
1

Distributed dynamic scheduling for end-to-end rate
guarantees in wireless ad hoc networks

Theodoros Salonidis† and Leandros Tassiulas†,‡

† Department of Electrical and Computer Engineering and Institute for Systems Research
A.V. Williams Bldg. University of Maryland at College Park, MD 20742, USA

‡ Department of Computer and Communication Engineering, University of Thessaly
Argonafton and Filellinon 38221 Volos, Greece

thsalon@glue.umd.edu, leandros@isr.umd.edu

Abstract—
We present a novel framework for the provision of determinis-

tic end-to-end bandwidth guarantees in wireless ad hoc networks.
Guided by a set of local feasibility conditions, multi-hop sessions
are dynamically offered allocations, further translated to link de-
mands. Using a distributed TDMA protocol, nodes adapt to the
demand changes on their adjacent links by local, conflict-free slot
reassignments. As soon as the changes stabilize, the nodes must in-
crementally converge to a TDMA schedule that realizes the global
link (and session) demand allocation.

We first identify an inherent trade-off between the degree of
topology control and fraction of feasible allocations that can be
captured by the local conditions. We show that tree topologies can
be maximally utilized in this respect and that a converging dis-
tributed link scheduling algorithm exists in this case.

Decoupling end-to-end bandwidth allocation from link schedul-
ing allows support of various end-to-end QoS objectives. Focusing
on Available Bit Rate (ABR) service, we design an asynchronous
distributed algorithm for sharing bandwidth to the sessions in a
maxmin fair (MMF) manner.

Finally, we present the implementation of this framework over
Bluetooth, an existing wireless technology that enables the forma-
tion of ad hoc networks. This implementation is free of the usual
restrictive assumptions of previous TDMA approaches: it does not
require any a-priori knowledge on the number of nodes in the net-
work nor even network-wide slot synchronization.

I. INTRODUCTION

Ad hoc networks can be established on the fly and form an
all-wireless infrastructure without the need of any centralized
administration. Due to the multi-access nature of the wireless
medium, the perceived QoS in ad hoc networks heavily de-
pends on the underlying medium access (MAC) protocol. Such
a protocol must use local information and coordinate transmis-
sions so that bandwidth is shared among users in a controlled
fashion. Satisfying both requirements is a well-known problem
with no satisfactory solutions to date. Random access methods,
such as the one used in the 802.11 standard, use local infor-
mation at the expense of unpredictable transmission conflicts
and lack of strict allocation guarantees. On the other hand,
scheduled access methods such as Time Division Multiple Ac-
cess (TDMA), achieve deterministic allocations via perfect co-

ordination of transmissions but typically need global network
knowledge to reach their goal.

According to TDMA, bandwidth can be allocated to the net-
work links using a schedule of period Tsystem slots. During
every slot, several links are activated for transmission such that
no conflicts occur at the intended receivers. The number of
conflict-free slots each link receives within a system period de-
termines its allocated bandwidth.

TDMA has been used for QoS routing in mobile ad hoc net-
works [1] [2][3][4]. Chen and Nahrstedt [1] and Gerla and
Tsai [2] focus on mobility issues but assume that conflict-free
slots have already been pre-allocated to the links in an arbitrary
manner. Admission control for multi-hop sessions is performed
based on these static allocations. Better utilization of network
resources can be achieved if the higher layer needs drive the
link layer to allocate bandwidth accordingly. Zhu and Corson
[4] and Lin [3], reserve slots for incoming sessions on links on
an as-needed basis. Finding the maximum available bandwidth
(number of conflict-free slots) on a path subject to the reserved
slot positions of the existing sessions is an NP-complete prob-
lem. Distributed heuristic methods are proposed for admission
control and slot allocation. The result is network underutiliza-
tion in a different form–several blocked sessions would have
been accepted had the arrangement of slots in the TDMA sched-
ule been different.

Network utilization can be increased by allowing dynamic
recomputation of the TDMA schedule upon session arrivals.
An incoming session is admitted if the additional load it places
on the links of its path is such that the induced demand allo-
cation on the network links is realizable by a TDMA sched-
ule. Existing results for the static version of the link scheduling
problem are not encouraging even if global network topology
information is available. According to the seminal works in [5],
[6], determining feasibility of a set of link rates in an ad hoc net-
work of arbitrary topology is an NP-complete problem. Several
centralized [7][8], semi-centralized [9], or distributed [10][11]
[12] heuristics for TDMA link scheduling have been proposed,
but they either do not possess well-defined performance guaran-
tees or cannot be applied easily to dynamic operational settings.

In this paper, we introduce a framework and implementation

2

for transparent integration of bandwidth allocation to multi-hop
sessions with distributed dynamic TDMA link scheduling. The
core idea is that we can achieve guaranteed performance by
controlling the network topology or the set of supported allo-
cations using a set of local conditions specific to the wireless
setting. Guided by the local conditions, the end-to-end mech-
anism allocates feasible rates to multi-hop sessions sharing the
network. These rates are translated to link demands to be real-
ized by a TDMA schedule. The nodes adjust the rates on their
adjacent links by local slot reassignments until the desired allo-
cation is reached.

Using this framework, we present a distributed dynamic
scheduling algorithm that realizes all feasible link demand al-
locations for tree topologies. This algorithm can start from
any initial TDMA schedule and incrementally converge in a
finite number of steps to a new TDMA schedule realizing a
desired demand allocation. Trees manifest in various ad hoc
networking applications. Existing topology construction algo-
rithms for Bluetooth ad hoc networks [13] [14][15] generate
tree topologies. According to the sensor network communi-
cation paradigm, sensors report data back to a single source
over a tree structure [16], [17]. Tree topologies are also used
for energy-efficient broadcasting [18]. Several non-tree ad hoc
networks use a certain subset of nodes as a tree backbone for
facilitating administrative purposes such as routing [19]. These
structures can be leveraged and combined with our algorithm to
provide bandwidth guarantees over the backbone and best effort
to the edges of the ad hoc network.

The link scheduling algorithm focuses on converging to a
TDMA schedule satisfying the link demands and is agnostic
of the specifics of the higher layer process that allocates band-
width to the end-to-end sessions. This allows definition and
realization of more generalized service models than support of
session rates known in advance. To this end, we consider provi-
sion of end-to-end Available Bit Rate (ABR) service and intro-
duce an asynchronous distributed algorithm for sharing band-
width to sessions in a maxmin fair manner. This algorithm bor-
rows from rate-based flow control approaches currently used in
wireline ATM networks. Combined with the identified local
feasibility conditions, it can be applied to any topology form.

