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Abstract

Previous research on dynamic panel estimation has focused on panels that, unlike a
typical panel of macroeconomic data, have small time dimensions and large individual
dimensions.  We use a Monte Carlo approach to investigate the performance of
several different methods designed to reduce the bias of the estimated coefficients for
the longer, narrower panels commonly found for macro data.  We find that the bias
of the least squares dummy variable approach can be significant, even when the time
dimension of the panel is as large as 30.  For panels with small time dimensions, we
find a corrected least squares dummy variable estimator to be the best choice.
However, as the time dimension of the panel increases, the computationally simpler
Anderson-Hsiao estimator performs equally well.  We apply our recommendations to
a panel of countries to show that increases in income growth precede increases in
savings rates and increases in savings rates precede declines in income growth.
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     Many recent studies use panel data but do not use techniques that exploit the panel dimension1

of the data.

Estimating Dynamic Panel Data Models:
A Practical Guide for Macroeconomists

1  Introduction

The recent revitalization of interest in long-run growth and the availability of

macroeconomic data for large panels of countries has generated interest among macroeconomists

in estimating dynamic models with panel data.  (See, e.g., Mankiw, Romer, and Weil (1992),

Fischer (1993), and Levine and Renelt (1992).) Use of panel data in estimating common

relationships across countries is particularly appropriate because it allows the identification of

country-specific effects that control for missing or unobserved variables.   However,1

microeconomists have generally been more avid users of panel data, and, thus, existing panel data

techniques have been devised and tested with the typical dimensions of a microeconomic panel

dataset in mind.

Many macroeconomic panel datasets have a time dimension far greater and an individual

(country) dimension far smaller than the typical microeconomic panel.  This difference is

important in choosing an estimation technique for two reasons.  First, it is well known that using

dummy variables to estimate individual effects in a model which includes a lagged value of the

dependent variable results in biased estimates when the time dimension of the panel (T) is small. 

Nickell (1981) derives a formula for the bias, showing that the bias approaches zero as T

approaches infinity.  Thus, for many macroeconomists, the question,  "How big should T be

before the bias can be ignored?", is a critical one.  A second reason that typical macro panels may

require different estimation techniques than those used on micro panels is that recent work

investigating the appropriateness of competing estimators has generated conflicting results,

showing that the characteristics of the data influence the performance of an estimator.  Arellano

and Bond (1991) run a Monte Carlo experiment to judge the performance of the Anderson-Hsiao

estimator against various GMM estimators and find that the GMM procedures produce substantial

efficiency gains.  However, Kiviet (1995), using a slightly different experimental design, finds that

the Anderson-Hsiao estimator compares favorably to GMM and concludes that no estimator has
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been found to be the appropriate choice in all circumstances. Our findings support this conclusion

and suggest that the best technique changes with the size of the panel.

In this paper, we evaluate several different techniques for estimating dynamic models with

panels characteristic of many macroeconomic panel datasets; our goal is to provide a guide to

choosing appropriate techniques for panels of various dimensions.  We build on previous work in

this area that has examined dynamic panel data estimators both theoretically and with simulations. 

Anderson and Hsiao (1981) derive an instrumental variables approach.  Holtz-Eakin, Newey and

Rosen (1988) expand on the Anderson-Hsiao approach, showing how to implement it to estimate a

vector autoregression with time-varying parameters.  Arellano and Bond (1991) use Monte Carlo

studies to evaluate a GMM estimator that is very similar to the Holtz-Eakin et. al.

recommendation, and Kiviet (1995) uses simulations to compare these and several other

techniques, including a corrected least squares dummy variable estimator he develops in his paper. 

Our work most closely follows Kiviet's, however, we focus our attention on data with the qualities

normally encountered by macroeconomists while he focuses on the short (small T), wide (large N)

panels typical of micro data.

We have three main conclusions.  First, macroeconomists should not dismiss the least

squares dummy variable bias as insignificant.  Even with a time dimension as large as 30, we find

that the bias may be equal to as much as 20% of the true value of the coefficient of interest. 

Second, a "restricted GMM" estimator that uses a subset of the available lagged values as

instruments increases computational efficiency without significantly detracting from its

effectiveness.  Finally, the size of the panel influences the choice of estimator.  For panels with a

small time dimension, we find a corrected least squares dummy variable to be the best choice. 

However, as the time dimension of the panel increases, the computationally simpler Anderson-

Hsiao estimator performs equally well.

