digital Signal Labs Public Information

s

Technical Reference

Fixed-Point Arithmetic: An Introduction 9 (15)

Author Date Time Rev No. Reference

Randy Yates January 2, 2013 16:29 PA8 n/a fp.tex

5.12 Shifting

We define two types of shift operations below, literal and virtual, and describe the scaling results of each.

Note that shifts are expressed in terms of right shifts by integer n. Shifting left is accomplished when n is negative.

5.12.1 Literal Shift

A literal shift occurs when the bit positions in a register move left or right. A literal shift can be performed for two

possible reasons, to divide or multiply by a power of two, or to change the scaling.

In both cases note that this will possibly result in a loss of precision or overflow assuming the output register width is

the same as the input register width.

5.12.1.1 Multiplying/Dividing By A Power of Two A literal shift that is done to multiply or divide by a power of

two shifts the bit positions but keeps the output scaling the same as the input scaling.

Thus we have the following scaling:

X(a, b) >> n = X(a, b). (18)

Example:

Let’s say X is a 16-bit signed two’s complement integer that is scaled A(14,1), or Q1. Let’s set that integer equal to

128: X = +128 = 0x0080, and thus its scaled value is

x = X/21 (19)

= 128/2 (20)

= 64.0 (21)

Now we want to divide that by 4, so we shift it right by 2, X = X >> 2, so that the new value of X is 32. This shift

didn’t change the scaling since we are dividing by actually shifting, so it’s still scaled Q1 after the shift. So now X = 32

and x = X/2 = 16.0. Since the original value of x was 64.0, we see that we have indeed divided that value by 4, which

was the objective.

Note that this is probably a bad way to multiply or divide a fixed-point value since, if you’re multiplying, you run the

risk of overflowing, and if you’re dividing, you run the risk of losing precision. It would be much better to perform the

multiplication or division using the "virtual shift" method described in section 5.12.2.

5.12.1.2 Modifying Scaling A literal shift that is done to modify the scaling shifts the bit positions and makes the

output scaling different than the input scaling. Thus we have the following scaling:

X(a, b) >> n = X(a + n, b − n). (22)

Digital Signal Labs Public Information

s

Technical Reference

Fixed-Point Arithmetic: An Introduction 10 (15)

Author Date Time Rev No. Reference

Randy Yates January 2, 2013 16:29 PA8 n/a fp.tex

Example:

Again let’s say X is a 16-bit signed two’s complement integer that is scaled A(14,1), or Q1, and let’s set that integer

equal to 128: X = +128 = 0x0080, and thus its scaled value is

x = X/21 (23)

= 128/2 (24)

= 64.0 (25)

Now let’s say we want to change the scaling from Q1 to Q3 (or equivalently, from A(14,1) to A(12,3)). So we shift

the integer left by two bits: X = X << 2. So our new integer value is 512, but we’ve now also changed our scaling as

in equation 22 so that it’s A(12,3) (n = −2 here since we’re shifting left).

So in this case our final fixed-point value is still 512 / 8 = 64.0.

5.12.2 Virtual Shift

A virtual shift shifts the virtual binary point1 without modifying the underlying integer value. It can be used as an

alternate method of performing a multiplication or division by a power of two. However, unlike the literal shift case, the

virtual shift method loses no precision and avoids overflow. This is because the bit positions don’t actually move—the

operation is simply a reinterpretation of the scaling.

X(a, b) >> n = X(a − n, b + n). (26)

6 Dimensional Analysis in Fixed-Point Arithmetic

Consider a fixed-point variable x that is scaled A(ax , bx). Denote the scaled value of the variable as lowercase x and the

unscaled value as uppercase X so that

x = X/2bx .

Units, such as inches, seconds, furlongs/fortnight, etc., may be associated with a fixed-point variable by assigning a

weight to the variable. Denote the scaled weight as w and the unscaled weight as W , so that the value and dimension

of a quantity αx that is to be represented by x can be expressed as

αx = x × w

= X ×W. (27)

Since x = X/2bx ,

x × w = X/2bx × w, (28)

and since x × w = X ×W ,

X/2bx × w = X ×W ⇒ w = 2bxW. (29)

1The virtual binary point is called virtual since it doesn’t actually exist anywhere except in the programmer’s mind.

