
Type Inclusion Constraints and Type InferenceAlexander AikenIBM Almaden Research Center650 Harry Rd., San Jose, CA 95120aiken@almaden.ibm.com Edward L. WimmersIBM Almaden Research Center650 Harry Rd., San Jose, CA 95120wimmers@almaden.ibm.comNovember 16, 1993AbstractWe present a general algorithm for solving systems of inclusion constraints over type expressions.The constraint language includes function types, constructor types, and liberal intersection and uniontypes. We illustrate the application of our constraint solving algorithm with a type inference systemfor the lambda calculus with constants. In this system, every pure lambda term has a (computable)type and every term typable in the Hindley/Milner system has all of its Hindley/Milner types. Thus,the inference system is an extension of the Hindley/Milner system that can type a very large set oflambda terms.1 IntroductionType inference systems for functional languages are based on solving systems of type constraints. Thebest known and most widely used type inference algorithm was �rst discovered by Hindley and laterindependently by Milner [Hin69, Mil78]. In its simplest form, the algorithm generates type equationsfrom the program text and then solves the equations. If the equations have a solution, the program iswell-typed|it cannot \go wrong" and produce a type error when executed. If the constraints do nothave a solution, the program is considered to be ill-typed|it might produce a run-time type error.Many generalizations of the Hindley/Milner algorithm have been proposed; see [CW85, Rey85] forsurveys of the major research directions. One approach that has received considerable attention is relaxingthe form of the type constraints from equations X = Y to inclusions X � Y [Mit84, Rey85, FM88,Tha88, KPS92]. In inclusion-based type systems, deciding whether a program has a type is reduced tothe question of whether a system of inclusion constraints has a solution. So far as we know, however, therehave been no general results on the problem of solving systems of type inclusion constraints. For thisreason, proposed algorithms for type inference based on solving inclusion constraints are quite restrictive(see Section 8).The main contribution of this paper is a general algorithm for solving systems of type inclusionconstraints. The type language we consider includes a least type 0, a universal type 1, intersection andunion types, function types, constructor types such as pairs, and recursive types. Our algorithm cannotsolve arbitrary systems of inclusion constraints; we �nd it necessary to restrict the use of intersection andunion types to obtain an e�ective algorithm. 1

The work we present is based on earlier work in solving systems of set constraints, which are inclusionconstraints over sets of terms of a free algebra [AW92a]. The essential di�erence between set constraintsand the constraints we discuss here is the addition of function types. With function types come all thedi�culties inherent in reasoning about sets of (possibly partially de�ned) functions, so the constraint the-ory is substantially di�erent and more di�cult than that in [AW92a], although the same basic techniquesapply.To help motivate and illustrate the potential of type inference systems based on our algorithm forsolving type inclusion constraints, in Section 3 we introduce a simple inclusion-based type inference systemfor the lambda calculus with constants. This inference system has two interesting properties: �rst, everypure lambda term has a (computable) type, and second, every term has its Hindley/Milner type (if itexists). We also present several examples taken from our implementation of the type inference system.These examples show that inclusion constraints can be used to infer very accurate types for programsthat usually are considered untypable.Our algorithm for solving type inclusion constraints works by incrementally transforming a system ofconstraints until the system is discovered to be inconsistent (i.e., has no solutions) or until the systemis inductive (see De�nition 5.2). The algorithm itself consists of two relatively simple steps. First, allconstraints X � Y are simpli�ed to constraints on variables of the form � � Z or Z � �. This step isessentially a large case analysis on the form of X and Y . Second, the system is closed under transitiveconstraints: if X � � and � � Y , then X � Y is added to the system. These two steps are repeateduntil no new constraints on variables can be added to the system.There are two di�culties that must be overcome. The �rst is to prove that if the algorithm doesnot detect an inconsistency, then the constraints in fact have a solution. Since the algorithm terminateswhenever the system is transformed into an inductive system or when an inconsistency is detected, itsu�ces to show that inductive systems always have solutions. An inductive system (de�ned precisely inDe�nition 5.2) is a system of constraints with one lower and upper bound per variable Li � �i � Ui.Using techniques developed in [AW92a], we show that inductive systems can be transformed to a set ofequations �i = Li[(�i\Ui) where the �i are fresh variables. Intuitively, �i is a parameter that allows �ito be anything \in between" its lower and upper bounds. The advantage of converting from containmentsto equations is that type equations are well understood; we apply a known result to prove that for everychoice for the �i the equations have a unique solution [MPS84].The second di�culty is determining the rules for decomposing arbitrary constraints into constraintson variables. In many cases the rules are obvious; for example, the constraint X [Y � Z holds i� X � Zand Y � Z. Most other cases of X � Y also simplify into constraints on subexpressions of X and Y .However, constraints of the form X � Y [Z as well as of the form X \ Y � Z are problematic. Forexample, the constraint X � Y [Z is di�cult to decompose because the constraint can be satis�ed evenif X is not a subset of either Y or Z. In simple set theory, X � Y [Z i� X \ :Y � Z, where :Y is theset complement of Y . Unfortunately, as we discuss in Section 6, the simple set-theoretic de�nition of:Y is not a type. We introduce a weaker de�nition of :Y that is a type and show how it can be used tosimplify constraints X � Y [Z provided Y \Z = 0 (i.e., where Y and Z are disjoint). Constraints of theform X \ Y � Z can be simpli�ed if Y is restricted to be upward closed and a monotype (see Section 6).Using the results of Sections 5 and 6, Section 7 introduces the class of proper constraint systems andpresents an algorithm for solving proper systems. Proper systems have very liberal (but not unrestricted)2

