
INTEGRATION OF CONTROL THEORY AND SCHEDULING METHODS FOR SUPPLY CHAIN

MANAGEMENT

by

Kaushik Subramanian

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Chemical and Biological Engineering)

at the

UNIVERSITY OF WISCONSIN–MADISON

2012

Date of final oral examination: 12/19/12

The disseration is approved by the following members of the Final Oral Committee:

James B. Rawlings, Professor, Chemical and Biological Engineering

Christos T. Maravelias, Associate Professor, Chemical and Biological Engineering

Micheal D. Graham, Professor, Chemical and Biological Engineering

Ross E. Swaney, Associate Professor, Chemical and Biological Engineering

Jennifer Reed, Assistant Professor, Chemical and Biological Engineering

Ananth Krishnamurthy, Associate Professor, Industrial and Systems Engineering



© Copyright by Kaushik Subramanian 2012

All Rights Reserved



i

To my teachers.



ii

ACKNOWLEDGMENTS

I would like to express my sincere thanks to my advisers, Prof Jim Rawlings and Prof. Chris-

tos Maravelias for their invaluable help and guidance. Their depth of knowledge, attention to

detail, and enthusiasm to teach and learn has always motivated me.

I would like to thank Prof Scahin Patwardhan, for his invaluable advice and guidance re-

garding my decision to pursue a PhD.

I also thank Prof. Ross Swaney, Prof. Jennifer Reed, Prof. Michael Graham and Prof. Ananth

Krishnamurthy for taking time to be on my thesis committee.

I would like to thank Dr Jesus Flores-Cerrillo and Dr Lawrence Megan from the Advanced

Controls and Optimizations group at Praxair, Tonawanda, NY, for giving me the opportunity to

work in an exciting industrial research group. I have returned brimming with new ideas after

my visits to Praxair.

I would like to thank Dr Aswin Venkat and Brent Miller from Bloom Energy. The experience

working in a start-up company is truly unique.

I would like to thank all the members of Jim Rawlings’ group. It is always a pleasure inter-

acting with Ankur Gupta, may it be about optimization algorithms or about the Lannister clan.

Rishi Srivastava has been a very good and patient friend. I enjoyed my time with Brett Stewart,

whose guidance helped me a lot in understanding my research problem. Rishi Amrit has been

a savior whenever I experienced computing troubles. His help in explaining Economic MPC to

me has helped me immensely. I have also enjoyed interacting with Cuyler Bates, who has lis-

tened patiently to all my new ideas. I must thank Mary Diaz, for all her administrative support

and the delicious cookies and cakes.



iii

I am also thankful to all the friends I have made in Madison. The memories with Swami,

Raghu, Sriram, Pavithra, Janani are something that I shall cherish for the rest of my life.

Thanks to the “Panni group” - Sashi, Shriram, Srikant, Anand. I look forward to many more

New year “reunion” trips!

Finally, a big thanks to Amma, Appa and, Vidu for all their love, encouragement and support.

Kaushik - Madison, WI



iv

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Model predictive control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Centralized MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Optimal MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Suboptimal MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Distributed MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Models, constraints and objective functions . . . . . . . . . . . . . . . . . . . 16
2.3.2 Noncooperative MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Cooperative MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Robust cooperative MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.2 Tube based MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 A state space model for chemical production scheduling . . . . . . . . . . . . . . . . . 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1 Chemical production scheduling problems and models . . . . . . . . . . . . 51
3.2.2 Reactive scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 State space scheduling model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.1 General problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



v

Page

3.3.2 Scheduling MIP model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.3 Inputs and states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.4 Disturbances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.5 Final model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.6 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4.1 Nominal demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4.2 Rescheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.5.1 Generality of the scheduling model . . . . . . . . . . . . . . . . . . . . . . . . 71
3.5.2 Stochastic vs. deterministic approaches . . . . . . . . . . . . . . . . . . . . . 71
3.5.3 Types of disturbances and uncertainties . . . . . . . . . . . . . . . . . . . . . 74
3.5.4 MPC tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Distributed MPC for supply chain optimization . . . . . . . . . . . . . . . . . . . . . . . 78

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2 Literature survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3 Dynamic modeling of the supply chain . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.1 Nominal demands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.4.2 Stochastic demands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.4.3 Multi-echelon supply chain example . . . . . . . . . . . . . . . . . . . . . . . 104

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5 Economic MPC for supply chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.1 Economic MPC theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.1.1 Terminal equality constraint formulation . . . . . . . . . . . . . . . . . . . . . 118
5.1.2 Terminal region formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2 Multi-product, multi-echelon supply chain example . . . . . . . . . . . . . . . . . . 130
5.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.2.2 Scheduling model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6 Conclusions and Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145



vi

LIST OF TABLES

Table Page

4.1 Starting inventory and Inventory targets . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1 Economic cost of implementing MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2 Production lead-times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.3 Transportation lead-times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.4 Nominal demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.5 Variance of demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.6 Target inventories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.7 Capacity constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.8 State economic costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.9 Input costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.10 Steady state inventories for product A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.11 Initial inventories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.12 Average inventory for Product-A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.13 Production costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139



vii

LIST OF FIGURES

Figure Page

2.1 Rolling horizon optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The two-tank system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 State and input profiles for two-tank system under distributed MPC (ncoop: nonco-
operative, coop: cooperative, cent: centralized). . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Two tank system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 (Left) Closed-loop response (Right) Warm start rendered infeasible for actual state

because of disturbance. The warm start is infeasible if V β

N (x, ṽ) > V̄ . . . . . . . . . . . 44

2.6 (Left) Closed-loop response. Notice that we reset the state around t = 15 (Right)
Warm start rendered infeasible for actual state because of disturbance . . . . . . . . . 44

3.1 Simple scheduling problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Scheduling solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Rescheduling leads to infeasibility when no backorders are allowed . . . . . . . . . . . 66

3.4 Periodic solution for the example in the absence of disturbances . . . . . . . . . . . . 67

3.5 Recursive feasibility with terminal constraints . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6 Closed-loop solution solving (3.29) with N = 24h . . . . . . . . . . . . . . . . . . . . . . 69

3.7 Recursive feasibility with terminal constraints for N = 12h . . . . . . . . . . . . . . . . 70

3.8 Closed-loop solution solving (3.29) with N = 12h . . . . . . . . . . . . . . . . . . . . . . 70

3.9 Rescheduling in the presence of disturbances . . . . . . . . . . . . . . . . . . . . . . . . 72

3.10 Closed-loop with disturbances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.11 Closed-loop for terminal constraint formulation with disturbances . . . . . . . . . . . 73



viii

Figure Page

4.1 Supply chain as nodes and arcs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Tank analogy for modeling a node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Two-stage supply chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4 Inventories and orders placed in the supply chain: Order-up-to policy (dec: decen-
tralized, ncoop: noncooperative, coop: cooperative, cent: centralized). . . . . . . . . . 102

4.5 Inventories and orders placed in the supply chain: Inventory position control (dec:
decentralized, ncoop: noncooperative, coop: cooperative, cent: centralized). . . . . . 103

4.6 (Left) Closed-loop response (Right) Warm start rendered infeasible for actual state
because of disturbance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.7 (Left) Closed-loop response. Notice that we reset the state t = 14, t = 24 when the cost
is such that the warm start is feasible for the actual state (Right) Warm start rendered
infeasible for actual state because of disturbance . . . . . . . . . . . . . . . . . . . . . . 105

4.8 Multi-echelon supply chain studied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.9 Convergence of various parallel optimization algorithms for the supply chain example108

4.10 Open-loop prediction cost for cooperative MPC optimizations with 1 iteration . . . . 108

4.11 Inventories in Retailer nodes 1 and 2 when cooperative MPC is initialized with cen-
tralized optimal input at t = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.12 Inventories in Retailer nodes 1 and 2 when cooperative MPC is initialized with sub-
optimal input at t = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.1 Backorder in the retailer for rolling horizon optimization without stability constraints.117

5.2 Closed loop evolution using stabilizing MPC. . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3 Steady-state as a function of the relative weighting between tracking and economics . 123

5.4 Projection of the terminal region onto the Inventory-plane for ω= 0.4 . . . . . . . . . 127

5.5 Closed-loop response for ω= 0.2 (top), ω= 0.4 (middle) and ω= 0.8 (bottom) . . . . . 128

5.6 Multi-product, Multi-echelon supply chain studied . . . . . . . . . . . . . . . . . . . . 130

5.7 Bullwhip effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136



ix

Appendix
Figure Page

5.8 Ordering profile at R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.9 Inventory and Backorder profile at R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.10 Periodic production schedule to respond to nominal demands . . . . . . . . . . . . . . 141

5.11 Production schedule for the MPC without terminal constraints that optimized (5.34)
(Top) compared with production schedule for the MPC with terminal constraints
that optimized (5.36). Note how larger batches are made for the problem with termi-
nal constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.12 Combined backorder at all the retailer nodes . . . . . . . . . . . . . . . . . . . . . . . . 142



x

ABSTRACT

A supply chain is a network of facilities and distribution options that performs the functions

of procuring raw materials, transforming them to products and distributing the finished prod-

ucts to the customers. The modern supply chain is a highly interconnected network of facilities

that are spread over multiple locations and handle multiple products. In a highly competitive

global environment, optimal day-to-day operations of supply chains is essential.

To facilitate optimal operations in supply chains, we propose the use of Model Predictive

Control (MPC) for supply chains. We develop:

• A new cooperative MPC algorithm that can stabilize any centralized stabilizable system

• A new algorithm for robust cooperative MPC

• A state space model for the chemical production scheduling problem

We use the new tools and algorithms to design model predictive controllers for supply chain

models. We demonstrate:

• Cooperative control for supply chains: In cooperative MPC, each node makes its deci-

sions by considering the effects of their decisions on the entire supply chain. We show

that the cooperative controller can perform better than the noncooperative and decen-

tralized controller and can reduce the bullwhip effect in the supply chain.

• Centralized economic control: We propose a new multiobjective stage cost that captures

both the economics and risk at a node, using a weighted sum of an economic stage cost



xi

and a tracking stage cost. We use Economic MPC theory (Amrit, Rawlings, and Angeli,

2011) to design closed-loop stable controllers for the supply chain.

• Integrated supply chain: We show an example of integrating inventory control with pro-

duction scheduling using the tools developed in this thesis. We develop simple terminal

conditions to show recursive feasibility of such integrated control schemes.
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Chapter 1

Introduction

In today’s highly competitive market, it is important that the process industries integrate

their manufacturing processes with the downstream supply chain to maximize economic ben-

efits. For example, BASF was able to generate $10 million/year savings in operating costs by

performing a corporate network optimization (Grossmann, 2005). In recent years, Enterprise

Wide Optimization (EWO) has become an important research area for both academia and in-

dustry. Grossmann (2005) defines EWO as

An area that lies at the interface of chemical engineering (process systems engi-

neering) and operations research. It involves optimizing the operations of supply,

manufacturing (batch or continuous) and distribution in a company. The major

operational activities include planning, scheduling, real-time optimization and in-

ventory control.

In process control technologies like Model Predictive Control (MPC), feedback from the pro-

cess, in terms of measurements of the current state of the plant, is used to improve the control

performance. It has been recognized that using feedback control can be significant for supply

chain optimization. Backx, Bosgra, and Marquardt (2000) highlight the importance of consid-

ering the dynamics and feedback in process integration. They say

Future process innovation must aim at a high degree of adaptability of manu-

facturing to the increasingly transient nature of the marketplace to meet the chal-

lenges of global competition. Adaptation to changing environmental conditions

requires feedback control mechanisms, which manipulate the quality performance
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and transition flexibility characteristics of the manufacturing processes on the ba-

sis of measured production performance indicators derived from observations of

critical process variables. This feedback can be achieved by means of two qualita-

tively completely different approaches residing on two different time scales. The

first, shorter time scale focused approach aims at the adaptation of process oper-

ations by modified planning, scheduling and control strategies and algorithms as-

suming fixed installations. The second approach attempts to achieve performance

improvements by reengineering the plant, including process and equipment, as

well as instrumentation and operation support system design.

Model predictive control is a multi-variable control algorithm which deals with operating

constraints and multi-variable interactions. MPC’s ability to handle constraints along with the

online optimization of the control problem has made it a very popular control algorithm in the

process industries (Qin and Badgwell, 2003; Morari and Lee, 1997). At the heart of MPC is a

dynamic process model that is used to predict the influence of inputs (manipulated variables)

on the process. Based on the prediction, an optimization problem is solved online, to find the

optimal control action.

In this thesis, we propose model predictive control as a general purpose tool to aid in enter-

prise wide optimization. Traditionally, decision making in the process industries follows a hier-

archical structure. At the top, the planning module uses a simplified model of the facility along

with some knowledge of the supply chain dynamics to predict production targets and material

flows. This problem is called the Planning problem. In the scheduling layer, the solution of the

planning problem is used to find a detailed schedule for the plant. This problem is called the

Scheduling problem. The Real Time Optimizer (RTO) uses the solution of the scheduling prob-

lem to find optimal set-points for the plant. Finally, the advanced controller regulates the plant

to the predicted set-points. The main contribution of this thesis is to formulate parts of the

short term planning problem (interaction of the production facility with the supply chain) and

the production scheduling problem as dynamic models (also see hybrid modeling for rolling

horizon approaches (Maravelias and Sung, 2009, Sec 4.4)), that can be “controlled” using MPC.
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Thus, in conjunction with economic MPC (Amrit et al., 2011) that integrates the advanced con-

trol layer with the RTO; the tools developed in this thesis allows us to study the entire decision

making hierarchy in the enterprise from a predictive control point of view.

We focus on two important aspects of the supply chain. First, from an operations research

standpoint, we use MPC to coordinate orders and shipments in the supply chain to minimize

(maximize) costs (profits). Second, from a process systems engineering standpoint, we develop

tools to formulate the short term production scheduling problem as a dynamic control prob-

lem.

Overview of the thesis

Chapter 2 – Model predictive control: In this chapter, we summarize the fundamental theory

for linear MPC. We state stability theorems for centralized, suboptimal and cooperative MPC.

We then propose a cooperative MPC algorithm that is applicable to all centralized stabilizable

systems and an algorithm for robust cooperative MPC using tube-based MPC (Rawlings and

Mayne, 2009, Chapter 3).

Chapter 3 – A state-space model for chemical production scheduling: In this chapter we de-

rive a state space model for the production scheduling problem and highlight how different

scheduling disturbances can be modeled. We use ideas from MPC like the terminal region to

show how the state space model can be used in iterative scheduling.

Chapter 4 – Distributed MPC for supply chain optimization: In this chapter, we show how

to model a supply chain, and use the theory outlined in Chapter 2 to design centralized, dis-

tributed and, robust MPC for supply chains.

Chapter 5 – Economic MPC for supply chains: In this chapter, we briefly review economic

MPC theory and show how it can be tailored for supply chains. Instead of optimizing a tracking
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objective, we show how to design economic and multiobjective optimization problems for sup-

ply chains. We conclude this chapter with an example of an integrated production scheduling–

supply chain problem solved in a rolling horizon framework.

Chapter 6 – Conclusions and future work: We end with a summary of the contributions and

recommendations for future work.
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Chapter 2

Model predictive control

2.1 Introduction

Model Predictive Control (MPC) is an optimization based control algorithm in which a model

of the plant is used to predict the future evolution of the plant. A constrained optimization

problem is solved using these predictions to find the optimal input to the plant. In MPC, at

each sampling time, the optimizer finds the next N inputs, in which N is called the predic-

tion/control horizon. The first of these inputs is injected to the plant and the whole proce-

dure is repeated at the next sampling time, during which, the state of the plant is estimated

from measurements. In this way, the rolling horizon framework incorporates feedback. MPC

is widely used in many industries like Petrochemicals, fine chemicals, food, automotive and

aerospace, because of its ability to handle multiple inputs and outputs (MIMO controller) and

process constraints (Qin and Badgwell, 2003).

← Past

Inputs

Setpoint

Future →

u

k = 0

y
Outputs

Figure 2.1: Rolling horizon optimization.
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Model predictive control technology has two important aspects that are interconnected.

First, is the design of the online optimization problem that is solved. The design must account

for the control objectives, process constraints and dynamics. Second, is the study of the in-

jected control moves in the plant. Since only the first input of the optimal input sequence is

used, it is important to provide guarantees that the control objectives are met in the closed-

loop. Stability theory provides controller design guidelines and theoretical support to ensure

desirable closed-loop behavior by using the rolling horizon optimization framework.

This chapter is organized as follows. In Section 2.2, we provide an overview of centralized

MPC. We discuss optimal MPC in Section 2.2.2 and suboptimal MPC in Section 2.2.3. In Sec-

tion 2.3, we introduced distributed MPC; with noncooperative MPC discussed in Section 2.3.2

and cooperative MPC discussed in Section 2.3.3. An algorithm for robust cooperative control is

presented in Section 2.4. In Section 2.5, we discuss related work in the field of cooperative/ dis-

tributed MPC. Since the focus of this thesis is the application of control technology for supply

chain optimization, we focus our attention on linear models in this section. In Chapter 4, we

show that the supply chain dynamics can be described by linear models.

2.2 Centralized MPC

2.2.1 Preliminaries

We consider the linear system

x+ = Ax +Bu (2.1)

in which x ∈Rn , u ∈Rm are the states and inputs while x+ is the successor state.

The system is constrained by the state constraint x ∈ X ⊆ Rn and input constraint u ∈ U ⊂
Rm .

For a given finite horizon N , we define the input sequence as u = (u(0),u(1), . . . ,u(N −1)) ∈
UN . The state at time j ≥ 0 for a system starting at state x at time j = 0, under control u is given

by φ( j ; x,u). If there is no ambiguity, φ( j ; x,u) is also denoted as x( j ).
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We define the tracking stage cost as `(x,u) = 1/2(x ′Qx +u′Ru);Q,R > 0. We define an eco-

nomic state cost `E (x,u) in Chapter 5. Without loss of generality, we assume that the MPC is

designed to track (x,u) to the origin. For systems in which the steady state is not the origin, we

can modify `(x,u) by a simple variable transformation x ← x−xs , in which xs is the steady state

of choice. We also define a terminal cost on the state, V f (x) = 1/2x ′P x,P > 0. An important

feature of the MPC online optimization problem is the terminal constraint (2.3). The setX f ⊆X
is the terminal set.

The MPC online optimization problem is now defined as:

PN (x) :min
u

VN (x,u)

s.t. x( j +1) = Ax( j )+Bu( j ), j = {0,1,2, . . . , N −1}

x( j ) ∈X j = {0,1,2, . . . , N }

u( j ) ∈U j = {0,1,2, . . . , N −1} (2.2)

x(0) = x

x(N ) ∈X f (2.3)

In the optimization problem PN (x), the cost function VN (x,u) is given by:

VN (x,u) =
N−1∑
j=0

`(x( j ),u( j ))+V f (x(N )) (2.4)

The set ZN is defined as the set of (x,u) for which the problem PN (x) is feasible. That is,

ZN := {
(x,u) |φ( j ; x,u) ∈X,φ(N ; x,u) ∈X f ,u ∈UN }

(2.5)

The projection of set ZN onto X is the set of admissible states, denoted by XN . That is,

XN := {
x | ∃u ∈UN , s.t (x,u) ∈ZN

}
(2.6)

For a given x ∈XN , the set of feasible inputs is given by UN (x):

UN (x) := {u | (x,u) ∈ZN } (2.7)

The online optimization problem can now succinctly be expressed as:

PN (x) := min
u

VN (x,u) s.t. u ∈UN (x)
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2.2.2 Optimal MPC

The following assumptions are made on the system:

Assumption 1. The centralized system (A,B) is stabilizable.

Assumption 2. The cost functions `(x,u) and V f (x) are positive definite 1

Assumption 3. The setX f and the costs `(x,u),V f (x) are chosen such that there exists a terminal

controller u = κ f (x) that satisfies:

V f (Ax +Bκ f (x))−V f (x) ≤−`(x,κ f (x)) ∀x ∈X f (2.8)

Ax +Bκ f (x) ∈X f ,κ f (x) ∈U ∀x ∈X f (2.9)

Assumption 4. The set U is convex, closed and compact and contains the origin in its interior.

The set X is convex, closed and contains the origin in its interior. The set X f is convex, closed,

compact and contains the origin in its interior.

Remark 5. The choice of quadratic stage and terminal costs with Q > 0,R > 0,P > 0 automati-

cally satisfies Assumption 2.

Remark 6. From Assumption 1, we know that there exists a linear feedback K such that (A+BK )

is stable. In other words, the closed-loop x+ = (A +BK )x is stable. We choose such a K as the

terminal controller κ f (x). The terminal penalty V f (x) = x ′P x is chosen as the solution to the

Lyapunov equation (which exists as a consequence of Assumption 2):

(A+BK )′P (A+BK )+ (Q +K ′RK ) = P

For the pair (P,K ), we can define the control invariant region in the state-space in which

u = K x does not activate any constraints as:

X f :=
{

x | x(i ) = (A+BK )i x ∈X f ⊆X,K x(i ) ∈U,∀i ≥ 0
}

For linear systems, such sets can be easily constructed. See Gilbert and Tan (1991) for an

algorithm.

1A function f (x) is positive definite if f (x) ≥ 0∀x and f (x) = 0 if and only if x = 0.
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The optimal solution to the optimization problem (2.2) is denoted by u0(x) and the opti-

mal objective value is given by V 0
N (x). The optimal-MPC control law is now defined as κo(x) =

u0(0; x) in which u0(0; x) is the first input in the optimal sequence u0(x). The closed-loop evolu-

tion, under the control law κ0(x) is x+ = Ax +Bκ0(x). The centralized optimal MPC asymptotic

(exponential) stability theorem is presented below. This theorem is attributed to Rawlings and

Mayne (2009, Thm 2.24(b), Chap. 2).

Theorem 7 (Optimal MPC stabilty). Let Assumptions 1–4 hold. Then the origin is exponentially

stable with a region of attraction XN for the system x+ = Ax +Bκ0(x). If XN is unbounded, then

the region of attraction is any sublevel set of V 0
N (·).

The detailed technical proof for Theorem 7 is provided in Rawlings and Mayne (2009, Chap.

2). We provide an sketch of the proof below for linear systems with positive definite stage cost.

The stability proof follows by establishing that V 0
N (·) is a Lyapunov function for the closed-loop

dynamics x+ = Ax +Bκ0(x).

Lyapunov stability theorem for a dynamic system z+ = f (z) states that if a function V (z)

exists with the following properties

V (z) ≥α1(|z|), ∀z ∈Z (2.10)

V (z) ≤α2(|z|), ∀z ∈Z (2.11)

V (z+)−V (z) ≤−α3(|z|) ∀z ∈Z (2.12)

in which αi (·), i ∈ {1,2,3} are K∞ functions2; then the origin is asymptotically stable on the

set Z . Converse Lyapunov theorem states that if the dynamic system is asymptotically sta-

ble, then there exists a Lyapunov function for that system. If the K∞ functions αi are of the

formλi |x|σ,λi ,σ> 0, then the dynamic system is exponentially stable (see Rawlings and Mayne

(2009, Appendix B.) for precise statements).

2A function σ : R+ → R+ belongs to the class of K∞ functions if σ is continuous, strictly increasing, σ(0) = 0

and σ(s) →∞ as s →∞.
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To show that V 0
N (·) is a Lyapunov function for the linear system under study 3, we first define

the warm start as follows:

Definition 8 (Warm Start). Let (x,u) be a state-input vector pair such that (x,u) ∈ZN . Then the

warm start for the successor initial state x+ = Ax +Bu(0; x) is defined as:

ũ = (u(1; x),u(2; x), . . . ,u(N ; x),u+)

in which u+ = κ f (φ(N ; x,u)).

The lower bound (2.10) for the optimal function is established by using the fact that we

choose Q,R,P > 0 (Assumption 2). By this choice of Q,R,P , VN (x,u) is positive definite, and

hence V 0
N (x) ≥ `(x,κ0(x)). Since `(x,u) = 1/2(x ′Qx +u′Ru), we have that `(x,u) ≥ 1/2x ′Qx ≥

1/2λQ |x|2. The last inequality follows from the positive definiteness of Q with λQ > 0 denoting

the smallest eigen-value of Q. We denote the smallest and largets eigen-value of a matrix H by

λH and λH respectively.

Following the definition of the warm start, given an optimal input sequence u0(x), the warm

start ũ0 is feasible for the successor state x+ = Ax +Bκo(x), because x(N ) =φ(N ; x,u0) belongs

to X f (and hence Ax(N )+Bκ f (x(N )) ∈ X f by Assumption 3). Therefore, we get the following

inequality that establishes the cost-drop property in Equation (2.12).

VN (x+, ũ0) =V 0
N (x)+ (

V f (Ax(N )+Bκ f (x(N )))+`(x(N ),κ f (x(N )))−V f (x(N ))
)︸ ︷︷ ︸

≤0 by Assumption 3

− `(x,κ0(x))︸ ︷︷ ︸
≥0 by Assumption 2

V 0
N (x+) ≤VN (x+, ũ0) ≤V 0

N (x)−λQ |x|2

The upper bound (2.11) is established by showing that V 0
N (x) ≤ V f (x) ≤ λP |x|2,∀x ∈ X f .

To do so, consider x ∈ X f and choose u(0) = κ f (x). Therefore, x(1) = Ax + Bu(0) satisfies

V f (x(1))+ `(x,u(0)) ≤ V f (x). Since Assumption 3 is satisfied, we can choose u(1) = κ f (x(1))

to obtain x(2) = Ax(1)+Bu(1). Therefore V f (x(2))+`(x(1),u(1)) ≤ V f (x(1)). So, we can con-

clude that V f (x(2))+`(x(1),u(1))+`(x,u(0)) ≤ V f (x(1))+`(x,u(0)) ≤ V f (x), using the first in-

equality. In such a manner, we can construct an input sequence uκ f (x) := {
u( j ) = κ f (x( j ))

}
,

3refer to Rawlings and Mayne (2009, Chap 2.) for more general cases
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so that VN (x,uκ f ) ≤ V f (x). Since uκ f is a feasible input sequence, the optimal cost function

VN (x,u0) ≤ VN (x,uκ f ) ≤ V f (x),∀x ∈ X f (Pannocchia, Rawlings, and Wright, 2011). The upper

bound is extended to XN using the compactness ofX f (Rawlings and Mayne, 2009, Proposition

2.18).

2.2.3 Suboptimal MPC

The favorable properties of the closed-loop was established in Optimal MPC based on the

optimal value function. However, in many practical applications, we might not be able to solve

the optimization problem (2.2) to optimality. We might not be able to solve to optimality in the

given sample time (for large problems and small sampling time) or by design (like for exam-

ple, in cooperative MPC, as we show in Section 2.3.3). Hence, it is important that asymptotic

stability be ensured when the online optimizations do not converge to the optimal solution.

Suboptimal MPC theory is used to establish this property.

Given any feasible input sequence u ∈ UN (x) for the state x, the warm start is defined ac-

cording to Definition 8, and the successor input set for the state x+ = Ax+Bu(0; x) is defined as

below:

Definition 9 (Successor input set). Consider (x,u) such that u is feasible for PN (x) (2.2). For the

successor state x+ = Ax +Bu(0; x), we define the set G(x,u)

G(x,u) = {u+ | u+ ∈UN (x+),VN (x+,u+) ≤VN (x, ũ),VN (x+,u+) ≤V f (x+) if x ∈Br ⊂X f } (2.13)

in which ũ is the warm start given by Definition 8 and Br is a ball of radius r > 0. We choose r

sufficiently small such that Br is a subset of the terminal region.

Similar to optimal MPC, we inject the first input from the suboptimal sequence to the plant.

The control law in the case of suboptimal MPC is therefore a set, as any input sequence in the

successor input set can be used. The closed-loop analysis, consequently is on the evolution of



12

the following system

x+ = Ax +Bκs(x) (2.14)

u+ ∈G(x,u) (2.15)

in which κs(x) is the control law given by the first input in the input sequence u(x). The follow-

ing theorem, attributed to Pannocchia et al. (2011) establishes the exponential stability of sub-

optimal MPC. Additionally, we make the following assumptions on the cost function VN (x,u).

Assumption 10. There exist positive constants a, a′
1, a′

2, a f and r , such that the cost function

VN (x,u) satisfies:

`(x,u) ≥ a′
1|(x,u)|a (x,u) ∈X×U

VN (x,u) ≤ a′
2|(x,u)|a (x,u) ∈Br

V f (x) ≤ a f |x|a x ∈X

in which Br is the ball of radius r .

Note that it is easy to show that Assumption 10 is satisfied for linear systems and quadratic

costs.