Another important issue is that TDMA for ad hoc networks is
hard to implement in practice. Most approaches rely on global
slot synchronization and require knowledge of the number of
nodes in the network to split the periodic TDMA frame in a
control and data portion. While such assumptions may hold
for special cases (e.g. custom designs for military applica-
tions), they impose a major restriction for the deployment of
ad hoc networks in general settings. In our approach each link
uses a local time slot reference for communications provided
by the hardware clock of one of the node endpoints. A dis-
tributed coordination mechanism is used to maintain the net-
work TDMA schedule free of transmission conflicts while the
nodes re-assign slots to reach the desired allocation.

The rest of the paper is structured as follows: Section II
presents the asynchronous TDMA architecture used by the link
scheduling scheme. Section III formulates the distributed dy-
namic link scheduling problem and elaborates on the issues
involved in solving it. Section IV presents an optimal cen-

tralized asynchronous TDMA algorithm for trees. This algo-
rithm forms the basis of a distributed dynamic algorithm pre-
sented in section V. Section VI elaborates on the integration of
link scheduling with end-to-end bandwidth allocation. Section
VII implements the bandwidth allocation framework over Blue-
tooth. Section VIII surveys related work. Section IX concludes
the paper.

II. ASYNCHRONOUS TDMA

A. Access Architecture

The wireless ad hoc network is represented as a directed
graph G(N, E). Each node has a unique identity (e.g. MAC
address). A directed edge (u, v) ∈ E signifies that nodes u and
v are within range and have established a wireless link where
u is assigned the role of master and v the role of slave. A link
is a unique communication channel derived from the identity
of the master. A channel can be implemented as a separate
frequency or spread spectrum code. We assume that different
channels provide the necessary orthogonality to tolerate simul-
taneous co-located transmissions. In other words, transmissions
on a channel are correctly received by a node listening on that
channel despite any in-range transmissions that may be hap-
pening at different channels. We also assume that there are no
losses due to channel errors.

The system is slotted but not globally slot-synchronized. For
each link, the master endpoint provides a local time slot refer-
ence for communication. Each slot supports full-duplex com-
munication initiated by the master: During the first part of the
slot the master polls a slave; during the second part a slave re-
sponds if polled by the master.

The access problem arises because each node has a single
radio transceiver and can communicate (transmit or receive) to
at most one link at a time. Thus, nodes need to coordinate their
presence on links in mutual time intervals. Based on its own
hardware clock, each node i divides time in fixed-size slots,
each equal to the duration of a full-duplex communication slot.
Transmissions on adjacent links are coordinated using a local
link schedule Si of period Tsystem slots. The local schedule
determines communication action for the duration of a slot: the
node can either be active on a single link (polling if master or
listening for a poll if slave) or remain idle.

Due to the phase difference between the node hardware
clocks the local schedules of different nodes are not slot-
aligned. For conflict-free communication on τ l consecutive
slots on link l, the master must allocate τl slots in its local
schedule for polling while the slave must allocate at least τ l +1
time-overlapping slots for tuning to the channel and aligning to
the time reference of this master.

The local schedules form the network asynchronous TDMA
schedule. A link slot allocation τ = [τl] realized by the net-
work TDMA schedule is the number of slots every link l trans-
mits conflict-free during Tsystem slots and equals the number
of slots allocated to the local schedule of the master endpoint.
Figure 1 illustrates an example of an ad hoc network using a
system period Tsystem = 12 slots. The slot allocation realized
by the asynchronous TDMA schedule is τ = (τ1, τ2, τ3, τ4) =
(3, 3, 3, 4) slots.

3

- - 1 1 1 - - - - 2 2 2 - - - 1

3 3 - - - 3 3 3 2 2 2 2 3 3 - -

- - - - - - - - 4 4 4 4 - - - -

3 1 1 1 1 3 3 4 4 4 4 4 3 1 1 1
0 101 2 3 4 5 6 7 8 9 11 0 1

0 101 2 3 4 5 6 7 8 9 11 0 1

0 101 2 3 4 5 6 7 8 9 11 0 1

0 101 2 3 4 5 6 7 8 9 11 0 1

1110

10 11

10 11

10 11

SC

SD

SA

SB

........

....

........

....

Tsystem=12

B D1

C

A

2

4

3

Fig. 1. (a) Network topology: Arrows denote master-slave relationships.
Nodes A and D act as masters on all their adjacent links, B is slave on links
1 and 4 and master on link 3 while node C acts as slave on all its links.
Links 2 and 4 can transmit simultaneously without conflict on different chan-
nels. (b) Asynchronous TDMA schedule of period Tsystem = 12 slots:
Every slot supports full-duplex communication. Slots where slaves switch
channel and time reference are marked in red. The realized slot allocation is
τ = (τ1, τ2, τ3, τ4) = (3, 3, 3, 4).

III. THE DYNAMIC LINK SCHEDULING PROBLEM

At any point in time, the network operates using a conflict-
free TDMA schedule that realizes a link slot allocation. In ad-
dition, every link is always characterized by a slot demand. In
general, the current allocation and demand of a link may be
different.

Network dynamics are viewed by the link layer as a higher-
layer process that changes the link demands at asynchronous
time instants. In section VI, we will instantiate this process to
mechanisms that allocate bandwidth to multi-hop sessions. Mo-
bility can be captured by viewing a link failure as zero demand
and a link establishment as a transition from zero to a positive
demand.

We assume that the higher-layer process alternates between
two states: an active state where the link demands change and a
quiescent state where no changes occur. The end of each active
state corresponds to a link demand allocation to be realized by
a TDMA schedule. The challenge is that nodes must reach such
a schedule starting from the current TDMA schedule and using
only local information.

The model of alternating states is necessary for the defini-
tion of convergence. The physical interpretation is that net-
work topology and traffic dynamics must remain stable for a
sufficient amount of time to allow realization of the desired al-
location. However, the nodes are not aware of which of the
two states the network is currently in. They can only detect de-
mand changes on their adjacent links and must reach the desired
TDMA schedule and allocation via local slot reassignments.