In the final section of the paper, we demonstrate the importance of these findings by

applying our recommendations to a panel of countries in order to learn more about the dynamic

relationship between savings and growth.  When using the appropriate technique for the size of

the panel, we are able to establish that increases in income growth precede increases in savings

and increases in savings precede declines in income growth. 

We develop these results in the next five sections.  Section 2 sets up the model we will

estimate, and reviews the problems caused by adding a lagged dependent variable to a panel data
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regression and discusses the proposed solutions, Section 3 describes our methodology, Section 4

provides results, Section 5 implements our recommendations in tests of Granger causality between

savings and growth, and Section 6 concludes.

2  The Problem and Proposed Solutions 

We consider a dynamic fixed effects model of the form

(1)

where �  is a fixed-effect, x  is a (K-1)×1 vector of exogenous regressors and �  ∼ N(0,% ) is ai i,t i,t �
2

random disturbance.  We assume

(2)

Equation 1 is a common specification for those wishing to estimate a VAR or test for Granger

causality.  

The fixed effects model we have chosen is a common choice for macroeconomists.  It is

generally more appropriate than a random effects model for many macro datasets for two reasons. 

First, if the individual effect represents omitted variables, it is highly likely that these country-

specific characteristics are correlated with the other regressors.  Second, it is also fairly likely that

a typical macro panel will contain most of the countries of interest and, thus, will be less likely to

be a random sample from a much larger universe of countries (e.g., an OECD panel is likely to

contain all of the OECD countries and not just a random sample of them).  

The model in Equation (1), however, includes as one of the regressors a lagged dependent

variable.  In this case, the usual approach to estimating a fixed-effects model -- the least squares

dummy variable estimator (LSDV) -- generates a biased estimate of the coefficients.  Nickell

(1981) derives an expression for the bias of � when there are no exogenous regressors, showing

that the bias approaches zero as T approaches infinity.  Thus, the LSDV estimator only performs

well when the time dimension of the panel is large.



     Further details on computational issues are discussed in the appendix.  Gauss programs are     2

available from the authors upon request.
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Several estimators have been proposed to estimate Equation (1) when T is not large.  2

Anderson and Hsiao (1981) propose two instrumental variable procedures.  To remove the fixed

effect, they first difference Equation (1) to obtain

(3)

In the differenced equation, however, the errors (�  - � ) are now correlated with the one of thei,t i,t-1

independent variables (y  - y ), and they recommend instrumenting for (y  - y ) with eitheri,t-1 i,t-2 i,t-1 i,t-2

y  or (y  - y ) which are uncorrelated with the disturbance in (3) but correlated with (y  -i,t-2 i,t-2 i,t-3 i,t-1

y ).  Arellano (1989) shows that using the lagged difference as an instrument results in ani,t-2

estimator that has a very large variance.  Arellano and Bond (1991) and Kiviet (1995) confirm the

superiority of using the lagged level as an instrument with simulation results, and we, therefore,

focus our attention only on this estimator (subsequently termed the AH estimator).  Thus, when

the dimension of the panel is N × T, the Anderson-Hsiao estimator we employ is

(4)

where Z is a K × N(T-2) matrix of instruments, X is a K × N(T-2) matrix of regressors and Y is

an N(T-2) × 1 vector of dependent variables.  Let �y  = y  - y .  Then,i,t i,t i,t-1

(5)

(6)

We also examine two GMM estimators suggested by Arellano and Bond (1991).  The



     When x  are predetermined but not strictly exogenous, only lagged values of x are valid     3
it

instruments.  If x  are strictly exogenous, then current and lagged values are valid instruments.  it

5

Anderson-Hsiao estimator can be considered a special case of the GMM procedures, which also

remove the individual effect by differencing Equation (1) to obtain Equation (3).  The GMM

procedures, however, gain efficiency by exploiting additional moment restrictions.  They use all

available lagged values of the dependent variables plus lagged values of the exogenous regressors

as instruments.   The GMM estimators take the form3

(7)

where X and Y are as defined above, but Z  is a block diagonal matrix whose sth block is giveni
*

by (y  ... y x ... x ) for s=1,...,T-2.  Then Z =(Z ',...,Z ')'.  i1 is i1 i(s+1) 1 N
* * *

Two different choices for A  result in two different GMM estimators.  A one-stepN

estimator, GMM1, can be found by using

(8)

where H is a T-2 square matrix with twos in the main diagonals, minus ones in the first

subdiagonals, and zeros otherwise.  A two-step estimator, GMM2, is found by letting 

(9)

where  �ê  = (�ê ,...,�ê ) are the residuals from a consistent one-step estimator of �y  (we usei i3 iT i

GMM1).