Theorem 11. Let Assumptions 1 – 4 and 10 hold. For any x for which UN (x) is not empty, choose

u ∈ UN (x). Then, the origin of the closed-loop system (2.14)–(2.15) is asymptotically stable on

(arbitrarily large) compact subsets of the feasible region XN

We now provide a sketch of the proof for Theorem 11 for linear systems with quadratic,

positive-definite stage costs. We refer the reader to Pannocchia et al. (2011) for the detailed

proof for a more general case. Since in suboptimal MPC, there are multiple input sequences that

satisfy (2.13), the closed-loop dynamics follows a difference inclusion, instead of a difference

equation. Using the notation z = (x,u) (called as the extended state), the closed-loop (2.14)–

(2.15) can be succinctly written as:

z+ ∈ H(z) := {
(x+,u+) | x+ ∈ Ax +Bκs(x),u+ ∈G(z)

}
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Analogous to the Lyapunov function described in the previous section; we can write a Lya-

punov function for the difference inclusion. V (z) is an exponential Lyapunov function for

z+ ∈ H(z) on the set Z if the following hold, with a1, a2, a3, a ≥ 0 (Pannocchia et al., 2011, Defi-

nition 13).

V (z) ≥ a1|z|a , ∀z ∈Z (2.16)

V (z) ≤ a2|z|a , ∀z ∈Z (2.17)

max
z+∈H(z)

V (z+)−V (z) ≤−a3|z|a , ∀z ∈Z (2.18)

Exponential stability is established by showing that VN (x,u) is a Lyapunov function for the

difference inclusion z+ ∈ H(z). To show that the cost function VN (x,u) satisfies (2.16)–(2.17),

we proceed by noting that the cost function can be written as:

VN (x,u) = 1

2

x

u

′

H

x

u

 H =
A ′QA A ′QB

B′QA BQB+R

 (2.19)

in which 

x(0)

x(1)
...

x(N )

=



I

A
...

AN−1


︸ ︷︷ ︸

A

x +



0 0 . . . 0

B 0 . . . 0

AB B . . . 0
...

...
. . . . . .

AN−1B AN−2B . . . B


︸ ︷︷ ︸

B

u

and Q = diag(Q,Q, . . . ,Q︸ ︷︷ ︸
N−1 times

,P ) and R = diag(R,R, . . . ,R︸ ︷︷ ︸
N times

). Since Q,R > 0, the matrix H is a posi-

tive definite matrix. Therefore, 1/2λH |x,u|2 ≤ VN (x,u) ≤ λH |x,u|2 Thus, (2.16) and (2.17) are

satisfied. To show the cost-drop property, notice that for x ∈Br ⊂X f , we have by the property

of G(x,u) that VN (x,u) ≤ V f (x). As shown in the previous section, V f (x) = 1/2x ′P x ≤ λP |x|2.

Hence, we have that

λH |u|2 ≤λH |(x,u)|2 ≤VN (x,u) ≤V f (x) ≤λP |x|2, x ∈Br (2.20)
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From the inequality (2.20), we can conclude that

|u| ≤ d |x|, x ∈Br (2.21)

in which d =
√

λP
λH

. Using inequality (2.21), we can establish that

|(x,u)| ≤ |x|+ |u| ≤ (1+d)|x| ≤ (1+d)|(x,u(0))| x ∈Br (2.22)

As we saw in the previous section, VN (x+, ũ)−VN (x,u) ≤ −`(x,u(0)) (by choice of the warm

start). Since, u+ ∈ G(x,u) implies that (i) u+ drives the state x+ into the terminal region in N

steps and, (ii) ensures that the cost of doing so is less than VN (x+, ũ); we can conclude that

VN (x+,u+)−VN (x,u) ≤−`(x,u(0))

Note that the lower bound of `(x,u(0)) is given by

1/2min(λQ ,λR )|(x,u(0))|2 ≤ `(x,u(0))

Denote 1/2min(λQ ,λR ) = a′
1. Using the inequality (2.22), we can then conclude that

VN (x+,u+)−VN (x,u) ≤−`(x,u(0)) ≤−a′
1|(x,u(0))|2 ≤ −a′

1

(1+d)2
|x,u|2, ∀x ∈Br

The cost-drop property can be extended to the region of attraction using compactness ofU.

The online optimization problem being solved for suboptimal MPC is slightly modified from

that of optimal MPC. In Equation (2.23), we present the optimization problem for suboptimal

MPC.

PN (x) := min
u

VN (x,u) s.t. u ∈UN (x), |u| ≤ d |x|, if x ∈Br (2.23)

For future reference, we define the following set:

U s
N (x;r ) := {u | u ∈UN (x), |u| ≤ d |x|, if x ∈Br } (2.24)

Note that the constraint on |u| is not enforced in practical implementations as r > 0 can be

chosen arbitrarily small.
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The advantage of using suboptimal MPC is that the online optimizations need not converge;

and we can inject any suboptimal iterate generated by the optimization algorithm into the plant

as long as that iterate belongs to the set G(x,u). Another important feature that stands out from

the suboptimal MPC theory is that just using the warm start at every time ensures exponential

stability. Online optimization improves the open-loop prediction cost 4.

2.3 Distributed MPC

In the previous sections, we introduced centralized MPC, in which a single controller is de-

signed for the system. The centralized controller uses system-wide information about models,

constraints on the inputs and states, and objective to find a control law that has favorable prop-

erties. In many practical applications, this centralized information is distributed among many

agents. For example, a chemical plant may have multiple MPC controllers running, each of

which is controlling one process in the facility. In such cases, it is important to study how to co-

ordinate information spread among multiple controllers to better control the plant. Distributed

MPC is the study of various architectures for information sharing and retrieval to coordinate

multiple controllers (Scattolini, 2009).

In this section, we first introduce the models and objectives of each agent or node in the

system in Section 2.3.1. In Section 2.3.2, we describe the so-called noncooperative MPC, in

which the nodes share information regarding their future (predicted) input moves with each

other. In Section 2.3.3, we present the cooperative MPC algorithm in which the nodes not only

share information about their predicted input moves with each other, but they also share (and

use) model and objective functions. We show that cooperative MPC is an implementation of

suboptimal centralized MPC, and hence it inherits all the desirable properties of suboptimal

(centralized) MPC. We present a simple two-tank system shown in Figure 2.2 in Section 2.3.4.

We use this example to illustrate the key properties of distributed MPC algorithms, namely (i)

noncooperative MPC can de-stabilize a plant, and (ii) with careful design, cooperative MPC can

4But we cannot say anything about the closed-loop cost if we stop at suboptimal iterates
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stabilize any plant that can be stabilized using centralized MPC. We choose the two-tank system

because its model is a system of integrators like the supply chain model (see Chapter 4).

2.3.1 Models, constraints and objective functions

In distributed MPC, the system is assumed to be composed of several subsystems (or agents

or nodes). We use the index i to denote a subsystem, and M to denote the total number of

subsystems. Each subsystem i ∈ {1,2,3, . . . , M } has the following dynamics and constraints:

x+
i = Ai xi +Bi i ui +

∑
l∈{1,2,...,M }

l 6=i

Bi l ul (2.25)

xi ∈Xi ui ∈Ui (2.26)

in which xi ,ui are the states and inputs in subsystem i .

The stage cost for a subsystem is given by:

`i (xi ,ui ) = 1/2(x ′
i Qi xi +u′

i Ri ui ) (2.27)

with the penalties Qi ,Ri > 0.

The centralized (system-wide) model is therefore:

x1

x2

...

xM



+

=



A1

A2

. . .

AM


︸ ︷︷ ︸

A



x1

x2

...

xM


︸ ︷︷ ︸

x

+



B11 B12
... B1M

B21 B22 . . . B2M

...
...

. . .
...

BM1 BM2 . . . BM M


︸ ︷︷ ︸

B



u1

u2

. . .

uM


︸ ︷︷ ︸

u

(2.28)

X=X1 ×X2 × . . .×XM (2.29)

U=U1 ×U2 × . . .×UM (2.30)

The centralized stage-cost is

`(x,u) =
M∑

i=1
`i (xi ,ui ) (2.31)

We do not make any special assumptions on the local models (2.25)–(2.26). The only as-

sumptions made are on the centralized model and stage costs (2.28)–(2.31). We assume that
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the centralized model and stage costs satisfies Assumptions 1–4 and 10. It is important to note

that the terminal controller κ f (·), terminal cost V f (·) and, terminal set X f are all defined only

for the centralized system.

2.3.2 Noncooperative MPC

In noncooperative MPC, each subsystem minimizes its local objective function. Therefore,

the subsystem optimization problem Pi
N (xi ,v−i ) is given below. For subsystem i , we use −i to

denote all the other subsystems, i.e.. −i = {1,2, . . . , i −1, i +1, . . . , M }.

Pi
N ,nc (xi ;v−i ) :min

ui

N−1∑
j=0

`i (xi ( j ),ui ( j ))+V f ,i (xi (N ))

s.t. xi ( j +1) = Ai i xi ( j )+Bi i ui ( j )+ ∑
l∈{1,2,...,M }

l 6=i

Bi l vl ( j ) j = {0,1, . . . , N −1}

xi ( j ) ∈Xi j = {0,1, . . . , N −1} (2.32)

ui ( j ) ∈Ui j = {0,1, . . . , N −1}

xi (0) = xi

We wish to bring the readers attention to two important features of the “local” optimization

problem P i
N ,nc (xi ;v−i ), namely, (i) To make accurate predictions of xi ( j ), and hence the cost

function, subsystem i needs to know the future (predicted) inputs of all other subsystems, and

(ii) No terminal constraints are enforced 5.

In noncooperative MPC (Algorithm 1), each subsystem broadcasts its input sequence pre-

diction. Based on this prediction, every subsystem solves its local optimization problem. The

final input is a convex combination of the previously broadcast inputs and the optimized in-

puts.

In the inner loop of Algorithm 1, each subsystem is finding its best response to the other

subsystem inputs. It can be shown that as p̄ →∞, the solutions u(p)
i converge to a point called

the Nash Equilibrium (Başar and Olsder, 1999). As has been shown earlier by Venkat (2006, Sec

4.3.1), the Nash equilibrium may be unstable. We also wish to point out that we cannot make

5Although we include a terminal penalty, we provide no design methods to find a terminal penalty
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Data: Starting state {xi (0)}, initial guess (ũ1(0), ũ2(0), . . . , ũM (0)), p̄ ≥ 0, ωi ∈ (0,1) such that∑M
i=0ωi = 1

Result: Closed loop x( j ),u( j ), j = {0,1,2, . . .}

Set j ← 0

while j ≥ 0 do
Set p ← 0

Set xi ← xi ( j )), for i in 1,2, . . . , M

Set ũi ← ũi ( j ), for i in 1,2, . . . , M

Broadcast ũi to all other subsystems for i in 1,2, . . . , M

Each subsystem i creates ũ−i from the other subsystem inputs

while p < p̄ do

Solve Pi
N ,nc (xi ,u−i ) to obtain u0

i for i in 1,2, . . . , M

Set u(p+1)
i ←ωi u(p)

i + (1−ωi )u0
i for i in 1,2, . . . , M

Set p ← p +1

end

Set input ui ( j ) = ui (0) for i in 1,2, . . . , M and broadcast

Evolve state from xi (k) to xi (k +1) for the input just obtained

Obtain feasible input ũi ( j +1) for i in 1,2, . . . , M

Set j ← j +1

end
Algorithm 1: Noncooperative MPC
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any claims about the feasibility of Pi
N (xi ;v−i ) in the inner optimization loop of the noncoop-

erative MPC algorithm. For similar reasons, we cannot make any claims about how to obtain

ũi ( j +1).

In Figure 2.3, we show the unstable closed-loop response using Algorithm 1 for a simple

two-tank example.

2.3.3 Cooperative MPC

In this section, we tailor the distributed MPC algorithm to be an implementation of subop-

timal MPC. To do so, we require that the subsystems not only share input forecasts, but also

model, constraints and objective functions with each other. Under this requirement, the coop-

erative MPC optimization problem is written as:

PN (x) := min
u

VN (x,u) s.t. u ∈U s
N (x;r ) (2.33)

Note that the cooperative MPC optimization problem is the same as the suboptimal MPC

optimization problem. The cooperative MPC algorithm is presented in Algorithm 2.

In the inner loop in Algorithm 2, all the subsystems are solving the same optimization prob-

lem, but by fixing the decisions of other sthe ubsystems at the values broadcast in the previous

iterate. The inner loop is an implementation of the Jacobi parallel optimization routine (Bert-

sekas and Tsitsiklis, 1989, Section 3.3.5). For convex optimization problems, the Jacobi algo-

rithm has the property that it generates feasible iterates with non-increasing objective function

values. Before presenting the cooperative MPC stability theorem (which in different forms have

been stated in Stewart, Venkat, Rawlings, Wright, and Pannocchia (2010); Venkat (2006); Stew-

art, Wright, and Rawlings (2011); Subramanian, Rawlings, and Maravelias (2012b)), we briefly

review the properties of Jacobi algorithm for convex optimization problem.

Jacobi algorithm

For the sake of simplicity, we consider only two subsystems in this section. Consider the

following optimization problem (2.34), solved using Algorithm 3.
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Data: Starting state x(0), initial guess (ũ1(0), ũ2(0), . . . , ũM (0)) ∈U s
N (x(0);r ), p̄ ≥ 1 and

ωi ∈ (0,1) such that
∑M

i=0ωi = 1

Result: Closed loop (x( j ),u( j )), j = {1,2, . . .}

set j ← 0

while j ≥ 0 do
Set p ← 0, x ← x( j )

Set u(p)
i ← ũi ( j ) for i = 1,2, . . . , M

Broadcast current subsystem inputs ũi ( j ) to other subsystems

while p < p̄ do

Solve minui VN (x,u) s.t. u ∈U s
N (x;r );u−i = u(p)

−i to obtain u0
i for i in 1,2, . . . , M

Set u(p+1)
i ←ωi u(p)

i + (1−ωi )u0
i for i in 1,2, . . . , M

Set p ← p +1

end

Set u ← (u(p)
1 ,u(p)

2 , . . . ,u(p)
M ) and find x( j +N ) ←φ(N ; x( j ),u)

Obtain u+ = (u1+,u2+, . . . ,uM+) ← κ f (x( j +N ))

Obtain warm start ũi ( j +1) = (u(p)
i (1),u(p)

i (2), . . . ,ui+) for i = 1,2, . . . , M .

Set input as u( j ) = (u(p)
1 (0),u(p)

2 (0), . . . ,u(p)
M (0))

Evolve state from x( j ) to x( j +1) under input u( j )

Set j ← j +1

end
Algorithm 2: Cooperative MPC
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J : min
y1,y2

J (y1, y2) s.t. (y1, y2) ∈Ω (2.34)

in which J (·) is a convex function andΩ is a convex, closed and compact set.

Data: Starting guess (y1, y2) ∈Ω and ωi ∈ (0,1) such that
∑2

i=0ωi = 1

Result: Sequence of feasible iterates
{

y (p)
}

and non-increasing objective function values{
J (y (p))

}
Set p ← 0

while p ≥ 0 do

Set y (p)
1 ← y1, y (p)

2 ← y2

Solve miny1 J (y1, y2),s.t. y2 = y (p)
2 , (y1, y2) ∈Ω to obtain y0

1 .

Solve miny2 J (y1, y2),s.t. y1 = y (p)
1 , (y1, y2) ∈Ω to obtain y0

2 .

Set y (p+1)
i ←ωi y (p)

i + (1−ωi )y0
i for i in 1,2

Set p ← p +1

end
Algorithm 3: Jacobi algorithm

The following Proposition establishes that the Jacobi algorithm generates feasible iterates

that have non-increasing objective function values

Proposition 12. Let J (y) be continuously differentiable and strongly convex6 on the convex,

closed and compact setΩ. Let Algorithm 3 be used to solve convex optimization problem (2.34)

from an initial feasible point y ∈ Ω. Then, (i) every iterate y (p) generated by the algorithm is

feasible and , (ii) J (y (p+1)) ≤ J (y (p)),∀p > 0.

The proof is provided in Stewart et al. (2010).

While Proposition 12 is enough to establish stability of suboptimal MPC, we require the fol-

lowing proposition to establish that the optimizations in cooperative MPC converge to the op-

timal solution. Note that the in contrast to Proposition 12, we require a much stricter condition

on the constraints in Proposition 13, namely that, the constraints be uncoupled.

6Strongly convex implies that J (λw + (1−λ)v) <λJ (w)+ (1−λ)J (v),∀λ ∈ (0,1)
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Proposition 13. Let J (y) be continuously differentiable and strongly convex. Let Ω =Ω1 ×Ω2,

in which y1 ∈Ω1 and y2 ∈Ω2, withΩi convex, closed and compact. Then, as p →∞, the iterates

y (p) converges to the yo , in which yo is the optimal solution to optimization problem (2.34)

This proof is provided in Stewart et al. (2010). Another proof is also provided in Bertsekas

and Tsitsiklis (1989, Prop 3.9) for Gauss-Seidel algorithm which is closely related to the Jacobi

algorithm.

We now present the exponential stability of the cooperative MPC algorithm.

Theorem 14. Let Assumptions 1 – 4 and 10 hold. Choose r > 0 such that Br ⊂ X f . For any x

for which U s
N (x;r ) is not empty, choose u ∈ U s

N (x;r ). Then, the origin of the closed-loop system

obtained by Algorithm 2 is exponentially stable. The region of attraction are (arbitrarily large)

compact subsets of the feasible region

XN := {
x | ∃u ∈ UN , s.t U s

N (x;r ) 6=∅
}

Proof. We show that the closed-loop system obtained by Algorithm 2 is an implementation of

suboptimal MPC and use Theorem 11 to prove exponential stability.

We note that the optimization problem (2.33) has convex constraints and a strongly convex

objective. By choice Q,R,P > 0, we know that the Hessian H (2.19) is positive definite, and

hence strongly convex. From Assumption 4, the set ZN is convex and hence the set UN (x) is

convex too. The set U s
N (x;r ) is the intersection of two convex sets. Hence, by Proposition 12,

we know that if (x, ũ) is feasible for (2.33) then (i) all the iterates generated by the inner loop

in Algorithm 2 are feasible; implying u(p) ∈ U s
N (x;r ) and, (ii) the cost at iterate p is not greater

than the cost achieved by VN (x, ũ); that is VN (x,u(p)) ≤VN (x, ũ).

By choice of ũ(0), we know that (x(0), ũ(0)) is feasible for (2.33). Therefore, (x(0),u(p)(0)) ∈
ZN with VN (x(0),u(p)(0)) ≤VN (x(0), ũ(0)). Since ũ(1) is the warm start constructed from u(p)(0),

we know that it is feasible and that ũ(1) ∈ G(x(0),u(p)(0)). Therefore, by induction the closed-

loop obtained by Algorithm 2 belongs to the family of closed-loop solutions for which we showed

exponential stability in Theorem 11.
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The main difference between cooperative and noncooperative MPC is that in the inner op-

timization loop of cooperative MPC, all the subsystems minimize the centralized problem, but

subject only to their inputs. Therefore, we were able to use warm start and properties of Jacobi

algorithm to establish the cost-drop properties required to prove exponential stability.

The cooperative MPC algorithm has the following key properties:

1. The nominal closed-loop is exponentially stable.

2. The subsystems need to share models and objective functions with each other.

3. There is no coordinator. At the end of every cooperative MPC iteration, the subsystems

just need to transfer information regarding their predicted inputs with each other.

4. There is no minimum number of iterations of the inner-loop that is required. Subsystems

can choose to stop after any number of iterations.

While, we used Proposition 12 to establish recursive feasibility and cost-drop of cooperative

MPC, we cannot use Proposition 13 to establish that the as p → ∞, the solution obtained by

the cooperative MPC optimizations converge to the centralized MPC optimization problem be-

cause the constraint set u = (u1,u2, . . . ,uM ) ∈U s
N (x;r ) is a coupled constraint. The optimization

problem (2.33) can be written as

PN (x) :1/2

x

u

′

H

x

u


s.t. x( j ) ∈X j ∈ 0,1, . . . , N −1

u( j ) ∈U j ∈ 0,1, . . . , N −1[
AN−1B AN−2B . . . B

]
u ∈X f (2.35)

|u| ≤ d |x| x ∈Br
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In the following sections, we describe methods to “decouple” the constraint set, so that, in

addition to establishing stability, we can also establish that the inner-loop optimizations con-

verge to the centralized optimal solution. Hence, we can establish that centralized optimal and

cooperative control have the same feedback solution.

In order to do so, we make the following assumptions for cooperative MPC:

Assumption 15. There are no state constraints. State constraints are enforced as soft-penalties by

tuning the Q matrix in the stage cost.

Assumption 16. The input constraint space is uncoupled. That is, the input constraint set U is

the Cartesian product of the input constraint sets of each subsystem.

U=U1 ×U2 × . . .×UM

The sets Ui are convex, closed, compact and, contain the origin in its interior.

Using Assumption 15, the state constraints in (2.35) are removed. Assumption 16 ensures

that the input constraints for subsystem i , i = 1,2, . . . , M do not affect any other subsystems’

input constraints. Although, for most practical applications, we do nor require the constraint

|u| ≤ d |x|, we can easily separate the constraint by enforcing |ui | ≤ di |x| such that
∑

i di ≤ d .

Stability requirements mean that we cannot remove the stability constraint x(N ) ∈X f from

the optimization problem. In the next two sections, we briefly review two techniques to “uncou-

ple” the terminal region constraint. The advantage of using the cooperative MPC formulations

without coupled terminal constraints is that we have a “performance guarantee” that the open-

loop cost attained by the cooperative MPC algorithm if the inner-loop was allowed to converge

would be the optimal centralized open-loop cost.
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2.3.3.1 Sub-states

This relaxation was proposed by Stewart et al. (2010), to solve the terminal equality con-

straint problem. That is X f = {0}. The centralized optimization problem is 7:

PN (x) :min
u

VN (x,u)

s.t. xi ( j +1) = Ai xi ( j )+Bi i ui ( j )+ ∑
l∈{1,2,...,M }

l 6=i

Bi l ul ( j ), j = {0,1,2, . . . , N −1} , i = {1,2, . . . , M }

ui ( j ) ∈Ui j = {0,1,2, . . . , N −1} , i = {1,2, . . . , M }

xi (0) = xi i = {1,2, . . . , M }

xi (N ) = 0 i = {1,2, . . . , M }

(2.36)

Notice that the only coupled constraint is xi (N ) = 0, as the dynamics x+ = Ax +Bu can be

projected out, i.e., we use the optimization problem formulation (2.35).

We consider a non-minimal realization of the system (2.25) such that “sub-state” xi l in sub-

system i is only influenced by input l .

x̃+
i l = Ãi l x̃i l + B̃i l ul (2.37)

7To simplify the discussion, we enforce the constraint that all the states are zero at the end of the horizon. In

Stewart et al. (2010), only the unstable states were forced to be zero at the end of the horizon
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Defining x̂i =
[

{x̃i l } , l = 1,2, . . . , M
]

, each subsystem model is given by (2.25). The matrices

Âi , B̂i l are used to describe the dynamics in subsystem i .

x̃i 1

x̃i 2

...

x̃i M



+

︸ ︷︷ ︸
x̂+

i

=



Ãi 1

Ãi 2

. . .

Ãi M


︸ ︷︷ ︸

Âi



x̃i 1

x̃i 2

...

x̃i M


︸ ︷︷ ︸

x̂i

+



B̃i 1

0
...

0


︸ ︷︷ ︸

B̂i 1

u1 +



0

B̃i 2

...

0


︸ ︷︷ ︸

B̂i 2

u2 + . . .



0

0
...

B̃i M


︸ ︷︷ ︸

B̂i M

uM (2.38)

xi =
[
C̃i 1 C̃i 2 . . . C̃i M

]
︸ ︷︷ ︸

Ĉi



x̃i 1

x̃i 2

...

x̃i M


︸ ︷︷ ︸

x̂i

(2.39)

We assume that the centralized states xi can be constructed from the sub-states x̂i . In gen-

eral, we would require that the outputs measured in subsystem i , yi can be reconstructed from

the sub-states (see Assumption 17).

The subsystem stage cost `i (xi ,ui ) = 1/2(x ′
i Qi xi +ui Ri ui ) can now be written as

`i (xi ,ui ) = `i (x̂i ,ui ) = 1/2(x̂i Ĉ ′
i QĈi x̂i +ui Ri ui )

The centralized stage cost is `(x,u) =∑M
i=1`i (x̂i ,ui ). Since, we use a terminal constraint that

all states are zero at the end of the horizon, we do not need a terminal penalty.

We define x l as the sub-states that are affected by input l . That is x l =
[

{x̃i l } i = {1,2, . . . , M }
]

.

Correspondingly, we define Al ,B l as follows:



x̃1l

x̃2l

...

x̃Ml



+

︸ ︷︷ ︸
x+

l

=



Ã1l

Ã2l

. . .

ÃMl


︸ ︷︷ ︸

Al



x̃1l

x̃2l

...

x̃Ml


︸ ︷︷ ︸

x

+



B̃1l

B̃2l

...

B̃Ml


︸ ︷︷ ︸

B l

ul (2.40)
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The constraint xi (N ) = 0 can be equivalently written as x̃i l = 0, l ∈ {1,2, . . . , M }. Therefore,

the centralized MPC problem can be written as:

PN (x) :min
u

VN (x,u)

s.t. x l ( j +1) = Axl ( j )+B l ( j )ul ( j ) j = {0,1,2, . . . , N −1} , l = {1,2, . . . , M }

xi ( j ) = Ĉi x̂i ( j ) j = {1,2, . . . , N } , i = {1,2, . . . , M }

ul ( j ) ∈U j = {0,1,2, . . . , N −1} , l = {1,2, . . . , M }

xi (0) = xi i = {1,2, . . . , M }

x l (N ) = 0 l = {1,2, . . . , M } (2.41)

In the optimization problem the terminal condition is uncoupled because the dynamics

of state x l depends only on input ul via equation (2.40). If Assumption 17 is satisfied, then

Algorithm 2 can be used to stabilize the plant with guaranteed performance to the centralized

solution of the problem (2.36) as there are no coupled constraints in the problem.

Assumption 17 ensures that (i) the input ui can be used to zero all the states that ui influ-

ences, (ii) all the substates can be reconstructed from the outputs.

Assumption 17 (Subsystem stabilizability).

• The system (Ai ,B i ) is stabilizable.

• The system (Âi ,Ĉi ) is detectable.

We now discuss the features of the aforementioned decomposition:

Applicability. The decomposition into the substate models (2.25) can be obtained from the

Kalman decomposition of the original input/output yi ,ui model (Antsaklis and Michel, 1997,

p.270).

The drawback however, is that not all centralized stabilizable models have a corresponding

substate non-minimal realization that satisfies Assumption 17. One such example is the system

of integrators (like supply chain models).
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Convergence. The decomposition ensures that if the inner optimization loop in Algorithm 2

is allowed to converge, then the solution is the centralized solution to the optimization problem

(2.36).

Initialization. The optimization loop in Algorithm 2 requires an feasible starting point. The

feasible starting point is ensured by the warm start. The warm start is feasible because we as-

sume that the actual plant state at the next sampling time is equal to the model prediction

for the next state. In many cases, when there are plant-model mismatches or unmodeled dis-

turbances affecting the system, this assumption that the plant state is equal to the predicted

state might break-down. In such cases, the warm start becomes infeasible and we need an dis-

tributed initialization routine.

In the substate decomposition of the model, the warm start is infeasible if x̃i l (N ; x,u) 6= 0

for some i , l . However, since x̃i l (N ; x,u) depends only on the input sequence from a single

subsystem ul , the re-initialization routine is also decoupled.

2.3.3.2 Relaxing the terminal region

This relaxation was proposed by Rawlings, Stewart, Wright, and Mayne (2010), and has been

used for nonlinear suboptimal/ distributed / economic MPC in Stewart et al. (2011), Pannoc-

chia et al. (2011), Amrit et al. (2011) as well as linear MPC in Subramanian et al. (2012b).

In this section, we work with the centralized model (2.25). The idea here is to develop an op-

timization problem without terminal constraints such that every iterate generated in the inner

optimization loop of Algorithm 2 lies inside a terminal region that satisfies Assumption 3. To do

so, we modify (i) the terminal region (ii) the cost function and (iii) the feasible set as follows:

The terminal region is chosen as a sublevel set of the terminal cost. That is,

X f := {
x |V f (x) ≤ a, a > 0

}
(2.42)

For linear systems, we could use P , the solution to the Lyapunov equation as V f (x) and

choose a such that all the requirements in Assumption 3 are satisfied.
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The cost function is modified so that the terminal penalty is magnified. That is,

V β

N (x,u) =
N−1∑
j=0

`(x(i ),u(i ))+βV f (x(N )) (2.43)

in which β≥ 1.

Finally, the feasible set is modified as follows:

Z
β

N =
{

(x,u) |V β

N (x,u) ≤ V̄ ,u ∈UN
}

(2.44)

in which V̄ ≥ 0 can be chosen arbitrarily large.

In Proposition 18, we show how the parameter β can be chosen so that if (x,u) ∈ ZβN , then

x(N ; x,u) ∈X f . Using Proposition 19 8, we can establish that the warm start given by Definition

8 satisfies the cost-drop property, i.e., V β

N (x, ũ) ≤V β

N (x,u).