A. Local feasibility conditions

In order for convergence to occur, the higher layer process
must provide the link layer with demand allocations that are
feasible. A link demand allocation τ = (τ1, ..., τl, ..., τ|E|)
is feasible if there exists a TDMA schedule that can allocate
τl conflict-free slots to every link l without exceeding Tsystem

slots. In its general form, the problem of feasibility determi-
nation in multi-channel systems is NP-complete even if global

slot synchronization and topology knowledge are available [6].
Since we consider distributed bandwidth allocation mecha-
nisms, we are interested in identifying certain instances where
feasibility can be characterized by a set of local conditions.

Let us first assume that global slot synchronization is sup-
ported. In this case, local conditions would require the demand
sum of the links adjacent to each node not to exceed T system

slots. Due to the link scheduling interdependence, these local
conditions cannot alone guarantee feasibility (see Fig. 2 for a
counter-example). The additional non-local conditions require
that, for every odd node subset Q (|Q| > 1) in the topology
graph, the sum of the demands of all links adjacent to the nodes
in Q must not exceed �(|Q| − 1)/2 · Tsystem� slots.

B1

C

A

2 3

Fig. 2. Without loss of generality, assume that all nodes are slot-synchronized
and Tsystem is even. There is no schedule that can allocate Tsystem/2
conflict-free slots per link, even if the local conditions τ1 + τ2 ≤ Tsystem,
τ1 + τ3 ≤ Tsystem and τ2 + τ3 ≤ Tsystem for nodes A, B, C, respectively
allow this allocation. The non-local condition τ1 + τ2 + τ3 ≤ Tsystem is also
needed.

There are two ways to guarantee feasibility using only local
conditions: Restrict the network topology or underutilize the
network.

If the network topology is bipartite, the entire set of feasible
allocations can be captured only by local conditions. Topology
control is inherent in multi-channel systems due to the need
for assigning channels to the links before communication takes
place. Bipartite topologies can be enforced using local infor-
mation if every node is required to act only as master or slave
to all its adjacent links, and the channel assigned to each link is
derived from the (unique) id of the master node endpoint.

Alternatively, if no mechanism for topology control exists,
it is possible to ensure feasibility by restricting the maximum
number of slots each node provides to its adjacent links. For
slot-synchronized multi-channel systems, feasibility is guaran-
teed by requiring the sum of link demands on every node be less
than �2/3 · Tsystem� slots at any time [20], [21]. Local condi-
tions of this form are sufficient: they guarantee feasibility but
only capture a fraction of the entire set of feasible allocations.
This essentially means that the network is underutilized. We
would like to note that the terms ”underutilization” and ”feasi-
bility” are with respect to provision of guaranteed rates in the
network. Thus, the maximum number of slots provided by the
local feasibility conditions are for QoS traffic. The remaining
number of slots in the nodes’ local schedules can always be
used for other purposes, such as control or best-effort traffic.

In an asynchronous TDMA system such as the one consid-
ered here, the region of feasible rates is further restricted. Due
to the additional slots needed in the slaves’ local schedules, the
minimum period Lmin(τ) realizing a demand allocation τ is
greater than the minimum period Lsynch

min (τ) required by a per-
fectly synchronized system. Since feasibility is characterized
by comparing the minimum period realizing τ to the system

4

period Tsystem, certain allocations feasible by a synchronized
system will not be feasible when asynchronicity is present. In
[22] it has been shown that, for any given topology and demand
allocation τ , Lmin(τ) ≤ 2 · Lsynch

min (τ) [22]. Consequently, a
set of sufficient local feasibility conditions is for nodes to offer
half the slots they would offer in the corresponding synchro-
nized system: For bipartite topologies, feasibility is guaranteed
if every node offers �1/2 · Tsystem� slots while for arbitrary
topologies �1/3·Tsystem� slots. These conditions imply further
under-utilization–1/2 and 2/3 of the total capacity of bipartite
and arbitrary topologies, respectively cannot be used for QoS
traffic.

A lower bound on the minimum period Lmin(τ) of an asyn-
chronous TDMA schedule realizing a demand allocation τ =
(τ1, ..., τl, ..., τ|E|) is given by:

LB(τ) = max
u∈N

∑
l∈L(u)

(τl + J
(u)
l) (1)

where L(u) is the set of links adjacent to node u and,

J
(u)
l =

{
1 if u is slave on link l
0 otherwise

(2)

The term τl in the sum of the RHS of (1) exists because each
node can communicate to only a single link at every slot of its
local schedule. The term J

(u)
l is due to the need for (at least) an

additional slot for time-slot reference alignment on every link a
node acts as slave. The lower bound on the minimum period is
not tight, but can be used to identify instances where the entire
set of feasible allocations can be captured by a set of local
conditions. This is summarized by the following proposition:

Proposition 1: Consider an asynchronous TDMA ad hoc
network G(N, E). If for every demand slot allocation τ ,
Lmin(τ) = LB(τ), then, all feasible allocations for G(N, E)
can be captured by the following set of local conditions:∑

l∈L(u)

τl ≤ Tsystem −
∑

l∈L(u)

J
(u)
l , ∀u ∈ N (3)

Proof: We will use contradiction. Let τ ∗ be a demand al-
location which is allowed by the local conditions of eq. (3)
but is not feasible. Since τ ∗ is not feasible, the minimum pe-
riod for realizing it must be strictly greater than Tsystem slots:
Lmin(τ∗) > Tsystem. The demand allocation τ ∗ obeys the lo-
cal conditions of eq. (3):

∑
l∈L(u)

(τ∗
l + J

(u)
l) ≤ Tsystem, ∀u ∈ N ⇒

max
u∈N

∑
l∈L(u)

(τ∗
l + J

(u)
l) ≤ Tsystem ⇒

LB(τ∗) ≤ Tsystem

Since Lmin(τ) = LB(τ), ∀τ ∈ G(N, E), we reach the
conclusion that Lmin(τ∗) ≤ Tsystem, i.e. τ ∗ is feasible. This
contradicts our initial hypothesis.

Proposition 1 states that classes of topologies or specific
topologies for which Lmin(τ) = LB(τ) for all τ , can be fully

utilized by distributed algorithms. In the next section we show
trees are a topology class that satisfies this property.

IV. OPTIMAL LINK SCHEDULING FOR TREE NETWORKS

Let the ad hoc network topology G(N, E) be a tree. Without
loss of generality, assume that an arbitrary node in the tree is
designated as root. The root provides a reference for parent-
child relationships between the node endpoints of every link in
the network. The parent-child relationship between the node
endpoints is independent of their master-slave relationship. We
define the level of a node to be its hop distance from the root
(the root has a level equal to zero). The level of a link equals
the level of its child node endpoint.