union and intersection types. Section 8 compares our work with some additional related work; Section 9concludes with a discussion of current and future work.2 Lambda Calculus and TypesThe de�nitions in this section are either standard or minor variations on standard de�nitions; the readerfamiliar with semantic models of types [MPS84] may skip to Section 3 and use this section only forreference.Our programming language is the strict lambda calculus with a �nite set of strict constructors C.Each c 2 C has a �xed arity; c may be a nullary constructor (a constant). The expressions of thislanguage are e ::= x j�x:e1 j e1 e2 j c(e1; : : : ; en)which are respectively variables, function abstractions, function applications, and data constructions.We essentially adopt the ideal model of types, in which types are certain subsets of the semanticdomain [MPS84]. For the untyped, strict lambda calculus with constructors the semantic domain isgiven by the equationD = f?g [(D ! D) [[c2C c(D� f?g; : : : ; D� f?g) [wrongWe use the standard call-by-value semantic function � that assigns elements of D to every expressione. The values ? and �x: ? are not equal; the �rst denotes a divergent computation, while the seconddenotes a function that diverges when applied. The value wrong denotes a run-time error, which in thissmall language results whenever a data structure c(: : :) is applied as a function.The domain D is constructed from the limit D! of a series of �nite sets of �nite elements D0 � D1 �: : : where D0 = f?g andDi+1 = Di [(Di !M Di)[Sc2C c(Di � f?g; : : : ;Di � f?g) [fwrong gwhere Di !M Di is the set of �nite, strict, monotonic functions from Di to Di.1 We use the standardpartial order � on the elements of D.2 A set D0 � D is downward-closed i� x 2 D and y � x implies thaty 2 D. Types are certain downward-closed subsets of D. By convention, wrong and values containingwrong should not have a type; this makes it easy to prove that typable terms cannot make runtime errors.As an aid to formally de�ning types, we introduce a subset T of D that does not contain wrong:T = f?g [(T ! T) [[c2C c(T � f?g; : : : ; T � f?g)De�nition 2.1 A type is a non-empty, downward-closed set of �nite elements that is a subset of T .1Normally continuous functions are used; in this case monotonic functions are su�cient because each Di is a �nite setand for �nite functions monotonicity implies continuity.2?� x for all x 2 D ;for f; g 2 D! D;f � g i� 8x f(x) � g(x);and c(x1; : : : ; xn) � c(y1; : : : ; yn) i� xi � yi for i = 1; : : : ; n 3

This de�nition of type is essentially equivalent to the usual de�nition based on ideals [MPS84] becauseevery ideal is isomorphic with a downward-closed set of �nite elements. We choose to work with the �niteelements both because it is simpler and because we make direct use of induction on the �nite elementsin proofs. As an aside, De�nition 2.1 can be simpli�ed by letting a type be any downward-closed set of�nite elements; here we have followed standard practice and excluded wrong from types.An expression has a given type i� the set of �nite approximations to the meaning of the expression isa subset of the type. More formally,De�nition 2.2 Let e be an expression. Then e has type � , written e : � , i�fv 2 D! j v � �(e)g � �Types are ordered by set containment. The least type is the set f?g which is denoted by 0.The complete language for type expressions is� ::= �1 [�2 j �1 \ �2 j �1 ! �2 j c(�1; : : : ; �n) j� j 0where � denotes a type variable. It is possible to express a universal type 1 (which has every �nite elementof T ; see above) and those instances of type complement :X that we need for solving constraints in termsof more primitive operations; thus, we do not include 1 and :X among the primitive operations on types.To give semantics to type expressions, any substitution � mapping variables to types is extended to typeexpressions as follows: �(0) = f?g�(X \ Y) = �(X)\ �(Y)�(X [Y) = �(X)[�(Y)�(c(X1; : : : ; Xn)) =fc(t1; : : : ; tn)jti 2 �(Xi)� f?gg [f?g�(X ! Y) =Siff 2 Di !M Di j f(�(X)\Di) � �(Y)g [f?gIt is easy to check that �(X) is a downward-closed set.A system of constraints has the form fXi � Yig where the Xi and Yi are type expressions. A solutionof the constraints is a substitution � such that �(Xi) � �(Yi). The set of all solutions of a system S ofconstraints is written S(S).We conclude this section with two examples. Let X = Y stand for the pair of constraints X � Yand Y � X . Consider a binary constructor cons and a nullary constructor nil. The equation � =cons(�; �)[nil de�nes � to be any list with elements of type �. This example shows that an explicit �xedpoint operator is not needed in the type language, because a �xed point can be de�ned by constraints.The next example shows that the universal type 1 can be de�ned as the unique solution of the equation:� = (0! �) [[c2C c(�; : : :; �)The �rst disjunct contains all functions (in a strict language) and the second disjunct closes the set underall constructions. Thus, this equation has a unique solution where � is the set of all �nite elements notinvolving wrong. 4