Proposition 18. Let Assumption 2 hold. Define the terminal region X f according to (2.42) Let

the cost function V β

N (x,u) be given by (2.43). For V̄ ≥ a, define β̄ := V̄ /a. Then, for any β ≥ β̄

and (x,u) ∈ZβN (2.44), we have that φ(N ; x,u) ∈X f .

Proof. For sake of contradiction, assume that (x,u) ∈ ZβN , β ≥ β̄, but φ(N ; x,u) ∉ X f , that is

V f
(
φ(N ; x,u)

)> a. Since (x,u) ∈ZβN , we know that

V β

N (x,u) =
N−1∑
i=0

`(φ(i ; x,u),u(i ))+βV f
(
φ(N ; x,u)

)≤ V̄

From Assumption 2, we know that `(x,u) ≥ 0, which implies that

βV f (φ(N ; x,u)) ≤ V̄

Since β≥ β̄= V̄
a ,

V̄

a
V f

(
φ(N ; x,u)

)≤ V̄

which implies that V f
(
φ(N ; x,u)

) ≤ a, which is a contradiction. Therefore, for β ≥ β̄, if (x,u) ∈
Z
β

N , then φ(N ; x,u) ∈X f .

8see also Rawlings and Mayne (2009, Exercise 2.11, Page 177)
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Proposition 19. Let Assumption 2 hold. Choose terminal set X f according to 2.42, such that it

satisfies Assumption 3. Then for every β̄≥ 1, any x ∈X f , and u = κ f (x), the following holds:

βV f (Ax +Bκ f (x))+`(x,κ f (x)) ≤βV f (x)

Proof. From Assumption 3, we know that

V f (Ax +Bκ f (x))+`(x,κ f (x)) ≤V f (x)

Hence:

βV f (Ax +Bκ f (x))+β`(x,κ f (x)) ≤βV f (x)

From Assumption 2, `(x,κ f (x)) ≥ 0, V f (·) ≥ 0. Henceβ`(x,κ f (x)) ≥ `(x,κ f (x)) and the result

follows.

Proposition 20. Let Assumptions 2–3 hold, with the X f chosen according to (2.42). Choose

V̄ ≥ a, β≥ β̄= V̄ /a and cost function V β

N (x,u) given by (2.43). Choose (x,u) ∈ZβN . Then, for the

successor state x+ = Ax +Bu(0), with u(0) being the first input in the sequence u, choose the

warm start ũ according to Definition 8. Then, ũ ∈G(x,u), with the set G defined in Definition 9.

Proof. Since (x,u) ∈ ZβN , we can use Proposition 18 to establish that x(N ) = φ(N ; x,u) ∈ X f .

Since Assumption 3 holds, we know that the warm start is feasible. Hence V β

N (x+, ũ) ≤ V̄ . By the

construction of the warm start, we have that:

VN (x+, ũ) =VN (x,u)+ (
βV f (Ax(N )+Bu+)+`(x(N ),u+)−βV f (x(N ))

)−`(x,u(0))

The result follows from Proposition 19 and Assumption 2

The centralized MPC optimization problem is now written as:

PN (x) :min
u

V β

N (x,u)

s.t. xi ( j +1) = Ai xi ( j )+Bi i ui ( j )+ ∑
l∈{1,2,...,M }

l 6=i

Bi l ul ( j ), j = {0,1,2, . . . , N −1} , i = {1,2, . . . , M }

ui ( j ) ∈Ui j = {0,1,2, . . . , N −1} , i = {1,2, . . . , M }

xi (0) = xi i = {1,2, . . . , M }

(2.45)
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Notice that we do not enforce any terminal constraints in problem (2.45) because they are

automatically satisfied by the choice of β andZβN . That is, we restrict the feasible states to lie in:

X
β

N :=
{

x | ∃u ∈UN s.t. (x,u) ∈ZβN
}

Since (2.45) is a convex problem subject to uncoupled constraints (the equality constraints

are projected out), for any (x,u) ∈ZβN , we have that

V β,0
N (x,u0) ≤V β

N (x,u(p)) ≤V β

N (x,u) ≤ V̄

in which V β,0
N (x,u0) is the optimal cost and V β

N (x,u(p)) is the cost obtained after p iterations of

Jacobi algorithm (Algorithm 3) applied to optimization problem (2.45). Also, as p →∞, u(p) ←
u0. Hence Algorithm 2 can be used to stabilize the plant with guaranteed performance to the

centralized solution of the problem (2.45).

We now discuss the features of the aforementioned relaxation:

Applicability. The relaxation is applicable to any stabilizable centralized system.

Convergence. As mentioned earlier, the relaxation ensures that the inner optimization loop

of Algorithm 2 converges to the optimal solution of (2.45).

As shown in Pannocchia et al. (2011), for a fixed a, as we increase V̄ , the set ZβN approaches

the following set:

Z̄= {
(x,u) | ∃u ∈UN ,φ(N ; x,u) ∈X f

}
Therefore, we could cover as much of the feasible space by increasing V̄ .

The main drawback of the relaxation method is that the Hessian of the objective could get

ill-conditioned due to the choice of V̄ and a.

Initialization. As mentioned in the previous section, the warm start could become infeasible.

From Proposition 18, it is clear that an infeasible warm start indicates that V β

N (x, ũ) > V̄ . How-

ever, note that warm-start does not make the optimization problem (2.45) infeasible. Since the

inner loop optimizations decrease the objective values at each iteration, there is an iteration p ′
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so that VN (x,u(p)) ≤ V̄ for p ≥ p ′. After p ′ iterations of the inner optimization loop, we would

have ensured that the stability requirements are satisfied. The drawback is, unlike the regu-

lation problem with a feasible warm start, we cannot terminate the inner-loop optimizations

arbitrarily after any number of iterations. For small infeasibilities, we can expect the algorithm

to regain feasibility in a few iterations, but we do not have a theoretical upper-bound on the

number of iterations, p ′, required to regain feasibility.

2.3.4 Example9

The system, consists of two tanks with levels x1 and x2. The two tanks are considered as

two separate subsystems for implementing distributed MPC. Subsystem-1 controls the level x1

and has the inputs u11,u12,u13 at its disposal. The input u12 drains water from the first tank

into the second tank. Input u13 directly drains water from the first tank, but it is assumed that

manipulating input u13 is more expensive than manipulating input u12. Subsystem-2 controls

the level x2 and has the inputs u21 and u22 at its disposal. The input u21 recycles a fraction of

the water back into the first tank according to the recycle ratio r . Similar to subsystem-1, input

u22, which directly drains water out from subsystem-2, is assumed to be more expensive to

operate compared to input u21. To add some complexity, we assume that the recycle flow from

subsystem-2 to subsystem-1 introduces a further disturbance in the system,which is perfectly

modeled. This disturbance introduces water into the first tank at a rate proportional to the flow

out of the second tank through u21. Such interactions can arise when there is tight heat and

mass integration in chemical plants. The parameter r is chosen as 0.1.

The subsystem-1 model for the two-tank system is

x+
1 = 1︸︷︷︸

A1

x1 +
[

1 −1 −1
]

︸ ︷︷ ︸
B11


u11

u12

u13


︸ ︷︷ ︸

u1

+
[

1+ r 0
]

︸ ︷︷ ︸
B12

u21

u22


︸ ︷︷ ︸

u2

(2.46)

9This example is taken from Subramanian et al. (2012b).
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u11

(1+ r )u21 r u21

x2

x1

u12

u13
u22

u21

Figure 2.2: The two-tank system.
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The subsystem-2 model for the two-tank system is

x+
2 = 1︸︷︷︸

A2

x2 +
[

0 1 0
]

︸ ︷︷ ︸
B21


u11

u12

u13


︸ ︷︷ ︸

u1

+
[
−1 −1

]
︸ ︷︷ ︸

B22

u21

u22


︸ ︷︷ ︸

u2

(2.47)

The overall (centralized) model of the two-tank system is the minimum realization of

x+ =
A1 0

0 A2


︸ ︷︷ ︸

A

x +
B11 B12

B21 B22


︸ ︷︷ ︸

B

u (2.48)

in which x = (x1, x2) and u = (u11,u12,u13,u21,u22). Each input is constrained to lie between

[0, ū] in which 0 corresponds to the valve completely closed and ū corresponds to the valve

completely open. The upper bound on the valve was chosen to be arbitrarily large.

We define stage costs `1(·, ·) and `2(·, ·):

`1(x1,u1) = x2
1 +u2

11 +u2
12 +100u2

13

`2(x2,u2) = x2
2 +u2

21 +100u2
22

The system starts at steady state with tank levels (7,7) and all valves closed. At time t = 0, we

change the setpoint of the two tanks to level (3,3) and all valves closed.

The responses are shown in Figure 2.3. In noncooperative MPC, each subsystem uses the

cheap input u12,u21 to change the tank levels; unaware that this choice of inputs leads to insta-

bility by introducing more water into the system. The subsystems manipulate the cheap inputs

because the influence of their inputs on the other subsystem is not captured in the noncooper-

ative MPC optimization problem. At each iteration, the two subsystems, optimizing indepen-

dently, harm each other because they do not want to operate the expensive valves u13 and u22.

In cooperative MPC, subsystem-2 realizes that operating valve u21 is not desirable, because it

optimizes the overall objective function. The subsystems now judiciously use the expensive

valves to maintain stability.
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2.4 Robust cooperative MPC

2.4.1 Preliminaries

We consider the centralized system (2.28) obtained from the distributed models (2.25), sub-

ject to bounded additive disturbance as follows:

x+ = Ax +Bu +w (2.49)

in which the inputs are assumed to lie in set ui ∈Ui as in the previous section. The assumptions

on the disturbance are stated in Assumption 21

Assumption 21 (Bounded disturbance). The additive disturbance w lies in a convex, closed and,

compact setW containing the origin in its interior.

The nominal system, without the additive disturbance is denoted as follows, using z, v for

the nominal state and input variables.

z+ = Az +B v (2.50)

At any time k, we can write the deviation between the actual state and the nominal state as

e(k) = x(k)− z(k). If the inputs to both the nominal and actual system were the same, then the

error dynamics can be written as:

e+ = Ax +Bu +w − Az +Bu = Ae +w (2.51)

Hence, given an initial e(0) = 0, the error at time k lies in the following set:

e(k) ∈ S(k) :=
k−1∑
j=0

A jW=W⊕ AW⊕ . . .⊕ Ak−1W (2.52)

in which A jW indicates set multiplication. That is,

A jW :=
{

A j w | ∀w ∈W
}
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The symbol ⊕ indicates set addition. That is,

W⊕ AW := {w1 +w2 | w1 ∈W, w2 ∈ AW}

For stable A, it can be shown that the set S(∞) exists and is positive invariant for the system

(2.51) (Kolmanovsky and Gilbert, 1998).

2.4.2 Tube based MPC

We now discuss tube based MPC (Rawlings and Mayne, 2009, Chapter 3), the basic idea for

which is as follows: (i) use MPC on the nominal system to find v(k) = κ(z(k)), and (ii) based on

the error at time k, e(k), find the input to the plant as u(k) = v(k)+K e(k)

By design, we select a K such that AK := A +BK is Hurwitz. Such a choice implies that the

error dynamics in the closed-loop is:

e+ = x+− z+ = Ax +B v +BK (x − z)+w − Az −B v = AK e +w (2.53)

Now, since AK is stable, we can conclude that SK (∞) = ∑∞
j=0 A j

KW exists and is positive in-

variant for (2.53).

The stability and convergence theorems are therefore based upon the following observa-

tions:(i) the origin is asymptotically stable for the nominal system z+ = Az +Bκ(z) by design,

(ii) the error is designed to lie in the set SK (∞) by the choice of K and input u = κ(z)+K (x − z),

and (iii) the actual state x(k);k →∞ therefore belongs to the set {0}×SK (∞)

In the presence of persistent disturbance, we ensure that the states lie inside a bounded set

that we can compute offline. The name tube based MPC comes from the fact that at each time

k, the state x lies in a “tube” defined by x(k) ∈ z(k)⊕SK (∞) .

For the inputs u = v +K (x − z) to remain feasible, we need to ensure that v satisfies the

tighter constraints10:

V :=UªK SK (∞) (2.54)

10If state constraints are present, they need to be tightened as well. We do not discuss state constraints because

of Assumption 15
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The tighter set follows from the fact that e = (x − z) ∈ SK (∞).

The nominal MPC problem is defined as:

P̃N (z) :min
v

VN (z,v)

s.t. z( j +1) = Az( j )+B v( j ) j = {0,1, . . . , N −1}

v( j ) ∈V, j = {0,1, . . . , N −1} (2.55)

z(0) = z

z(N ) ∈Z f

in whichZ f is a terminal set that satisfies Assumption 3 and VN (z,v) is the cost function defined

by (2.4). Let κs(z) denote the input law obtained by implementing a suboptimal MPC algorithm

on (2.55). Then the origin is asymptotically stable for the closed loop z+ = Az +Bκs(z) by The-

orem 11. Now, if input u = κs(z)+K (x − z) is injected to the plant, then e ∈ SK (∞). Hence, we

can prove that A := {0}×SK (∞) is asymptotically stable for the composite system

z+ = Az +Bκs(z) (2.56)

x+ = Ax +Bκs(z)+BK (x − z)+w (2.57)

The region of attraction is ZN ×XN , in which ZN is the following projection:

ZN := {
z | v ∈VN s.t. z(N ; z,v) ∈Z f

}
and XN :=ZN ⊕SK (∞).

2.4.3 Main results

Recall that if we use the relaxation formulation to remove the terminal region constraints

in cooperative MPC, then each-time the warm start becomes infeasible, we need a warm start

recovery step, which is the following projection onto convex sets problem:

{
ũ(x) |V β

N (x, ũ) ≤ V̄ , ũi ∈Ui∀i ∈ {1,2, . . . , M }
}
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Distributed algorithms for projection onto convex sets or the convex feasibility problems re-

cover feasibility only at convergence. Hence, such algorithms are not suitable for distributed

warm-start re-initialization since we cannot guarantee convergence within the sampling time.

To overcome these problems, we propose tube based robust cooperative MPC that is based

on two important observations:(i) the optimization problems in tube based MPC are based on

the nominal system, and (ii) by design, the warm start is feasible for z+ if the input v = v(0; z)

is implemented for the nominal system. Hence, we can conclude that the warm start based

on the nominal MPC, ṽ, always remains feasible for the nominal problem. Furthermore, as

we discussed in Section 2.3.3, cooperative MPC stabilizes the nominal system. Hence, we can

use cooperative MPC for the nominal system. The only caveat is that to ensure convergence to

the centralized solution, we need to have that the input sets are uncoupled. In this case, if we

wish to implement cooperative MPC on the nominal system, we need to have that the set V be

uncoupled, that is

V=V1 ×V2 × . . .×VM

In tube based MPC, the tightened set V is dependent on K , SK (∞) and the original distur-

bance setW. So, there is no guarantee thatV does not have coupling between the inputs. There-

fore, we introduce another offline calculation, which is to find a hyperbox Ṽ that lies completely

inside V.

Remark 22. As shown in Raković, Kerrigan, Kouramas, and Mayne (2003), it is not necessary to

calculate SK (∞) to obtain approximations to V. In fact, if the input constraints are polytopic

and decoupled, then the procedure mentioned in Raković et al. (2003), can be used to obtain

tightened constraints that are also polytopic and decoupled.

As noted earlier, in robust MPC, the optimizations are performed based on the nominal state

information, while the actual state could have drifted far from the nominal state because of the

disturbances. We therefore use the modified version of the robust MPC algorithm presented in

Rawlings and Mayne (2009, P.234).
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We choose V̄ , a,β such that the set

Z f := {
z |V f (z) ≤ a

}
satisfies Assumption 3. We choose V̄ ≥ a and β according to Proposition 18. The controller gain

K is chosen such that the centralized system (A +BK ) is stable and the input constraint set is

tightened as:

Ṽ := Ṽ1 × Ṽ2 × . . .ṼM ⊆V :=UªK SK (∞)

The centralized nominal MPC optimization problem is:

P̃N (z) :min
v

V β

N (x,v)

s.t. z( j +1) = Az( j )+B v( j ) j = {0,1, . . . , N −1}

v( j ) ∈ Ṽ j {∈ 0,1, . . . , N −1} (2.58)

z(0) = z

Note that the region of attraction for the cooperative nominal MPC is:

ZN :=
{

z | v ∈ Ṽs.t. V β

N (z,v) ≤ V̄
}

The robust cooperative MPC algorithm is presented in Algorithm 4.

The modification that we alluded to earlier is the “if condition” in Algorithm 4. The condi-

tion states that if the warm start is feasible for the actual state at time k and satisfies a cost-drop

criteria, then we reset the error to zero. In this way, not only do we not lose the convergence

property of the closed-loop nominal state (since the cost-drop is satisfied all the time), but we

also incorporate feedback into the system. Another modification to Algorithm 4 is a slow time

scale reset of the nominal state to the actual state. That is, after every T sampling times, in

which T is much larger than the sampling time employed, we automatically reset the nominal

trajectory. However, in this case, we need to ensure that the warm-start is feasible for the reset.

2.4.4 Example

Consider the two tank system as shown in Figure 2.4. The overall system consists of two

tanks which are the two subsystems. The first subsystem (tank-1) manipulates inputs u1 =
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Data: Starting state x(0), initial guess (ũ1(0), ũ2(0), . . . , ũM (0)) so that V β

N (x, ũ) ≤ V̄ p̄ ≥ 1

and ωi ∈ (0,1) such that
∑M

i=0ωi = 1

Result: Asymptotically stable closed loop

Offline: Perform the following computations and share with every subsystem begin
Compute K so that A+BK is stable

Compute/ Approximate SK (∞), V=UªK SK (∞)

Compute Ṽi so that Ṽ1 × Ṽ2 × . . .× ṼM ⊆V
end

Online: begin
set z(0) ← x(0); ṽ(0) ← ũ(0)

set k ← 0

while k ≥ 0 do
Set p ← 0

Set v(p)
i ← ṽi (k) for i = 1,2, . . . , M

Broadcast current subsystem inputs ṽi (k) to other subsystems

while p < p̄ do

if V β

N (x(k), ṽ) ≤V β

N (z(k), ṽ) ≤ V̄ then
Reset z(k) ← x(k)

end

Solve minvi V β

N (z,v)s.t. vi ∈ Ṽi ,v−i = v(p)
−i to obtain v0

i for i in 1,2, . . . , M . Set

v(p+1)
i ←ωi v(p)

i + (1−ωi )v0
i for i in 1,2, . . . , M

end

Set v ← (v(p)
1 ,v(p)

2 , . . . ,v(p)
M ) and find z(k +N ) ←φ(N ; z(k),v)

Obtain v+ = (v1+, v2+, . . . , vM+) ← κ f (z(k +N ))

Obtain warm start ṽi (k +1) = (v(p)
i (1),v(p)

i (2), . . . , vi+) for i = 1,2, . . . , M .

Set input as v(k) = (v(p)
1 (0),v(p)

2 (0), . . . ,v(p)
M (0))

Evolve nominal state from z(k) to z(k +1) under input v(k)

Set input u(k) = v(k)+K (x(k)− z(k))

Evolve state from x(k) to x(k +1) under input u(k)

end

end
Algorithm 4: Robust cooperative MPC
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u11

x2

x1

u12

w1 w2

u22

Figure 2.4: Two tank system

(u11,u12), while the second subsystem (tank-2) manipulates inputs u2 = (u22). There are two

disturbances affecting the system, w1 in the first tank and w2 in the second tank. The state

dynamics for this two tank system is given by:x1

x2

+

=
1

1

x1

x2

+
1 −1

0 1

u1 +
 0

−1

u2 +
w1

w2


We assume that the nominal value of w1,n = 0.1 and that of w2,n = 5. The set W is given by

W := {w | 0 ≤ w1 ≤ 0.2,0 ≤ w2 ≤ 10}.

The input constraints are given byU1 = {u1 | 0 ≤ u11 ≤ 10,0 ≤ u12 ≤ 10} andU2 = {u2 | 0 ≤ u22 ≤ 20}.

Note that since we have a system of integrators, any level in the tank can be stabilized as

long as all the flows in the system are balanced. Therefore, we choose the steady state in the

tank as xs = (20,20) (the level in both tanks are 20). The input steady state is obtained by solving

the following optimization problem

min
u

1/2u′Ru s.t. Bu =−wn ;u ∈U

in which wn is the nominal disturbance. For the choice of R = I (I denotes the identity matrix),

the input steady state is obtained as us = (3.2667,3.3667,8.3667).



43

The stage cost was chosen as `(x,u) = 1/2(0.1x ′x + u′u). We solve the MPC problem in

deviation variables, so that regulation to the origin implies regulation to the steady state men-

tioned above. Following the design procedure outlined in the previous sections, we choose (i)

V f (x) = 1/2x ′P x,κ f (x) = K x as the solution to the Riccati equation, (ii)a = 1 and the terminal

region as
{

x | 1/2x ′P x ≤ 1
}
. The choice of a = 1 satisfies the requirements in Assumption 3, (iii)

V̄ = 100, (iv) a prediction horizon of N = 15 and (v)the controller that corrects for the error

between the nominal and actual states was as K = κ f (x).

For these choice of parameters, we followed the algorithm mentioned in Raković et al. (2003)

to find the set V (we chose N = 200 and α = 1e − 6). Note that, since the original input set

contained no coupled inputs, the tightened set also contains no coupled inputs.

In Figure 2.5, we show the closed-loop response nominal closed-loop response of the level

in the second tank and the for cooperative MPC rejecting a persistent disturbance wk ∈W. We

also show the cost-function V β

N (z, ṽ) and V β

N (x, ṽ) to show that although the warm-start was

infeasible for the actual state, it was still feasible for the nominal state and hence we could

obtain the closed-loop guarantees for robust cooperative MPC. Note that, for this particular

disturbance realization, we could not reset the nominal state to the actual state.

In Figure 2.6, we show the closed-loop response using a modified version of Algorithm 4.

The modification we made are to reset the nominal state to the actual state at time k if the

following conditions are satisfied (i)The nominal state z(k) is inside Z f . (ii) The warm start ṽ(k)

is feasible for the actual state x(k) and , (iii) The time elapsed since the last reset is greater than

T̄ time periods (we chose T̄ = 10)

2.5 Related Work

Cooperative MPC has evolved as an attractive architecture for distributed control because

it solves the centralized control problem, and inherits the desirable closed-loop properties of

centralized control. In the previous sections, we described cooperative MPC based on the “pri-

mal decomposition” of the centralized optimization problem. In the primal decomposition,
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V
β
N (z, ṽ)
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the centralized optimization problem is solved directly using parallel optimization architec-

tures. Liu, Chen, Muñoz de la Peña, and Christofides (2010) also use the primal decomposi-

tion to solve the centralized optimization problem for a nonlinear process model. They use a

closed-form controller u = h(x) for which a Lyapunov function is known as a reference con-

troller to design their MPC optimization problem. Thus, they ensure that the MPC inherits the

stability properties of u = h(x). Note that u = h(x) also provides a warm start, even when the

actual and predicted states are different. However, since this stability constraint is a coupled

constraint, there can be no guarantees about the convergence of the parallel optimization rou-

tine to the optimal solution; and hence equivalence of optimal MPC and cooperative MPC if

the iterations were allowed to converge. The authors propose both a Jacobi algorithm (all sub-

systems optimize in parallel) and a Gauss-Seidel algorithm (subsystems optimize in sequence).

In comparison, in Stewart et al. (2011), the authors propose a Jacobi algorithm for nonlinear

MPC that converges to the centralized optimal solution. Since, for non-convex problems, the

Jacobi optimizations does not necessarily produce a descent direction, the authors propose a

sequential procedure to obtain a descent direction using the solutions obtained from each sub-

system. This overhead is not equivalent to implementing a coordinator as each subsystem only

calculates an objective function in the second phase of the algorithm in which a descent di-

rection is determined. Maestre, Muñoz de la Peña, Camacho, and Alamo (2011b) propose a

primal decomposition approach to cooperative MPC based on agent negotiation. The advan-

tage of their procedure is that agents need only know models of the subsystems whose inputs

affect their states. In the proposed method, each agent optimizes its local objective over all the

inputs that affect its dynamics, and share the proposed solution with other agents. The other

agents evaluate the proposal for cost-drop and constraint violation and communicate back to

the original agent making the proposal, who can then decide to accept or reject the proposal.

The authors ensure that only feasible proposals are accepted. The drawback of the proposed

architecture, however, is that (i) the agents have to solve larger optimization problems (because

they have to optimize over all the inputs that affect their state), and (ii) the convergence to

the centralized optimal solution cannot be guaranteed. Stability is guaranteed using the warm
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start. Maestre, Muñoz de la Peña, and Camacho (2011a) use game-theoretic analysis to propose

a distributed optimization framework. In this method, each node, optimizes its local objective

over its local decisions while keeping the other subsystem decisions fixed. After completion of

the optimizations, the agents compute their local objectives for all possible combinations of

the overall system input (based on optimized solution of the agents and the warm start). Upon

sharing the objectives, the agents then select the input that minimizes the overall cost. Thus,

each agent cooperatively makes a decision. However, the proposed algorithm also fails to es-

tablish convergence to the centralized optimal on iteration. Stability is guaranteed by design

of terminal region and warm-start. Müller, Reble, and Allgöwer (2012) propose a optimization

algorithm based on each node optimizing over its local optimization problem. They use a ter-

minal region which is a sub-level set of the terminal penalty. Because of the presence of coupled

constraints, input directions are discarded if they are not feasible, based on a check made after

the optimizations. To ensure cost-drop, the centralized objectives are also evaluated after the

optimizations and inputs that do not achieve cost-drop are discarded. The model considered

by the authors had coupling introduced only via the constraints (both in the objective function

and the constraints). The authors also provide a method to define local time varying terminal

regions, so that the coupled terminal region constraint is satisfied if each subsystem satisfies its

local time varying terminal region constraint. The algorithm provided by the authors, satisfies

the requirements of the optimizer for suboptimal MPC, but again, does not give any guarantee

on convergence to the optimal solution. The requirement of decoupled dynamics is impor-

tant in problems like multi vehicle synchronization etc. Johansson, Speranzon, Johansson, and

Johansson (2006) use a primal decomposition to solve a multi-vehicle consensus problem as

a MPC problem. While the dynamics are decoupled, the consensus point, similar to terminal

equality constraint, is the complicating constraint. Unlike the MPC problems where the objec-

tives are also constrained because of the dynamics, the multi-vehicle receding horizon problem

falls into the category of uncoupled objective but coupled constraints. The author’s use a pri-

mal decomposition which generates feasible iterate that reduce the objective function value.
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However, in order to ensure that the centralized optimal solution is achieved, the authors use a

coordinator, which is based on sub-gradient optimization to handle the coupled constraint.

A common theme in optimizing the centralized problem is that it is not easy to guarantee

convergence to the optimal solution. However, stability can be guaranteed because every iter-

ate is designed so that it reduces the cost while remaining feasible. In contrast, there are a lot of

cooperative MPC algorithms which are based on the “dual decomposition”. In the dual decom-

position, the coupled constraints are relaxed by using the Lagrangian of the optimization prob-

lem. For a fixed value of the Lagrange multipliers (also called as prices or dual variables), the

relaxed problem can be solved using parallel optimization methods as there are no complicat-

ing constraints. Upon achieving the solution to the relaxed problem, the Lagrange multipliers

are updated. The Lagrange multiplier update is usually done by a coordinator. These algo-

rithms often converge faster to the optimal solution. However, their main disadvantage is that

they are guaranteed to produce a feasible iterate only upon convergence. Since stability theory

for suboptimal MPC rely on the fact that the suboptimal iterate is feasible, cooperative MPC

algorithms using dual decomposition use stability theory based on optimal MPC to ensure sta-

bility. Therefore, a common theme in dual decomposition based cooperative MPC algorithms

are a coordinator layer and a requirement that the iterates converge.