Let τ be a demand allocation. Given τ , every node is
equipped with a local schedule of period Tsystem = LB(τ)
slots (eq. (1)). The slot positions in each local schedule are in-
dexed from 0 to Tsystem − 1. A set of consecutively assigned
slots to link l in the local periodic schedule Su of node u, forms
a (circular) window W

(u)
l = [s(u)

l , e
(u)
l]:

[s(u)
l , e

(u)
l] =

{
s
(u)
l , ..., e

(u)
l if s

(u)
l ≤ e

(u)
l

s
(u)
l , .., 0, ..., e

(u)
l otherwise

(4)

where s
(u)
l and e

(u)
l denote the start and end slot positions

assigned to link l in Su, respectively. We denote by |W (u)
l |

the number of slots in W
(u)
l . Modulo-Tsystem addition and

subtraction are denoted by ”⊕” and ”�”, respectively.

We now describe the operation of CENTRAL TREE, a link
scheduling algorithm that realizes τ using a period of LB(τ)
slots. Initially all local schedules are empty. Links are sched-
uled in a breadth-first manner. In the first iteration, the root
node r starts from slot 0 in its local schedule S r and schedules
its children links (level-1 links) until their total demand is sat-
isfied. The links are scheduled non-preemptively in successive
windows: For each child link l = (r, c), r allocates in S r a

window of τl + J
(r)
l consecutive slots, immediately succeed-

ing the window of the previously scheduled child link. After
l has been scheduled in Sr, the child node c assigns τl + J

(c)
l

time-overlapping slots to link l in its own local schedule S c.
In the next iteration, the root children (level-1 nodes) sched-

ule their own children links (level-2 links). For each such node
u, its parent link lp has already been satisfied by a window

W
(u)
lp

= [s(u)
lp

, e
(u)
lp

] in Su, during the previous iteration. Node

u starts from slot position e
(u)
lp

⊕ 1 and schedules its children
links non-preemptively in successive windows by filling S u to-
wards slot position s

(u)
lp

in a circular fashion. For each link
l = (r, c) scheduled in Su, the child node endpoint c assigns
time-overlapping slots in Sc.

The scheduling process is repeated recursively until the
highest-level links have been scheduled and the leaf nodes have
updated their local schedules.

Theorem 1: If the network topology is a tree, any demand
allocation τ can be realized by algorithm CENTRAL TREE
using a period of LB(τ) slots.

5

Proof: By induction on the tree levels, we show that no node
runs out of slots during the algorithm execution. See Appendix
X-B for the detailed proof.

Algorithm CENTRAL TREE cannot be used in practice be-
cause it requires global information and a-priori knowledge of
a static demand allocation for which it computes an optimal
schedule. However, it is important because it establishes that
the entire set of feasible allocations for tree topologies can be
captured by a set of local conditions, even for the case of asyn-
chronous TDMA. In addition, it forms the basis for a distributed
algorithm that operates in settings where link demands or topol-
ogy may change over time.

V. DISTRIBUTED ALGORITHM

The distributed algorithm for trees fits to a general algorith-
mic framework that consists of three components:

1) Topology and capacity conditions: First, feasibility must
be guaranteed via a combination of local topology and capacity
conditions. In our case, the topology must be a tree at any time.
This can be accomplished using existing distributed algorithms
for dynamic tree formation and maintenance [14], [15], [23].
According to Proposition 1 and Theorem 1, when the topology
is a tree, local conditions can capture the entire set of feasible
allocations. Therefore, each node u uses the following capacity
conditions:∑

l∈L(u)

τl ≤ Tsystem −
∑

l∈L(u)

J
(u)
l (5)

2) Distributed coordination mechanism: Since nodes have
access only to local information they will respond indepen-
dently to the demand changes on their adjacent links. The coor-
dination mechanism ensures that the network TDMA schedule
remains free of transmission conflicts despite the simultaneous
slot reassignments on different links. The coordination mecha-
nism is not bound to a specific topology structure.

3) Distributed link scheduling algorithm: Determines how
nodes should re-assign slots to reach a schedule realizing a de-
sired link allocation. This algorithm may be topology-specific.

A. Distributed coordination mechanism

During network operation, several links may be asyn-
chronously triggered in parallel for rate adjustment. Rate ad-
justment on a link occurs when the node endpoints re-assign
concurrent slot positions for this link in their local schedules.
The criteria to trigger adjustment may depend on local traffic
load on the nodes and the current communication needs of the
link. The coordination mechanism is also used to assign an ini-
tial number of conflict-free slots on a link that has just been
established.

Each node can be involved at only one link rate adjustment at
a time. It conveys its current busy status to its neighbors using
an internal one-bit variable called BusyBit. This bit is copied to
the corresponding field of every outgoing packet (be it data or
control one). Rate adjustment on a link l can be initiated when
none of its endpoints are currently busy on a rate adjustment of

other links. Upon initiation, both endpoints set their BusyBits
to one. Then they exchange their current local schedules us-
ing SC INFO control packets. This information aids one of the
endpoints to determine a new set of slot positions to be assigned
to this link. Some of these slots may be currently assigned to
the other links adjacent to the endpoint nodes and need to be
canceled.

Each endpoint stores the new positions in a variable called
LOCK V EC and signals schedule modifications to all its
affected neighbors using SC UPD packets. An SC UPD
packet transmitted on a link, contains new slot positions to re-
fresh the old ones for this link in the recipient’s local sched-
ule. After all affected neighbors acknowledge schedule mod-
ifications, the endpoints assign the new positions (stored in
LOCK V EC) to link l in their own local schedules. Then,
they become available for rate adjustment on other links by
clearing their BusyBit and LOCK V EC variables.

Communications are not suspended during the rate adjust-
ment process. The control packets are transmitted using the
conflict-free slots in the old TDMA schedule until the end-
points modify their local schedules once they have received
all acknowledgments from their neighbors. The coordination
mechanism keeps the network free of transmission conflicts at
all times. Conflicts would arise if the same slots were simulta-
neously assigned on adjacent links to the same node or nodes
re-assigned slots on links without notifying the corresponding
neighbors. The first case cannot arise because the BusyBit pre-
cludes all one-hop neighbors to initiate rate adjustment with the
endpoints. The second case cannot arise because the endpoints
modify their schedules only after having received acknowledge-
ments from all their affected neighbors.