A [fx : �g; S ` x : � A; S ` ei : �i 1 � i � nA; S [fc(�1; : : : ; �n) = �g ` c(e1; : : : ; en) : �A [fx : �1g; S ` e : �2A; S ` �x:e : �1 ! �2 A; S ` e1 : �1; e2 : �2A; S [f�2 = �; �1 = �! �g ` e1 e2 : �Figure 1: Hindley/Milner type inference using equality constraints.A [fx : �g; S ` x : � A; S ` ei : �i 1 � i � nA; S [fc(�1; : : : ; �n) � �g ` c(e1; : : : ; en) : �A [fx : �1g; S ` e : �2A; S ` �x:e : �1 ! �2 A; S ` e1 : �1; e2 : �2A; S [f�2 � �; �1 � �! �g ` e1 e2 : �Figure 2: Type inference using inclusion constraints.3 Type InferenceIn this section we present a simple type inference system based on inclusion constraints and compareit with the Hindley/Milner system. The purpose of this is to illustrate the potential of type inferencesystems based on solving systems of inclusion constraints; our algorithm for solving inclusion constraintsis presented in Sections 5-7.A set of rules for Hindley/Milner type inference is given in Figure 1. These rules are presented in anon-standard form; following Wand [Wan87], a set of type constraints S is associated with each inferencerule. A conclusion A; S ` e : � holds for all solutions of S. This proof system is deterministic|there isonly one type derivation for any lambda term, up to renaming of type variables. It is well-known thatthe solutions of the constraints S can be computed using uni�cation [Rob65].Figure 2 gives inference rules for an inference system based on type inclusion. The only changes areto replace equality constraints by containments. In the construction rule c(�1; : : : ; �n) = � is replaced byc(�1; : : : ; �n) � �, and in the application rule �2 = � is replaced by �2 � � and �1 = �! � is replaced by�1 � �! �. It is easy to see that the rules in Figure 2 are sound (i.e., they generate only valid typings).More interestingly, well-typed terms cannot \go wrong".Proposition 3.1 If ;; S ` e : � and constraints S have a solution, then �(e) 6= wrong.Proof: Follows from soundness of the rules and the fact that wrong is not a member of any type. 2The inclusion system has two additional properties. First, every solution of the Hindley/Milnerconstraints for a term e is also a solution of the inclusion constraints for e. This follows from the factthat equality solutions are also solutions of the inclusions. The second property is that every pure term(i.e., a term with no constructors) is typable in the inclusion system, because in any type derivation fora pure term the constraints always have a solution. To see this, set all variables in the constraints to5

�0 where �0 is the unique type such that �0 = �0 ! �0; since a pure term has no data constructorsevery term has type �0 and every constraint is satis�ed. Thus, the inclusion system is an extension ofthe Hindley/Milner system that can type a very large class of lambda terms. Of course, to determinewhether a term is typable or not it is necessary to decide whether the constraints have a solution. Insubsequent sections we give an e�ective algorithm for solving a general class of type constraints such asthe ones found in Figure 2.3.1 Let-PolymorphismOne important component of the Hindley/Milner type system that we have not yet discussed is let-polymorphism [Mil78]. A full discussion of polymorphism is beyond the scope of this paper; in this shortsection we very brie
y show how let-polymorphism is incorporated into our system. In the end, except forthe non-standard presentation using constraints, the inference rules are the same as in the Hindley/Milnersystem.We add a new construct to the language \let x = e in e0" with the usual semantics. The point oflet-polymorphism is that distinct occurrences of x in e0 can be typed independently. This cannot be doneusing the inference rules presented so far, because there can be only one assumption about the type of xand every instance of x is assigned this same type. To overcome this problem we introduce a type scheme8�:� where S, which is the universal quanti�cation over a type expression � and its associated constraintsS. Given a substitution �, the semantics of a quanti�ed type is an intersection over all solutions of theconstraints: �(8�:� where S) = \�2X �(�)where X = S(S) \ f�0j�0(�) = �(�) if � 6= �g.The next step is to add inference rules for quanti�er introduction and elimination. These rules are justthe normal Hindley/Milner generalization and instantiation rules recast using constraints. To introducea universal quanti�er, the constraints must have a solution (i.e., the term must have a type withoutquanti�cation) and there must be no assumptions about the quanti�ed variable:A; S ` e : � and S(S) 6= ; and � not free in AA; ; ` e : 8�:� where STo eliminate a universal quanti�er, we simply drop the quanti�er and substitute a type expression forthe quanti�ed variable: A; S ` e : 8�:� where S0A; S [S0[� 0=�] ` e : � [� 0=�]Finally, the inference rule for \let" is the Hindley/Milner rule extended with constraints:A; S ` e : � A [fx : �g; S ` e0 : � 0A; S ` let x = e in e0 : � 0With these additional inference rules, each occurrence of x in e0 can be typed using a di�erent instantiationof a quanti�ed type for x. 6

3.2 ExamplesWe conclude this section with some examples taken from our implementation of the inclusion constraintsystem. Our system infers quanti�ed types for terms. In general, if a quanti�ed type 8�:� where Sis monotonic (resp. anti-monotonic) in �, then � can be eliminated without changing the meaningof the type by setting � to the lower bound (resp. upper bound) implied by the constraints S. Ourimplementation performs these optimizations (as well as others) to make quanti�ed types more readable.The �rst example is the identity function:I = \X.X : forall (a). a -> aOur system prints quanti�ed types as \forall" with an explicit list of quanti�ed variables. The typein this case is the same as the Hindley/Milner type. The type for the functional K that forms constantfunctions is also equivalent to the Hindley/Milner type, but di�ers in appearance:K = \X.\Y.X : forall (a).a -> 1 -> aThe Hindley/Milner type is � ! � ! �; since the type is anti-monotonic in �, it is instantiated to itsupper bound 1 in our system. For the next function, the inclusion system infers a more accurate typethan the Hindley/Milner system:twice = \F.\X.(F (F X)) :forall (a,b,c).((b -> a) & (a -> c)) -> b -> cThe symbol \&" stands for type intersection. The function twice has type (� ! �) ! � ! � in theHindley/Milner system which loses the distinction between a, b, and c.The �xed point combinator is not typable in the Hindley/Milner system but (like every pure term) istypable in the inclusion constraint system:Y = \U.(\X.(U (X X)) \X.(U (X X))) :forall (a,b).((a -> b) & (a -> a)) -> bThe type for Y looks a little curious, but by letting a = b = c it is easy to see that one instance of it is(c ! c) ! c, so it is as accurate as this more conventional signature. The inference system is also ableto do a good job with applications of Y:Y (twice I) : 0Our system proves that Y twice I is a non-terminating expression. An even fancier example is Y K:Y K : 1 -> b where b = 1 -> bIn this example some constraints remain after variables are eliminated. The type b is the unique solutionof the recursive equation b = 1! b. It is noteworthy that all the rules employed in the actual derivationof the above examples are valid for lazy functions as well as strict functions, so all the above types arevalid for lazy systems as well. In fact, the type inferred above is the best possible type for Y K in a lazysystem. Intuitively, this is because Y K has the property that Y K x = Y K for all x and this functionalityis exactly captured by the type b.Finally, expressions that apply constants as functions are ill-typed because the constraints have nosolutions: 7