The cooperative MPC algorithms using dual decomposition differ based on the technique

used to update the dual variables. In Cheng, Forbes, and Yip (2007), the dual variables (prices)

are updated using a sub-gradient based optimization algorithm. Sub-gradient methods are also

used in Ma, Anderson, and Borrelli (2011), Wakasa, Arakawa, Tanaka, and Akashi (2008), Mar-

cos, Forbes, and Guay (2009). Moroşan, Bourdais, Dumur, and Buisson (2011) formulate the

building control problem as a MPC problem with linear objectives and use Benders decompo-

sition to solve the problem. Benders decomposition is a widely popular parallel algorithm when

by fixing the value of a complicating variable, the remaining problem can be completely sep-

arated. Scheu and Marquardt (2011) propose a dual decomposition algorithm without a coor-

dination layer. They augment the local subsystem objective function with the sensitivity of the

objectives and constraints of other subsystems to obtain updates for the dual variables along
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with the primal variables. However, this method generates a feasible solution only upon con-

vergence. Giselsson, Doan, Keviczky, De Schutter, and Rantzer (2012), Giselsson and Rantzer

(2010) propose a dual decomposition algorithm with a stopping criteria based on the objective

value to ensure stability. They advocate the use of long prediction horizon along with results

obtained in Grüne (2009) to determine bounds on the value of the objective function so that

stability can be guaranteed. Doan, Keviczky, Necoara, Diehl, and De Schutter (2009) modified

the Han’s algorithm which is a dual decomposition based algorithm for the special structure

of the MPC problem. Although the method uses communication between directly connected

subsystems, stability is guaranteed only upon convergence. Necoara, Doan, and Suykens (2008)

use a smoothing technique to simplify the dual problem. With the smoothing technique, the

coordinator problem for finding the Lagrange multiplier updates becomes easier. The algo-

rithm also gives bounds on the number of iterations so that the optimal solution and constraint

violation are within a pre-specified limit (ε approximation of the centralized problem). Finally,

Doan, Keviczky, and De Schutter (2011), propose a primal feasible dual gradient approach, that

generates a primal feasible solution that achieves cost-drop in a finite number of iterations

based on an averaging scheme of the primal variables at each iteration.

Christofides, Scattolini, de la Peña, and Liu (2012) is a recent review of different algorithms

for distributed MPC. Necoara, Nedelcu, and Dumitrache (2011) provides an excellent overview

of the different optimization problems and parallel solution strategies that are seen in control

and estimation.

Trodden and Richards (2006, 2007) propose a tube based robust distributed MPC algorithm.

In their method, at each sampling time, only one subsystem performs optimization. The sub-

system optimizes only over its decision variables, keeping all other subsystem decisions fixed

from the previous iteration. This method is also an example of primal decomposition. Richards

and How (2004) present a robust tube-based MPC for systems with decoupled dynamics. The

coupling constraints are coupled output constraints. Their algorithm is based on the Gauss-

Seidel iterations.
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Chapter 3

A state space model for chemical production scheduling

In Chapter 2, we discussed design of on-line optimization problems for the control of dy-

namic systems using MPC, so that the closed-loop has desirable properties like recursive feasi-

bility, asymptotic convergence. In this chapter, we employ ideas from MPC to address iterative

or rolling horizon scheduling problems. In Section 3.1, we provide an introduction to the prob-

lem that we wish to address. In Section 3.2, we give a brief background on chemical production

scheduling and associated rescheduling problems. In Section 3.3, we derive the state space

model, including four types of disturbances. In Section 3.4, we present an example illustrating

the advantages of using terminal constraints in iterative scheduling.

3.1 Introduction 1

Chemical production scheduling problems arise in a wide variety of applications, from batch

production of pharmaceuticals and fine chemicals to continuous production of bulk chemicals

and oil refining operations. To address these problems, research within the process systems en-

gineering (PSE) community has primarily focused on (i) the formulation of models for a wide

variety of scheduling problems, and (ii) the development of scheduling algorithms. In terms of

model development, the emphasis has been on the accurate representation of problems in a

range of production environments as well as the modeling of various processing characteristics

and constraints (e.g.,utility constraints, changeovers, transfer operations, etc.)(Méndez, Cerdá,

1This text appears in Section 1 of Subramanian, Maravelias, and Rawlings (2012a)
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Grossmann, Harjunkoski, and Fahl, 2006). An aspect that has received limited attention is how

to design algorithms, based on these models, for iterative scheduling.

Chemical production is an inherently dynamic process. A schedule has to be revised when

new information becomes available (new orders, modified due dates, raw material availability

etc.), and/or production disturbances occur (e.g.,processing delays, unit breakdowns, process

unit availability, etc.). However, while some of the issues arising when scheduling is performed

iteratively have been discussed in contributions dealing with rescheduling, scheduling is still

thought of as a static open-loop problem – the goal is to obtain an optimal schedule for the cur-

rent state of the system based on current (and possibly some forecast) data. The development

of methods (models and solution algorithms) for the closed-loop problem has received no at-

tention. Another limitation of existing rescheduling methods, as we discuss in Section 3.2.2, is

that they are model specific and rely on the solution of a rescheduling model that is generated

empirically.

The goal of this paper is to address some of the aforementioned limitations employing ideas

from the area of control and model predictive control (MPC) in particular. Model predictive

control offers a natural framework for the study of dynamic problems. First, it relies on a gen-

eral representation of the underlying system, including different types of disturbances, via the

state space model. Second, it offers results with regard to the quality of the closed-loop per-

formance of various control strategies. For example, with careful design of the on-line opti-

mization problem, features such as recursive feasibility (feasibility of the optimization problem

at each sampling instance) and asymptotic stability (convergence to a set-point for the nom-

inal case) can be obtained. Interestingly, it has been shown that simple re-optimization does

not necessarily lead to good closed-loop performance, as has been assumed in the scheduling

literature.

Towards this goal, we first transform a general mixed-integer programming (MIP) schedul-

ing model into a state space model (2.1). Second, we show how common scheduling disrup-

tions can me modeled as disturbances in the state space model, and finally, we discuss how

some concepts from MPC like terminal constraints can be used in scheduling.
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3.2 Background

3.2.1 Chemical production scheduling problems and models2

Production scheduling is one of the many planning functions in a manufacturing supply

chain. The interactions of scheduling with other functions along with capacity considerations

determine the class of scheduling problem. The interactions with demand and production

planning determine the type of scheduling problem to be solved (cyclic vs. short-term). The

types of decisions made at the scheduling level are determined by the decisions made at the

production planning level. Also, capacity constraints often determine the objective function

(e.g.,throughput maximization vs. cost minimization). Finally, input parameters to schedul-

ing (e.g.,raw material availability) are provided by other functions (Maravelias and Sung, 2009;

Maravelias, 2012; Stadtler, 2005).

In general, scheduling problems can be classified in terms of a triplet α/β/γ, where α de-

notes the production environment; β denotes the processing characteristics/constraints and

γ denotes the objective function (Pinedo, 2008). The main production environments are se-

quential, network and hybrid (Maravelias, 2012). Note that different types of processing can be

present in the same facility. Processing characteristics and constraints include setups, changeovers,

release/due times, storage constraints, material transfers, etc. Common objective functions

are the minimization of makespan, the minimization of production costs, the maximization of

throughput, and the minimization of weighted lateness.

The modeling approaches to chemical production scheduling can be classified in terms of

(Maravelias, 2012):

1. the decisions made at the scheduling level;

2. the entities used to express the scheduling model; and

3. the modeling of time.

2This text appears in Section 2.1 of Subramanian et al. (2012a)
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In the most general case, scheduling involves three types of decisions: (i) batching (num-

ber and size of batches needed to satisfy demand); (ii) assignment of batches (or tasks) to

processing units; and (iii) sequencing and/or timing of batches (tasks) on processing units. If

the batching decisions are fixed, then scheduling problems are expressed in terms of batches

(batch-based approach). If batching decisions are made at the scheduling level, then materi-

als and material amounts are typically used to formulate the scheduling model (material-based

approach). Finally, the modeling of time includes decisions at four levels: (i) selection between

precedence and grid-based approach; (ii) if precedence-based, selection between local and

global precedences; if time-grid based, selection between common and unit specific grids; (iii)

specific assumptions regarding the precedence relationship between two tasks and the map-

ping of task onto time; and (iv) selection between discrete and continuous time representation

(Maravelias, 2012).

In this paper we assume batching, unit-task assignment and sequencing/timing decisions

are all made at the scheduling level (material-based approach). We further assume that the gen-

eral scheduling problem can be expressed in terms of production tasks, units(unary resources),

and materials. While this type of formalism has been traditionally used to express problems

in network production environment, Sundaramoorthy and Maravelias (2010) showed that it

can also be employed to represent problems in all production environments. A thorough dis-

cussion of the various scheduling problems and modeling approaches is presented in Méndez

et al. (2006).

3.2.2 Reactive scheduling3

Rescheduling, or reactive scheduling, after observing disturbances to the nominal schedule

has attracted some research attention in the past few years. Smith (1995) emphasizes the pro-

cess view of the scheduling problem and outlines the following criteria for reactive scheduling:

(i) prioritize outstanding problem; (ii) identify modifying goals; and (iii) estimate possibilities

3This text appears in Section 2.4 of Subramanian et al. (2012a).
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for efficient and non-disruptive schedule modification. In the MIP-based approaches to reac-

tive scheduling, a nominal schedule is used in conjunction with a MIP model to react to distur-

bances. On observing a disturbance, part of the schedule which has already been implemented

is fixed and the remainder of the scheduling horizon is re-optimized using modifications to the

original model to reflect the disturbances. Such strategies were proposed by Vin and Ierapetri-

tou (2000); Janak, Floudas, Kallrath, and Vormbrock (2006); Relvas, Matos, Barbosa-Póvoa, and

Fialho (2007), among others. Novas and Henning (2010) propose a constraint programming

based approach to locally repair the nominal solution. Méndez and Cerdá (2003) also propose

a local repair solution to the schedule based on a MIP formulation that considers the current

“state” of the plant, a nominal schedule and new information. Motivated by rolling horizon op-

timization in process control, several shrinking horizon and rolling horizon approaches to the

scheduling problem have also been proposed. For instance, van den Heever and Grossmann

(2003) provide an example of a complex hydrogen pipeline, in which they divide the planning

horizon into planning periods, and for each planning period, they solve the scheduling prob-

lem in a shrinking horizon formulation. Sand and Engell (2004) solve a two stage stochastic

optimization problem to find robust schedules. They employ a moving horizon framework in

which the decisions in the current time period, the first stage decisions are implemented, while

the second stage decisions are embedded in a scenario tree for stochastic variables. Honkomp,

Mockus, and Reklaitis (1999) use an optimizer to perform the scheduling in conjunction with

a simulator to simulate stochastic scenarios. Rodrigues, Gimeno, Passos, and Campos (1996)

propose a rolling horizon reactive scheduling method in which they provide a predictive frame-

work to determine future infeasibilities that lie outside the current optimization horizon. Huer-

cio, Espuna, and Puigjaner (1995) present heuristics for rescheduling based on shifting of task

processing times and reassignment of tasks to other units. Li and Ierapetritou propose a multi-

parametric approach to rescheduling. Munawar and Gudi (2005) propose a three level decom-

position of the problem, and motivated by process control, formulate feedback and cascade

control-like solutions to reactive scheduling. Li and Ierapetritou (2008) present a review of
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different strategies used in reactive scheduling. Verderame, Elia, Li, and Floudas (2010) also

present a review of different approaches taken in different industries.

3.3 State space scheduling model

3.3.1 General problem statement4

The scheduling problem we consider is stated as follows. We are given:

1. A set of processing tasks i ∈ I; the processing time of task i is denoted by τ̃i , its fixed

batchsize by βi (variable batchsizes are considered in Section 3.3.6), and its production

cost by γi . Tasks that can be performed on many units are modeled as different tasks,

each one carried out only in one unit.

2. A set of equipment units j ∈ J. The subset of tasks i that can be carried out in unit j is

denoted by the set I j .

3. A set of materials k ∈ K stored in dedicated storage vessels of capacity σk . The unit inven-

tory cost of k is νk . The set of tasks i that produce/consume k is denoted by I+k /I−k . Task i

consumes/produces ρi k units of material k per unit of batchsize βi .

4. A set of shipments, l ∈ L (deliveries of feedstocks k ∈ KF ⊂ K or order for products k ∈ KP ⊂
K); φ̃l is the release (due) time of delivery (order) l ; and ζl is the amount delivered (ζl > 0)

or due (ζl < 0). Lk is the set of shipments (deliveries or orders) of material k.

Our goal is to meet the orders for the final products at the minimum total cost. Other objec-

tive functions can also be considered.

If a task has no input or output material (e.g.,when two consecutive tasks are carried out on

the same unit), dummy materials can be introduced to model the sequence of tasks. Also, if

material amounts need not be monitored (e.g.,sequential processes with fixed batchsize), then

we assume a nominal batchsize of 1 and unit conversion coefficients. Note that we use the term

material instead of state, because the latter has a different meaning in state space models. Raw

4This text appears in Section 2.2 of Subramanian et al. (2012a).
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time-related data, τ̃i and φ̃l are given in regular time units (e.g.,hours), and are represented by

parameters with a tilde.

3.3.2 Scheduling MIP model5

We consider a discrete-time model, in which the time horizon η, is divided into T periods of

fixed length δ= η/T , defining t +1 time points, where period t starts(ends) at time point t −1(t )

(Shah, Pantelides, and Sargent, 1993). We use time index t ∈ T to denote both time point and

periods. Time-related data are scaled using δ and approximated so that the resulting solutions

are feasible. Specifically, processing times are rounded up, τi = dτ̃i /δe; and release and due

times are approximated conservatively, φl = dφ̃l /δe if γl > 0 and, φl = bφ̃l /δc if γl < 0. We also

generate the set of shipments for material k at time t , Lkt =
{
l ∈ Lk |φl = t

}
; and then calculate

the total shipment of material k at time t :

ξkt =
∑

l∈Lkt

ζl , ∀k, t

The optimizing decisions are Wi ,t ∈ {0,1} which is one if task i is assigned to start on unit j at

time point t ; and Sk,t ≥ 0 , which is the inventory of material k during time period t . Any feasible

schedule should satisfy the assignment constraint (3.1) that expresses that at most one task can

be executed on a unit at a time.

∑
i∈I j

t∑
t ′=t−τi+1

Wi ,t ′ ≤ 1, ∀ j , t (3.1)

If we assume that the orders are satisfied on time, the following material balance gives the

inventory variables:

Sk,t+1 = Sk,t +
∑

i∈I+k

ρi kβi Wi ,t−τi +
∑

i∈I−k

ρi kβi Wi ,t +ξkt ≤σk , ∀k, t (3.2)

The objective function is

z = min
∑
i ,t
γi Wi ,t +

∑
k,t
νk Sk,t (3.3)

5This text appears in Section 2.3 of Subramanian et al. (2012a)
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Unit MaterialTask

TA

TB

U

τT B = 2hr, βT B = 6ton

τT A = 3hr, βT A = 4ton

B

A

RM

Figure 3.1: Simple scheduling problem

The basic scheduling model MSCH we consider consists of Equations (3.1)–(3.3), with Wi ,t ∈
{0,1} ,∀i , t and Sk,t ∈ [0,σk ].∀k, t .

If orders cannot be met on time (or we do not wish to meet them), then we can introduce

backorders variable and an additional equation for its calculation.

A simple problem with one unit, two tasks and three materials, and the associated data are

shown in Figure 3.1. Figure 3.2 shows a solution to this problem-a Gantt chart showing the

execution of the tasks and the inventory profiles of the three materials. We use this example

throughout this chapter to illustrate the basic ideas.

3.3.3 Inputs and states6

Since assignment variables Wi ,t are the main scheduling decisions; they are the inputs in the

state space realization of MSCH. Inventory levels Sk,t in MSCH are determined by Wi ,t and the in-

ventory balance dynamics, and hence are states. However, the variables Sk,t do not completely

describe the state of the system. Consider the solution shown in Figure 3.2. The variables WTA,2

and WTA,3 are both zero, but at t = 2, the task TA has run for one hour while at t = 3, the task TA

has run for two hours. Therefore, to completely describe the state of the system, the history of

the system should also be included in the system state. This is achieved through lifting. We de-

fine the new state variables W̄ n
i ,t to carry past decisions to t . The state variable W̄ n

i ,t = 1 indicates

6This section corresponds to the model developed in Section 3.1 of Subramanian et al. (2012a).
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Gantt Chart

Inventory profile

TA

TB

S A,t
SB ,t
SRM ,t

Wi ,t

Time2 4 6 8

WT B ,5 = 1WT A,1 = 1

Figure 3.2: Scheduling solution

that a batch of task i started at time t −n. The lifted equations are given by:

W̄ 1
i ,t+1 =Wi ,t

W̄ n
i ,t+1 = W̄ n−1

i ,t ∀n ∈ {2,3, . . . ,τi } (3.4)

Using the lifted states, the inventory balance equation (3.2) can be written as:

Sk,t+1 = Sk,t +
∑

i∈I+k

ρi kβi W̄ τi
i ,t +

∑
i∈I−k

ρi kβi Wi ,t +ξk,t ∀k, t (3.5)

Similarly, the assignment constraint (3.1) can be written as

∑
i∈I j

Wi ,t +
∑
i∈I j

τi−1∑
n=1

W̄ n
i ,t ≤ 1 ∀ j , t (3.6)

Defining the state x(t ) =
[

Sk,t ,k ∈ K, W̄ n
i ,t , i ∈ I,n ∈ {1,2, . . . ,τi }

]
, the input u(t ) =

[
Wi ,t , i ∈ I

]
and the disturbance d(t ) =

[
ξk,t ,k ∈ K

]
, we can write the scheduling model in the familiar state

space form x(k+1) = Ax(k)+Bu(k)+Bd d(k). Equations (3.4) and (3.5) express the dynamic evo-

lution of the system, and Equation (3.6) is a joint state-input constraint. The objective function

can be easily written as the sum of economic stage costs `E (x,u) = q ′x + r ′u.

The dynamic evolution, constraints and stage costs for the simple scheduling model intro-

duced in Figure 3.1 are given in Equations (3.7)–(3.9).
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W̄ 2
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W̄ 3
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W̄ 2
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
t+1

=


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1
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
︸ ︷︷ ︸

A
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
t︸ ︷︷ ︸

x(t )

+


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1
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︸ ︷︷ ︸

B

WTA

WTB


t︸ ︷︷ ︸

u(t )

+



1

1


︸ ︷︷ ︸

Bd

ξA

ξB


t︸ ︷︷ ︸

d(t )

(3.7)
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t
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t

≤



σRM
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1

 (3.8)

`E (x,u) =
[
νRM νA νB

]
︸ ︷︷ ︸

q ′
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TA

W̄ 2
TA

W̄ 3
TA

W̄ 1
TB

W̄ 2
TB


t

+
[
γTA γTB

]
︸ ︷︷ ︸

r ′

WTA

WTB


t

(3.9)
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3.3.4 Disturbances7

Events that can lead to rescheduling are modeled as disturbances. We have already dis-

cussed shipments as a disturbance in the previous section. In this section, we model three

disturbances, namely, task yields, task delays and unit breakdowns.

3.3.4.1 Shipments

We assume that backorders are not allowed. Therefore, the shipping schedule is fixed by

customer orders. Hence, shipments are treated as disturbances. We denote the nominal cus-

tomer demands as ξnom
k,t . Shipment disturbances are deviations ξ̂k,t from the nominal value.

That is,

ξk,t = ξnom
k,t + ξ̂k,t

3.3.4.2 Task yields

Consumption and production disturbances are used to model changes in yields and losses

during loading and unloading. We define yield disturbance variables βP
i ,k,t and βC

i ,k,t to denote

deviation from the nominal production/consumption of material k by a batch of task i finish-

ing/starting at time t . For example, βP
i ,k,t < 0 indicates lower yield than the nominal batch size.

The material balance equations (3.5) is now modified as :

Sk,t+1 = Sk,t +
∑

i∈I+k

ρi kβi W̄ τi
i ,t +

∑
i∈I−k

ρi kβi Wi ,t +
ξk,t +

∑
i∈I+k

ρi kβ
P
i ,k,t +

∑
i∈I−k

ρi kβ
C
i ,k,t

 ∀k, t

(3.10)

3.3.4.3 Task delays

We introduce disturbance variable Ŷ n
i ,t to model delays during the execution of a task. The

variable Ŷ n
i ,t = 1 when an 1-period delay (δ h) of task i occurring n periods after task i started

has been observed. The state equations (3.4) are corrected as:

7This section corresponds to the model developed in Section 3.1 of Subramanian et al. (2012a).
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W̄ 1
i ,t+1 =Wi ,t − Ŷi ,t

W̄ n
i ,t+1 = W̄ n−1

i ,t + Ŷ n
i ,t − Ŷ n−1

i ,t , ∀i , t ,n ∈ {2,3, . . . ,τi } (3.11)

Equation (3.11) essentially says that the values of states W̄ n
i ,t+1 should be the same as W̄ n

i ,t if

there is a 1-period delay at t . The state equations (3.5) is corrected as:

Sk,t+1 = Sk,t +
∑

i∈I+k

ρi kβi W̄ τi
i ,t +

∑
i∈I−k

ρi kβi Wi ,t +ξk,t −
∑

i∈I+k

ρi kβi Ŷ τi
i ,t ∀k, t (3.12)

For example, consider the situation in which the task TA was started at t = 1. Hence WTA,1 =
1. The state equation (3.4), then implies that W̄ 2

TA,3 = 1, as at t = 3, the task TA has been running

for 2 hours. If a 1-period delay is observed at time t = 3, then the variable Ŷ 2
TA,3 = 1. This means

that instead of finishing at t = 4, the task gets completed only at t = 5. Hence, for modeling pur-

pose, the task started only at time t = 2. In rescheduling literature, a new model is written with

this information, i.e., WTA,2 = 1,WTA,1 = 0. In our proposed method, such delays are handled

organically by modifying the lifted states. Equation (3.11) tells us that

W̄ 3
TA,4 = W̄ 2

TA,3 + Ŷ 3
TA,3 − Ŷ 2

TA,3 = 1+0−1 = 0

and

W̄ 2
TA,4 = W̄ 1

TA,3 + Ŷ 2
TA,3 − Ŷ 1

TA,3 = 0+1−0 = 1

Hence, we can verify that the disturbance variable Ŷ n
i ,t successfully models an 1-period delay.

3.3.4.4 Unit breakdowns

In contrast to a task delay, a unit breakdown leads to the termination of the task being exe-

cuted on the unit at the time of the breakdown. In such an event, all production in that unit is

also lost. To model a breakdown of unit j , we introduce disturbance variable Ẑ n
i ,t . The variable

Ẑ n
i ,t = 1 when a breakdown (of duration 1 period) occurring n hours after task i ∈ I j started is

observed. Unlike the previous section, we force all the lifted variables affected by the shutdown
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to be zero as:

W̄ 1
i ,t+1 =Wi ,t − Ẑi ,t

W̄ n
i ,t+1 = W̄ n−1

i ,t − Ẑ n−1
i ,t ∀i ,n ∈ {2,3, . . . ,τi } (3.13)

The state equations (3.5) is corrected as

Sk,t+1 = Sk,t +
∑

i∈I+k

ρi kβi W̄ τi
i ,t +

∑
i∈I−k

ρi kβi Wi ,t +ξk,t −
∑

i∈I+k

ρi kβi Ẑ τi
i ,t ∀k, t (3.14)

Finally, to ensure that no tasks are assigned to unit j if it is out of order, the constraint (3.6)

is modified as:

∑
i∈I j

Wi ,t +
∑
i∈I j

τi−1∑
n=1

W̄ n
i ,t +

∑
i∈I j

τi−1∑
n=1

Ẑ n
i ,t + Ẑi ,t ≤ 1 ∀ j , t (3.15)

A breakdown lasting multiple periods, from t to t+φ can be modeled as consecutive 1 period

breakdowns. Since the subsequent breakdowns occur while no task is executed, we introduce

an idle task IT( j )∀ j with τIT( j ) = 1 and use Ẑ 1
IT( j ),t+1 = Ẑ 2

IT( j ),t+2 = . . . = Ẑ 1
IT( j ),t+φ = 1.

3.3.5 Final model

The final state space scheduling model includes the state evolution described by (3.16) and

the modified constraint given by (3.15).

W̄ 1
i ,t+1 =Wi ,t − Ẑi ,t − Ŷi ,t ∀i , t

W̄ n
i ,t+1 = W̄ n−1

i ,t − Ẑ n−1
i ,t + Ŷ n

i ,t − Ŷ n−1
i ,t ∀i , t ,n ∈ {2,3, . . . ,τi } (3.16)

Sk,t+1 = Sk,t +
∑

i∈I+k

ρi kβi W̄ τi
i ,t +

∑
i∈I−k

ρi kβi Wi ,t+ξk,t −
∑

i∈I+k

ρi k

(
βi (Ẑ τi

i ,t − Ŷ τi
i ,t )+βP

i ,k,t

)
+ ∑

i∈I−k

ρi kβ
C
i ,k,t

 ∀k, t

With the disturbance

d(t ) =
[
ξk,t ,k ∈ K, βP

i ,k,t ,βC
i ,k,t , i ∈ I,k ∈ K, Ŷi ,t , Ŷ n

i ,t , Ẑi ,t , Ẑ n
i ,t , i ∈ I,n ∈ {2,3, . . . ,τi }

]
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the final model can be written in the state space form. In the general case, we have u ∈ {0,1}m

in which m = |I|; x ∈ Rnc × {0,1}nb in which nc = |S| and nb = ∑
i∈Iτi ; and d ∈ Rnd × {0,1}2nb in

which nd = |S|+∑
k∈K |I−k |+ |I+k |. The symbol | · | denotes the cardinality of a set.

The state space formulation of the scheduling model is denoted as MMPC.

3.3.6 Extensions

The main ideas in transforming the discrete-time scheduling model MSCH to the state space

form MMPC is the identification of inputs and states, and the lifting of some decision variables

(inputs) so that the state vector completely describes the system. This idea can be applied to

any linear discrete-time model. For example, in this section, we show how variable batchsizes,

backorders and processing constraints can be modeled in the state space formulation.

3.3.6.1 Variable Batchsizes

Let Bi ,t ≥ 0 denote the batchsize of task i that starts at time t . The material balances in terms

of Bi ,t is

Sk,t+1 = Sk,t +
∑

i∈I+k

ρi k Bi ,t−τi +
∑

i∈I−k

ρi k Bi ,t +ξk,t (3.17)

Wi ,t B min
i ≤ Bi ,t ≤Wi ,t B max

i , ∀k, t (3.18)

The parameters B min
i and B max

i are the lower and upper bound on the batchsize of task i .

The scheduling model now consists of (3.1), (3.17) and (3.18). To formulate it in the state

space form, notice that variable Bi ,t is a decision, and hence an input. Since the state equation

(3.17) requires the input from t −τi , we lift the batch-size input to fully describe the state of the

system. Hence,

B̄ 1
i ,t+1 = Bi ,t (3.19)

B̄ n
i ,t+1 = B̄ n−1

i ,t ∀i , t (3.20)

The model MMPC now consists of Equations (3.4), (3.20), (3.21) and constraints (3.6) and

(3.18).



63

Sk,t+1 = Sk,t +
∑

i∈I+k

ρi k B̄τi
i ,t +

∑
i∈I−k

ρi k Bi ,t +ξk,t ∀k, t (3.21)

3.3.6.2 Backorders

If the demands cannot be met at a particular sampling time, then we model it using a back-

order/ backlog variable. Let Uk,t be the backlog of the material k during period t and Vk,t be the

shipment of material k during period t . The material balance now becomes,

Sk,t+1 = Sk,t +
∑

i∈I+k

ρi k B̄τi
i ,t +

∑
i∈I−k

ρi k Bi ,t −Vk,t ∀k ∈ K, t (3.22)

while the backlog Ukt is calculated from

Uk,t =Uk,t −Vk,t +ξk,t ∀k, t (3.23)

From Equations (3.22) and (3.23), it is clear that the shipments Vk,t are the decisions, and

hence inputs while, backlogs are the states.

3.3.6.3 Processing constraints8

Processing constraints can be modeled following the same procedure. To illustrate, we con-

sider the modeling of tasks that require the consumption of utilities m ∈ M (e.g.,cooling water

and electricity) during their execution. Ifωm is the availability of utility m, andψi m is the utility

consumption of task i during its execution, then the resource constraint is written as:∑
i∈Im

t∑
t ;=t−τi+1

ψi mWi t ≤ωm ∀m, t (3.24)

in which Im is the set of tasks that consume resource m. Using the lifted W variables the con-

straint (3.24) can be written as∑
i∈Im

Wi ,tψi m + ∑
i∈Im

τi−1∑
n=1

W̄ n
i ,tψi m ≤ωm ∀m, t (3.25)

In Section 3.4, we provide an additional example of modeling changeover time between two

tasks.
8The text in this section appears in Subramanian et al. (2012a).
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3.4 Illustrative Examples9

3.4.1 Nominal demand

We now present the rolling horizon optimization procedure for the simple scheduling exam-

ple that was introduced in Figure 3.1. We make the following modifications to the scheduling

problem: (i) Variable batch size (βmin
i = 5,βmax

i = 10), (ii) A changeover time of CHT(i , i ′) = 2h

when switching between products, and (iii) Nominal demands ξnom
k,t = 1.5 ton every hour. No

backlogs are allowed.

To model the changeover time, we introduce three new binary variables Zi ,i ′,t ,Yi ,t and Xi ,t .