B. A distributed link scheduling algorithm for trees

The distributed scheduling algorithm operates within the
state space defined by tree topologies and the capacity con-
ditions of eq. (5). Nodes are only aware of the parent/child
relationship and the current demands on their adjacent links.
The algorithm is self-stabilizing: it may start from any initial
TDMA schedule and converge to a new schedule realizing a
desired allocation τ . Mobility can also be supported as long as
a tree formation and maintenance protocol [14], [15], [23] runs
in the network.

Before presenting the algorithm we introduce the notions
of satisfied and stable links. Let τl be the current demand for
link l = (u, υ), and t

(u)
l be the number of conflict-free slots

currently assigned to l in the local schedule Su of node u. Link
l is called satisfied by node u if the following conditions hold:

STF1: The link is scheduled in a single window W
(u)
l =

[s(u)
l , e

(u)
l] in Su.

STF2: The current demand is exactly satisfied by the current
assignment: t

(u)
l = τl + J

(u)
l .

where J
(u)
l is given by eq. (2).

Let the parent link lp = (u, p) of node u be satisfied by a

window W
(u)
lp

= [s(u)
lp

, e
(u)
lp

] in Su. Also, let the children links
lc = (u, c) of u be assigned distinct priorities plc .

6

A child link lc of u is stable if it is satisfied and the position
of window W

(u)
lc

= [s(u)
lc

, e
(u)
lc

] in Su provides enough room
for scheduling all links of lower priority according to their
current demands. More formally, a child link l c is called stable
by node u if the following conditions hold:

STBL1: Link lc is satisfied.
STBL2: |[e(u)

lc
⊕ 1, s

(u)
lp

� 1]| ≥
∑

k∈CH(u):pk<plc

(τk + J
(u)
k)

where CH(u) is the set of children links of u and ”⊕” and
”�” are Modulo-Tsystem addition and subtraction, respectively.

Central to the algorithm operation is procedure Sam-
pleReschedule(). This procedure is asynchronously triggered
for execution at a node either when the higher layer process
changes the demand of an adjacent link or after an adjacent link
is rescheduled. When either of these events occurs, a non-root
node u proceeds in execution of SampleReschedule() only if its
parent link lp is satisfied; the root proceeds in execution uncon-
ditionally.

During execution of SampleReschedule() at node u the fol-
lowing actions are performed:

1) If u is not the root, let W
(u)
lp

= [s(u)
lp

, e
(u)
lp

] be the window
in Su satisfying its parent link lp. First, u assigns decreasing
priorities to its children links in the (circular) order that they
currently appear in Su, starting at slot e

(u)
lp

and ending at s
(u)
lp

.
(The root node assigns priorities using 0 and Tsystem − 1 as
start and end slots, respectively).

2) By inspecting Su, node u samples its children in decreas-
ing priority for violation of the stability conditions. If all links
are found stable SampleReschedule() terminates and no action
takes place. Otherwise, the highest priority unstable child link
lc is found. Let lm be the stable link of immediately higher pri-
ority than lc. If lc is the highest priority child link, lm is defined
to be the parent link lp. In either case, link lm is satisfied. Link
lc needs to be rescheduled and stabilized.

3) Node u initiates rate adjustment on lc by exchanging
SC INFO packets with the child endpoint c. After the ex-
change, u erases from Su all slots currently allocated to lc and
considers a fresh allocation for a window W lc of τlc + J

(u)
lc

slots. The position of Wlc in Su is determined as follows:

• First, node u computes the closest slot position to s
(u)
lp

for
which the stability conditions for lc will hold:

smax = s
(u)
lp

�
∑

k∈CH(u):pk<plc

(τk + J
(u)
k) (6)

Let W
(u)
lm

= [s(u)
lm

, e
(u)
lm

] be the window satisfying the de-
mand of link lm in Su. Link lc will be stable if window
Wlc is scheduled within the window W

(u)
max = [e(u)

lm
⊕

1, smax � 1].
• Node u decides on the position of W

(u)
lc

within Wmax:

The new position of W
(u)
lc

may cancel slots of lower-

priority children links in Su. Also, the position of W
(u)
lc

will be enforced to the local schedule of the child node
c and may cancel slots on some of the children links of
c. Using the local schedule of c (provided in the SC INFO
packet) the position of W

(u)
lc

is selected within Wmax such

that the total number of affected links at both node end-
points is minimized.

4) Once u determines the position of W
(u)
lc

, it initiates the
distributed coordination mechanism of section V-A by issuing
SC UPD packets to its affected neighbors. The coordination
mechanism ensures that the local schedules of endpoint nodes u
and c, as well as the local schedules of their affected neighbors,
will be free of transmission conflicts after the update.

After lc has been scheduled, node u must restart sampling
from the highest priority child link for violation of the stability
conditions. This is because the demands of links of higher pri-
ority than lc may have changed while the rate adjustment was
taking place. If the demands stop changing, repetitive invoca-
tion of procedure SampleReschedule() will reschedule and sta-
bilize the unstable links in decreasing priority. The sampling-
rescheduling loop terminates when all child links are found sta-
ble.

2 - - - 1 1 4 3 3 3 3 - - 4 4 lp
167 8 9 10 11 12 13 14 15 174 5 186 0

- lp lp 2 2
1 2 318 0

Su

2 1 1 - - - 4 3 3 3 3 - - 4 4 lp
167 8 9 10 11 12 13 14 15 174 5 186 0

4 lp lp 2 2
1 2 318 0

Su

2 1 1 - 4 4 4 3 3 3 3 - - - - lp
167 8 9 10 11 12 13 14 15 174 5 186 0

- lp lp 2 2
1 2 318 0

Su

2 1 1 - 4 4 4 - 3 3 3 3 3 3 3 lp
167 8 9 10 11 12 13 14 15 174 5 186 0

3 lp lp 2 2
1 2 318 0

Su

W max

W max

W max

(c)

(d)

(e)

(f)

(a) (b)

u

p

c 1 c 2 c 4c 3

lp

3 41 2

2

2 2 6 3

u

p

c 1 c 2 c 4c 3

lp

3 41 2

2

2 2 3 3

Fig. 3. (a) Arrows denote master-slave relationships and red slots denote
switching slots of links where u is slave. (b) Demand of link 3 changes from 3
to 6. (c) The highest priority child link (2) is satisfied and the distance of slot 5
to slot 18 (|[5, 18]| = 14) is greater than the current demand sum of the lower
priority child links ((2+0)+(6+1)+(3+0)=12)–link 2 is stable. The next priority
link 1 is satisfied but not stable (|[10, 18]| = 9 < (6 + 1) + (3 + 0) = 10).