Digital Signal Labs Public Information

s

Technical Reference

Fixed-Point Arithmetic: An Introduction 11 (15)

Author Date Time Rev No. Reference

Randy Yates January 2, 2013 16:29 PA8 n/a fp.tex

Example 1:

An inertial sensor provides a linear acceleration signal to a 16-bit signed two’s complement A/D converter with a

reference voltage of 2V peak. The analog sensor signal is related to acceleration in meters per second squared through

the conversion m/(s2 − volt), i.e., the actual acceleration α(t) in meters/second2 can be determined from the sensor

voltage v(t) as

α(t) = v(t) [volts]×

[
m

(s2)(volt)

]

. (30)

If we consider the incoming A/D samples to be scaled A(16,−1), what is the corresponding scaled and unscaled weights?

Solution:

We know that -32768 corresponds to -2 volts. Using the equation

αx = x × w

= X/2bx × w (31)

we simply plug in the values to obtain

−2 [volts] = −32768/2−1 × wv . (32)

Solving for wv provides the intermediate result

wv =

[
volt

32768

]

. (33)

Let’s check: An unscaled value of 32767 corresponds to a scaled value of v = 32767/2−1 = 65534, and thus the

physical quantity αv to which this corresponds is

αv = v × wv

= 65534×

[
volt

32768

]

= 1.999939 [volts] . (34)

Now simply multiply wv by the original analog conversion factor
[

m
(s2)(volt)

]

to obtain the acceleration weighting wa

directly:

wa = wv ×

[
m

(s2)(volt)

]

=

[
volt

32768

]

×

[
m

(s2)(volt)

]

=
[m

32768s2

]

. (35)

The unscaled weight is then determined from the scaled weight and the scaling as

Wa = wa/2
ba

=
[m

32768s2

]

/2−1

=
[m

16384s2

]

. (36)

Digital Signal Labs Public Information

s

Technical Reference

Fixed-Point Arithmetic: An Introduction 12 (15)

Author Date Time Rev No. Reference

Randy Yates January 2, 2013 16:29 PA8 n/a fp.tex

Example 2:

Bias is an important error in inertial measurement systems. An average scaled value of 29 was measured from the inertial

measurement system in example 1 with the system at rest. What is the bias β?

Solution:

β = x × w

= 29×
[m

32768s2

]

= 0.88501× 10−3
[m

s2

]

. (37)

7 Concepts of Finite Precision Math

7.1 Precision

Precision is the maximum number of non-zero bits representable. For example, an A(13,2) number has a precision of

16 bits. For fixed-point representations, precision is equal to the wordlength.

7.2 Resolution

Resolution is the smallest non-zero magnitude representable. For example, an A(13,2) has a resolution of 1/22 = 0.25.

7.3 Range

Range is the difference between the most negative number representable and the most positive number representable,

XR = XMAX+ −XMAX−. (38)

For example, an A(13,2) number has a range from -8192 to +8191.75, i.e., 16383.75.

7.4 Accuracy

Accuracy is the magnitude of the maximum difference between a real value and it’s representation. For example, the

accuracy of an A(13,2) number is 1/8. Note that accuracy and resolution are related as follows:

A(x) = R(x)/2, (39)

where A(x) is the accuracy of x and R(x) is the resolution of x .

7.5 Dynamic Range

Dynamic range is the ratio of the maximum absolute value representable and the minimum positive (i.e., non-zero)

absolute value representable. For a signed fixed-point rational representation A(a, b), dynamic range is

×2a/2−b = 2a+b = 2N−1. (40)

Digital Signal Labs Public Information

s

Technical Reference

Fixed-Point Arithmetic: An Introduction 13 (15)

Author Date Time Rev No. Reference

Randy Yates January 2, 2013 16:29 PA8 n/a fp.tex

For an unsigned fixed-point rational representation U(a, b), dynamic range is

(2a − 2−b)/2−b = 2a+b − 1 = 2N − 1. (41)

For N of any significant size, the “-1” is negligible.