true true*type error*4 Sample Run of the AlgorithmBefore giving a formal speci�cation of the algorithm, we present a sample run. The algorithm is presentedin the following sections and the rules are given in Figures 3, 4, and 5 in Appendix A. Consider thefunction SWAP that changes the unary constructor a (assuming it occurs at the outermost level) intothe unary constructor b and vice versa. SWAP highlights the role that unions and intersections play inthe algorithm. SinceSWAP : 8(�; �):a(�)[b(�)! b(�) [a(�),the rules given in Figure 2 imply that�x:SWAP(a(x)) : 8(�1; �2; �3; �4; �5): (�1 ! �5 wherea(�2) [b(�3)! b(�2) [a(�3) � �4 ! �5a(�1) � �4)In order to obtain an inductive system (see De�nition 5.2), we apply the algorithm to the system S1of constraints:S1: a(�2) [b(�3)! b(�2) [a(�3) � �4 ! �5a(�1) � �4System S2 is obtained by using the fact that function types are anti-monotonic in their �rst argumentand monotonic in their second argument. (See Rule 4 of Figure 5.)S2: �4 � a(�2) [b(�3)b(�2) [a(�3) � �5a(�1) � �4By combining constraints on �4 we obtain:S3: b(�2) [a(�3) � �5a(�1) � �4 � a(�2) [b(�3)System S4 is obtained by applying transitivity to the constraints on �4.S4: b(�2) [a(�3) � �5a(�1) � �4 � a(�2) [b(�3)a(�1) � a(�2) [b(�3)Next we eliminate the union on the right-hand side in the last constraint by moving appropriatemonotypes to the left-hand side. This step is explained in Section 6, formalized in Rule 8 of Figure 5,and justi�ed by Lemma 6.4.S5: b(�2) [a(�3) � �5a(�1) � �4 � a(�2) [b(�3)a(�1) \ :a(1) � b(�3)a(�1) \ :b(1) � a(�2)The left-hand sides of the last two constraints can be simpli�ed using the rules in Figures 3 and 4and the rule �1 \ 1 = �1. 8

S6: b(�2) [a(�3) � �5a(�1) � �4 � a(�2) [b(�3)0 � b(�3)a(�1) � a(�2)The third constraint is always true and can be dropped; the fourth constraint is simpli�ed by droppingthe constructor a. These steps are formalized in Rules 1 and 2 of Figure 5.S7: b(�2) [a(�3) � �5a(�1) � �4 � a(�2) [b(�3)�1 � �2At this point, the algorithm terminates because the system is inductive. Thus, we have shown that thetype is �x:SWAP(a(x)) is 8(�1; :::; �5): (�1 ! �5where b(�2) [a(�3) � �5a(�1) � �4 � a(�2) [b(�3)�1 � �2)After optimizing the representation of the type, the algorithm reports that the type is 8�:� ! b(�). Itis easy to check this by hand by letting �2 = �1 = �, �3 = 0, �4 = a(�), and �5 = b(�).5 Inductive SystemsIn the remainder of the paper we present our algorithm for solving systems of type inclusion constraints.As the �rst step, we show that every inductive system of constraints has a solution. We make use oftwo previous results in the proof. The �rst is a technique for transforming inclusion constraints to anequivalent system of equations [AW92a]. The second is the fact that systems of contractive equationshave unique solutions [MPS84]. The constraint-solving algorithm presented in Section 7 reduces aninitial system of constraints to a set of systems of inductive constraints or reports that the initial systemis inconsistent.To help motivate the technical de�nitions that follow, consider the following natural inductive strategyfor showing that an arbitrary system of inclusion constraints over variables �1; : : : ; �n has a solution.Initially, let �j = 0 for 1 � j � n. Recall that the semantic domain is constructed from an increasingsequence of sets of �nite elements D0;D1; : : : (Section 2). At step i of the induction, assign some �niteelements of Di to �1, then to �2, and so on, up to �n. At each step (i; j) of this double induction overthe �nite elements Di and variables �j , we must ensure that the constraints are satis�ed for all �niteelements in Di. If this can be done for all pairs (i; j) then the system has a solution.In such an inductive proof, we must distinguish between variables inside of constructors c(�), whichcontribute �nite elements from Di�1, and variables outside of constructors � \ c(: : :), which contribute�nite elements from Di.De�nition 5.1 The top-level variables ofX (denoted TLV(X)) are the variables inX that appear outsideof a type constructor. Formally, TLV(�i) = f�ig TLV(0) = ;TLV(c(: : :)) = ; TLV(X ! Y) = ;TLV(X [Y) = TLV(X)[TLV(Y)TLV(X \ Y) = TLV(X)[TLV(Y)9