To satisfy condition STBL2, window W1 (τ1 + J
(u)
1 = 2 + 0 = 2 slots)

must be within Wmax = [5, 8]. (d) Su after link 1 has been rescheduled. The
position was decided after the link coordination mechanism with node c1 and
consulting with Sc1 . Link 4 is not satisfied (STF1 does not hold); it needs to
be rescheduled within Wmax = [7, 10] to become stable. (e) Su after link
1 has been rescheduled. Link 3 is not satisfied; it can be rescheduled within
Wmax = [11, 18]. (f) All links are now stable–the sampling-rescheduling
loop is complete.

An example of SampleReschedule() is shown in Fig. 3. Ac-
cording to the initial local schedule Su (Fig. 3(c)), the allo-
cations on adjacent links of node u are (t(u)

lp
, t

(u)
1 , .., t

(u)
4) =

(2, 2, 3, 4, 3) and corresponding demands are (τ lp , τ1, ..., τ4) =
(2, 2, 2, 3, 3). In Fig. 3(b) the demand of link 3 changes

from 3 to 6 slots. Since the parent link lp is satisfied (t(u)
lp

=

7

τlp + J
(u)
lp

= 4), node u initiates SampleReschedule(). Using
the window [0, 1] assigned to its parent link lp, u assigns de-
creasing priorities to its children links in the cyclic order they
appear in Su, starting from slot 1 towards slot 0. The links in
decreasing priority are 2, 1, 4, 3. Figures 3(c)-(f) illustrate a se-
quence of steps and modifications of Su that stabilize the links.

The above description corresponds to the desired operation
of SampleReschedule() at a node u. However, the fact that
nodes may be busy at any time makes things more compli-
cated. For example, when the highest priority unstable child
link is sampled, it may be currently busy scheduling a child of
its own and, therefore, unavailable for re-scheduling. Hence, a
need exists for coordinating parent and children to allow proper
operation of the sampling re-scheduling loop. This is accom-
plished by the STABLE REQ/STABLE ACK packet exchange.
Before executing SampleReschedule() node u requests permis-
sion from its parent by sending a STABLE REQ packet. The
parent will respond in one of two possible ways: 1) it replies
with a STABLE ACK packet as a permission for u to continue
sampling and rescheduling its children. 2) It initiates a rate ad-
justment on this link via an SC INFO packet.

In the example of Fig. 3, node u must perform a STA-
BLE REQ/STABLE ACK handshake with its parent p for
every child link it reschedules. If link lp becomes unstable
during this process, the parent will respond with an SC INFO
packet and link lp will be rescheduled. Based on the new
stable window lp, node u will reassign priorities and resume
the sampling-rescheduling loop. The detailed operation of the
asynchronous protocol, called STABLE TREE, is described in
Figure X-A, Appendix X-A

Convergence Theorem: Consider an initial tree topology
and network TDMA schedule. Assume that a set of arbitrary
demand and topology changes occur that eventually stabilize
to a new tree topology and demand allocation τ obeying the
capacity condition (5). The asynchronous distributed algorithm
will converge to a new TDMA schedule realizing τ in a finite
number of link rate adjustments.

Proof: In general, nodes re-assign slots on their adjacent
links via SampleReschedule() when they detect demands
that are not satisfied. We show that, as soon as the changes
in demands stabilize, convergence is guaranteed to happen
progressively from the root downwards. We provide the
detailed proof in Appendix X-C.

The convergence delay of STABLE TREE depends on the
tree depth and Tsystem. For a worst-case analysis, let us as-
sume that all links have become unsatisfied due to the changes.
Since convergence is guaranteed from the root downwards, in
the worst-case scenario all links will need to be rescheduled in
this order. Also, the worst tree topology is a line starting at
the root node–in this case all (N − 1) links will be scheduled
sequentially in time.

According to the link coordination mechanism, the endpoints
wait for acknowledgements from all the affected neighbors
before updating their local schedules. In the worst case, all
neighbors are affected and acknowledgments will arrive within
Tsystem slots. Therefore, each link activation for rate adjust-

ment has a maximum duration of Tsystem slots.
When a node samples the highest priority unstable link, it

will wait at most Tsystem slots in case the child node is busy.
Thus each link on the line will be scheduled in at most 2Tsystem

slots. We conclude that once link demands have stabilized,
STABLE TREE will converge within 2Tsystem(N − 1) slots.

The worst-case analysis assumes that all links become unsat-
isfied and rescheduling will happen in the order that guarantees
convergence–starting from the root downwards. Since nodes
continuously detect changes and reassign slots locally, conver-
gence may occur faster in practice. In addition, demands may
be changing locally at lower tree levels; only part of the tree
will need to be rescheduled in this case. Existing tree topology
control algorithms strive to maintain balanced structures. In
this case, even if links will need to be scheduled from the root
downwards, multiple links will be scheduled in parallel. Also,
during a link rate adjustment, not all neighbors are always af-
fected and acknowledgements may arrive in less than T system

slots. The convergence behavior of STABLE TREE in prac-
tice will be investigated in the experiments section, jointly with
end-to-end bandwidth allocation mechanisms addressed next.

VI. END-TO-END RATE GUARANTEES

We now introduce a framework for integrating link schedul-
ing with end-to-end bandwidth allocation. The asynchronous
TDMA ad hoc network G(N, E) is shared by a set of unicast
multi-hop sessions. Without loss of generality, we assume that
half-duplex parts of a slot assigned to a link have equal duration
Dslot and are used by the same session. Although bidirectional
transfer is supported over a path, we assume that data traffic
flows in a single direction.

Each node can transmit at a maximum rate of R bps on a
link. To support a rate of ρi(≤ R) bps for session i over a path,
the network must be able to allocate τi =
(ρi/R) · Tsystem�
conflict-free slots for i to all links in the path.