8 Fixed-Point Analysis—An Example

An algorithm is usually defined and developed using an algebraically complete number system such as the real or complex

numbers. To be more precise, the operations of addition, subtraction, multiplication, and division are performed (for

example) over the field (ℜ,+,×), where subtraction is equivalent to adding the additive inverse and division is equivalent

to multiplying by the multiplicative inverse.

As an example, consider the algorithm for calculating the average of the square of a digital signal x(n) over the interval

N (here, the signal is considered to be quantized in time but not in amplitude):

y(n) =
1

N

N−1∑

k=0

x2(n − k). (42)

In this form, the algorithm implicitly assumes x(n) ∈ ℜ, and the operations of addition and multiplication are performed

over the field (ℜ,+,×). In this case, the numerical representations have infinite precision.

This state of affairs is perfectly acceptable when working with pencil and paper or higher-level floating-point computing

environments such as Matlab or MathCad. However, when the algorithm is to be implemented in fixed-point hardware

or software, it must necessarily utilize a finite number of binary digits to represent x(n), the intermediate products and

sums, and the output y(n).

Thus the basic task of converting such an algorithm into fixed-point arithmetic is that of determining the wordlength,

accuracy, and range required for each of the arithmetic operations involved in the algorithm. In the terms of the

fundamentals given in section 2, we need to determine a) whether the value should be signed (A(a, b)) or unsigned

(U(a, b)), b) the value of N (the wordlength), and c) the values for a and b (the accuracy and range). Any two of

wordlength, accuracy, and range determine the third. For example, given wordlength and accuracy, range is determined.

In other words, we cannot independently specify all of wordlength, accuracy, and range.

Continuing with our example, assume the input x(n) is scaled A(15, 0), i.e., plain old 16-bit signed two’s complement

samples. The first operation to be performed is to compute the square. According to the rules of fixed-point arithmetic,

A(15, 0) × A(15, 0) = A(31, 0). In other words, we require 32 bits for the result of the square in order to guarantee

that we will avoid overflow and maintain precision. It is at this point that design tradeoffs and other information begin

to affect how we implement our algorithm.

For example, in one possible scenario, we may know a-priori that the input data x(n) do not span the full dynamic range

of the A(15, 0) representation, thus it may be possible to reduce the 32-bit requirement for the result and still guarantee

that the square operation does not overflow.

Another possible scenario is that we do not require all of the precision in the result, and this also will reduce the required

wordlength.

In yet a third scenario, we may look ahead to the summation to be performed and realize that if we don’t scale back

the result of each square we will overflow the sum that is to subsequently be performed (assuming we have a 32-bit

accumulator). On the other hand, we may be using a fixed-point processor such as the TI TMS320C54x which has

Digital Signal Labs Public Information

s

Technical Reference

Fixed-Point Arithmetic: An Introduction 14 (15)

Author Date Time Rev No. Reference

Randy Yates January 2, 2013 16:29 PA8 n/a fp.tex

a 40-bit accumulator, thus we have 8 “guard bits” past the 32-bit result which may be used in the accumulations to

prevent overflow for up to 256 (8=log2(256)) sums.

To complete our example, let’s further assume that a) we keep all 32 bits of the result of the squaring operation, b) the

averaging “time,” N, does not exceed 24 = 16 samples, c) we are using a fixed-point processor with an accumulator of

32 + 4 = 36 bits or greater, and d) the output wordlength for y(n) is 16 bits (A(15, 0)). The final decision that must

be made is to determine which method we will use to form a 16-bit value from our 36-bit sum. It is clear that we should

take the 16 bits from bits 20 to 35 of the accumulator (where bit 0 is the LSB) in order to avoid overflowing the output,

but shall we truncate or round? Shall we utilize some type of dithering or noise-shaping? These are all questions that

relate to the process of quantization since we are quantizing a 36-bit word to a 16-bit word. The theory of quantization

and the tradeoffs to be made are outside the scope of this topic.