Top-level variables are also called the non-expansive variables [MPS84]. There is one problem intransferring the intuition given above to the actual proof. Because function types are anti-monotonic inthe domain argument, the sets Di are not necessarily downward-closed and so are not types. In addition,values containing wrong are in the Di; the Di are not types for this reason as well (see De�nition 2.1).To ensure that we work with types, we de�ne Di to be the downward closure of Di\T; Di is the smallesttype containingDi\T. The next de�nition formalizes the idea that a substitution satis�es the constraints\up to level" Di and variable �j .De�nition 5.2 A system S of constraints is inductive if the following three conditions hold:1. S = fLi � �i � Ui j i = 1; : : : ; ng2. TLV(Li) [TLV(Ui) � f�1; : : : ; �i�1g for 1 � i � n3. For all i0 = 1; : : : ; n and integers j, the following holds in all substitutions:(8i = 1; : : : ; i0 � 1 (Li \Dj � �i \Dj � Ui \Dj) and8i = i0; : : : ; n (Li \Dj�1 � �i \Dj�1 � Ui \Dj�1))) Li0 \Dj � Ui0 \DjDe�nition 5.2 makes it possible to build solutions inductively at level Dj by assigning values in orderto �1; : : : ; �n since part 2 ensures that variables are constrained only by lower-numbered variables at thetop level and part 3 ensures that �i0 can be given a value between Li0 and Ui0 . Part 3 guarantees that theconstraints are closed under transitive constraints; systems that are not closed under transitivity (e.g.,1 � �1 � 0) need not have solutions.We show that inductive systems have solutions in two steps: �rst, we show that an inductive systemis equivalent to a system of equations; we then show that the equations always have solutions.De�nition 5.3 A set of equations f�1 = E1; : : : ; �n = Eng is cascading if TLV(Ei) \ f�i; : : : ; �ng = ;.Theorem 5.4 Let S = fLi � �i � Uig be an inductive system of constraints. Then S is equivalent tothe cascading equations �i = Li [(�i \ Ui) where the �i are fresh variables.Proof: The proof adapts a similar proof for solving systems of set constraints over the HerbrandUniverse [AW92a]. Assume that Li � �i � Ui and let �i = �i. Then�i = Li [(�i \ Ui) since Li � �i � Ui= Li [(�i \ Ui) since �i = �iThus, every solution of the constraints induces a solution of the equations. For the other direction, assumethat �i = Li [(�i \ Ui) for some �i. Clearly, Li � �i. To show �i � Ui, we �rst show that for all i andj, �i \ Dj � Ui \ Dj . For the sake of obtaining a contradiction, assume �i \ Dj 6� Ui \ Dj for some iand j. Pick the smallest such pair (j; i) ordered lexicographically. Note Lk \ Dl � �k \ Dl � Uk \ Dl10

holds if (k; l) < (j; i) by assumption and because Lk � ak. Since the system is inductive, it follows thatLi \Dj � Ui \Dj . Therefore �i \Dj= (Li [(�i \ Ui)) \Dj= (Li \Dj) [(�i \ Ui \Dj)� Ui \Djwhich contradicts the assumption. Thus for all i,�i \Dj � Ui \Dj for all j) �i \Dj � Ui for all j) �i � Ui since Sj Dj = D!2 Theorem 5.5 shows that every choice for the �i induces a unique solution to the cascading equations.Theorem 5.5 Let E = f�1 = E1; : : : ; �n = Eng be a set of cascading equations and let � be anysubstitution for the variables other than the f�1; : : : ; �ng. There is a unique extension �0 of � that is asolution of the equations.Proof: [sketch] Variable �i can be eliminated from the top-level variables of every equation by substi-tuting Ei for �i in Ei+1 through En. Then the only top-level variables are variables other than the �i.For any �xed substitution � for these top-level free variables, the equations become contractive (have notop-level variables). Contractive equations have unique solutions [MPS84]. 26 Type Complement, Union, and IntersectionAt the highest level, our strategy for solving systems of type inclusion constraints is to transform anarbitrary system of constraints into an inductive system. This requires decomposing constraints intosimple constraints on variables and adding transitive constraints. In this section we focus on how asystem of constraints can be reduced to constraints only on variables.Most constraints X � Y decompose easily into constraints on subexpressions of X and Y . Forexample, X � Y \ Z i� X � Y and X � Z, and X [Y � Z i� X � Z and Y � Z. There are only twodi�cult cases: an intersection on the left X \ Y � Z and a union on the right X � Y [Z.Consider a constraint of the formX � Y [Z. How can this be transformed into a \simpler" constraint?One possibility is to use set complement to move sets from one side to the other:X � Y [Z , X \ (1� Y) � ZThere is, however, a serious problem with this idea. The set 1�Y is not downward-closed and, therefore,is not a type. For example, 1 � (1 ! 0) contains every function except the least function �x: ?. Theproblem is to �nd a de�nition of :X that is a type. This motivates the following:De�nition 6.1 :X is the largest type such that X \ :X = 0. More formally, :X is the unique typesuch that for all types Y , Y \X = 0 i� Y � :X . 11