An alternative estimation procedure is suggested by Kiviet (1995).  He derives a formula

for the bias of the LSDV estimator and recommends subtracting this from the estimated LSDV

coefficients.  While the formula for the LSDV correction is presented in the appendix, estimation

of the LSDV correction also involves a two-step procedure in which the residuals from a first-step

consistent estimator (we use AH) are used in the second-stage calculation of the bias.  We call

Kiviet's corrected LSDV estimator LSDVC.

3  Methodology 
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In this section, we describe the Monte Carlo analysis we used to investigate several

questions relevant for the macroeconomist wishing to choose one estimator from the several

different techniques to estimate a dynamic panel data model.  First, we examine the bias of OLS

and LSDV estimators to determine how their magnitudes vary with characteristics of the dataset. 

Next, we explore various GMM estimators to see which technique produces the most efficient and

consistent estimate.  Finally, we make an overall comparison between the LSDV, AH, GMM and

LSDVC. 

Our data generation process closely follows Kiviet (1995).  The model for y  is given init

Equation (1); x  was generated withit 

(10)

Thus, in addition to �, # and %  also determine the correlation between y  and x .  Kiviet defines�
2

it it

a signal to noise ratio, %  s
2

(11)

and shows that it can be calculated from other parameters of the model as follows

(12)

The higher the signal-to-noise ratio, the more useful x  is in explaining y .  Kiviet (1995) findsit it

that varying the signal-to-noise ratio significantly alters the relative performance of the bias of the

various estimators.

We also choose �=1-� so that a change in � affects only the short-run dynamic

relationship between x and y and not the steady-state relationship.  Thus, given choices for �, % ,�
2

% , and #, all of the other parameters of the model are determined.  Our parameter choices cans
2

be summarized as follows:  %  is normalized to 1,  # is set at the intermediate value of 0.5, %� s
2 2

alternates between a value of 2 and 8, and � alternates between 0.2 and 0.8.  For each

combination of parameters we vary the size of our panel.  N, the cross-sectional dimension, takes

on values of 20 or 100, and T, the time dimension, is assigned values of 5, 10, 20 and 30.  In

total, we have 32 different parameter combinations.

We generate the data by choosing x , y  = 0 and then discarding the first 50 observationsi,0 i,0
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Table 1:  OLS and LSDV Bias Estimates

% =1, % =2, #=0.5, N=100� �

� Bias � Bias

T � OLS (SE) LSDV (SE) � OLS (SE) LSDV (SE)

5 0.2 0.225 (0.039) -0.147 (0.040) 0.8 -0.098 (0.044) 0.006 (0.045)

0.8 0.049 (0.026) -0.504 (0.058) 0.2 -0.005 (0.055) -0.027 (0.070)

10 0.2 0.225 (0.032) -0.059 (0.023) 0.8 -0.099 (0.031) 0.015 (0.026)

0.8 0.049 (0.017) -0.232 (0.032) 0.2 -0.007 (0.037) 0.002 (0.045)

20 0.2 0.225 (0.028) -0.027 (0.015) 0.8 -0.100 (0.023) 0.009 (0.017)

0.8 0.049 (0.012) -0.104 (0.019) 0.2 -0.008 (0.026) 0.006 (0.028)

30 0.2 0.226 (0.026) -0.017 (0.012) 0.8 -0.100 (0.019) 0.006 (0.014)

0.8 0.049 (0.011) -0.066 (0.014) 0.2 -0.008 (0.020) 0.006 (0.022)

before selecting our sample.  In general we performed 1,000 replications, although for the GMM

comparisons for T=20, N=100 and T=30, it was only feasible to do 100 replications.  We used a

fixed set of seeds for the random number generator so that our results can be replicated.

4  Results

The first issue we addressed was the magnitude of the bias of the OLS and LSDV

estimators for various panel sizes.  Table 1 summarizes the results from this initial experiment for

a subset of parameter values (results for the full set of parameter values are in an appendix

available from the authors upon request.)