9 Acknowledgments

I wish to thank my colleague John Storbeck, a fellow DSP programmer and full-time employee of GEC-Marconi Hazeltine

(Wayne, NJ), for his guidance during my early encounters with the C50 and fixed-point programming, and for his stealy

critiques of my errant thoughts on assorted programming solutions for the C50. I also wish to thank Dr. Donald

Heckathorn for nurturing my knowledge of fixed-point arithmetic during the same time-frame. Finally, I wish to thank

my friend and fellow DSP engineering colleague Robert Bristow-Johnson for his encouragement and guidance during my

continuing journey through the world of fixed-point programming and digital signal processing.

10 Terms and Abbreviations

DSP Digital Signal Processor, or Digital Signal Processing.

FIR Finite Impulse Response. A type of digital filter that does not require a recursive architecture (i.e., the use of

feedback), that is inherently stable, and generally easier to design and implement than IIR filters. However, an

FIR filter requires more computational resources than an equivalent IIR filter.

IIR Infinite Impulse Response. A type of digital filter that requires a recursive architecture, is potentially unstable,

and substantially more difficult to design and implement than FIR filters. However, an IIR filter requires less

computational resources than an equivalent FIR filter.

11 Revision History

Table 1 lists the revision history for this document.

12 References

References

[1] R. Yates, “Practical Considerations in Fixed-Point Arithmetic: FIR Filter Implementations.”

Digital Signal Labs Public Information

http://www.digitalsignallabs.com/fir.pdf

s

Technical Reference

Fixed-Point Arithmetic: An Introduction 15 (15)

Author Date Time Rev No. Reference

Randy Yates January 2, 2013 16:29 PA8 n/a fp.tex

Rev. Date/Time Person Changes

PA1 circa 1997 Randy Yates Initial Version

PA2 unknown Randy Yates 1. Converted to Digital Signal Labs document format.

2. Corrected signed dynamic range in equation 40.
PA3 29-Mar-2007 Randy Yates 1. Updated document design.

PA4 17-Apr-2007 Randy Yates 1. Removed “this is a test” from introductory paragraph (!).

2. Added justification of signed division scaling.
PA5 23-Aug-2007 Randy Yates Updated shift section.

PA6 07-Jul-2009 Randy Yates 1. Added derivation of unsigned division result.

2. Changed units notation to remove what looked like a subtractions (−).
PA7 01-Jan-2013 Randy Yates 1. Changed “right” to “left” in description of binary point position in last paragraph of page

four (section 2.1). Thanks to Rick Lyons for finding this error!

2. Added examples to sections 5.12.1.1 and 5.12.1.2.
PA8 02-Jan-2013 Randy Yates 1. Changed “will lose precision” to “run the risk of losing precision” in section 5.12.1.1.

Table 1: Revision History

Digital Signal Labs Public Information

	Introduction
	Fixed-Point Binary Representations
	Unsigned Fixed-Point Rationals

	The Operations of One's Complement and Two's Complement
	Signed Two's Complement Fixed-Point Rationals
	Fundamental Rules of Fixed-Point Arithmetic
	Unsigned Wordlength
	Signed Wordlength
	Unsigned Range
	Signed Range
	Addition Operands
	Addition Result
	Unsigned Multiplication
	Signed Multiplication
	Unsigned Division
	Signed Division
	Wordlength Reduction
	Shifting
	Literal Shift
	Multiplying/Dividing By A Power of Two
	Modifying Scaling

	Virtual Shift

	Dimensional Analysis in Fixed-Point Arithmetic
	Concepts of Finite Precision Math
	Precision
	Resolution
	Range
	Accuracy
	Dynamic Range

	Fixed-Point Analysis—An Example
	Acknowledgments
	Terms and Abbreviations
	Revision History
	References