The binary variable Zi ,i ′,t is 1 when a changeover is effected from task i to task i ′ at time t . The

binary variable Yi ,t is 1 if the task i was started during [t−τi , t ]. The binary variable Xi ,t is 1 if the

last task to be performed in the unit before time t was i . The modified assignment equations

are given in (3.26) (for the example problem, hence j is omitted as there is only one uit)

∑
i∈I

t∑
t ′=t−τi+1

Wi ,t ′ +
∑
i ′∈I
i ′ 6=i

t∑
t ′=t−CHT(i ,i ′)+1

Zi ,i ′,t ′ ≤ 1 ∀t

t∑
t ′=t−τi+1

Wi ,t ′ = Yi ,t ∀t ,∀i ∈ I

Xi ,t ≥ Yi ,t ∀t ,∀i ∈ I∑
i∈I

Xi ,t = 1 ∀t (3.26)

Zi ,i ′,t ≤ Xi ,t−1 ∀t ,∀i ∈ I, i ′ ∈ I, i ′ 6= i

Zi ,i ′,t ≤ Xi ′,t ∀t ,∀i ∈ I, i ′ ∈ I, i ′ 6= i

Zi ,i ′,t ≥ Xi ,t−1 +Xi ′,t −1 ∀t ,∀i ∈ I, i ′ ∈ I, i ′ 6= i

In the state space format, the variables Zi ,i ′,t and Xi ,t are the inputs. As we see in the mod-

ified assignment equation (3.26), the state of the plant is jointly described by the inputs Z ,W

and X from the previous time periods and the current input. Therefore, apart from lifting W ,

9The results in this section appears in Section 5 and Section 6.4 of Subramanian et al. (2012a).



65

we also lift Z and X .

Z̄ 1
i ,i ′,t+1 = Zi ,i ′,t Z̄ 2

i ,i ′,t+1 = Z̄ 1
i ,i ′,t , ∀i , i ′ ∈ I, t

and

X̄ 1
i ,t = Xi ,t ∀i ∈ I, t

The variable Y is just a function of the lifted states W̄ n
i ,t and the input.

Yi ,t =
τi−1∑
n=1

W̄ n
i ,t +Wi ,t

The state space representation of the scheduling model, following the example in the previ-

ous section, can be written in the familiar format

x(t +1) = Ax(t )+Bu(t )+Bd d(t )

with constraints

b ≤ Ex x(t )+Euu(t ) ≤ b̄

and economic stage cost

`E (x(k),u(k)) = q ′x(k)+ r ′u(k)

The on-line optimization problem in its simplest form is now written as:

PN (x) :min
u

N−1∑
t=0

`E (x(t ),u(t ),d nom(t ))

s.t. x(t +1) = Ax(t )+Bu(t )+Bd d nom(t ), t = {0,1, . . . , N −1}

b ≤ Ex x(t )+Euu(t ) ≤ b̄, t = {0,1, . . . , N −1} (3.27)

x(0) = x

in which N is the prediction horizon and d nom(t ) is the nominal demand, while u = (u(0),u(1), . . . ,u(N−
1)).

The Gantt chart obtained by successive re-optimization of Problem (3.27) is shown in Fig-

ure 3.3. Note that there were no disturbances to the system. As it can be seen, the optimization
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Time

0 4 8 12 16 20 24 28

t=0

t=1

t=2

5.50 10.00 − 6.50 10.00 − 9.00 − 5.00−

10.00 − 6.50 10.00 − 10.00 − 5.006.006.00

− infeasible

TA TB Setup Setup

Figure 3.3: Rescheduling leads to infeasibility when no backorders are allowed

problem becomes infeasible at t = 2. Notice that optimization problem (3.27) aims to mini-

mize the number of batches started as well as the inventory at each prediction time. Hence, it

starts a batch of 6 ton for task TA at t = 1. However, for the optimization problem at time t = 2,

there were not enough degrees of freedom to satisfy the demands observed t = 25, which was

not considered by the problem at t = 1. Hence, when solved within a rolling horizon frame-

work, Problem (3.27) does not guarantee recursive feasibility. As we show later in this section,

the problem would have remained feasible if a larger batch was started at t = 1. In the con-

trol literature, recursive feasibility is achieved by enforcing terminal conditions, as the terminal

conditions account for long term effects. To find a suboptimal infinite horizon schedule for this

problem, we solve the following periodic optimization problem given in (3.28). In the periodic

optimization problem, we enforce the condition that x(0) = x(Np ), which says that the state of

the system (including all the lifted variables) return to the starting state at the end of the period

Np . Therefore, the same schedule can be repeated at t = Np . In this way, we can find an infinite

horizon schedule in response to nominal demands.
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Figure 3.4: Periodic solution for the example in the absence of disturbances

PP : min
u,x(0)

NP−1∑
t=0

`E (x(t ),u(t ),d nom(t ))

s.t. x(t +1) = Ax(t )+Bu(t )+Bd d nom(t ), t = {0,1, . . . , N −1}

b ≤ Ex x(t )+Euu(t ) ≤ b̄, t = {0,1, . . . , N −1} (3.28)

x(0) = x(Np )

The Gantt chart for the periodic solution is shown in Figure 3.4.

We now illustrate the use of terminal constraints on the states of the model which enable us

to retain feasibility of the scheduling problem as we roll the horizon forward. To do so, we use

the cyclic schedule found by optimization problem (3.28). Let the solution of the (3.28) be given

as (x0
P (0),u0

P (0),u0
P (1), . . . ,u0

P (Np −1)). For this optimal periodic solution, we can calculate the

corresponding state-evolution using the state evolution equation. Denote the states in this op-

timal periodic state evolution as
{

x0
P (0), x0

P (1), . . . , x0
P (Np −1)

}
. Then the optimization problem



68

with terminal constraints PT
N (x) can be written as:

PT
N (x) :min

u

N−1∑
t=0

`E (x(t ),u(t ),d nom(t ))

s.t. x(t +1) = Ax(t )+Bu(t )+Bd d nom(t ),t = {0,1, . . . , N −1}

b ≤ Ex x(t )+Euu(t ) ≤ b̄, t = {0,1, . . . , N −1} (3.29)

x(0) = x

x(N ) ∈ {
x0

P (0), x0
P (1), . . . , x0

P (Np −1)
}

In optimization problem PT
N , we enforce the condition that the terminal state be one of the

states in the optimal periodic state evolution. Therefore, the solutions to (3.29) contains long-

term information. This is because, we terminate at a state from which we can implement a

periodic solution to respond to nominal demands. The Gantt chart obtained by successive re-

optimization using problem (3.29) is shown in Figure 3.5. Due to design of the optimization

problem, we remain feasible at all times. Note that the batch of TA at t = 1 was 8 tons, because

of the information regarding future demands contained in the terminal constraint. Figure 3.6

shows the closed-loop solution over 24h.

We can use terminal constraints to reduce the computational burden in scheduling because,

as shown in Figure 3.7, we can guarantee recursive feasibility using shorter prediction horizons

also. In Figure 3.7, Problem (3.29) was solved with N = 12 and Figure 3.8 shows the closed-loop

solution over a horizon of 24h using a prediction horizon of 12h.

3.4.2 Rescheduling

In this section, we consider the same model as in Section 3.4.1, but with backlogs. That is,

we introduce shipments Vk,t and backlog Uk,t with the new state equations defined by (3.22)

and (3.23). We enforce an economic penalty on accumulating backlogs.

The following disturbances are observed: (i) Production delay of 1h at t = 6, (ii) breakdown

for 3h from t = 10 to t = 13, (iii) unloading error at t = 14 (production of B is 8ton instead of

10ton) and, (iv) demand spike at t = 16, with ξ̂i = 0.5, that is the demand for both products were

2tons instead of the nominal demand of 1.5 ton. Figures 3.9 and 3.10 shows the closed-loop
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Figure 3.5: Solutions obtained by solving Problem (3.29) at t = 0,1,3 and 4. Addition of terminal

constraints leads to feasible problems. Compare the schedule at t = 0 with 3.3. A larger batch

of TA starts at t = 1 and there are fewer changeovers, thus larger production.
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Figure 3.6: Closed-loop solution solving (3.29) with N = 24h
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Figure 3.7: Solutions obtained by solving Problem (3.29) at t = 0,1,3 and 4. Recursive feasibility

is maintained with proper choice of terminal constraints
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Figure 3.8: Closed-loop solution solving (3.29) with N = 12h
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performance for an optimizer optimizing (3.27). We can observe the rescheduling that occurs

naturally using the rolling horizon framework in Figure 3.9. For example, the batch sizes change

between t = 6 and t = 7 and t = 14 and t = 15 after the realization of disturbances. Finally, Figure

3.11 shows the closed-loop response for the same disturbances, but when the optimizer was

solving (3.29); that is, when we were enforcing terminal cyclic constraints. We observe inherent

robustness of the terminal constraint formulation as the backlogs accumulated are lesser than

the formulation without terminal constraints.

3.5 Discussion

3.5.1 Generality of the scheduling model10

Most current approaches to reactive scheduling are based on scheduling models that do

not include disturbances explicitly. Thus, when an event triggers rescheduling, an empirical

procedure is followed to modify the scheduling model so it (i) represents the new state of the

system, and (ii) accounts for the future impact of the disturbance. One advantage of the state

space model is that the same model can be directly used for rescheduling. All events that can

trigger rescheduling are modeled via disturbance variables. Thus, for a resolve it is sufficient to

fix the appropriate disturbance variables, which can be readily calculated from the observation

at the current time. No empirical model modifications are necessary.

3.5.2 Stochastic vs. deterministic approaches11

In this paper, we treat scheduling as an on-line problem; we optimize to determine a sin-

gle schedule based on current data and forecasts, and as new information becomes available

we re-optimize to determine, again, a single solution. In each re-optimization, we solve a de-

terministic problem- we do not account for the fact that some data are subject to uncertainty

that can be modeled. An alternative approach is to model the uncertainty in the events that

can trigger rescheduling, and then generate a solution that takes into account this information

10This text appears in Section 3.5.1 of Subramanian et al. (2012a)
11This text appears in Section 3.5.2 of Subramanian et al. (2012a)
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Figure 3.9: Rescheduling in the presence of disturbances
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Figure 3.10: Inventory (Inv) and Backorder(BO) profiles in the closed-loop in the presence of

disturbances.
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Figure 3.11: Inventory (Inv) and Backorder(BO) profiles in the closed-loop in the presence of

disturbances. Compare with 3.10 to notice the inherent robustness of the terminal constraint

formulation
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(Li and Ierapetritou, 2008; Sahinidis, 2004). The obvious advantage of this so-called optimiza-

tion under uncertainty approach is that, if the model is solved effectively, then it can lead to

better solutions. The disadvantage is that most optimization under uncertainty methods are

computationally expensive, and thus cannot be used to address practical problems. Robust op-

timization methods have been proposed to address this shortcoming (Ben-Tal and Nemirovski,

2002; Verderame and Floudas, 2009); they rely on solutions that is almost as hard as the deter-

ministic problem, but leads to solutions that are conservative. The advantage of the control-

inspired approach that we follow is that the deterministic optimization problem can be solved

more effectively, which has three implications. First, it can lead to optimal (or near optimal)

solutions that are better (even when evaluated under uncertainty) than the solution that can

be obtained within the same time by a stochastic programming approach. Second, it allows

us to reschedule more frequently, thus reacting faster to disturbances and thereby resulting in

better closed-loop solution. Third, it allows us to consider longer scheduling horizons, which is

critical and can often be more important that accounting for uncertainty.

3.5.3 Types of disturbances and uncertainties12

Interestingly, the types of disturbances we have discussed correspond, when treated as stochas-

tic parameters, to different types of uncertainty. Shipment disturbances can be viewed as right-

hand side (RHS) uncertainty. Production and consumption disturbances can be viewed as left-

hand side (LHS) uncertainty, since they can be treated as uncertainties in theβi k = ρi kβi terms:

Sk,t+1 = Sk,t +
∑

i∈I+
(βi W̄ n

i ,t +βP
i ,k,t )ρi k +

∑
i∈I−

(βi Wi ,t +βC
i ,k,t )ρi k +ζk,t ∀k, t (3.30)

These are two types of uncertainty that have received the most attention in stochastic opti-

mization approaches to scheduling.

Task delays can also be treated as LHS uncertainty if the duration of a task appears only

as a LHS coefficient (in the case of fixed processing times) or as a variable defined in terms

12This text appears in Section 3.5.3 of Subramanian et al. (2012a). Equation (3.30) has been modified to remain
consistent with the notation used in this chapter
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of stochastic parameters (in the case of variable processing times). Precedence-based mod-

els or time-grid based models with continuous modeling of time may result in stochastic opti-

mization problems which lead to LHS uncertainty. However, in discrete-time formulations, the

number of terms included in the summation in the LHS of the assignment constraint depends

on the duration of a task. Thus, in this case, the treatment of task delays through the modeling

of processing times as stochastic parameters leads to a structural type of uncertainty.

Finally, unit breakdowns lead to structural uncertainty since the constraints used to model

resource constraints should be removed or modified. Stochastic optimization approaches can-

not be used to effectively address this type of structural uncertainty because, in addition to

requiring on-the-fly reformulations of the scheduling model, task delays and unit breakdowns

lead to problems with either purely endogenous uncertainty or exogenous uncertainty with en-

dogenous observation (Colvin and Maravelias, 2008, 2010; Goel and Grossmann, 2006). For ex-

ample, the probability and the timing of a unit breakdown depends on the utilization of the

unit, which is determined by the decision maker. The proposed approach does not suffer from

this limitation.

3.5.3.1 Reverse transformation and reoptimization13

Since scheduling MIP models are computationally expensive, a potential disadvantage of

the proposed state space modeling framework is that it leads to MIP models of larger size.

For example. compared to its counterpart model, MSCH, model MMPC, has additional lifted

variables (lifted inputs W̄ n
i ,t ) and equations (3.4). However, model MMPC is not significantly

slower than MSCH. First we note that the addition of disturbance variables in Equations (3.16)

and (3.15) leads to changes in RHS constant vector b, if the optimization model is written as

max
{
c ′x : Ax ≤ b.x ∈ X

}
. In other words, they do not increase the complexity of the model. Sec-

ond, the lifting equations can be used to project out variables after the state of the system is

updated using MMPC and before reoptimization is performed. Commercial MIP solvers per-

form this type of preprocessing (variable elimination and constraint removal) automatically

13This text appears in Section 3.5.2 of Subramanian et al. (2012a)
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(Atamtürk and Savelsbergh, 2005). Third, specific preprocessing methods can be easily devel-

oped to transform the current MMPC model (i.e. the model after the injection of disturbances at

t ) back to a model in the form MSCH. Perprocessing based on MMPC can also be used to auto-

matically detect what constraints should be removed or modified. For example. in the case of a

breakdown of unit j =U from t1 to t2, the constraint (3.15) becomes:

∑
i∈I j

Wi ,t +
∑
i∈I j

τi−1∑
n=1

W̄ n
i ,t ≤ 0 ∀t ∈ {t1, . . . , t2 −1}

which mathematically implies that all binary variables appearing in the LHS should be fixed

to zero and Equation (3.15) be removed from the model for j = U and t ∈ {t1, . . . , t2 −1}. Not

surprisingly, this is what one would do using logical arguments: if there is a breakdown in an

unit, then no tasks can be started on this unit (i.e., all binaries are set to zero), and thus the

corresponding assignment constraint can be removed. Model MMPC allows us to systematically

perform this type of reasoning. We note that our preliminary computational experience con-

firms that MMPC is computationally comparable with model MSCH.

Finally, lifting the inputs offers insights into generation of the models for rescheduling. As

we saw, the current state of the system includes past inputs from t −maxi τi to t . Hence, when

reformulating original model M SCH, we have to fix the decisions made in the last maxi τi pe-

riods. This approach has been proposed in the past (Sundaramoorthy and Maravelias, 2010).

The use of state space models and input lifting formalizes this approach and makes it easy to

write rescheudling model for any disturbance.

3.5.4 MPC tools14

The development of a state space model is a first step towards the use of MPC theory and

methods to address scheduling problems. It offers a representation of scheduling problems

with which the process control community is familiar. Since scheduling is a dynamic problem

and can be viewed as a production control problem, our hope is that the proposed framework

will enable MPC technology for scheduling problems.

14This text appears in Section 6.1 of Subramanian et al. (2012a)
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Another outcome is that if facilitates the application of methods that have been developed

for hybrid dynamic systems consisting of both time and event driven dynamics (Bemporad and

Morari, 1999; Heemels, De Schutter, and Bemporad, 2001). Control of such systems has been

the focus of many researchers in the past decade (see (Camacho, Ramirez, Limon, Muñoz de la

Peña, and Alamo, 2010) for a review of MPC techniques for hybrid systems). At the same time,

studying this new class of problems can lead to the development of new tools for hybrid system.

The state space model can also help to bridge the gap between scheduling and control

since it allows the formulation of the integrated scheduling-control problem using a state space

model. Furthermore, the unified problem can be viewed as an economic MPC problem in

which the process economics (primarily determined by the scheduling decisions) are directly

optimized by the controller (Diehl, Amrit, and Rawlings, 2011).

More importantly. it offers a natural framework for the development of new scheduling al-

gorithms based on MPC. As mentioned in Section 3.1, scheduling is still thought of as an open-

loop problem, even though it is used in an iterative manner. As a results, concepts such as sta-

bility, recursive-feasibility, and closed-loop performance have received no attention. In Section

3.4, we showed how terminal constraints can be used to guarantee recursive feasibility.
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Chapter 4

Distributed MPC for supply chain optimization

We propose cooperative model predictive control for supply chains in this chapter.

In Section 4.2, we provide a brief review of the different control theory based and distributed

decision making approaches to supply chain optimization and operation. In section 4.3, we de-

scribe the dynamic modeling of supply chains. In section 4.4. we implement cooperative MPC

on a single-product, two-echelon supply chain. Finally, we summarize our results in Section

4.5.

4.1 Introduction1

The supply chain is a system comprising organizations, decision makers, and technology

decision policies that is responsible for transforming raw materials into finished products that

are delivered to end customers. As expanded upon later in this paper, the supply chain is tra-

ditionally characterized by counter-current flows of information and material. Material flows

from the raw material suppliers through the production and distribution facilities to the end

customers, while information, in the form of demands and orders, flows from the end cus-

tomers upstream to the suppliers (Backx, Bosagra, and Marquardt, 1998; Beamon, 1998).

The decisions for supply chain management can be broadly classified into three categories:

strategic, tactical and operational. The strategic decisions are the long term planning decisions

that may include, among others, where to locate production facilities and warehouses, and in

which technologies to invest. On a medium time range, tactical decisions include selecting

1The text in this section appears in Section 1 of Subramanian et al. (2012b).
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supply chain partners such as raw material suppliers, transportation companies, etc. The op-

erational decisions are the short term decisions, which are related to optimally operating the

supply chain. These decisions include planning and scheduling in the production facilities,

and distribution decisions such as inventory management, ordering and shipping policies, etc.

(Shah, 2005; Ganeshan and Harrison, 1995).

Shapiro (2004) lists the challenges in enlarging the scope of strategic planning in supply

chains. Among the listed challenges are integrating manufacturing, purchase and sales deci-

sions, multiperiod analysis and optimizing the overall supply chain profits. Stadtler (2005) is an

excellent overview paper about advanced planning in supply chains. The authors emphasize

linking organizational units to improve competitiveness of the supply chain. However, from an

operational viewpoint, they focus on advanced planning systems (APS) that uses information

and communication technology to coordinate all the flows (material, information, financial) in

the supply chain to best improve customer satisfaction.

The combined strategic and operational planning is a challenging optimization problem,

but researchers have made efforts to solve it; see, for instance, (Sabri and Beamon, 2000; Tsi-

akis, Shah, and Pantelides, 2001; You and Grossmann, 2008). The optimization problems for-

mulated for combined strategic and operational planning typically involve selecting a supply

chain network from a family of networks or a network superstructure. Recent developments in

combined strategic and operational planning, including handling of uncertainties and multi-

objective formulations, are described in the review paper (Papageorgiou, 2009).

At the operational level of the supply chain, the need for simultaneous decision making at

the manufacturing and the distribution sites to operate a coordinated supply chain has been

recognized. The focus of this chapter is on methods to achieve such simultaneous decisions.

This simultaneous decision making is also known as enterprise wide optimization (Grossmann,

2005).

Modern supply chains operate over multiple locations and products, and are highly inter-

connected. In a competitive economy, neglecting these interactions may result in lower profits.

A central coordinator who controls the supply chain can account for these interactions and
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provide optimal operation. However, centralized coordination may not always be practical for

a supply chain as (i) different nodes may belong to different firms, (ii) there may be a conflict

of objectives among nodes (iii) information sharing may not be perfect and (iv) a centralized

decision maker is the most vital cog in a supply chain, and its failure may be catastrophic for

the supply chain. Therefore, distributed coordination structures for supply chain operation is

needed.

We focus on tailoring model predictive control (MPC) as a general purpose method for op-

timal supply chain operation. Model predictive control uses a dynamic model of the system

to predict future outcomes and solves a constrained optimization problem over the predicted

outcomes to find the best operational decisions. Therefore, it is well suited as a basis for supply

chain operation because it makes full use of the dynamic model and knowledge of the inter-

actions between the various nodes to predict and optimize an overall supply chain objective

function.

We propose cooperative MPC as a tool for coordinating supply chains as it retains the same

structure as traditional supply chains wherein each node makes its own local decisions, but

instead of optimizing the local objective functions, the nodes optimize the overall supply chain

objective function.

4.2 Literature survey2

A well defined supply chain optimization model requires a detailed dynamic description of

the supply chain and an objective function that captures all the essential costs and trade-offs

in the supply chain. Beamon (1998) classifies supply chain modeling in four broad categories:

Deterministic models where all the parameters are known, stochastic models with at least one

unknown parameter (typically demands) that follows a known probability distribution, eco-

nomic game theory based models, and simulation based models. As pointed out in (Sarimveis,

Patrinos, Tarantilis, and Kiranoudis, 2008), a majority of these models are steady-state models

based on average performance, and hence are unsuitable for dynamic analysis. In the review

2The text in this section appears in Section 2 of Subramanian et al. (2012b)
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of dynamic models for supply chains, Riddalls, Bennett, and Tipi (2000) classify the models as

continuous time models, discrete time models, discrete event simulations, and operations re-

search (OR) based models.

The pioneering work of “industrial dynamics” awakened the control community’s interest in

supply chain optimization. The industrial dynamics models are the continuous (and discrete)

time dynamic models mentioned in (Angerhofer and Angelides, 2000). Industrial dynamics

captures the dynamics of the supply chains using differential (or difference) equations, and

therefore, control theory is a natural choice to study supply chain dynamics. In their simplest

form, these models capture inventory dynamics based on the shipments and orders leaving the

node

Ivi (k) = Ivi (k −1)− ∑
j∈Dn(i )

Si j (k)+ ∑
j∈Up(i )

S j i (k −τ j i )

in which Ivi (k) is the inventory in node i ∈ I at discrete time k, Dn(i ) is the set of nodes to

which node i ships material and Up(i ) is the set of nodes from which node i receives material.

The shipment delay between nodes i and j is denoted τi j , and Si j is the amount shipped by

node i to node j .

In order to compare different methods of supply chain operation, supply chain performance

has to be quantified. Beamon (1999, 1998) classify the performance measures in a supply chain

as quantitative measures like cost minimization, profit maximization, customer response time

minimization and, qualitative measures like customer satisfaction, flexibility etc. An impor-

tant performance measure that supply chain operation strives to reduce is the bullwhip effect,

which is defined as the amplification of demand fluctuations as one moves upstream in the

supply chain. It has been observed that the orders placed by a node to its upstream nodes

amplify (with respect to the customer demand) as one moves towards the supplier in a supply

chain. This effect increases the cost of operating the supply chain. It has been estimated that

a potential 30 billion dollar opportunity exists in streamlining the inefficiencies of the grocery

supply chain, which has more than 100 days of inventory supply at various nodes in its supply

chain (Lee, Padmanabhan, and Whang, 1997b,a). Among the reasons cited for the bullwhip ef-

fect is information distortion as one moves upstream in the supply chain. Information sharing
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has been shown to alleviate the bullwhip effect and is part of industrial practice such as ven-

dor managed inventory (VMI), etc. The other reasons often cited for the bullwhip effect are: (i)

the misunderstanding of feedback, which occurs because the nodes do not understand the dy-

namics of the supply chain, and (ii) the use of local optimization without global vision, in which

each node tries to maximize its local profit without accounting for the effects of its decisions on

the other nodes in the supply chain (Moyaux, Chain-draa, and D’Amours, 2007). Centralized

operation of supply chains is best suited to mitigate bullwhip effect, as it has exact knowledge

of the dynamics and complete information.

Classical control theory

The earliest applications of control theory to supply chains involved studying the transfer

functions and developing single input single output (SISO) controllers for tracking inventory

to its targets. Frequency domain analysis was used to analyze and evaluate alternative supply

chain designs. In classical control approaches to controlling supply chain, the nodes were an-

alyzed as linear systems using Laplace and Z -transforms. In the work of Towill (1982), a block

diagram based approach to modeling a node was proposed. The single product node consisted

of two integrators to capture the dynamics of inventory and backorders, while the order rate was

the manipulated variable. The disturbance to the system, market demand, was incorporated in

a feed-forward manner in the model. Time delays were also incorporated in the model. A feed-

back control law was proposed for controlling the inventory deviations from a target inventory.

By varying some of these parameters like delay, controller gain etc., a family of models for a sin-

gle node called as the input-output based production control system (IOBPCS) can be studied

(Lalwani, Disney, and Towill, 2006). The feedback law, in its simplest form, takes the form of an

order-up-to policy, that is order up-to the inventory target, if the current inventory is below its

target. This policy can be viewed as a saturated proportional controller, although other forms of

the controller can also be studied. Upon having a control policy and after defining other system

details like delays, forecast smoothing etc, the transfer function of the node can be derived and

analyzed (Dejonckheere, Disney, Lambrecht, and Towill, 2003). White (1999); Wikner, Naim,
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and Towill (1992) developed a PID controller without feed-forward forecasting for the node. A

review of stability analysis for the IOBPCS family of models is presented in Disney, Towill, and

Warburton (2006).

Classical control theory has also been studied for controlling the dynamics of the entire

supply chain as well. Grubbström and Tang (2000) provides a review of the input-output mod-

eling of supply chains and its analysis using Laplace transforms. Input-output modeling is the

matrix form description of the supply chain dynamics. Burns and Sivazlian (1978); Wikner,

Towill, and Naim (1991) analyzed multiechelon supply chains using the block diagram based

approach. They analyzed the effect of ordering policies, delays and information availability at

the nodes to analyze the supply chain response and bullwhip effect. Burns and Sivazlian (1978)

used Z -transforms in their approach and found that information distortion led to bullwhip ef-

fect. Wikner et al. (1991) found out that information sharing and echelon inventory policies

(in which each echelon considers inventory in all the nodes downstream to it) can mitigate

bullwhip effect. Perea López, Grossmann, Ydstie, and Tahmassebi (2001); Perea López, Gross-

mann, Ydstie, and Tahmassebi (2000) have developed a continuous time model to describe a

supply chain. The model is similar to deterministic supply chain models but uses differential

equations to track dynamics. They simulated the model using a heuristic shipping policy and

studied the closed-loop supply chain under three different proportional controllers for plac-

ing orders. They developed controllers to track inventory, backorder or a combination of both.

The objective of the paper was to demonstrate that the model was capable of capturing the dy-

namics. Hence, they did not suggest any tuning methods for the controllers. Lin, Wong, Jang,

Shieh, and Chu (2004) presented an approach to analyze the closed-loop stability of a supply

chain and an approach for controller synthesis using a transfer function approach. The con-

troller policy and shipping policy were similar to the Perea López et al. (2001) paper. They an-

alyzed stability considering three extreme closed-loop scenarios: (i) high inventories and infi-

nite replenishment from upstream nodes (infinite production),(ii) a low inventory and infinite

replenishment from upstream nodes and (iii) limited production/supply. The effect of con-

troller gains on the bullwhip effect was also analyzed. The authors proposed a controller tuning
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criterion based on frequency domain analysis of the Z -transfer functions. Venkateswaran and

Son (2005) also studied the supply chain response using Z -transform and derived stability con-

ditions for the supply chain. Hoberg, Bradley, and Thonemann (2007) applied linear control

theory on a two-echelon supply chain and concluded that order-up-to policy based on inven-

tory on hand can lead to instabilities. They found that the use of an echelon policy provides

the best performance. Dejonckheere, Disney, Lambrecht, and Towill (2004) studied informa-

tion enrichment where in, each node receives the final customer demand as well as the orders

placed by its downstream nodes, using a linear control theory based approach and concluded

that information enrichment is beneficial to the supply chain. Papanagnou and Halikias (2008)

used a proportional controller to place orders and analyzed the bullwhip effect by estimating

the state covariance matrix, for a supply chain responding to a random demand (modeled as a

white noise) at the retailer node.

Sarimveis et al. (2008); Ortega and Lin (2004) provide extensive reviews of classical control

approaches to supply chain design and operation.