The results in Table 1 suggest that, with either method of estimation, the bias of the �

estimate is more severe than the bias of the estimate of �.  They also confirm the well-

documented result that using OLS to estimate a model with fixed effects generates a significant

bias, even as T gets large.  As Nickell (1981) predicts, the bias of the LSDV estimator increases

with � and decreases with T.  For T=5 and T=10, the magnitudes of the bias are quite large:  for

T=10, just under 30% and over 50% for T=5.  Moreover, the bias of the LSDV estimate of � is



     In addition, we checked to see whether there were gains to iterating GMM or to using     4

more than eight instruments for T=20 (where 18 instruments would be available).  There was no
gain to either of these procedures.
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not insignificant, even at T=20.  An estimate that gives a bias within 2 standard deviations of our

average bias would result in a bias that could be from 2% to 28% of the true value of �.  When

T=30, the average bias becomes significantly smaller, although the LSDV does not become more

efficient.  Based on the results in Table 1, one could expect an LSDV estimate with a bias from

3% to 20% of the true value of the coefficient even when T=30.  It is worthwhile to note,

however, that errors of this magnitude would still result in an estimate with the correct sign, and

that the bias of the estimates of � are relatively small.  However, as discussed below, since easy

to implement alternative techniques allow the estimation of these coefficients with greater

precision, it is difficult to justify using LSDV, even when T>20.

Since in many circumstances, the LSDV estimator is not an appropriate choice, we explore

the other estimators described above.  Before making an overall comparison, however, we first

narrow our selection by comparing various GMM procedures.  Arellano and Bond (1991) discuss

two variants of a GMM procedure that use all lagged values as instruments.  When T gets large,

however, computational requirements increase substantially.  Therefore, we compare various

"restricted GMM" estimators in which the number of lagged values used as instruments is reduced

to 2, 3, 5, and 8 instruments.   These estimates were computed using 1000 draws for T=10 and4

T=20 and 100 draws for T=30; the cases where T=5 were omitted since the maximum number of

instruments available in those cases is three.  (Note that the Anderson-Hsiao estimator that uses

only one lag of the dependent variable as an instrument can be thought of as a "fully restricted"

GMM2 estimator.)  Table 2 presents the results of these comparisons.
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Table 2:  GMM Bias Estimates for �
% =1  #=0.5  % =2� �

GMM1 GMM2

T N  � 2 Inst
(SE)

3 Inst
(SE)

5 Inst
(SE)

8 Inst
(SE) 

2 Inst
(SE)

3 Inst
(SE) 

5 Inst
(SE)

8 Inst
(SE)

10 20 0.2 -0.041
(0.064)

-0.045
(0.061)

-0.050
(0.057)

-0.052
(0.056)

-0.043
(0.081)

-0.053
(0.087)

-0.077
(0.102)

-0.091
(0.112)

0.8 -0.222
(0.139)

-0.235
(0.131)

-0.241
(0.111)

-0.239
(0.099)

-0.249
(0.168)

-0.281
(0.174)

-0.336
(0.198)

-0.377
(0.220)

100 0.2 -0.010
(0.032)

-0.011
(0.031)

-0.012
(0.029)

-0.012
(0.029)

-0.009
(0.036)

-0.010
(0.034)

-0.011
(0.032)

-0.012
(0.031)

0.8 -0.056
(0.063)

-0.065
(0.060)

-0.079
(0.057)

-0.086
(0.055)

-0.058
(0.072)

-0.069
(0.069)

-0.081
(0.063)

-0.087
(0.059)

20 20 0.2 -0.032
(0.042)

-0.033
(0.039)

-0.037
(0.037)

-0.037
(0.035)

-0.084
(0.110)

-0.146
(0.141)

-0.263
(0.196)

-0.268
(2.703)

0.8 -0.137
(0.077)

-0.140
(0.071)

-0.147
(0.064)

-0.137
(0.051)

-0.424
(0.225)

-0.576
(0.274)

-0.840
(0.487)

-0.986
(1.756)

100 0.2 -0.005
(0.019)

-0.006
(0.018)

-0.007
(0.017)

-0.008
(0.016)

-0.005
(0.020)

-0.004
(0.020)

-0.008
(0.022)

-0.015
(0.027)

0.8 -0.028
(0.037)

-0.031
(0.034)

-0.037
(0.032)

-0.045
(0.031)

-0.028
(0.037)

-0.029
(0.035)

-0.043
(0.040)