As an example, for any X and Y the type :(X ! Y) is the set of all non-functions Sc2C c(1; : : : ; 1).(Recall from Section 2 that �x:?6=?.) Our de�nition of :X is not quite the set complement of X ; thisforces restrictions on the constraints X \ Y � Z and X � Y [Z that can be solved. Consider againconstraints of the form X � Y [Z. One might hope that X � Y [Z , X \:Y � Z, but unfortunatelythis is false. (The constraint 0! 1 � (1! 0) [int has no solutions, but (0 ! 1) \ :(1 ! 0) = 0 � intholds in all substitutions.) The statement is true, however, if Y is upward-closed.De�nition 6.2 A type X is upward-closed if X = Up(X) where Up(X) = f?g [Sx2X�f?gfyjy � xgLemma 6.3 Let Y be upward-closed. ThenX � Y [Z , X \ :Y � ZTo apply Lemma 6.3 to more general constraints, we need a way to transform any type expressionX into an upward-closed type. De�ne X to be the smallest upward-closed monotype (a type expressionwith no variables) such that �(X) � X for all substitutions �. For example, � = 1 for any variable �,and X ! Y = 0 ! 1, the set of all functions. Using X and :X, we give a method for decomposingconstraints of the form X � Y [Z when Y and Z are disjoint.Lemma 6.4 Let X � Y [Z be a constraint where �(Y \ Z) = 0 for all �. ThenX � Y [Z , X \ :Y � Z ^ X \ :Z � YProof: It is easy to show that 8� �(Y \ Z) = 0 i� Y \ Z = 0. Now we reason as follows:X � Y [Z) X � Y [Z since Y � Y) X \ :Y � Z Lemma 6.3For the other direction we haveX \ :Y � Z ^ X \ :Z � Y) X � Z [Y ^ X � Z [Y Lemma 6.3) X � (Z [Y) \ (Z [Y)) X � Z\Z [Z\Y [Y \Z [Y \Y) X � Z [Ywhere the last line follows because Z \ Y = Z \ Y = 0, and Z � Z, Y � Y . 2We restrict unions on the right of constraints to be disjoint; using Lemma 6.4 we can decomposesuch constraints. For the other problem constraints X \ Y � Z, we restrict intersection on the left of aconstraint to be of the form X \ Y � Z, which is equivalent to X � Z\Y [:Y . We form Z \ Y on theright of the transformed constraint to guarantee that the union is disjoint.To �nish this section, Figure 3 gives an algorithm for eliminating X and :X from types. Complementis used only in expressions of the form :X , so it is convenient to de�ne the elimination of X and :Xsimultaneously. The equivalences in Figure 3 guarantee that all unions are from disjoint sets and allintersections are with upward-closed monotypes. 12

7 Solving Systems of ConstraintsThis section de�nes a class of inclusion constraints, gives rules for reducing those constraints to simpleconstraints on variables, and �nally gives an algorithm that uses the rules to solve the constraints. We�rst de�ne two classes of type expressions, L (for \Left") and R (for \Right"):L ::= 0 j� j c(L1; : : : ; Ln) jR! L jL1 \ L2 jL1 [L2R ::= 0 j� j c(R1; : : : ; Rn) jL! R jR1 \ R2 jR1 [R2 where R1 \R2 = 0A system of proper constraints has the form fLi � Rig. As discussed in Section 6, the restrictions onintersection in L types and unions in R types arise from the asymmetry of � and limitations on de�ninga complement operation on types. Note that arbitrary unions are permitted in L types and arbitraryintersections in R types. This turns out to be useful, and, to our knowledge, this possibility for intersectionand union types has not been explored before. The type 1 does not appear in the grammar because itcan be de�ned using proper constraints (see Section 2); we continue, however, to use 1 in expressions forconvenience.The inclusion-based inference system in Figure 2 generates proper constraints since the initial con-straints have no intersections or unions. The Hindley/Milner system in Figure 1 also generates properconstraints, since X = Y is equivalent to X � Y and Y � X and there are no intersections or unions.Referring again to the inclusion constraints in Figure 2, it is easy to see that functions (includingprimitive functions) must be assigned L types for the type inference rule for application to work. Beforecontinuing, we give an example of the expressive type signatures that can be given for primitive functions.Consider a higher-order conditional if e1 e2 e3 x. In our type language, if has type(�1 ! bool)! (�2 ! �2)! (�3 ! �3)!�1 \ �2 \ �3 ! �2 [�3The whole expression is an L type; in the last function �1\�2\�3 is an R type (as required) and �1[�2is an L type (as required). Thus, we are able to use arbitrary intersection and union exactly where thenatural signature dictates. We have found that the division into L and R types lends itself naturally towriting function signatures.In giving the rules for simplifying constraints, it is useful to assume types are in disjunctive nor-mal form. From here on, we assume that all types are normalized using the equivalences in Figure 4.These rules drive intersections \in" and eliminate redundant conjuncts and disjuncts. Note that afternormalization every intersection in an L type is of the form � \ L for some variable �.Before giving the rules for simplifying constraints we need one more de�nition. A constraint c(�; �) �0 can be satis�ed in one of two ways: either � � 0 or � � 0.3 More formally, we can say that the solutionsof c(�; �) � 0 are the union of the solutions of � � 0 and the solutions of � � 0. This motivates thefollowing:De�nition 7.1 Let �;�0 be sets of systems of constraints. We say � � �0 i� SS2� S(S) = SS02�0 S(S 0).3This would not be the case in a lazy language. 13