Since each slot assigned to a link can be used only by a single
session, the total bandwidth consumed by the sessions F (u)
sharing node u must obey the local feasibility conditions:∑

i∈F (u)

δ
(u)
i · τi ≤ T R

u , ∀u ∈ N (7)

where

δ
(u)
i =

{
1 if u is source or destination of session i
2 otherwise

and

T R
u =

⎧⎪⎪⎨
⎪⎪⎩

�1/3 · Tsystem� if G arbitrary
�1/2 · Tsystem� if G bipartite

Tsystem −
∑

l∈L(u)

J
(u)
l ifG tree

(8)

The term δ
(u)
i indicates that, in order to support allocation τ i

for session i, an intermediate node u must be able to communi-
cate for τi slots on both upstream and downstream links of the
session.

The utilization factor T R
u depends on the topology control

mechanism used by the network (if any) and equals the
maximum number of slots each node can provide in each case

8

to ensure feasibility via local conditions. According to 8, more
restricted topologies can be better utilized and trees allow
maximum utilization. The integrated framework provides
end-to-end bandwidth allocations and guarantees using three
independent components:

End-to-end rate allocation: Conditions (7) are used for al-
locating feasible rates to the multi-hop sessions.

Link scheduling: The session rates are translated to (feasi-
ble) link demands:∑

i∈F (l)

τi = τl, ∀l ∈ E (9)

where F (l) is the set of sessions crossing link l. The link de-
mands are realized by a distributed dynamic link scheduling al-
gorithm. STABLE TREE is such an algorithm for tree topolo-
gies.

End-to-end rate enforcement: Once the link scheduling
algorithm converges, every link has been allocated enough
bandwidth (conflict-free slots) to support the session demands.
The slots allocated to each link can be shared to its sessions
according to their demands, using Weighted Round Robin
(WRR), Weighted Fair Queuing (WFQ) [24] or other single-
server queuing disciplines. Since the asynchronous TDMA
architecture uses fixed-size slots, WRR would be a reason-
able choice in this case. Another possibility is to combine
First-Come-First-Serve (FCFS) queuing at intermediate links
with explicit control of the transmission rates at the source
nodes. The choice will depend on the target environment and
application requirements.

Decoupling end-to-end bandwidth allocation from link
scheduling, allows definition and realization of various end-to-
end QoS objectives. In the following sections we introduce end-
to-end rate allocation mechanisms for Constant Bit Rate (CBR)
and Available Bit Rate (ABR) services.

A. Constant Bit Rate (CBR) Service

According to the CBR service model, sessions have fixed rate
requirements that need to be satisfied by the network. A typical
application is packetized voice. For each session arriving at a
source node, a path supporting the requested rate to the desti-
nation must be determined.

Session i with rate demand ρi bps can be admitted on a
path u1, u2, ..., up if the corresponding demand allocation τ i =

(ρi/R)·Tsystem� does not exceed the minimum available node
capacity over the path. Therefore, session i is admitted if:

τi ≤ min
k∈1,..,p

⌊T R
uk

− ∑
j∈F (uk) δ

(uk)
j τj

δ
(uk)
i

⌋
(10)

A similar admission control rule is used in wireline networks.
The difference here is that the shared resources over the path
are nodes instead of links. The rule in eq. (10) admits sessions
without taking into account the arrangement of slots in the cur-
rent TDMA schedule. This is possible due to the underlying
dynamic link scheduling algorithm. If the session i is admitted,
the demands of all links on the selected path are increased by

τi slots. As soon as the nodes in the path detect the demand
changes on their adjacent links, they use the link scheduling al-
gorithm to re-assign transmission slots and converge to a new
TDMA schedule realizing the new link (and end-to-end) de-
mand allocation. In case the session is admissible by multiple
paths, a path selection criterion similar to ones used for wire-
line networks can be used (see [25] and references therein). The
admission control rule over a single path and the path selection
criterion, together constitute a QoS routing algorithm.

QoS routing in ad hoc networks via TDMA has also been
considered in [3] for multi-channel systems and [4] for single-
channel systems. The main difference of these algorithms with
our approach is that they do not allow slot re-assignments for
accommodation of incoming sessions. Instead, they keep the
slot positions of existing sessions fixed and seek to allocate
available slots to incoming sessions subject to the current state
of the TDMA schedule. Finding the maximum number of avail-
able slots on a path subject to the slot positions of the exist-
ing sessions is an NP-complete problem, even if global topol-
ogy information is available. The authors propose distributed
heuristics for available path bandwidth estimation and slot as-
signment.

In exchange to the more complex admission control, [3], [4]
operate in arbitrary topologies, while our approach currently
provides rate allocation and enforcement for tree topologies.
However, [3], [4] assume that global slot synchronization ex-
ists. In addition, no flexibility can be provided for scheduling
the sessions on the links: the slot positions for an incoming
session are (uniquely) determined during the path bandwidth
calculation.

Due to the heuristic nature of the available path bandwidth
estimation in [3], [4], sessions that could be accepted are
blocked, i.e. the network is underutilized. Underutilization
is also unpredictable: given a set of session arrivals, the num-
ber of admitted sessions depends on the order of arrivals. For
tree topologies, our approach will admit the maximum possi-
ble number of sessions irrespective of the order of session ar-
rivals. However, the ability to admit more sessions comes with
the penalty that some existing sessions may not receive their re-
quested service while the TDMA schedule is reorganized to ac-
commodate incoming sessions. Thus, provision of continuous
CBR service requires a detailed experimental study of conver-
gence delay under various traffic loads.

Although it would be interesting to experimentally compare
the two approaches in terms of their strengths and weaknesses,
we refrain from doing so here on account of space. Instead,
we focus on end-to-end Available Bit Rate (ABR) service, not
currently provided for multi-hop wireless networks. According
to ABR, sessions do not arrive with specific bandwidth require-
ments but agree to comply with what is available by the net-
work. Such a setting necessitates provision of fair access to the
end-to-end sessions. The approach of [3], [4] cannot be applied
in this case, because it is specific to the path bandwidth alloca-
tion mechanism which is closely tied to the underlying slotted
structure.