-0.069
(0.049)

30 20 0.2 -0.025
(0.036)

-0.025
(0.035)

-0.027
(0.034)

-0.027
(0.032)

-0.176
(0.143)

-0.292
(0.184)

-0.410
(0.323)

-0.093
(0.333)

0.8 -0.113
(0.062)

-0.112
(0.052)

-0.112
(0.049)

-0.101
(0.042)

-0.825
(0.293)

-1.034
(0.306)

-1.139
(0.508)

-0.733
(1.504)

100 0.2 -0.004
 (0.015)

-0.005
 (0.014)

-0.006
 (0.014)

-0.007
 (0.013)

-0.004
 (0.017)

-0.006
 (0.019)

-0.016
 (0.023)

-0.043
 (0.029)

0.8 -0.026
 (0.028)

-0.027
 (0.026)

-0.028
 (0.024)

-0.034
 (0.022)

-0.030
 (0.033)

-0.036
 (0.034)

-0.080
 (0.044)

-0.187
 (0.073)

Note: 1000 draws were used for T=10 and T=20, N=20.  For T=20, N=100 and T=30, it was only
feasible to do 100 draws.

 

The results in Table 2 indicate that the one-step GMM1 procedure outperforms the two-

step GMM2 estimator both in terms of producing a smaller bias and a lower standard deviation of



     These results are consistent with the findings of Arellano and Bond (1991) who find that in     5

two of the three parameterizations they discuss, GMM1 outperforms GMM2 in both of these
dimensions.  Kiviet (1995) also finds that GMM1 is more efficient than GMM2, but reports more
cases in which GMM2 produces a slightly lower bias.

     Because the non-GMM methods are substantially less computationally intensive, we were6

able to confirm the non-GMM results with 10,000 draws.  These results, as well as other
diagnositcs such as RMSEs are available upon request.
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the estimates.   Interestingly, increasing the number of instruments used appears to create a5

tradeoff between the average bias and the efficiency of the estimator.  Using a GMM1 estimator

with only two instruments produces a smaller expected bias in most cases, but using the full set of

instruments almost always increases the efficiency of the estimates.

In our final experiment, we make an overall comparison between OLS, LSDV, AH, GMM

and LSDVC.  Based on the GMM comparisons reported above, we focus only on two restricted

GMM estimators--GMM12 is GMM1 using only 2 lagged values as instruments and GMM15 is

GMM1 using only 5 lagged values as instruments.  Results for a subset of parameter values are

presented in Tables 3 and 4.  Results for the full parameter set are qualitatively the same and are

presented in the appendix.   Table 3 shows the average bias and standard deviations of our6

estimates of �, while Table 4 shows these results for our estimates of �.  The bias of the

estimates of � shown in Table 4 are relatively small for all techniques except OLS, and, thus,

cannot be used to distinguish between estimators.  As a result, we will focus our attention on

estimates of �.

The results in Table 3 show that, as to be expected, all the estimators (with the exception

of OLS) generally perform better with a larger N.  However, the GMM estimators seem to show

the largest improvement (largest percent reduction in average bias) as N increases, while the

uncorrected LSDV estimator shows improvement in only a few cases.  Even with the relatively

large improvement in the GMM estimates, GMM methods do not produce a superior estimate in

terms of either average bias or efficiency, and the relative performance of these estimators does

not generally change as N gets larger.
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Table 3:  Bias Estimates for � Using Various Estimators
% =1  #=0.5  % =2� �

N T � OLS
(SE)

LSDV
(SE)

LSDVc
(SE)

AH
(SE)

GMM12
(SE)

GMM15
(SE)

5 20 0.2 0.207
(0.092)

-0.148
(0.089)

0.001
(0.110)

0.017
(0.194)

-0.062
(0.121)

---

0.8 0.033
(0.062)

-0.507
(0.130)

-0.190
(0.161)

0.061
(1.862)

-0.394
(0.284)

---

100 0.2 0.225
(0.039)

-0.147
(0.040)

-0.006
(0.046)

0.001
(0.077)

-0.014
(0.057)

---

0.8 0.049
(0.026)

-0.504
(0.058)

-0.131
(0.080)

0.007
(0.202)

-0.126
(0.167)

---

10 20 0.2 0.210
(0.072)

-0.060
(0.049)

0.000
(0.052)

0.005
(0.098)

-0.041
(0.064)