Figure 5 gives rules for simplifying constraints. Each rule maps a set of systems to an equivalent setof systems. There are several things to check: that each rule is correct, that all cases are covered, andthat generated constraints are of the form L � R. Except for a brief discussion of the correctness of Rule4, we leave these to the reader. Rule 4 says that either function types are related by the usual ordering(contravariant in the �rst component, covariant in the second) or the type on the right-hand side is theset of all functions. Using the semantics of function types in Section 2, it can be shown that in a strictlanguage X ! Y is the set of all functions i� X = 0 or if Y = 1. (In a lazy language, only types of theform X ! 1 denote the set of all functions.)For e�ciency, our implementation of the constraint solver discards some solutions. Since universallyquanti�ed types are intersections over all instantiations of the variables that solve the constraints, dis-carding solutions amounts to removing elements from the intersection, resulting in a potentially largertype. Inferring a larger type is always permissible but may result in a loss of accuracy.Theorem 7.2 Every proper system fLi � Rig is equivalent to a �nite set of inductive systems.Proof: [sketch] The following algorithm transforms a proper system S to a �nite set of inductive systems�. Initially, let � = fSg. A single constraint �j � X or X � �j is inductive i� TLV(X) � f�1; : : : ; �j�1g(see De�nition 5.1). Iterate the following steps until all constraints are inductive, no additional inductiveconstraints can be added, and there are no inconsistent systems:1. For any constraint that is not inductive, apply the lowest numbered applicable rule in Figure 5.2. For any pair of inductive constraints L � �j and �j � R in a system S, add the transitive constraintL � R to S.3. Delete any system from � with a constraint 1 � 0 or b � 0 for nullary constructor b; such systemshave no solutions.Finally, for each S 2 �, combine lower bounds L1 � �; L2 � � into L1 [L2 � � and upper bounds� � R1; � � R2 into � � R1 \ R2. The result is a set of inductive systems.This algorithm can be proven correct in three steps. First, show that rules 1-11 transform anyconstraint L � R into inductive constraints. Second, show that the transitive closure terminates. Third,show that a system of inductive constraints closed under transitivity is an inductive system. We showonly the �rst two parts; the third part can be proven by adapting a similar proof in [AW92a].For the �rst part, rules 1-10 either make the right-hand side smaller or make the left-hand side smallerand do not change the right-hand side. Whenever rule 11 is applied, the result is an inductive constraint.For the second part, no rule increases the nesting depth of constructors, and there are only �nitelymany disjunctive-normal form expressions with no duplicate conjuncts or disjuncts and a �xed depth ofconstructors. Since no inductive constraints are deleted, the set of inductive constraints must eventuallyreach a �xed point. 2The algorithm given in the proof of Theorem 7.2 produces a �nite set of inductive systems � equivalentto the original proper system S. Since inductive systems always have solutions (Theorems 5.4 and 5.5),it follows that � = ; i� S(S) = ;. Thus, the algorithm computes a representation of all solutions of Sand S is inconsistent i� � = ;. 14

8 Related WorkIn this section we brie
y survey other work on solving systems of type inclusion constraints. Becausemost of this work has taken place in the context of type inference and not solely for the study ofinclusion constraints, we also compare other type inference systems with the one presented in Section 3.Unfortunately, the literature on type inference is enormous and we must pass over some interestingsystems for lack of space.We begin by reconsidering the Hindley/Milner system. We have already argued informally that oursystem captures all Hindley/Milner typings. The following lemma makes this precise.Lemma 8.1 Let e be a lambda term and let SHM be the Hindley/Milner constraints of a type derivation,and let SIC be the corresponding inclusion constraints. Then S(SHM) � S(SIC).Proof: By inspection of the constraints. 2Partial types are a generalization of the Hindley/Milner system. Partial types were introduced in[Tha88]; the problem of solving inclusion constraints over partial types has received considerable attentionrecently [OW92, KPS92]. The partial types are� ::= c(�1; : : : ; �n) j �1! �2 j� j 1In works on partial types, 1 is written
. Only the inference rule for application is modi�ed from theHindley/Milner system. The translation of the rule in [Tha88] into our notation isA; S ` e1 : �1; e2 : �2A; S [f� = �2; �1 � �! �g ` e1 e2 : �Lemma 8.2 Let e be a lambda term and let SP be the partial type constraints of a type derivation, andlet SIC be the corresponding inclusion constraints. Then S(SP) � S(SIC).Proof: By inspection of the constraints. 2The work of Mishra and Reddy on declaration-free type checking was one of the original inspirationsfor this work [MR85]. Their algorithm for solving inclusion constraints is more restrictive than ours inseveral ways. It is restricted to a �rst-order language, and all unions are required to be discriminative,which means that disjuncts must have di�erent outermost constructors (i.e., c(: : :)[d(: : :)). Intersectionis also restricted so that it cannot appear on the left-hand side of constraints.The inference system that is closest in spirit to ours is soft typing, proposed by Cartwright and Fagan[CF91]. Their typing algorithm also generates type constraints that must be solved. The constraints arenot solved directly; they are �rst encoded in a special representation in which circular uni�cation can beused to obtain representations of solutions, which are then decoded back to types. While their systemhandles higher-order functions, unions are required to be discriminative and there are no intersectiontypes.9 Current and Future WorkThe implementation described in Section 3 is being extended to handle analysis of programs written in FL,a dynamically typed functional language [BWW+89]. In this variation, the solutions of the constraints are15