Stochastic optimal control

Stochastic optimal control has been used to obtain ordering policies that minimize the ex-

pected costs of a node responding to random demands. We assume that the probability dis-

tribution of the demand is given. In its simplest form, the inventory control problem can be

formulated as a dynamic optimization problem. The order-up-to policy is one such policy that

is obtained by solving the dynamic optimization problem. The single node inventory control

problem can be cast as a Markov decision problem. See Puterman (2005) for details on setting

up the problem and algorithms. The order-up-to policy is optimal for independent and identi-

cally distributed demands as shown in the seminal paper by Clark and Scarf (1960). By consid-

ering set-up costs, it can be shown that the (σ,Σ),σ< Σ policy, in which the node orders Σ− Iv

whenever the inventory Iv falls below σ, is the optimal policy for an infinite horizon problem;

see for instance (Veinott, 1996; Iglehart, 1963; Federgruen and Zipkin, 1984). Optimality of sim-

ilar policies have been shown for Markovian demands (Song and Zipkin, 1993; Sethi and Cheng,
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1997), compound Poisson and diffusion demands (Bensoussan, Liu, and Sethi, 2006), etc. These

results, derived for a single inventory holding facility, have been extended to multiechelon sys-

tems, (Federgruen, 1993; Shang and Song, 2003; Dong and Lee, 2003; Gallego and Özer, 2005;

Chen and Song, 2001)and capacitated systems; (Levi, Roundy, Shmoys, and Truong, 2008; Fed-

ergruen and Zipkin, 1986a,b), to better capture the dynamics of modern supply chains. Chen,

Drezner, Ryan, and Simchi-Levi (2000a); Chen, Ryan, and Simchi-Levi (2000b) quantify the bull-

whip effect for order-up-to policy under exponential smoothing and moving average forecasts.

We refer the readers to the books by Zipkin (2000) and Axsäter (2006) for more details.

Distributed decision making in supply chains

Supply chain decisions have traditionally been made by managers at each node. From a

decentralized operation perspective, supply chains can be analyzed using the tools of game

theory. In decentralized decision making, the payoff (profits) for each node depends not only

on its decisions, but also on the decisions made by the other nodes. Therefore, supply chain

operations can be viewed as a strategic game between the various nodes. Game theory based

analysis can be further classified into noncooperative and cooperative game theory.

In noncooperative game theory, each node simultaneously makes decisions and then the

payoff is obtained. Such games are characterized by the Nash equilibrium that is the set of

game outcomes for which no node has a unilateral incentive to move away from the outcome.

At the Nash Equilibrium, no node can increase its payoff by changing its decision while the

choices made by the other nodes remain the same. This result is attributed to Nash in his sem-

inal paper (Nash, 1951). Related to Nash equilibrium is the Stackelberg equilibrium attributed

to the mathematician von Stackelberg. In a Stackelberg game the nodes make their decisions

sequentially. We refer the reader to the excellent text by Başar and Olsder (1999) for detailed

analysis into game theory tools and methods. Leng and Parlar (2005); Cachon and Netessine

(2006) provide excellent reviews of game theoretic methods applied to supply chains.



86

If the nodes make the supply chain optimal decision in a noncooperative game, then the

supply chain is said to be coordinated (Cachon and Zipkin, 1999). One of the methods to coor-

dinate supply chains is to modify the interactions between the nodes of the supply chain (for

example, by adjusting contracts) so that each node, optimizing its local objective, makes the

globally optimal decision. For example, a two node newsvendor type supply chain can be co-

ordinated using buy-back contracts. A two node newsvendor supply chain consists of a retailer

and a supplier. The retailer faces a random demand with a known probability distribution at

each period. In order to respond to this demand, the retailer buys product from the supplier at

the beginning of the period. The supplier is assumed to ship products instantaneously. In the

buy-back contract, the supplier agrees to buy back unsold stock at the end of the season from

the retailer. The buy-back contract transfers some of the risk of maintaining inventory to the

supplier and divides the supply chain optimal profit (the centralized profit) among the part-

ners. In contrast, the performance of the wholesale (price only) contract, in which the supplier

supplies product at a wholesale price to the retailer, can be arbitrarily poor. Under wholesale

contract, the retailer takes all the risk of excess inventory and orders safely(Cachon, 2003; Ca-

chon and Zipkin, 1999). Perakis and Roels (2007) quantified the inefficiencies in the supply

chain (the ratio of the decentralized supply chain profits to that of the centralized supply chain

profits) for the price only or wholesale contracts. Moses and Seshadri (2000) showed that a two-

echelon supply chain can be coordinated only if the manufacturer agrees to share a fraction of

the holding costs of the retailer’s safety stock. Golany and Rothblum (2006) also studied linear

reward/penalty as a contract modification to induce coordination in the supply chain. Li and

Wang (2007) provide a survey of the various coordinating mechanisms. Axsäter (2001) studied

the Stackelberg game in the supply chain. Axsäter (2001) assumed that the manufacturer is the

leader in the Stackelberg game. The manufacturer minimized the system-wide costs and de-

clared its policies to the retailers. The retailers then optimized a modified cost function that

considers the policies of the manufacturer. They implemented an iterative optimization algo-

rithm such that the policies at every iterate was better than the initial policy. The authors also

noted that the iterations may not converge to the centralized solution.
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On the other hand, cooperative game theory is a branch of game theory that studies the

benefits of coalitions. A coalition between nodes is formed when the nodes cooperate. These

studies allocate payoffs to various coalitions and these payoffs are analyzed via different tech-

niques like Shapley value (Shapley, 1997) or nucleolus (Schmeidler, 1969). Raghunathan (2003)

studied incentives for nodes to form information sharing partnerships. Leng and Parlar (2009)

studied different coalitions in a three-echelon supply chain. For example, if the manufacturer

and distribution center form a coalition, then it is assumed that the orders placed by the retailer

are known to both the nodes. Under the grand coalition, the final customer demand is shared

among all the three nodes. Leng and Parlar (2009) defined the payoff of a coalition as the cost

savings obtained when extra information due to the coalition is available to the nodes. Using

the payoff of all the possible coalitions, they studied the stability of different coalitions. The au-

thors noticed that the bullwhip effect is reduced when the manufacturer and distribution center

formed a coalition. Bartholdi and Kemahlioğlu-Ziya (2005) studied a two-echelon supply chain

in which a manufacturer supplies to multiple retailers. They used the concepts of cooperative

game theory to find profit allocation rules after cooperation. Since the value allocation was in

the core of the cooperative game, it ensured that none of the participants in the coalition have

incentive to leave. Nagarajan and Sošić (2008) provide a comprehensive survey of cooperative

game theory applications to supply chains.

MPC for supply chains

Perea López, Ydstie, and Grossmann (2003) developed a detailed multi-product model in-

cluding time delays and a mixed integer model for the manufacturing facility. They modeled

the shipment rates with a “best I can do” policy that satisfies all the accumulated orders at a

given time if stocks are available; otherwise it ships all of its available stock. This model was

used for supply chain control using MPC maximize profit. They considered three cases in their

implementation: a centralized case, and two other cases that they termed “decentralized” con-

trol. In one decentralized control scheme, they optimized the mixed integer production facility

while operating the supply chain under a nominal control policy (like a proportional controller
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for the orders). In the other decentralized control scheme, they optimized only the orders in the

supply chain subject to a nominal production schedule. The authors advocated the use of “cen-

tralized MPC”. Mestan, Türkay, and Arkun (2006) developed a supply chain model using a hy-

brid systems approach and implemented centralized, decentralized, and noncooperative MPC

as described in (Rawlings and Stewart, 2008). They compared customer satisfaction and supply

chain profit for the centralized and decentralized MPC. The objective functions were chosen

such that the retailer objective of maximizing customer satisfaction was in conflict with the ob-

jective of other nodes. Decentralized MPC had the highest customer satisfaction metric but the

supply chain operated at a loss. The bullwhip effect was high in the decentralized approach. In

centralized MPC, the supply chain found the trade-off between maximizing customer satisfac-

tion and minimizing overall supply chain costs. The centralized approach showed a small bull-

whip effect because all the shipment and order rates were determined by a central policy. The

authors also noted that the performance of noncooperative MPC was much better than the per-

formance of decentralized MPC. Dunbar and Desa (2007) solved a three-echelon, one-product

supply chain using a noncooperative MPC. They developed a bidirectionally coupled model, by

considering two types of delay: pipeline delay or the transportation delay and a first order ma-

terial delay to quantify delays in clearing backlogs. The algorithm was found to be better than

a nominal control policy. They also observed that the ordering policy was not very aggressive,

indicating that the bullwhip effect may be mitigated by distributed MPC. Seferlis and Giannelos

(2004) presented a two-layer MPC strategy for multiechelon supply chains. They used MPC to

find shipments and orders placed to other nodes, subject to a total order constraint. The total

orders placed was the manipulated variable of a PID controller to track inventory. The authors

suggest that the performance can be improved by better tuning the PID controller and suggest

a bi-level optimization problem in which the PID controller is replaced with an optimization-

based controller. Kempf (2004) and Braun, Rivera, Carlyle, and Kempf (2002) developed a model

predictive control framework for the supply chain in the semiconductor industry. They devel-

oped models that are specific to the semiconductor industry. Braun et al. (2002) implemented

decentralized MPC and studied the control performance under plant model mismatch. Kempf
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(2004) described a two-loop optimization technique for the supply chain optimization prob-

lem. The coarse first loop optimizer is used to generate the inventory and order setpoints (ref-

erence trajectories), while the fine inner loop MPC is used to track these setpoints. Bose and

Penky (2000) also used an MPC framework. They focused on forecasting the demand signal and

studied the sensitivity of the MPC framework to fluctuations in the demand signal. Maestre, D.

Muñoz de la Peña, and Camacho (2009) proposed a cooperative MPC algorithm for a two-layer

supply chain. In their formulation, each node minimized its local objective function, not only

over its own decision space, but also over the decision spaces of the other nodes. Based on

the multiple optimal objective function values (one for each node), the algorithm determined a

consensus input. The drawback of the approach is that it is not scalable for large supply chains

with multiple nodes. Bemporad, Di Cairano, and Giorgetti (2005) showed the applications of

hybrid MPC (Bemporad and Morari, 1999) on a centralized supply chain management prob-

lem. Li and Marlin (2009) implemented robust MPC using an economic objective function on a

multiechelon supply chain.

In the following section, we show that the supply chain can be modeled as a system of inte-

grators.

4.3 Dynamic modeling of the supply chain3

A dynamic model is the heart of any feedback control algorithm. While developing a dy-

namic model of a supply chain, the components of a supply chain (like the production facility,

distributor, retailer etc.) are called as nodes. The supply chain network is the vertices or arcs,

which depict the connections between the various nodes. We assume that the network is fixed

and given to us. We denote the set of nodes by I . The nodes to which a particular node sup-

plies material are called its downstream nodes, while the nodes from which a particular node

obtains material are called its upstream nodes. The set of products handled in the supply chain

is given by P . For a particular node i ∈ I , the set P (i ) denotes the products handled by that

3This section has been modified from Section 3 of Subramanian et al. (2012b) to account for multiple products
in the supply chain. Equation (4.2) has been modified to track backorders for each downstream node separately.
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node. For each node i ∈ I , and each product p ∈ P (i ) we define the set Up(i , p) as the set of

all nodes j ∈ I that are connected by an arc with i and are upstream to node i . These nodes

supply product p to node i . Similarly, we define the set of downstream nodes to i for products

p as Dn(i , p). For each arc in the the supply chain, material flows downstream and orders (or

information) flows upstream. The supply chain in the form of nodes and arcs is shown in Figure

4.1.

Suppliers Distibution
Centers

Production

Facility

Retailers

Information Flow

Product Flow

C
U

ST
O

M
E

R
S

Figure 4.1: Supply chain as nodes and arcs.

From a classical chemical engineering perspective, each node can be modeled as two tanks,

the inventory tank and the backorder tank. The flows out of the inventory tank are the ship-

ments to the downstream nodes and the shipments from the upstream nodes make up the flow

into the inventory tank. The flows out of the backorder tank are the shipments to the down-

stream nodes, which alternatively can be viewed as the orders that have been met; the flows

into the backorder tank are the orders arriving at the node. For nodes that handle multiple

products, we have as many inventory and backorder tanks as the number of product handled

by the node. Figure 4.2 depicts the ‘tanks’ model of a node in the supply chain handling a single

product.
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Orders
Back-

Decision Maker
(policy implementer/ optimizer)

(placed to

upstream nodes)

(from upstream nodes)

(placed by
downstream nodes)

(to downstream nodes)

(Demands satisfied)

Information sharing

Inventory

Orders Orders

Shipments

Shipments

Figure 4.2: Tank analogy for modeling a node.

The states in each node i are: the inventory in the node, Ivpi∀p ∈P (i ), and the backorders

in the node, BOpi i ′∀p ∈ P (i ),∀i ′ ∈ Dn(i , p); two inputs: the shipments made to each down-

stream node j ∈ Dn(i , p), Spi j , and the orders placed to each upstream node j ∈ Up(i , p), Opi j .

The shipments coming from the upstream nodes Sp j i , j ∈ Up(i , p) and the orders arriving from

the downstream nodes Op j i , j ∈ Dn(i , p) are the disturbances arriving to the node. Denoting

discrete sample time by integer k, the dynamic equations for node i can be written as

Ivpi (k +1) = Ivpi (k)+ ∑
j∈Up(i ,p)

Sp j i (k −τp j i )− ∑
j∈Dn(i ,p)

Spi j (k), ∀p ∈P (i ) (4.1)

BOpi j (k +1) = BOpi j (k)+Op j i (k)−Spi j (k), ∀p ∈P (i ),∀ j ∈ Dn(i , p) (4.2)

in which τp j i is the transportation delay. We assume that there are no delays for order trans-

fers between the nodes. Denoting xi (k) =
[

Ivpi (k), p ∈P (i ) BOpi j (k), p ∈P (i ), j ∈ Dn(i , p)
]′

,

ui (k) =
[

Spi j , p ∈P (i ), j ∈ Dn(i , p) Opi j ′ , p ∈P (i ), j ′ ∈ Up(i , p)
]′

, and by using the lifting tech-

nique described in Chapter 3, the previous dynamic equations for the nodes can be written in
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the familiar state space form for MPC applications

xi (k +1) = Ai i xi (k)+Bi i ui (k)+ ∑
l∈I
l 6=i

Bi l ul (4.3)

The decision maker shown in Figure 4.2 can take several different forms:

• Each decision maker can implement a simple ordering policy that depends only on the in-

coming shipments and orders. Such an ordering policy could be a PI controller to control

the inventory levels, or (σ,Σ) policies that are obtained from stochastic inventory con-

trol optimization. Such decision makers are implementations of classical control theory

approaches to supply chain control.

• Noncooperative MPC: Each decision maker can implement an MPC controller to regulate

its local states by optimizing a local objective function (for example, the profit function for

the node). The nodes can share information regarding upstream shipments, downstream

orders, etc. This form of control is termed noncooperative MPC.

• Cooperative MPC: Each decision maker can implement an MPC controller that consid-

ers the effect of the nodes’ decision on the entire supply chain (for example, each node

optimizes the supply chain profit function). The nodes still share information.

• Centralized MPC: We can replace all the decision makers at the nodes with a single deci-

sion maker at the supply chain level. This single decision maker makes decisions for all

the nodes.

The overall supply chain dynamic model is the individual node dynamic equations collected

for all nodes i ∈ I . The only required change in the node dynamic equation is for the retailer

and the production facility nodes.
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Retailer models

For the retailer nodes i ∈R, the dynamic equations are modified as,

Ivpi (k +1) = Ivi (k)+ ∑
j∈Up(i ,p)

Sp j i (k −τp j i )−Spi c (k), ∀p ∈P (i ) (4.4)

BOpi (k +1) = BOpi (k)+Dmpi c (k)−Spi c (k), ∀p ∈P (i (4.5)

in which Spi c is the shipment made by the retailer, and Dmpi c is the customer orders (de-

mands). The only disturbances in the overall supply chain model are the customer demands

d =
[

Dmpi c

]′
, p ∈ P (i ), i ∈ R, which drive all the flows (shipments and orders) in the supply

chain.

Production facility models

The production facility needs to be modeled separately because material conversion takes

place in this node. In multiple product supply chains, the same production facility handles

multiple products. Thus a model for the production facility needs to incorporate a scheduling

model to optimize the sequence of production. In this chapter, we assume that the production

facilities belong to the first echelon. We further assume an ideal supplier of raw materials to the

production facilities, implying that we have infinite supply of raw materials without transporta-

tion delay.

Planning models In this chapter, we shall use an “approximate production model” to model

the production facility. In the approximate production model, we replace the detailed schedul-

ing model with convex constraints that represent the feasible region of production. This idea is

similar to the process attainable region (Sung and Maravelias, 2007)-a convex region of produc-

tion quantities for which there exists some feasible schedule. The process attainable region can

be computed by using computational geometry tools (Sung and Maravelias, 2007; Maravelias

and Sung, 2009; Sung and Maravelias, 2009) or parametric programming tools (Li and Ierapetri-

tou, 2010). Let M be the set of production facility nodes. Then, for each i ∈ M , the modified
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dynamic equations for the final products are

Ivpi (k +1) = Ivpi (k)+Spi m(k)− ∑
j∈Dn(i ,p)

Spi j (k), ∀p ∈P (i )

BOpi j (k +1) = BOpi j (k)+Op j i (k)−Spi j (k), ∀p ∈P (i ),∀ j ∈ Dn(i , p) f (Si pm(k)) ≤ 0

in which Spi m are the manipulated inputs denoting production of product p during the period.

Note that, for multiproduct production facilities, each of the inputs Spi m for products p ∈ P

are coupled by the convex production feasibility constraint. The set L represents the set of

products.

f (S1i m(k),S2i p (k), . . . ,Spi m(k), . . .) ≤ 0

Scheduling models The state task network (STN) approach is probably the most popular method

to model a production facility in which multiple products are produced using shared resources

(Kondili, Pantelides, and Sargent, 1993; Shah et al., 1993). As described in Chapter 3, in STN

modeling, the final products, intermediates and raw materials are states that are processed us-

ing tasks like reactions, separation, etc. These tasks can be carried out in units capable of han-

dling multiple tasks. A detailed schedule is the sequence of operation of the tasks in the units so

that a production objective can be met at minimal cost without violating the scheduling con-

straints.

Detailed scheduling models are formulated as mixed integer linear programs (MILPs) or

mixed integer nonlinear programs (MINLPs). If we chose to model the production facility using

a detailed scheduling model, then the resulting supply chain MPC problems become mixed

integer programs. Although, research progress has been made in the theory of MIQP and hybrid

MPC (see (Bemporad and Morari, 1999)), in this chapter, we do not consider detailed scheduling

models in the formulation of the supply chain model. An example using a detailed scheduling

model is provided in Section 5.2.
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4.3.1 Summary

In this section, we wish to bring to the readers’ attention, three salient features of the supply

chain dynamic model presented in this section.

Uncontrollable local models Controllability implies that there exist inputs that can move the

state of the system from any initial state to any final state in finite time. Examining (4.1) and (4.2)

for the inventory and backorder balance for node i , we observe that while nodes j ∈ Up(i , p) re-

spond to orders Opi j placed by node i , node i has no knowledge of the subsequent dynamics

of its own orders. Therefore, we need to provide the node some model of how its orders affect

the later shipments coming into the node. To do so in a noncooperative or decentralized con-

trol arrangement, we track another state (or output) Ippi termed the inventory position. The

dependence of orders on incoming shipments is modeled through the function g (·).

Ippi (k +1) = Ippi (k)+ ∑
j∈Up(i ,p)

g (Opi j (k −τp j i ))− ∑
j∈Dn(i )

Spi j (k) ∀p ∈P (i )

In the centralized control framework, the actual dynamics of the entire supply chain is available

to the decision maker, and the relationship of the orders at node i to its subsequent incom-

ing shipments is captured by the upstream nodes backorder balance equations and the supply

chain performance metric. From Section 2.3.3, we know that cooperative MPC algorithms has

complete model knowledge. Therefore, uncontrollable local models is not an issue when im-

plementing cooperative MPC for supply chains.

Unstable models The supply chain is modeled as a system of integrators whose response to

an input step change is a ramp. Such systems need to be stabilized in the closed loop, otherwise

the states can keep growing (think of it as backorders keep rising as time increases). Therefore,

we emphasize establishing closed-loop properties of the algorithms that we propose for supply

chain optimization.
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dem1c (k)

S2p (k −τM )

Manufacturer Retailer

τT = 2

τM = 2

Node 1

S1c (k)

O12(k)

S21(k)

Node 2

S2p (k)

Figure 4.3: Two-stage supply chain.

Stabilizable centralized model We notice that all the nodes belonging to the manufacturing

facilities are controllable because we manipulate the production rates. Therefore, the manu-

facturing nodes do not require an inventory position model. Since the manufacturing facility

model has this property, the overall supply chain model is also controllable. The controllabil-

ity of the centralized model is an important feature that we use to design closed-loop stable

centralized and cooperative MPC frameworks for supply chain optimization.

4.4 Example4

We simulate the supply chain shown in Figure 4.3 in this section. The plant has produc-

tion delay of 2 time units and a transportation delay of 2 time units and a single product. For

simplicity, we drop the index on product in this section.

Production model As mentioned earlier, the production delay is 2 time units. However, we

assume that the manufacturer can start a batch of the product at every sampling time. This

assumption means that the manufacturer has two units that can execute the task of producing

the final product.

We label the retailer node 1, with the states Iv1 and BO1, the inventory and backorder at the

retailer. The retailer inputs u1 consist of orders placed and the shipments made by the retailer,

S1c and O12. We label the manufacturer node 2, with states x2 consisting of inventory Iv2 and

backorder BO2. The manufacturer inputs are the shipments made to the retailer S21 and the

production eS2m . The demand d(k) = Dm1c .

4The results this section, with the exception of Sections 4.4.2, 4.4.3 and the discussion on steady states, are
slightly modified from Section 6 of Subramanian et al. (2012b) to reflect a coding error that was corrected.
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Models We write a time invariant model for the supply chain that is also the process model

(because we assume that a batch may start at every time) by writing the inventory and backo-

rder balance equation. These model for the retailer is: Iv1

BO1


k+1︸ ︷︷ ︸

x1(k+1)

=
1

1


︸ ︷︷ ︸

A1

 Iv1

BO1


k︸ ︷︷ ︸

x1(k)

+
−1 0

−1 0


︸ ︷︷ ︸

B11

S1c

O12


k︸ ︷︷ ︸

u1(k)

+
−1 0

0 0


︸ ︷︷ ︸

B (2)
22

 S21

S2m


k−2︸ ︷︷ ︸

u2(k−2)

+
0

1


︸︷︷︸

Bd

[
Dm1c

]
k︸ ︷︷ ︸

d(k)

(4.6)

The manufacturer state space is given by: Iv2

BO2


k+1︸ ︷︷ ︸

x2(k+1)

=
1

1


︸ ︷︷ ︸

A2

 Iv2

BO2


k︸ ︷︷ ︸

x2(k)

+
−1 0

−1 0


︸ ︷︷ ︸

B22

 S21

S2m


k︸ ︷︷ ︸

u2(k)

+
0 1

0 0


︸ ︷︷ ︸

B (2)
22

 S21

S2m


k−2︸ ︷︷ ︸

u2(k−2)

+
0 0

0 1


︸ ︷︷ ︸

B12

S1c

O12


k︸ ︷︷ ︸

u1(k)

(4.7)

Notice that the retailer, by just using u1 cannot move the states from any initial condition to

any final condition. We can easily verify this using the Hautus lemma. This matrix
[

I − A1 B11

]
is rank-deficient.

Steady state From equations (4.6) and (4.7), we notice that if B11u1(k)+B (2)
21 u2(k−2)+Bd d(k) =

0 and B22u2(k)+B (2)
22 u2(k −2)+B12u1(k) = 0, then any inventory and backorder level can be a

steady-state. From the tanks analogy, as long as all the flows in and out of the tank are equal,

any level inside the tank is steady. Hence, we have a degree of freedom in choosing the steady

state for the inventories and backorders. The steady states for the inputs is determined by the

nominal (steady state) demand. Since, we wish to meet all demands, the steady state for backo-

rders is zero. On the other hand, we wish to maintain a safety stock, and so we choose inventory

targets to regulate around. In the discussion that follows, we use x to denote deviation from the

steady state, i.e., we redefine x ← x − xs in which xs = (Iv1,t ,0, Iv2,t ,0), with Ivt referring to the

inventory target.

Stage cost Each node (subsystem) has a local stage cost, given by

`1(x1,u1) = |x1|2Q1
+|u1|2R1

, `2(x2,u2) = |x2|2Q2
+|u2|2R2
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The overall stage cost is `(x,u) = `1(x1,u1)+`2(x2,u2). The costs used are Q1 =Q2 = diag(1,10)

and R1 = R2 = di ag (1,1).

Terminal cost For centralized and cooperative MPC, following the theory outlined in Section

2.3.3.2, we chose the P > 0, a > 0 such that there exists a stabilizing control law κ f (x) in the

terminal region given by:

X f = {x | x ′P x ≤ a}

We also choose a V̄ > 0 and fix β = max(1,V̄ /a). The positive definite matrix P is of the form[
P11 P12
P ′

12 P22

]
. We choose the local terminal cost functions and the centralized terminal cost function

as

V 1
f (x1) = |x1|2P11

V 2
f (x2) = |x2|2P22

V f (x) = |x|2P
We now define the MPC cost functions. The subsystem cost functions are for i ∈ {1,2}

V i ,β
N (xi (0),ui ) =

N−1∑
j=0

`i (xi ( j ),ui ( j ))+βV i
f (xi (N ))

while the overall cost function is:

V β

N (x,u) =
N−1∑
j=0

`(x( j ),u( j ))+βV f (x(N ))

Note that since we defined the terminal costs differently for the subsystems, the overall cost

function is not the sum of the subsystem cost functions. Associated with each input, we also

have the input constraint set U1 and U2, which contain the minimum and maximum ship-

ments and orders that can flow through the supply chain. The maximum shipment allowed

was capped at 40 units, while any positive order could be placed (arbitrarily large constraint).

MPC implementation

Ordering policies As mentioned in Section 4.3, the local retailer model does not have knowl-

edge of how the orders placed by the retailer affects the supply chain. Therefore, in the im-

plementation of noncooperative and decentralized MPC, we need to incorporate an ordering

policy for the retailer. Since the manufacturer reacts to the orders placed by the retailer, the



99

closed-loop performance of the supply chain is intimately connected to the ordering policy. We

study two ordering policies in this example:

1. Order-up-to policy: The order-up-to policy can be viewed as a saturated proportional

controller.

O12(k) =


Ivt − Iv1(k) if Iv1 ≤ Ivt

0 otherwise
(4.8)

in which Ivt is the inventory target.

2. Inventory position control: In inventory position control, the retailer, instead of control-

ling the inventory, controls the inventory position, which is a controlled output defined

as:

Ip(k) = Iv1(k)−S1c (k)+O12(k) (4.9)

Inventory position control introduces a new controlled output that is a function of the

state and input. We penalize the deviations of Ip from the inventory target Ivt in the opti-

mizations.

Distributed MPC In decentralized and noncooperative MPC with order-up-to policy, we mod-

ify the retailer subproblem, subsystem-1 in (2.32), by adding a constraint that enforces the

order-up-to policy. Similarly, for decentralized and noncooperative MPC with inventory po-

sition control, we modify the retailer objective function in the subsystem-1 problem in (2.32)

by modifying the stage cost to penalize inventory position Ip. We present the optimization

problem (2.32) again here for convenience (Note that (i) We do not have state constraints in this

example following Assumption 15, (ii) the terminal penalty is magnified using the parameter
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β.)

Pi
N ,nc (xi ;v−i ) :min

ui

N−1∑
j=0

`i (xi ( j ),ui ( j ))+βV f ,i (xi (N ))

s.t. xi ( j +1) = Axi ( j )+Bui ( j )+ ∑
l∈{1,2,...,M }

l 6=i

Bl i vl ( j ) j = {0,1, . . . , N −1}

ui ( j ) ∈Ui j = {0,1, . . . , N −1}

xi (0) = xi

Decentralized and noncooperative MPC are implemented using Algorithm 1. In decentral-

ized MPC, the subsystems do not share information. That is ν−i is assumed by each subsystem

to makes its local predictions. Therefore, in the supply chain context, we add another source of

inaccuracy with decentralized control (to add to using ordering policies).

The subproblems for cooperative MPC are obtained by fixing the other subsystem inputs in

the centralized optimization problem (reproduced here for convenience). Cooperative MPC is

implemented using Algorithm 2. In centralized MPC, we solve the overall problem P
β

N (x) given

in (4.4). The parameter β was chosen as 1000.

PN (x) :min
u

V β

N (x,u)

s.t. x( j +1) = Ax( j )+Bu( j ), j = {1,2, . . . , N −1}

u( j ) ∈U j = {0,1,2, . . . , N −1}

x(0) = x

4.4.1 Nominal demands

We present the results of the different MPC implementations for a nominal demand of d = 8.