-0.050
(0.057)

0.8 0.038
(0.042)

-0.238
(0.072)

-0.049
(0.081)

0.013
(0.218)

-0.222
(0.139)

-0.241
(0.111)

100 0.2 0.225
(0.032)

-0.059
(0.023)

0.000
(0.024)

0.000
(0.043)

-0.010
(0.032)

-0.012
(0.029)

0.8 0.049
(0.017)

-0.232
(0.032)

-0.032
(0.041)

0.000
(0.088)

-0.056
(0.063)

-0.079
(0.057)

20 20 0.2 0.213
(0.061)

-0.028
(0.033)

-0.001
(0.034)

0.001
(0.063)

-0.032
(0.042)

-0.037
(0.037)

0.8 0.041
(0.030)

-0.108
(0.040)

-0.007
(0.046)

0.003
(0.118)

-0.137
(0.077)

-0.147
(0.064)

100 0.2 0.225
(0.028)

-0.027
(0.015)

0.000
(0.015)

0.001
(0.027)

-0.005
(0.019)

-0.007
(0.017)

0.8 0.049
(0.012)

-0.104
(0.019)

-0.005
(0.023)

0.001
(0.050)

-0.028
(0.037)

-0.037
(0.032)

30 20 0.2 0.214
(0.057)

-0.018
(0.026)

0.000
(0.027)

-0.001
(0.049)

-0.025
(0.036)

-0.027
(0.034)

0.8 0.043
(0.025)

-0.068
(0.030)

-0.001
(0.034)

0.003
(0.088)

-0.113
(0.062)

-0.112
(0.049)

100 0.2 0.226
(0.026)

-0.017
(0.012)

0.000
(0.012)

0.000
(0.021)

-0.004
 (0.015)

-0.006
 (0.014)

0.8 0.049
(0.011)

-0.066
(0.014)

-0.001
(0.015)

0.000
(0.037)

-0.026
 (0.028)

-0.028
 (0.024)
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All the estimators, except OLS, also improve as T gets larger.  Thus, for a sufficiently

large N and T, the differences in efficiency and bias of the different techniques becomes quite

small.  Even so, the results in Table 3 do highlight two techniques that consistently outperform the

others--LSDVC and AH.  The AH estimator produces the lowest average bias and the LSDVC

produces the most efficient estimates.  While choice of either technique could be justified on the

basis of our results, given the large size of the standard deviation of the AH estimates for T ≤ 10,

a "bad draw" would result in an estimate very far from the true value, perhaps even of the wrong

sign.  Therefore, a reasonable strategy to follow would be to use the LSDVC method for small

panels, but for panels with a larger time dimension, use the AH estimator.  In our opinion, when

T is large, the increased efficiency of AH, in addition to its computational simplicity for a long

panel, tip the scales in its favor.
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Table 4:  Estimates for � Bias Using Various Estimators
% =1  #=0.5  % =2� �

N T � OLS
(SE)

LSDV
(SE)

LSDVc
(SE)

AH
(SE)

GMM12
(SE)

GMM15
(SE)

5 20 0.8 -0.086
(0.104)

0.008
(0.110)

0.005
(0.112)

0.004
(0.132)

-0.017
(0.166)

---

0.2 -0.001
(0.133)

-0.024
(0.171)

-0.007
(0.183)

0.003
(0.381)

-0.087
(0.265)

---

100 0.8 -0.098
(0.044)

0.006
(0.045)

0.001
(0.045)

0.001
(0.054)

-0.005
(0.075)

---

0.2 -0.005
(0.055)

-0.027
(0.070)

-0.005
(0.076)

0.002
(0.094)

-0.034
(0.127)

---

10 20 0.8 -0.091
(0.071)

0.016
(0.060)

0.001
(0.061)

0.000
(0.078)

0.002
(0.080)

0.007
(0.071)

0.2 -0.005
(0.085)

0.003
(0.101)

0.003
(0.102)

-0.003
(0.137)

-0.029
(0.140)

-0.023
(0.122)

100 0.8 -0.099
(0.031)

0.015
(0.026)

0.001
(0.027)

0.000
(0.033)

0.000
(0.035)

0.001
(0.033)

0.2 -0.007
(0.037)

0.002
(0.045)

0.002
(0.045)

0.001
(0.057)

-0.010
(0.060)

-0.011
(0.057)

20 20 0.8 -0.094
(0.051)