used to determine where run-time type checks are required [AW92b]. Based on our previous experiencewith implementing set constraints, we believe that the algorithms presented here can be implementede�ciently in practice [AM91].There are interesting types that the system described here cannot handle. For example, the type ofan overloaded function such as+ : (int! int! int) \ (real! real! real)is not an L type and thus cannot be used as the signature for + in the inference algorithm. Similarly,strictness properties such as + : (0! 1! 0)\ (1! 0! 0)are also not L types. We plan to investigate whether the restrictions on unions in R types and intersectionsin L types can be relaxed further. While some restrictions seem necessary, the results of Section 6 arenot necessarily the best possible.10 AcknowledgementsWe would like to thank Lennart Augustsson, T.K. Lakshman, John Mitchell, Satish Thatte, and JohnWilliams for discussions and comments on earlier drafts of this paper. We are also grateful to T.K.Lakshman for implementing the constraint solving algorithm.References[AM91] A. Aiken and B. Murphy. Implementing regular tree expressions. In Proceedings of the1991 Conference on Functional Programming Languages and Computer Architecture, pages427{447, August 1991.[AW92a] A. Aiken and E. Wimmers. Solving systems of set constraints. In Symposium on Logic inComputer Science, pages 329{340, June 1992.[AW92b] A. Aiken and E. Wimmers. Type inference with set constraints. Research Report 8956, IBM,1992.[BWW+89] J. Backus, J. H. Williams, E. L. Wimmers, P. Lucas, and A. Aiken. The FL language manualparts 1 and 2. Technical Report RJ 7100 (67163), IBM, 1989.[CF91] R. Cartwright and M. Fagan. Soft typing. In Proceedings of the ACM SIGPLAN '91 Con-ference on Programming Language Design and Implementation, pages 278{292, June 1991.[CW85] L. Cardelli and P. Wegner. On understanding types, data abstraction and polymorphism.Computing Surverys, 17(4):471{522, December 1985.[FM88] Y. Fuh and P. Mishra. Type inference with subtypes. In Proceedings of the 1988 EuropeanSymposium on Programming, pages 94{114, 1988.16

[Hin69] R. Hindley. The principal type-scheme of an object in combinatory logic. Transactions ofthe American Mathematical Society, 146:29{60, 1969.[KPS92] D. Kozen, J. Palsberg, and M. I. Schwartzbach. E�cient inference of partial types. InFoundations of Computer Science, pages 363{371, October 1992.[Mil78] R. Milner. A theory of type polymorphism in programming. Journal of Computer andSystem Sciences, 17:348{375, 1978.[Mit84] J. Mitchell. Coercion and type inference (summary). In Eleventh Annual ACM Symposiumon Principles of Programming Languages, pages 175{185, January 1984.[MPS84] D. MacQueen, G. Plotkin, and R. Sethi. An ideal model for recursive polymophic types. InEleventh Annual ACM Symposium on Principles of Programming Languages, pages 165{174,January 1984.[MR85] P. Mishra and U. Reddy. Declaration-free type checking. In Proceedings of the TwelfthAnnual ACM Symposium on the Principles of Programming Languages, pages 7{21, 1985.[OW92] P. N. O'Keefe and M. Wand. Type inference for partial types is decidable. In Proceedings ofthe 1992 European Symposium on Programming, 1992.[Rey85] J. C. Reynolds. Three approaches to type structure. In Proc. TAPSOFT Advanced Seminaron the ROle of Semantics in Software Development, Berlin, March 1985. Springer LectureNotes in Computer Science.[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal of theACM, 12(1):23{41, 1965.[Tha88] S. Thatte. Type inference with partial types. In Automata, Languages and Programming:15th International Colloquium, pages 615{629. Springer-Verlag Lecture Notes in ComputerScience, vol. 317, July 1988.[Wan87] M. Wand. A simple algorithm and proof for type inference. Fundamenta Informaticae,X:115{122, 1987.
17

A Transformations Performed by the AlgorithmX \ Y = X \ Y :X \ Y = :X\Y [:X\:Y [X\:YX [Y = X\:Y [X\Y [:X\Y :X [Y = :X \ :YX ! Y = 0! 1 :X ! Y = Sc2C c(1; : : : ; 1)� = 1 :� = 00 = 0 :0 = 1c(X1; : : : ; Xn) = c(X1; : : : ; Xn):c(X1; : : : ; Xn) = Sfd(1; : : : ; 1)jd 2 C � fcgg [0! 1[c(:X1; 1; : : : ; 1)[c(X1;:X2; 1; : : : ; 1)[: : :[c(X1; : : : ; Xn�1;:Xn)Figure 3: Simplifying X and :X.X [X = X X \X = X(X [Y) \ Z = (X \ Z) [(Y \ Z) (� \X) \ Y = � \ (X \ Y)c(X1; : : : ; Xn) \ c(Y1; : : : ; Yn) = c(X1 \ Y1; : : : ; Xn \ Yn) c(: : :) \ d(: : :) = 0 if c 6= dX ! Y \ 0! 1 = X ! Y c(: : :) \X ! Y = 0X \ 0 = 0Figure 4: Putting types in disjunctive normal form.�; S [f0 � Rg � �; S (1)�; S [fc(L1; : : : ; Ln) � c(R1; : : : ; Rn)g � �; S [fLi � Rij1 � i � ng; (S [fc(L1; : : : ; Ln) � 0g)� (2)�; S [fc(L1; : : : ; Ln) � Fg � �; (S [fL1 � 0g)�; : : : ; (S [fLn � 0g)�if F is 0; X ! Y; or d(: : :) where d 6= c (3)�; S [fR1 ! L1 � L2 ! R2g � �; S[fL2 � R1; L1 � R2g; (S[fL2 � 0g)�; (S[f1 � R2g)� (4)�; S [fR! L � Fg � � if F is 0 or c(: : :) (5)�; S [fL1 [L2 � Rg � �; S [fL1 � R;L2 � Rg (6)�; S [fL � R1 \R2g � �; S [fL � R1; L � R2g (7)�; S [fL � R1 [R2g � �; S [fL \ :R1 � R2; L \ :R2 � R1g (8)�; S [f� � �g � �; S (9)�; S [f�\ L � �g � �; S (10)�; S [f� \ L � Rg � �; S [f� � (R \ L) [:Lg (11)The systems marked with � are usually discarded for e�ciency.Figure 5: Rules for simplifying constraints.18