In each of the simulations, the retailer starts with inventory Iv1 = 47 and the manufacturer starts

with inventory Iv2 = 32. The control objective is to keep the inventories in the nodes as close to

the target inventory (Iv1 = 45 and Iv2 = 30)as possible while maintaining minimum backorder.
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Figure 4.4 compares the results of centralized, cooperative, noncooperative and decentral-

ized MPC in which we used the order-up-to ordering policy. Figure 4.5 compares the results of

same controllers, but using the inventory control policy.

We defer discussion about the results to Section 4.5

4.4.2 Stochastic demands

In 4.4.1, we showed the response using a model predictive controller for a supply chain ob-

serving nominal demands. In this section, we show the results of implementing the robust

MPC algorithm presented in Section 2.4. We consider the two node supply chain shown in Fig-

ure 4.3, but with a nominal demand of 10 units per time period. The demand is assumed to be

stochastic between 5 and 15 units per time period. In this example, we choose the retailer target

inventory Iv1,t = 35.

Following the procedure outlined in Section 2.4, we (i) design a stable cooperative MPC for

the nominal system using the methods outlined in the previous section, but with the tightened

input constraint sets to account for stochastic demands, and (ii) use the terminal controller

κ f (x) = K x to account for the stochasticity in demand. We used the technique outlined in Rao

and Rawlings (1999) to find κ f (x) = K x, such that all outstanding orders (backlogged demands)

from the previous time (if any) are satisfied at the current sampling time. We chose the gain

K such that (A +BK )e implied that error in the backorder state was zero. Recall that e(k) =
x(k)− z(k); the deviation between the actual state and the nominal state. Hence, there is a

delay of 1 sampling time before the system reacts to the stochastic demands.

In Figure 4.6, we show the closed-loop response nominal closed-loop response of the in-

ventory at the retailer for cooperative MPC responding to a stochastic demand signal. We also

show the cost-function V β

N (z, ṽ) and V β

N (x, ṽ) to show that although the warm-start was infeasi-

ble for the actual state, it was still feasible for the nominal state and hence we could obtain the

closed-loop guarantees for robust cooperative MPC. We used V̄ = 20000. Hence, whenever the
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Figure 4.4: Inventories and orders placed in the supply chain: Order-up-to policy (dec: decen-

tralized, ncoop: noncooperative, coop: cooperative, cent: centralized).
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Figure 4.5: Inventories and orders placed in the supply chain: Inventory position control (dec:

decentralized, ncoop: noncooperative, coop: cooperative, cent: centralized).
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cost function for the actual state was greater than 20000, it meant that the warm-start was in-

feasible. That is, the terminal state was not inside the setX f . However, by design of cooperative

algorithm, the warm start always remains feasible for the nominal MPC problem.

In Figure 4.7, we show the closed-loop response using a modified version of Algorithm 4

discussed in Section 2.4.

4.4.3 Multi-echelon supply chain example

A critical step in the cooperative MPC algorithm (Algorithm -2) using the Jacobi algorithm

is the convex combination of the optimal input with the values at the previous iterate that is

taken in the inner loop of the algorithm. The parameter ωi limits the size of the step taken in

the descent direction. Since, it is required that
∑M

i=1ωi = 1, the step sizes generated by the Jacobi

algorithm can become quite small as the number of subsystems increase (and convergence is

slow). As alluded in Section 2.3.3, closely related to the Jacobi algorithm is the Gauss-Seidel

parallel optimization algorithm; in which the subsystems move sequentially. The advantage in

Gauss-Seidel algorithm is that the subsystems can take full steps. The Gauss Seidel algorithm

for subsystem i can be written succinctly as:

min
ui∈Ui

V β

N (x,u)

s.t. ul = u(p+1)
l , l ∈ {1,2, . . . , i −1}

ul = u(p)
l , l ∈ {i +1, i +2, . . . , M }

Upon obtaining the solution u0
i to the problem above, subsystem i sets its next iterate as u(p+1)

i =
u0

i . As discussed in Bertsekas and Tsitsiklis (1989, Section 3.3.5), both these methods (Jacobi and

Gauss-Seidel) or any combination of these algorithms (blocks of subsystem move sequentially;

within every block, the subsystems move in parallel) satisfy all the properties in Proposition 12

(for convex problems) and Proposition 13 (with uncoupled constraints). Hence, depending on

the application, we could choose to use Gauss-Seidel or a combination of Jacobi and Gauss-

Seidel algorithm in Cooperative MPC without losing any of the guarantees of Cooperative MPC.
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In this section, we present a combination Gauss-Seidel and Jacobi algorithm (GSJ) that

closely resembles the decision making hierarchy in supply chains. Traditionally, in supply chains,

the retailers respond first to the customer demands. Upon receiving the orders from the retail-

ers, the distributors make their decisions. Therefore, the current decision making paradigm in

supply chains is a sequential one. Hence, we propose to use a mixed Gauss-Seidel and Jacobi

optimization routine in cooperative MPC. The proposed optimization proceeds as follows (for

a three echelon supply chain):

1. The retailers, make their decisions in parallel, by fixing the upstream nodes decisions.

Since only a subset of the nodes are making their decisions in parallel, the convex combi-

nation weight ωi , i ∈R scale as |R| (the number of retailers),

2. The distributors obtain the retailer decisions and make their choices in parallel and,

3. The manufacturers make their decisions after obtaining the decisions of both the manu-

facturers and retailers.

The proposed algorithm has faster convergence when compared to the Jacobi algorithm (see

Figure4.9). Moreover, since the upstream nodes decisions depend on the orders placed by the

downstream node, in the Jacobi iterations, the upstream nodes have a disadvantage because

their optimizations are based on the previous iterate or warm-start values of the downstream

orders. On the other hand, in the proposed method, the upstream nodes, optimize to react to

the current iterate of the downstream demands.

In Figure 4.8, we show a 3 echelon supply chain with 7 nodes. In this example, we consider

only one product. The transportation delay between nodes is 1 time unit, while the produc-

tion delay is 2 time units. As with the previous example, we assume that the manufacturing

unit can start a batch at every sampling time. The stage cost for each node was chosen as

`i (x,u) = x ′Qx +u′Ru with Q = diag(1,10) and R = diag(1,1). The objective was to regulate

to the inventory targets (all backorder targets were zero). The nominal demand was 10 units

every period at each retailer node. In Table 4.1, we list the starting inventory levels and the tar-

get inventory levels in each node. The maximum shipment from one node to another was 20
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units. The prediction horizon was N = 15. We chose V̄ = 5000 and a = 50. We just implement

one iteration of the cooperative optimization algorithm, i.e., p̄ = 1.

M1

D1

D2

R4

R3

R2

R1

Figure 4.8: Multi-echelon supply chain studied

In Figure 4.9, we show the convergence of the three types of parallel optimization algo-

rithms.

For this supply chain network, the Gauss-Seidel iterations converges the fastest. In Figure

4.11, we show the inventory profile for nodes R1 and R2 in the supply chain under centralized

control, the proposed Gauss-Seidel-Jacobi algorithm and the Jacobi algorithm. Not much dif-

ference in the closed-loop performance can be observed. One reason for this observation could

be because the cooperative MPC algorithm was initialized with the centralized optimal solution

at time 05. Hence, the warm start at time t = 1 was close to the optimal solution at time 1.

In Figure 4.12, we show the closed-loop solutions when the supply chain was initialized with

a suboptimal solution at t = 0. In Figure 4.10, we show the open-loop cost of the supply chain

at each sampling time, when the simulation was initialized with a suboptimal solution at t = 0.

5There is no guarantee that will be such small differences in if we initialize the cooperative MPC algorithm

with the optimal solution at t = 0
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Table 4.1: Starting inventory and Inventory targets

M1 D1 D2 R1 R2 R3 R4

Starting Inventory 40 37 38 28 39 29 36

Target Inventory 35 45 45 30 35 25 30

4.5 Discussion6

Value of information: We observe that, for both order-up-to and inventory position control,

decentralized MPC produces large variations in the inventory and orders. These variations in-

dicate a large bullwhip effect, and happen because the nodes have incomplete current infor-

mation and no knowledge of the dynamics of the other nodes. At each time step, the retailer

assumes some flow of materials from the manufacturer to make inventory predictions. Based

on these predictions, the retailer places orders with the manufacturer. Similarly, the manufac-

turer knows only the current order quantity and makes some assumptions about the future or-

ders from the retailer and makes production decisions. When the actual orders and shipments

arrive at the nodes, their decisions are suboptimal.

Noncooperative MPC with the inventory position control policy able to reach a steady state,

since, each node now has more information about the ordering and production plans of the

other node, both are able to make better forecasts and therefore, better decisions. On the other

hand, noncooperative MPC with the order-up-to policy shows sustained inventory and order

oscillations. This is because each node is implementing its best-response (we used p̄ = 1) to the

other nodes’ decisions. In contrast,in decentralized MPC, since each node is assuming that the

other node is implementing a nominal policy (all flows equal to nominal demand). Therefore,

it is able to reach a steady-state as the assumed policy is actually the steady-state policy.

6This section, with the exception of the discussion about VMI appears in Section 6 of Subramanian et al.
(2012b)



111

Impact of ordering policy: In noncooperative MPC with inventory position control, we ob-

serve that there are no inventory variations and the system reaches a steady state. All flows

through the system settle at the nominal demand, which is the input steady state. The inven-

tories, however, show offset from the target. In order-up-to policy, irrespective of the cost of

placing large orders, the retailer is constrained to make orders if the inventory at any period

falls below the target. In inventory position control, the orders placed are penalized, and there-

fore the retailer tends to order less, because the optimizer tries to balance ordering costs and

inventory deviation costs.

Plant-model mismatch: If we compare results for cooperative and centralized MPC with non-

cooperative MPC, we see that, cooperative and centralized MPC reach steady state more quickly.

They achieve steady state because there is no information distortion in the system. Each node

in cooperative control, optimizes not only the system-wide objective, it also accounts for the

dynamics of the entire supply chain. In noncooperative MPC with inventory position control,

since the retailer does not know the actual supply chain dynamics, it settles at a steady state

that depends on the inventory position model. Therefore, we see the value of optimizing the

actual dynamics instead of introducing a mismatch between the models used by the controller

and the actual dynamics by using inventory position models.

Guaranteed stability: The third important result of the analysis is that cooperative and cen-

tralized MPC have been designed to guarantee closed-loop stability. Although, we see that non-

cooperative MPC using inventory position control has not made the supply chain unstable, we

have no stability guarantees. On the other hand, using the theory developed in Section 2.3.3,

we can guarantee closed-loop stability for cooperative MPC.

Relation to echelon stock policies and VMI: Echelon stock policies are decentralized operat-

ing policies, but based on the concept of echelon stock. Echelon stock is the stock carried by
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the node and all its downstream nodes. Therefore, echelon stock based policies, to a certain ex-

tent, are like the noncooperative MPC because the policies for a node depend on information

sharing regarding the inventories in all its downstream node.

Vendor managed inventory (VMI) is emerging as a popular tool for supply chain integra-

tion. In VMI, the buyer (retailer) authorizes the supplier (manufacturer) to maintain his in-

ventory. VMI, therefore resembles cooperative control because, not only information regarding

inventories is visible to the supplier, but also the dynamics. The supplier, in a two-stage supply

chain, manages shipments between his facility and the retailer and production by observing

the retailer inventory. One of the main disadvantages of VMI that has been reported is that the

retailer loses control over inventory management and some knowledge gained by the retailer

(like advanced forecasting) that could lead to better inventory management cannot be used.

Another disadvantage is that the overall supply chain objective function is not used by the sup-

plier (Sari, 2007). In this aspect, cooperative control can be seen as a middle ground between

VMI and decentralized control. In cooperative control, each node still manages its own inven-

tory, while optimizing the overall supply chain objective function.
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Chapter 5

Economic MPC for supply chains

In this chapter, we propose an economic model predictive control (MPC) algorithm for in-

ventory management in supply chains with guaranteed closed-loop properties. We compare

the properties of the proposed controller with classical control policies like the (σ,Σ) policy.

In the previous chapter, we showed centralized and cooperative MPC designed to track the

states of the supply chain (inventories and backorders) to a steady state ( target stocks or safety

stocks). The on-line optimization problem solved in Chapter 4 did not have any knowledge

about the economics of the process ( e.g.,cost of shipping, production etc.). Our focus in this

chapter is to leverage recent developments in Economic-MPC (Amrit et al., 2011; Diehl et al.,

2011) to develop a stable controller for inventory management in which the controller directly

optimizes the supply chain economics.

In Section 5.1, we review stability theory for economic MPC and propose two flavors of MPC

for supply chain, (i) a pure economic objective function and (ii) a mixed objective comprising

of an economic objective and a tracking objective. We implement these economic MPC policies

on the two stage supply chain example introduced in Section 4.4 . In Section 5.2, we implement

the controller proposed in this chapter on a multi-product, multi-echelon supply chain and

compare the performance of the controller with that of the (σ,Σ) policy. In Section 5.2.2, we in-

troduce a scheduling model for the manufacturing facility with the aim of integrating schedul-

ing and inventory control using MPC. We present results on recursive feasibility using ideas

from Chapter 3.
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5.1 Economic MPC theory

As mentioned in Chapter 2, the goal of controller design using MPC is to stabilize the closed-

loop. We show a supply chain example to reinforce the idea that simply solving an optimization

problem at each sampling time in a rolling horizon manner can destabilize the plant.

Consider the two-stage supply chain example presented in Section 4.4. From equations (4.6)

and (4.7), we can write the centralized supply chain model for the two node system as:



Iv1

BO1

Iv2

BO2


k+1︸ ︷︷ ︸

x(k+1)

=



1

1

1

1


︸ ︷︷ ︸

A



Iv1

BO1

Iv2

BO2


k︸ ︷︷ ︸

x(k)

+



−1 0 0 0

−1 0 0 0

0 0 −1 0

0 1 −1 0


︸ ︷︷ ︸

B



S1c

O12

S21

S2m


k︸ ︷︷ ︸

u(k)

+



0 0 1 0

0 0 0 0

0 0 0 1

0 0 0 0


︸ ︷︷ ︸

B (2)



S1c

O12

S21

S2m


k−2︸ ︷︷ ︸

u(k−2)

+



0

1

0

0


︸︷︷︸

Bd

[
Dm1c

]
k︸ ︷︷ ︸

d(k)

(5.1)

Using lifting and a slight abuse of notation, the supply chain model can be written as:

x(k +1) = Ax(k)+Bu(k)+Bd d(k) (5.2)

We define the economic stage cost as

`E (x,u) = q ′x + r ′u (5.3)

in which q is a vector comprising of inventory holding qIvi and lost sales qBOi costs, while r is a

vector comprising of shipment costs rS1c ,rS21 , production costs rS2m and ordering costs rO12 .

The stage cost defined in Chapter 2, is the tracking stage cost. In Chapter 2, we defined the

tracking cost to track the state to the origin. In Chapter 4, we used deviation variables x ← x−xs
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(xs being the steady-state). In this chapter, we generalize the cost to track to a given target,

and use absolute variables instead of tracking variables. We (re)define the tracking stage cost as

`T (x,u) given by:

`T (x,u, zp ) = (x −xt )′Q(x −xt )+ (u −ut )′R(u −ut ) (5.4)

in which zp = (x ′
t ,u′

t ) is a vector comprising of the state and input targets (xt ,ut ) respectively.

The positive definite matrices Q,R penalize the deviation of the states and inputs from their

targets.

In order to ensure that the cooperative MPC problems in Chapter 4 converged to the cen-

tralized optimal solution, we used Assumption 15 to “relax” the state constraints. Since, we only

formulate centralized control problems in this chapter, we re-introduce state constraints. The

state constraint is defined as

X := {
x | x ≤ x ≤ x̄

}
(5.5)

Similarly, the input constraint set is:

U := {
u | u ≤ u ≤ ū

}
(5.6)

The inequalities in (5.5), (5.6) are componentwise. These constraints define, for example, the

positivity constraints for backorders and inventories, capacities of the nodes, transportation

capacities etc.

Given a planning horizon N and a demand forecast d = (d(0),d(1), . . . ,d(N −1)), we formu-

late the following optimization problem:

PN (x) :min
u

VN (u; x,d, N )

s.t. x( j +1) = Ax( j )+Bu( j )+Bd d( j ), j = {0,1, . . . , N −1}

x ≤ x( j ) ≤ x̄, j = {0,1, . . . , N } (5.7)

u ≤ u( j ) ≤ ū, j = {0,1, . . . , N −1}

x(0) = x
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in which u = (u(0),u(1), . . . ,u(N−1)). The cost function VN (u; x,d, N ) is the sum of N stage costs

VN (u; x,d, N ) =
N−1∑
i=0

`E (x(i ),u(i ))

Notice that in Problem (5.7), we do not have any terminal penalty or constraints. In Figure 5.1,

we show the backorder BO1 evolution for the retailer, for a controller that solved problem (5.7)

with N = 15 and nominal demand d(k) = ds = 10. The stage cost was given by

q = (1,1,1,1)′ r = (10,1,10,1)′

We assume that the shipping costs are greater than the backorder costs. Clearly, we observe

that despite implementing the optimal input at each time instance, the backorder is increasing

with time, indicating that customer demand is not being met. Although, we have chosen a

pathological cost vector in which production costs are greater than lost sales cost, we observe

that there exists an unique steady-state for this system xs = x = 0,us = ds , that is the inventory

and backorders are zero and all the flows in the supply chain (shipping and ordering between

nodes, production) are equal to the nominal demand. The lower bounds on inventories and

backorders are zero. Notice that the choice of us = d , xs = 0 in (5.2) is a solution to:

(I − A)x −B (2)u −Bu = Bd d

Note that the steady-state for the states in the supply chain is independent of the demands

and delays in the system.

For the costs mentioned in above, staying at the steady-state incurs a cost of 220 per period

which is much lesser than the cost incurred per period by the rolling horizon controller, which

is unbounded.

For a simple two-node supply chain, we have demonstrated that simply reoptimizing an

economic objective function at each time instance could lead to undesirable closed loop per-

formance. Although, we chose a pathological cost function to demonstrate the undesirable

closed loop, for a more complex supply chain, it is difficult to apriori analyze all the interactions

and judge if the rolling horizon optimization will yield a desirable closed-loop. As mentioned
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in Chapter 2, stability theory for MPC gives us design guidelines on the formulation of the on-

line optimization problem, so that closed-loop stability guarantees can be provided. While, we

covered tracking MPC stability theory in Chapter 2, we briefly review stability theory when the

stage costs are economic (or other general cost) functions. Stability theory for economic MPC

is a relatively new field (Diehl et al., 2011) (Amrit et al., 2011). We state the main results in this

chapter and refer the reader to the papers for more details. In Chapter 2, we ensured closed-

loop properties by including (i) a terminal cost V f (x) and (ii) a terminal region x(N ) ∈X f . In the

following sections, we outline the theory for economic MPC with terminal equality constraint

(Diehl et al., 2011), i.e. x(N ) = xs and economic MPC with terminal penalty and region (Amrit

et al., 2011).

5.1.1 Terminal equality constraint formulation

We consider the system given by (5.2). We consider the linear economic cost given by (5.3).

The states are constrained to lie in the hyperbox x ≤ x ≤ x̄ while the inputs lie in u ≤ u ≤ ū (The

inequalities are componentwise). We assume that the sets

X :
{

x | x ≤ x ≤ x̄
}

U :
{
u | u ≤ u ≤ ū

}
are convex, bounded, closed, and contain the optimal steady-state defined later in (5.8). Al-

though many of the assumptions made in this chapter are similar to the assumptions made for

centralized MPC in Chapter 2, we reproduce them here again for clarity.

Note that the choice of linear models and cost function automatically satisfies Assumption

23 stated below.

Assumption 23 (Continuity). The system and the stage costs are continuous.

We define the steady-state optimization problem as follows:
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min
x,u

`E (x,u;ds)

s.t. x = Ax +Bu +Bd ds , (5.8)

x ∈X,u ∈U

We denote (xs ,us ;ds) as the solution to (5.8) and make the following assumptions on (xs ,us ;ds).

The nominal demand is denoted as ds .

Assumption 24 (Strict dissipativity). There exists (xs ,us ;ds) and λs so that

(a) (xs ,us ;ds) is an unique solution of (5.8).

(b) The multiplier λs is such that (xs ,us ;ds) uniquely solves (5.9)

min
x,u

`E (x,u)+λ′
s[x − (Ax +Bu +Bd ds)] s.t. x ∈X,u ∈U (5.9)

(c) The system x+ = Ax +Bu +Bd ds is strictly dissipative with respect to the supply rate s(x,u) =
`E (x,u)−`E (xs ,us) and storage function λ(x) =λ′

s x. That is, there exists a K∞ function ρ(·)
such that:

λ′
s(Ax +Bu +Bd ds −x) ≤−ρ(x −xs)+ s(x,u),∀(x,u) ∈X×U (5.10)

Because of the structure of the state space matrix A in (5.1)-(5.2), the steady-state problem

(5.8) decomposes into two problems:

min
x

q ′x s.t. x ≤ x ≤ x̄ (5.11)

and

min
u

r ′u s.t. B (1)u +B (2)u +Bu +Bd ds = 0,u ≤ u ≤ ū (5.12)

By choosing λs as the optimal Lagrange multiplier for the equality constraints in (5.8), we

can establish that the (xs ,us ;ds) is the unique solution of optimization problem (5.9).

Hence Assumption 24 is satisfied by the supply chain model.
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We now define the terminal equality constraint MPC optimization problem:

PN (x) :min
u

VN (u; x,d, N )

s.t. x( j +1) = Ax( j )+Bu( j )+Bd d( j ), j = {0,1, . . . , N −1}

x ≤ x( j ) ≤ x̄, j = {0,1, . . . , N } (5.13)

u ≤ u( j ) ≤ ū, j = {0,1, . . . , N −1}

x(0) = x

x(N ) = xs (5.14)

in which u = (u(0),u(1), . . . ,u(N−1)). The cost function VN (u; x,d, N ) is the sum of N stage costs

VN (u; x,d, N ) =
N−1∑
i=0

`E (x(i ),u(i ))

Note that in contrast to problem (5.7), we have added a terminal constraint that x(N ) = xs

in problem (5.13). The steady state xs is the solution to the optimization problem (5.8).

Before presenting the stability theorem, attributed to Diehl et al. (2011), we define the fol-

lowing sets and the control law.

The set of admissible state-input pairs (x,u) is denoted byZT as follows (see definition (2.5)):

ZT := {
(x,u) |φ(i ; x,u,ds) ∈X , u ∈UN ,φ(N ; x,u,ds) = xs

}
(5.15)

in which ds is the nominal demand vector and φ(i ; x,u,ds) denotes the solution at time i under

input u starting from x at time 0.

The projection of set ZT onto the feasible state space X is called the set of admissible initial

states, XN ,T (see definition (2.6))

XN ,T := {
x | ∃u ∈UN s.t. (x,u) ∈ZT

}
(5.16)

We denote the optimal solution of problem (5.13) as u0(x(k),ds). Denoting the first input

in the sequence u0(x(k),ds) as κT (x(k)), we obtain the closed-loop dynamics of the MPC algo-

rithm as x+ = Ax +BκT (x)+Bd ds . The control law is κT (x(k)). Note that, similar to nominal

MPC, we prove the closed-loop properties for economic MPC only for the nominal demand ds .
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Theorem 25 (Lyapunov function with terminal equality constraint). Let Assumptions 1, 23 –

24 hold. Then the steady-state solution of the closed-loop system x+ = Ax +BκT (x)+Bd ds is

asymptotically stable with XN ,T as the region of attraction. The Lyapunov function is

Ṽ (x) :=VN (x)+λ′
s[x −xs]−N`E (xs ,us)

Theorem 25 allows us to conclude that rolling horizon optimization in which we solve op-

timization problem (5.13) at each sampling instance steers any initial state x(0) ∈ XN ,T to the

steady-state xs . Therefore, in contrast to the closed-loop observed in Figure 5.1, a controller op-

timizing (5.13) would have never left the steady-state, thereby only incurring a cost of 220 per

period. In Figure 5.2, we plot the closed-loop for a x(0) 6= xs (using the same cost vector used in

the previous section).

Although economic MPC with terminal equality constraints stabilizes the supply chain sys-

tem, notice that the unique steady-state for the states that is obtained by solving the linear

program (5.11) is on one of the vertices of the hyperbox X. More importantly, since the cost

vector q is composed of inventory holding and lost sales costs, all its elements are strictly pos-

itive. Therefore, the solution of (5.11) is xs = x. This steady state value of the state variables

has important implications which motivates us to formulate the multiobjective supply chain

MPC with terminal region in the next section. It is important to note that (i) XN ,T comprises of

x ≥ x and (ii) since the steady state does not lie in the interior of X, we cannot use the terminal

penalty/ region formulation that is discussed in the next section to stabilize economic MPC.

Supply chain managers often balance economic objectives with that of risk minimization.

That is, in addition to minimizing costs (or maximizing profits), the manager also tries to mini-

mize risk by maintaining or by tracking inventory around a safety-stock level (that could deter-

mined by minimizing the probability of stock-out etc. or is the solution of stochastic inventory

control algorithms like Federgruen (1993); Shang and Song (2003); Dong and Lee (2003); Gal-

lego and Özer (2005); Chen and Song (2001)). As we stated above, stabilizing economic-MPC

can only stabilize xs = x. Therefore, to incorporate the managers choice to track safety stocks,

we introduce a tracking stage cost (5.4) and minimize a combined economic and tracking ob-

jective in the next section.
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5.1.2 Terminal region formulation

In order to allow the practitioner to implement a controller that tracks inventories to a

steady-state as well as optimize the economics of the system, we use the following stage cost,

`(x,u) = ω

sE
`E (x,u)+ (1−ω)

sT
`T (x,u; zp ) (5.17)

in whichω ∈ (0,1) is a relative weighting chosen by the practitioner between the tracking and the

economic stage costs. We use the parameters Q,R in `T (x,u) andω as tuning parameters for the

multiobjective MPC controller. The parameters (sE , sT ) are scaling constants while zp = (xt ,ut )

are the tracking set-points.

We choose the input target ut to be the “economic” input that satisfies the nominal demand,

that is ut = us in which us is the solution to (5.12). The target set-point for the states is xt =
xsafety. The steady-state optimization problem now becomes

min
x,u

(
ω

sE
(q ′x + r ′u)+ (1−ω)

sT
((x −xsafety)′Q(x −xsafety)+ (u −us)′R(u −us)))

s.t. x = Ax +Bu +Bd ds ,u ∈U, x ∈X (5.18)

To obtain the scaling parameters sT , sE , we consider the utopia and nadir points of the in-

dividual stage costs `E (x,u) and `T (x,u; zp ) (Kim and De Weck, 2005). Denoting z = (x,u), we

obtain

zE = arg min
z∈X×U

`E (x,u), zT = arg min
z∈X×U

`T (x,u; zp )

The utopia point is

JU = (`E (zE ),`T (zT ; zp )) ∈R2

The nadir point is

J N = (`E (zT ),`T (zE ; zp )) ∈R2

The parameters sT , sE are then defined as:

(sE , sT ) = J N − JU
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Note that the optimization problem (5.18) is a quadratic program with a positive definite

Hessian, and hence an unique solution to (5.18) exists. Based on the choice ω and tuning pa-

rameters (Q,R), the MPC controller described in this section stabilizes a different xs . That is,

the choice of weighting given to the economic and tracking objectives decide what inventories

the controller is going to stabilize.

In Figure 5.3, we plot the inventory steady-state as a function of ω. The parameters used

are Q = 10diag(1,1,1,1),R = 10−5diag(1,1,1,1), xsafety = (35,0,40,0). The economic costs are

q = (10,10,10,1),r = (10,0.1,10,100). The input and state constraints were chosen as

0 ≤ x ≤ 100 0 ≤ u ≤ 20

The nominal demand ds was 10. Note that by choice of the state targets,the steady-state back-

orders at both nodes is zero.
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Figure 5.3: Steady-state as a function of the relative weighting between tracking and economics

Figure 5.3 shows the trade-off between choosing to rack to the safety stock and choosing

to minimize the economics. As the economic weight increases, we see that the steady-state

approaches the economic steady state.
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Terminal region and Terminal penalty. Let Assumptions 23 and 24(a) and 24(c) hold. In As-

sumption 24, we use `(x,u)−`(xs ,us) in which `(x,u) is given by (5.17) and (xs ,us) is the solu-

tion of the steady-state problem (5.18) as the storage function. In addition, we make the basic

stability assumption 2.8; with modifications to accommodate an economic stage cost as:

Assumption 26 (Basic stability assumption). There exists a convex, compact terminal region

X f ⊆ X, containing the point xs in its interior and a control law κ f : X f → U and a function

V f :X f →R such that the following holds

V f (Ax +Bκ f (x)+Bd ds) ≤V f (x)−`(x,κ f (x))+`(xs ,us),∀x ∈X f (5.19)

Ax +Bκ f (x)+Bd ds ∈X f ,∀x ∈X f (5.20)

We now define the terminal penalty MPC problem:

PN (x) :min
u

VN (u; x,d, N )

s.t. x( j +1) = Ax( j )+Bu( j )+Bd d( j ), j = {0,1, . . . , N −1}

x ≤ x( j ) ≤ x̄, j = {0,1, . . . , N } (5.21)

u ≤ u( j ) ≤ ū, j = {0,1, . . . , N −1}

x(0) = x

x(N ) ∈X f

in which VN (u; x,d, N ) =∑N−1
i=0 `(x(i ),u(i ))+V f (x(N )).