0.010
(0.038)

0.001
(0.038)

0.000
(0.051)

0.003
(0.049)

0.009
(0.043)

0.2 -0.006
(0.057)

0.008
(0.063)

0.003
(0.062)

-0.001
(0.089)

-0.008
(0.082)

-0.002
(0.073)

100 0.8 -0.100
(0.023)

0.009
(0.017)

0.000
(0.017)

-0.001
(0.022)

0.000
(0.025)

0.001
(0.022)

0.2 -0.008
(0.026)

0.006
(0.028)

0.000
(0.028)

-0.002
(0.039)

-0.002
(0.042)

-0.002
(0.037)

30 20 0.8 -0.095
(0.043)

0.007
(0.030)

0.000
(0.030)

-0.001
(0.040)

-0.003
(0.038)

0.003
(0.033)

0.2 -0.007
(0.045)

0.006
(0.048)

0.001
(0.047)

-0.002
(0.070)

-0.013
(0.064)

-0.005
(0.054)

100 0.8 -0.100
(0.019)

0.006
(0.014)

0.000
(0.014)

-0.001
(0.018)

0.000
 (0.019)

0.001
 (0.016)

0.2 -0.008
(0.020)

0.006
(0.022)

0.000
(0.022)

-0.001
(0.032)

-0.003
 (0.032)

-0.001
 (0.027)

5 An Application:  Savings and Growth

Carroll and Weil (1994) use macroeconomic panel data to investigate the long-run

relationship between savings rates and growth of per capita income.  Using the same data and



     Carroll and Weil also use an alternative specification with time-specific effects that generates7

the same qualitative results.  

     David Weil provided the data for us.  See the Data Appendix of Carroll and Weil for a more8

thorough description of the data.
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                                   (13)

                                   (14)

specification, we apply the recommendations above to reestimate these relationships and

demonstrate the importance of technique selection.  We find that in this relatively short panel,

usage of the corrected LSDV estimator can make a difference in obtaining significant coefficient

estimates for all variables.

Carroll and Weil estimate two equations to test for Granger causality between savings and

growth:

The error terms in the two equations are assumed to be independently distributed and each

equation is estimated separately.   Thus, in the estimation of the growth equation, lagged savings7

is equivalent to x in equation (2), and in the estimation of the savings equation, lagged growtht 

plays a similar role.  

They construct annual measures of the savings and growth rates from the Penn World

Tables, Mark 5.  Using only countries with a data quality grade of C- or better and excluding

communist countries, countries whose economies are dominated by oil production, and countries

with populations less than one million, leaves a panel of 64 countries over 39 years (1950 to

1988).  However, to avoid identifying business cycle effects, five-year averages are taken,

reducing the time dimension of the panel to six.   Not all countries have data for all six time8

periods--there are a total of 353 observations.  

Table 5 presents initial results from Carroll and Weil from two estimators--the LSDV and
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Table 5:  Initial Estimates

Dependent   
Variable 

gt st

Independent
Variable

LSDV Alternative AH LSDV Alternative AH

gt-1 -0.059
(0.068)

-0.071
(0.128)

0.318*
(0.080)

0.459*
(0.184)

st-1 -.117*
(0.039)

-0.058
(0.068)

0.482*
(0.046)

-1.08*
(0.528)

*Significant at the 5% level.

an alternative Anderson-Hsiao estimator that uses the twice lagged difference as an instrument for

the lagged difference.  As mentioned previously, we did not include this alternative Anderson-

Hsiao estimator in our simulations because the lagged level has been shown to provide more

efficient estimates.  Table 5 presents their initial results.

Results from the LSDV estimation are potentially quite interesting.  Lagged growth

positively Granger causes savings, but lagged savings negatively Granger causes growth. 

However, when the instrumental variables technique is used to correct for biased coefficients, the

relationship between lagged savings and growth becomes insignificant.  Since the coefficients of

particular interest in these estimations are not the coefficients on the lagged dependent variable, it

is disappointing that in order to correct for the bias in �, the alternative Anderson-Hsiao estimator

renders � insignificant.

The simulations discussed above suggest that the corrected LSDV estimator may

provide more efficient estimates and thus may allow us to retain significance of the coefficients of

interest.  In applying this technique, however, two practical implementation issues arise.  First, the

corrected LSDV technique cannot be applied to an unbalanced panel.  Thus, one must make a

choice between selecting a technique that increases efficiency but may not be able to use all

available data and one that uses all available data but is less efficient.  Of course, the sensible

choice should depend on the severity of the necessary reduction in sample.  If balancing a panel

requires substantial reduction in coverage, the corrected LSDV technique will not be the optimal

choice.  This efficiency tradeoff is likely to be an issue for macroeconomists using large panels of
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countries like the Penn World Tables because it is more likely that low income countries would

have more missing values and, thus, a balanced panel may be less representative.  In this

particular case, the reduction in sample is notable but moderate.  When balancing the panel, we

lose 41 observations spread across 12 countries.  

The second issue related to the estimation of the corrected LSDV estimator is that there is

not an analytical form for the standard errors.  Thus, it is necessary to use a bootstrap technique

to estimate standard errors in practice.  Since bootstrapping is an iterative procedure, this adds

substantially to computational time, reinforcing the recommendation above for the Anderson-Hsiao

estimator when the time dimension of the panel is large.

Results for the balanced panel estimation are in Table 6.

Table 6:  Balanced Panel Estimation

Dependent Variable

LSDV AH LSDVC LSDV AH LSDVC

Independent
Variable gt gt gt st st st

gt-1  .019
(.081)

 .324*
(.165)

 .286*
(.051)

 .219*
(.096)

 .283
(.258)

 .202*
(.083)

st-1 -.173*
(.055)

-.266*
(.091)

-.179*
(.051)

 .435*
(.065)

-.229
(.733)

 .568*
(.027)

*Significant at the 5% level.

As predicted by our simulation results, the corrected LSDV estimator has smaller standard errors,

and thus, gives a higher number of significant coefficients.  It is interesting to note that, in the

savings regression, the Anderson-Hsiao estimator seems to apply a cure that is worse than the

disease.  The attempt to correct for the � bias results in both coefficients becoming insignificant. 

The relatively small correction to the LSDV estimates indicates that the estimated bias in this case

was not particularly severe. In addition, the difference in the magnitudes of the standard errors for

these two methods is fairly remarkable.

Finally, in Table 7 we present results for the AH estimator using an unbalanced panel.  As

can be seen in this table, the additional data does increase the number of significant coefficients

obtained, however, by this measure, the corrected LSDV estimator is still superior.
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Table 7:  Unbalanced Panel Estimates
AH Estimator

Dependent Variable

Independent
Variable gt st

gt-1  .245
(.130)

 .268
(.137)

st-1 -.159
(.059) 

-.014
(.487)

*Significant at the 5% level.

6  Conclusion

The characteristics of the data, in particular the size of the panel, influence the choice of

an optimal estimator for panel data models.  For a panel with a long time dimension, we find that

the computationally simple Anderson-Hsiao estimator performs well.  However, when the time

dimension of the panel is less than or equal to 10 observations, and the panel does not suffer too

severely from missing data, due to the inefficiency of the Anderson-Hsiao estimates, use of a

corrected LSDV estimator is preferred.  In an empirical example, we find that the proper choice

of estimator can be critical.
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Appendix:  Estimation and Computation Issues

1. GMM Estimation

In calculating GMM1 and GMM2, it is helpful to note that, when T=5,

(15)

and 

(16)

2. LSDV Correction

Kiviet (1995) derives the bias of the LSDV estimator:

(17)
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where

(18)

(19)

(20)

i  is a (T-1) × 1 vector of ones, and W is an N(T-1) × K matrix of independent variables constructedT-1

as follows.  Define y  and X  as the independent variables for the ith individual.  Then,i i
(-1)

(21)

and y  and X are N(T-1)×1 and N(T-1)×(K-1) matrices such that(-1)

(22)
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(23)

(24)

then W=[y   X].  W�  is the expected value of W.  As mentioned in the text, in order to calculate the(-1)

LSDV correction, one first needs to obtain a preliminary estimate of the coefficients in order to

estimate %  and W� .  Any consistent estimator can be used; we used AH.�
2

While the LSDV correction can be calculated directly from the formula shown above, when

N or T is large, the matrices involved in the calculations can become quite large and implementation

of the LSDV correction can require a good deal of computing resources.  However, the computational

burden can be reduced by noting two relationships.  First, calculation and inversion of the large A

matrix can be avoided by recognizing that 

where � is a vector of errors from the preliminary regression and W* is a group-demeaned W.

Second, since A is idempotent,