Analogous to ZT and XN ,T , we define the sets ZP and XN ,P (the subscript P refers to termi-

nal penalty) as follows:

ZP := {
(x,u) | u ∈UN ,φ(i ; x,u,ds) ∈X,φ(N ; x,u,ds) ∈X f

}
in which ds is the nominal demand vector and φ(i ; x,u,ds) denotes the solution at time i under

input u starting from x at time 0.

The projection of set ZP onto the feasible state space X is called the set of admissible initial

states, XN ,P
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XN ,P := {
x | ∃u ∈UN s.t. (x,u) ∈ZP

}
We denote the optimal solution of problem (5.21) as u0(x(k),ds). Denoting the first input

in the sequence u0(x(k),ds) as κP (x(k)), we obtain the closed-loop dynamics of the MPC algo-

rithm as x+ = Ax +BκP (x)+Bd ds . The control law is κP (x(k)).

To show that the closed-loop using the control law u = κP (x) is asymptotically stable, we

need to make the following assumption:

Assumption 27 (Continuity of the storage function). The storage function λ(·) is continuous on

X×U

The following theorem attributed to Amrit et al. (2011) establishes that the closed-loop x+ =
Ax +BκP (x)+Bd ds is asymptotically stable.

Theorem 28 (Lyapunov stability with terminal region). Let Assumptions 23, 24(a), 24(c), 26 and

27 hold. Then the steady-state solution xs is an asymptotically stable equilibrium point of the

system x+ = Ax+BκP (x)+Bd ds with the region of attraction being any arbitrarily large compact

subset of XN ,P . The Lyapunov function is

V̄ 0
N (u; x(k),ds) =V 0

N (u; x(k),ds)−N`(xs ,us)−λ(xs)−V f (xs)

in which V 0
N (u; x(k),ds) is the optimal value function in the solution of problem (5.21).

We now discuss the choice of terminal region and terminal penalty for the supply chain

model. Note that the optimal Lagrange multiplier for the equality constraints in steady-state

problem (5.18) satisfies all the requirements in Assumptions 24 and 27.

For the supply chain model, we choose the terminal controller κ f (x) = K x, in which the gain

K is such that AK := A +BK is a Hurwitz. That is, the system x̃+ = AK x̃ is asymptotically stable

with the equilibrium point being xs , in which x̃ is the deviation variable x−xs . Note that the in-

put is ũ = K x̃. Since the supply chain model (A,B) is stabilizable, such an K exists (for example,

the infinite horizon unconstrained LQR gain). By the choice x = 0 and backorder targets, some
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state constraints are active at the steady state. Hence, we find K using the technique given by

Rao and Rawlings (1999). By this choice of the controller gain, we restrict the evolution of the

closed-loop (A +BK )x̃ to the null space of the active constraints at the origin (the steady state

is shifted to the origin in deviation variables). We define QK =Q +K ′RK and qK = q +K ′r . We

choose the terminal penalty to be

V f (x; xs) = (x −xs)′P (x −xs)+p ′(x −xs) (5.22)

in which the positive definite matrix P is the solution to the Lyapunov equation

A′
K PAK −P =−QK

and p is the solution to

(AK − I )′p =−qK

In order that the basic stability assumption be satisfied, we require that

(x −xs)′Q(xs −xt ) ≤ 0 (5.23)

Therefore, we construct the terminal region X f as the following set:

X f := {
x | AK x +Bus +Bd ds ∈X f ,K (x −xs)+us ∈U, (x −xs)′Q(xs −xt ) ≤ 0

}
(5.24)

Such a set can be constructed using the maximal output admissible set algorithm presented

in Gilbert and Tan (1991) or by using the efficient algorithms presented in the MPT toolbox

(Kvasnica, Grieder, and Baotić, 2006). In Figure 5.4, we plot the projection of the terminal region

on the Iv1 − Iv2 plane. The cost functions and constraints were the same as in the steady-state

calculation. The parameter ω is chosen to be 0.4.

In Figure 5.5, we plot the closed-loop response for different values of ω. We contrast the

performance to a pure tracking-MPC that tracks to the steady-state solution of the multiobjec-

tive formulation using `T (x,u; zp ) as the stage cost. That is, we compare the closed-loop from

solving problem (5.21) with the closed-loop for ω= 0 and zp = (xs ,us). Note that, from the ini-

tial condition we chose x(0) = (15,10,23,0), economic-MPC that tracks to zs is only feasible for

ω< 0.6 (since we need that x(0) ≥ xs = x).



127

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80

In
ve

n
to

ry
-M

an
u

fa
ct

u
re

r

Inventory-Retailer

Figure 5.4: Projection of the terminal region onto the Inventory-plane for ω= 0.4
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Figure 5.5: Closed-loop response for ω= 0.2 (top), ω= 0.4 (middle) and ω= 0.8 (bottom)
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In Table 5.1, we compare the economic cost incurred in using the three controllers: (i) Multi-

objective MPC `(x,u; zp ), (ii) Economic MPC `E (x,u) and (iii) Tracking MPC to the steady-state

of the multiobjective MPC `T (x,u, zs).

Table 5.1: Economic cost of implementing MPC

ω Multiobjective×104 Tracking×104 Economic×104

0 4.4342 4.4342 infeasible

0.2 4.0246 4.0645 infeasible

0.4 3.5617 3.6252 infeasible

0.8 2.2670 2.2670 2.2670

1.0 2.2670 2.2670 2.2670

We observe that as ω increases, that is, as the economic costs are given more weight, the

steady-state approaches the constraint boundary. In such situations, the optimal input profile

is dominated by feasibility and as such all the three stage costs incur the same economic cost

in the closed loop 1. However, for intermediate values of ω, that is, when the practitioner has

comparable weighting to both tracking the safety stock and minimizing costs, multiobjective-

MPC gives the best performance. While in the tracking MPC, we can design the system go to the

same steady-state as multiobjective, the absence of economic knowledge in the tracking stage

cost means that some economically more attractive transients are not considered by the online

optimizer. While designing a controller that minimizes only the costs seems very attractive, the

drawback is that for supply chains, such economic MPC can only stabilize steady states that lie

on the one of the vertices of the constraint set. Therefore, we cannot use pure economic MPC

to track the inventories to a target value.

1We optimize the open-loop cost. The numbers in Table 5.1 are just the economic cost of implementing the

optimal input
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Figure 5.6: Multi-product, Multi-echelon supply chain studied

5.2 Multi-product, multi-echelon supply chain example

In this section, we follow the design procedure described in the previous section to imple-

ment model predictive control for a multi-product, multi-echelon supply chain. The supply

chain that is studied is shown in Figure 5.6. It consists of a manufacturing facility M1 that sup-

plies two products A,B to two distribution centers D1,D2 and a retailer R5. Distribution center

D1 supplies the products to retailers R1,R2 while distribution center D2 supplies to R3 and R4.

We list the production lead-times at the manufacturing facility in Table 5.2. We assume

that the manufacturing facility is able to produce both products simultaneously, with the only

limitation being the combined storage of these products in the manufacturing node’s storage

facility (see Table 5.7).In Table 5.3, we list the transportation times between each node.

The retailers respond to customer demands which is assumed to arrive at each period fol-

lowing a normal distribution around a nominal demand. The nominal demand for each retailer

node is listed in Table 5.4 while the variance of the demand signal in each retailer node for both

products are listed in Table 5.5

For each node, we choose the target inventory to be the amount of product to be carried so

that demands can be met for as long as the longest delay in the supply chain. The longest delay

in the supply chain is 4 (the transportation time between M1 and R5). Hence, for the retailers,

we choose the target inventory to be four times the nominal demand. For the distributors, the
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Table 5.2: Production lead-times

Product Lead-time

A 2

B 3

Table 5.3: Transportation lead-times

D1 D2 R1 R2 R3 R4 R5

M1 2 1 4

D1 1 1

D2 2 1

Table 5.4: Nominal demand

R1 R2 R3 R4 R5

A 3.0 4.5 5.0 2.0 4.0

B 4.2 3.1 1.4 2.5 4.2

Table 5.5: Variance of demand

R1 R2 R3 R4 R5

A 1.1 1.3 1.1 1.2 1.4

B 1.3 1.4 1.1 1.1 1.4
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target inventory is four times the nominal demand at the distributor. The nominal demand at

the distributor is the sum of the demands at the retailers that is served by the distributor.

The target back-orders in each node is 0.

As mentioned earlier, each node has a combined inventory storage capacity. This capacity

is listed in Table 5.7. The maximum storage is chosen to be greater than the target inventories.

The economic objective is the sum of the (i) inventory holding costs (ii) back-order costs

and (iii) shipping and ordering costs. The coefficients for these costs are listed in the following

tables.

In table 5.9, each entry corresponds to the shipping cost of product A and product B respec-

tively. In addition, the cost coefficient of shipping products to the customers from the retailers

is 1.

The ordering costs coefficients are all chosen to be 1, except for ordering between the R5

and M1 for which the cost-coefficient is chosen to be 0.5.

The production costs for product A is 10 per unit while that for B is 4 per unit.

The tracking objective is a weighted sum of the squares of the deviation of the invento-

ries(and backorders) from their targets. These weights are chosen as 1 for inventory deviation

(that is, we penalize (Iv− Ivt )2), 10 for backorder deviation (10(BO−BOt )2). The inputs are pe-

nalized from their targets with a weight of 0.1 (the input targets are chosen to be the steady-state

values as described below).

With the aforementioned details about the supply chain, the supply chain model can be

written in the state space format (5.2) and the stage costs `E (·, ·), (5.3) and `T (·, ·), (5.4) is de-

fined. Choosing an economic objective weight of 0.4, we can solve for the steady-state problem

(5.18) to obtain the steady state. As discussed in the previous section, the multiobjective steady

state lies between a pure tracking (ω= 0) and a pure economic (ω= 1) steady state. We re-iterate

that the input steady-state remains the same irrespective of the objective function, because of

the steady-state constraint that fixes all the flows in the supply chain in accordance with the

nominal demand. In Table 5.10, we list the inventory steady-states (for product-A) for the pure

economic, tracking and the multiobjective cost functions.
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Table 5.6: Target inventories

M1 D1 D2 R1 R2 R3 R4 R5

A 70 30 24 12 18 20 8 16

B 61 29.2 15.6 16.8 12.4 5.6 10 16.8

Table 5.7: Capacity constraints

M1 D1 D2 R1 R2 R3 R4 R5

IvA + IvB 140 80 50 40 40 30 25 45

Table 5.8: State economic costs

M1 D1 D2 R1 R2 R3 R4 R5

Inventory holding 1 1 1 1 1 1 1 1

Back-order 10 10 10 10 10 10 10 10

Table 5.9: Input costs

D1 D2 R1 R2 R3 R4 R5

M1 (4,2) (1,2) (5,4)

D1 (1,1) (1,1)

D2 (2,2) (1.5,1.5)
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Table 5.10: Steady state inventories for product A

M1 D1 D2 R1 R2 R3 R4 R5

Tracking 70 30 24 12 18 20 8 16

Economic 0 0 0 0 0 0 0 0

Multiobjective(ω= 0.4) 57.93 17.93 11.93 0 5.93 7.93 0 3.93

(σ,Σ) Policy. We compare the closed-loop operation of the centralized multi-objective supply

chain with that of the closed-loop dynamics due to a (σ,Σ) policy. In the (σ,Σ) policy, the nodes

orders according to the following shipping and ordering policies. We denote the shipments

coming from the upstream node as Su , while the orders coming from downstream (demand for

the retailer as Od .

S(t ) =


Od (t )+BO(t ) if Iv(t )+Su(t )− (Od (t )+BO(t )) ≥ 0

Iv(t )+Su(t ) otherwise
(5.25)

Having determined the shipment at time k, the node then places orders according to the

inventory and backorder levels that the shipments will lead to at the next time as:

O(t ) =


Σ− (Iv(t +1)−BO(t +1)) if (Iv(t +1)−BO(t +1)) ≤σ

0 otherwise
(5.26)

The (σ,Σ) policy is a decentralized linear feedback policy. The retailer observes the de-

mands, makes its ordering decisions which is then used by the distributor and so on.



135

5.2.1 Results

The supply chain described in the previous section was simulated for 50 days using a stochas-

tic demand signal. The terminal condition used was that the system should be at the steady-

state at the end of the prediction horizon, which was chosen as 15 days. Furthermore, we as-

sumed that the MPC controller had perfect demand information for three days. For the remain-

der of the prediction horizon, we used the nominal demands as the demand forecast. For the

(σ,Σ) policy, we chose σ= 0.7Σ and Σ as the steady state inventory.

The initial inventories of the nodes were chosen as follows: All the backorders were 0 and

Table 5.11: Initial inventories

M1 D1 D2 R1 R2 R3 R4 R5

A 63 14 24 0 2.1 3.1 3.1 0

B 40 12 7 0 1.2 1.2 0 5.2

the inputs were at their steady-state at the begining of the simulation.

In Figure 5.7, we report the ordering-profile in the supply chain, and compare the variance

of the demands observed with the variance of the orders placed as we move upstream in the

node. The variance in orders placed as we move upstream is an measure of the bullwhip effect.

We see that the the MPC policy has less variance in ordering profile as we move upstream in

the supply chain. This lower variance is because the MPC controller is a centralized controller

that not only considers all the nodes together, but also makes predictions for two weeks into the

future. Therefore, at certain nodes, the MPC controller is able to take advantage of higher inven-

tory levels than the steady state inventory to place fewer orders in total. The (σ,Σ) policy shows

the classical bullwhip effect of the variance of the orders increasing as we move upstream. In

Figure 5.8, we plot the orders placed by the MPC controller and the (σ,Σ) policy controller in

response to demands of product A at Retailer R3.



136

0

1

2

3

4

5

6

7

R1 R5 D1 D2

St
an

d
ar

d
d

ev
ia

ti
o

n
o

fO
rd

er
s

Incoming MPC (σ,Σ)

Figure 5.7: Bullwhip effect

0

10

20

0 10 20 30 40 50

Time

Customer demand

Orders placed-MPC

Orders placed-(σ,Σ)

Figure 5.8: Ordering profile at R3



137

In Figure 5.9, we plot the inventory and the back-order of of the product A at retailer R3.

Note that the steady-state for product A was 7.93.
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Figure 5.9: Inventory and Backorder profile at R3

Finally, in Table 5.12, we list the average inventory at each node for products A and B . Ob-

serve that the average inventory at the nodes for the MPC policy is much closer to the steady-

state values, indicating that the MPC policy is stabilizing. This example also illustrates the in-

herent robustness of economic MPC as the controller was able to reject small variations in de-

mand around the nominal demand.

5.2.2 Scheduling model

In the preceding sections, we did not consider the scheduling problem at the manufacturing

unit; instead, we approximated the production delay using a constant production lead-time. In

this section, we study the economic MPC closed-loop performance for a supply chain which

includes a scheduling model for the manufacturing node.

We consider the same supply chain as in the previous section (Fig 5.6), but with the following

modification. The manufacturing facility is assumed to have one unit U which can make both

products A and B . The unit needs 3 time units to make A via the task TA and 2 time units to
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Table 5.12: Average inventory for Product-A

M1 D1 D2 R1 R2 R3 R4 R5

MPC 58.01 17.48 12.36 0.34 5.43 7.71 0.26 3.44

Policy 82.91 10.70 6.02 0.011 1.39 3.21 0.23 5.47

make B via the task TB. In addition, there is changeover time of 1 unit whenever the task is

changed from A to B or vice-versa.

Denote the set I = {TA,TB}, PT(i ) as the production lead time for each i ∈ I and CHT(i , i ′)

as the changeover time between i to i ′. The scheduling constraints on the manufacturing node

can now be enforced by the following inequalities (see 3.4):

∑
i∈I

t∑
t ′=t−τi+1

Wi ,t ′ +
∑
i ′∈I
i ′ 6=i

t∑
t ′=t−CHT(i ,i ′)+1

Zi ,i ′,t ′ ≤ 1 ∀t

t∑
t ′=t−τi+1

Wi ,t ′ = Yi ,t ∀t ,∀i ∈ I

Xi ,t ≥ Yi ,t ∀t ,∀i ∈ I∑
i∈I

Xi ,t = 1 ∀t (5.27)

Zi ,i ′,t ≤ Xi ,t−1 ∀t ,∀i ∈ I, i ′ ∈ I, i ′ 6= i

Zi ,i ′,t ≤ Xi ′,t ∀t ,∀i ∈ I, i ′ ∈ I, i ′ 6= i

Zi ,i ′,t ≥ Xi ,t−1 +Xi ′,t −1 ∀t ,∀i ∈ I, i ′ ∈ I, i ′ 6= i

To model the changeover time, we introduce three new binary variables Zi ,i ′,t ,Yi ,t and Xi ,t .

The binary variable Zi ,i ′,t is 1 when a changeover is effected from task i to task i ′ at time t . The

binary variable Yi ,t is 1 if the task i was started during [t −τi , t ]. The binary variable Xi ,t is 1 if

the last task to be performed in the unit before time t was i .
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Table 5.13: Production costs

Cost

Start a batch of TA 10

Start a batch of TB 6

Changeover from TA to TB 10

Changeover from TB to TA 5

In addition to these constraints, the batch-size is also controlled using Wi ,t and the maxi-

mum and minimum batch-sizes. For the supply chain studied, the maximum batch size was

chosen to be 200 for both the products. The cost function corresponding to the new variables

included a cost to start a batch and a cost to effect a changeover (see Table 5.13).

Following the procedure outlined in Chapter 3, we can write the supply chain dynamics

with the binary variables in the state space format (5.2). We denote the state space model of the

manufacturer scheduling problem as

x+
M = AM xM +BM uM +Bd ,M u−M (5.28)

in which u−M are the inputs of the other nodes in the supply chain, that is, the shipping and

ordering among (D1,D2,R1−R5) as well as the orders placed by them to M1. The input uM

consists of shipments sent by the manufacturer to the other nodes, and the binary decisions

given in (5.27).

Therefore, we can easily write the whole supply chain dynamics model in the state space

form (5.2). We only note that the inputs now include the binary choices at the manufacturer

and the constraint set, instead of being just x ∈X,u ∈U, becomes

x ∈X,u ∈U (5.29)

b ≤ Ex x(t )+Euu(t ) ≤ b (5.30)
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with the second inequality representing the assignment constraint (5.27) in the state space

form.

We now define the periodic optimization problem that is used to find a sub-optimal infinite

horizon schedule and shipping/ordering policies in response to the nominal demand given in

Table 5.4. In the previous section, we found the steady-state shipping and ordering so that the

supply chain returns to the same state at the next sampling instance. In this section, we find a

periodic policy so that after Np sampling periods, the supply chain returns to the starting state.

The interpretation is that, if we observe the nominal demands over an infinite horizon, then

we can remain feasible with the periodic policy (by repeating it infinitely). The optimization

problem solved is 2:

Pp : min
u,x(0)

Np−1∑
i=0

`E (x(i ),u(i ),ds(i ))

s.t. x(i +1) = Ax(i )+Bu(i )+Bd ds(i ),i = {
0,1, . . . , Np −1

}
(5.31)

Constraints(5.29) i = {
0,1, . . . , Np −1

}
x(0) = x(Np )

(5.32)

in which Np is the period. We denote the solution to (5.31) by (u0
p , x(0)0

p ), The solution to (5.31)

gives us the periodic state-profile

Xp =
{

x0
p (0), x(1; x0

p (0),u0
p ,ds), . . . , x(Np ; x0

p (0),u0
p ,ds)

}
(5.33)

In Figure 5.10, we show the Gantt chart for the periodic schedule with Np = 24.

5.2.2.1 Dynamic Response

In this section, we show the dynamic response to a stochastic demand signal.

2Note that we are solving a purely economic problem
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time

0 4 8 12 16 20 24

U 129 166 129107 30 107

TB TA

Figure 5.10: Periodic production schedule to respond to nominal demands

time

0 4 8 12 16 20 24 28 32 36 40 44 48

U 29 60 110 123 108 132 89 135 105 130 91 128 106

TB TA

time

0 4 8 12 16 20 24 28 32 36 40 44 48

U 25 193 25 118 118 122 158 96 188 22 119 200 23

TB TA

Figure 5.11: Production schedule for the MPC without terminal constraints that optimized

(5.34) (Top) compared with production schedule for the MPC with terminal constraints that

optimized (5.36). Note how larger batches are made for the problem with terminal constraints
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Figure 5.12: Combined backorder at all the retailer nodes
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We first consider the closed-loop solution, in which, at each sampling time optimization

problem (5.34) is solved, and compare it with the closed-loop solution in which the optimiza-

tion problem (5.36) is solved. In (5.36), we force the final state to lie on the periodic profile Xp .

Hence, at the end of the planning horizon N , the supply-chain is at a state from which it can

respond to the nominal demand. In contrast, for the optimization problem (5.34), the termi-

nal state is chosen without considering future demands that arrive after the planning horizon

N . Therefore, the solutions to (5.34) have (i) fewer production and (ii) lesser inventory at nodes.

This leads to increasing backorders when new demands are observed at the next sampling time.

In Figure 5.12, we compare the backorders observed in the closed-loop when the MPC opti-

mizer solved (5.34) and (5.36). In Figure 5.10, we show the Gantt chart for the implemented

schedule by the two MPCs. The planning horizon used was N = 12. Note that, under the pres-

ence of persistent disturbance (that is different from the nominal disturbance), the MPC design

has to be robust (Rawlings and Mayne, 2009, Ch 3.). In this example, we have not designed

robust-MPC but instead the results show the inherent-robustness of nominal MPC to reject

small deviations from the nominal demand.

PN (x) :min
u

N−1∑
i=0

`E (x( j ),u( j ),ds( j ))

s.t. x( j +1) = Ax( j )+Bu( j )+Bd ds( j ), j = {0,1, . . . , N −1} (5.34)

Constraints(5.29) j = {0,1, . . . , N −1}

x(0) = x

(5.35)
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PN (x) :min
u

N−1∑
i=0

`E (x( j ),u( j ),ds( j ))

s.t. x( j +1) = Ax( j )+Bu( j )+Bd ds( j ), j = {0,1, . . . , N −1} (5.36)

Constraints(5.29) j = {0,1, . . . , N −1}

x(0) = x

x(N ) ∈XP (5.37)
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Chapter 6

Conclusions and Future work

We conclude with a summary of contributions and suggest possible directions for further

research.

Contributions

Cooperative MPC for linear systems: In Chapter 2 we provided an overview of cooperative

MPC for linear systems. The main contribution in Chapter 2 were (i) The extension of the class

of systems for which cooperative MPC is applicable to all centralized stabilizable systems and,

(ii) Tube based robust cooperative MPC to avoid centralized restarts if the warm start fails.

State-space models for scheduling: In Chapter 3, we provided a state-space model for schedul-

ing. We expressed the scheduling problem as a dynamic problem for iterative scheduling. We

also modeled a variety of scheduling disturances so that rescheduling occurs “naturally” in

iterative scheduling. Finally, we used tools from MPC to demonstrate design of closed-loop

scheduling problems with guaranteed recursive feasibility.

MPC for supply chains: A goal of this thesis was to use MPC as a general purpose tool for

enterprise wide optimization. We demonstrated MPC design for dynamic supply chain models.

The main contribution of this thesis is to complement the research in MPC/ Rolling horizon

optimization frameworks for supply chain management by (i) showing the desirable properties

of algorithms that guarantee closed-loop stability and, (ii) demonstrating the design of such

control policies for supply chains. The main message of the thesis is that future researchers
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should appreciate the importance of considering the closed-loop dynamics of the supply chain

as a result of the input actions taken.

1. In order to appeal to the distributed nature of decision making in supply chains, we

demonstrated cooperative MPC for supply chains in which each node makes its local

decisions but with a global vision in Chapter 4. We proposed a new cooperative MPC

iteration scheme which closely resembles the current decision making hierarchy in linear

supply chains.

2. Since supply chains directly optimize the economics, we demonstrated design of Eco-

nomic MPC for supply chains in Chapter 5. We proposed a multiobjective stage cost,

that not only accounts for supply chain costs, but also for supply chain risks. The supply

chain is stabilized at a steady-state that reflects the managers’ choice, i.e., risk seeking or

risk averse.

Integration of scheduling and control: We demonstrated a supply chain example with an

integrated scheduling model for the manufacturing plant. We showed the integration of the

MPC design tools from Chapter 2 and Chapter 5 along with the state-space scheduling model

from Chapter 3 to guarantee recursive feasibility for the integrated supply chain model. We

also showed the inherent robustness of the proposed approach to small deviations from the

nominal demand.

Future work

Terminal conditions for the scheduling problem: In Chapter 3, we showed recursive feasibil-

ity by using a cyclic schedule as the terminal condition. In many cases, we might not be able

to find any cyclic schedule for the scheduling problem. In such cases, we have to find other

suitable terminal conditions. One such idea that we are currently exploring is to find safety

constraints on inventory from a scheduling point of view. Methods of finding terminal condi-

tions for the scheduling problem is an important area for future research.
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Hybrid control theory: The scheduling state space model comprises both of continuous vari-

ables (like the inventories, batch sizes, etc.) and discrete variables (like assignment, changeover

etc.). For such systems, we need to study the stability theory for hybrid systems. There are meth-

ods that have been developed for hybrid dynamic systems consisting of both time and event

driven dynamics (Bemporad and Morari, 1999; Morari, Baotic, and Borrelli, 2003) etc. More re-

cently, Lyapunov stability theory for hybrid dynamic systems also have been studied (Lazar and

Heemels, 2009; Lazar, Heemels, and Teel, 2009). Application and development of hybrid theory

to prove stability of scheduling models is a challenging research problem.

Impact of forecast: Supply chains are described as “pull” systems because the dynamics is

activated when the customer pulls products from the supply chain. As such, the supply chain

is sensitive to customer demands, price signals, etc. MPC theory has been mostly built around

dynamic models trying to “reject” external disturbances ( e.g.,the nominal case is when there is

no disturbance affecting the system). The impact of demand/ price forecast the supply chain

steady state; performance, etc. are yet to be studied.

Robust terminal conditions: In this thesis, we developed algorithms based on a nominal de-

mand signal. That is, the stability and convergence guarantees; and specially, the design of

terminal region/ constraints were based on the nominal demand. In practice, it is desirable to

design the terminal constraint so that we are robust to some known distribution of demands.

Design of such terminal regions and integration with MPC technology remains an avenue of

future work.

Cooperative game theory: The cooperative MPC tools have been developed for process in-

dustries to coordinate multiple MPC’s in a single plant. Therefore, it is reasonable to assume

that all the subsystems can share models and objectives with each-other. In a supply chain,

however,the nodes could be owned by different companies. Hence, we need to study the incen-

tives to cooperate from a cooperative game theory point of view.
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Implementation: The ultimate test for any new tool is practical implementation. An avenue

of future research is the implementation of the tools described in this thesis for a large scale

supply chain with real data. Not only, would such a study help validate the idea of using MPC

for supply chains, it would also help us uncover new research topics.
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A supply chain is a network of facilities and distribution options that performs the functions of

procuring raw materials, transforming them to products and distributing the finished products

to the customers. The modern supply chain is a highly interconnected network of facilities that

are spread over multiple locations and handle multiple products. In a highly competitive global

environment, optimal day-to-day operations of supply chains is essential.

To facilitate optimal operations in supply chains, we propose the use of Model Predictive

Control (MPC) for supply chains. We develop:

• A new cooperative MPC algorithm that can stabilize any centralized stabilizable system

• A new algorithm for robust cooperative MPC

• A state space model for the chemical production scheduling problem

We use the new tools and algorithms to design model predictive controllers for supply chain

models. We demonstrate:

• Cooperative control for supply chains: In cooperative MPC, each node makes its deci-

sions by considering the effects of their decisions on the entire supply chain. We show

that the cooperative controller can perform better than the noncooperative and decen-

tralized controller and can reduce the bullwhip effect in the supply chain.

• Centralized economic control: We propose a new multiobjective stage cost that captures

both the economics and risk at a node, using a weighted sum of an economic stage cost

and a tracking stage cost. We use Economic MPC theory (Amrit et al., 2011) to design

closed-loop stable controllers for the supply chain.



• Integrated supply chain: We show an example of integrating inventory control with pro-

duction scheduling using the tools developed in this thesis. We develop simple terminal

conditions to show recursive feasibility of such integrated control schemes.
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