9

B C
1

A
2

4
3

D E
5

Fig. 4. For ease of illustration, we compute the MMF session rates with
respect to fractional capacities CR

u = C = 1 − 2
Tsystem

. The MMF rate

in the first iteration is C/5 (bottlenecks are B and C). Sessions 1,2,3,4 are
allocated C/5 and they are removed from the network, along with bottleneck
nodes B,C. Node A is also removed since all sessions crossing it have been
removed. The bottleneck in the second iteration is node D providing all its
remaining bandwidth (2/5 · C) to session 5. The session MMF normalized
rates are (r1, r2, r3, r4, r5) = (1/5, 1/5, 1/5, 1/5, 2/5) · C

B. Available Bit Rate (ABR) service

In the ABR framework, optimality is understood as allo-
cating bandwidth to sessions in a maxmin fair manner. For
convenience and ease of illustration, we will use normalized
rates instead of slots to represent the sharing of bandwidth to
the end-to-end sessions. Given slot allocation τ , the corre-
sponding normalized rate allocation is r = τ/Tsystem. Con-
versely, the slot allocation corresponding to rate allocation r is
τ = �r · Tsystem�.

A session rate allocation r = (r1, .., r|F |) is feasible, if
for every session i, each link in the path L(i) can support
τi = �ri · Tsystem� slots, that is, the induced demand slot al-
location on the network links is feasible. A feasible rate allo-
cation is maxmin fair (MMF), if the rate of a session cannot
be increased without decreasing the rate of another session of
equal or lower rate. More formally, a feasible rate allocation
(r1, .., r|F |) is MMF if it satisfies the following property with

respect to another feasible rate allocation (r
′
1, ..., r

′
|F |): if there

exists a session i such that ri < r′i, then there exists a j such
that rj ≤ ri and r

′
j < rj .

Determining feasibility of a session demand allocation re-
quires determining feasibility of the corresponding link slot al-
location. According to [5], [6] this problem is NP complete
for arbitrary topologies. Since MMF allocations are by defini-
tion feasible, finding or detecting them for arbitrary topologies
becomes problematic. We will thus assume that only part of
the overall network capacity is utilized for ABR, and seek the
MMF rates with respect to this fraction. The fraction depends
on the degree of topology control and is determined by the lo-
cal feasibility conditions (written in terms of normalized rates
by dividing both sides of (7) with Tsystem):∑

i∈F (u)

δ
(u)
i · ri ≤ CR

u , ∀u ∈ N (11)

where CR
u = T R

u /Tsystem. Note that, for tree topologies, it is
possible to compute the absolute MMF rates since (11) captures
the entire set of feasible allocations in this case.

Node u is defined to be a bottleneck for session i if u is fully
utilized (with respect to CR

u) and session i has been allocated
maximum rate over all sessions F (u) sharing u. The definition
of bottleneck node yields a criterion for determining whether a
given session allocation is MMF:

MMF criterion: A session rate allocation r =
(r1, ..., ri, ..., r|F |) is MMF if and only if every session

has at least one bottleneck node.

The session MMF rates can be computed using an iterative,
off-line centralized algorithm similar to the algorithm of Bert-
sekas and Gallager for wireline networks [26]. The modifica-
tion has to take into account that, in our case, the resources are
nodes instead of links and that sessions in intermediate nodes
need to consume twice the bandwidth than their allocated rate
due to the slots needed at both incoming and outgoing links.

During each iteration of the centralized algorithm, each node
equally divides its available bandwidth over the total number of
sessions on its adjacent links. The bottlenecks of the current
iteration are the nodes for which this division is minimum; the
minimum ratio is the MMF rate for this iteration and is allocated
to the sessions crossing the bottleneck nodes. We then remove
the bottleneck nodes and their sessions from the network and
reduce the available bandwidth of the remaining nodes by the
amount consumed by the removed sessions (for each intermedi-
ate node in the path of each removed session, we must subtract
twice the MMF rate from the node available bandwidth). Any
node whose available bandwidth becomes zero is also removed.
We then consider the next level bottleneck nodes of the reduced
network and repeat the procedure. We continue until all ses-
sions have been allocated their rates. The algorithm operation
is described in the example of Fig. 4.

We have implemented an asynchronous distributed version of
the centralized algorithm. The distributed algorithm is similar
in spirit with algorithms proposed for wireline ATM networks
[27][28][29]. This is a rate-based approach for flow control,
where each source adjusts its transmission rate based on values
seen in returning control packets, previously injected and circu-
lated over the session path. The returning values are the most
recent estimates of the session MMF rate, as computed by all
nodes in the session path.

Every node u maintains a subset FC(u) of its sessions F (u),
currently seen as ”constrained” by other nodes. It also main-
tains an estimate φu for the MMF rate it currently provides to
its unconstrained sessions. The MMF rate estimate φu is up-
dated locally by procedure MMF UpdateState(). The source or
an intermediate node of a session invokes MMF UpdateState()
when a control packet is about to be sent to the down-
stream link (forward direction); the destination node invokes
MMF UpdateState() when a session control packet is about to
be sent to the upstream link (reverse direction). In each case,
when a control packet p of session i is about to be sent on link
l, procedure MMF UpdateState() at node u involves the follow-
ing actions (Fig. 5):

Step 1: Node u updates the rate ri of session i as the mini-
mum of φu and the value in the rate field of packet p.

Step 2: The demand of link l is updated to reflect the change
in ri. If u is an intermediate node of session i, the demand of the
other adjacent link k shared by i is updated in a simlilar fash-
ion. The new link demand(s) are passed to the link scheduling
algorithm.

Step 3: If φu is less than or equal to the value carried by
the packet, it is copied to the packet rate field. Also a bit in
the packet is set to indicate that the session is constrained by a
node in the path. Otherwise, session i is added to FC(u) and

10

the packet contents are not modified.
Step 4: Node u updates the MMF estimate φu by subtracting

the bandwidth taken by the currently constrained sessions and
equally dividing the rest of the bandwidth to the unconstrained
sessions.

Step 5: The rates of some sessions in FC(u) may be greater
than the new φu. If this is the case, these sessions are removed
from FC(u) and step 4 is repeated. After the second iteration,
it is guaranteed that no sessions in FC(u) will have rate greater
than φu.

Upon return of a control packet, the source adjusts the trans-
mission rate according to the packet rate field. If the field indi-
cates a value of ri, the source adjusts its sending rate to ri · R
bps, where R is the maximum transmission rate of the radio in
bps. The new control packets for session i are sent out with the
packet rate field set to ri and the constrained bit field set to zero.

Using arguments similar to those in [27], it can be proven
that the asynchronous distributed algorithm converges in a fi-
nite number of iterations to the end-to-end MMF rate values.
This holds for any topology form, given the appropriate frac-
tional capacities CR

u that ensure feasibility in each case. The
main difference of the distributed algorithm with the wireline
versions lies in the update of the MMF estimated rate that di-
vides available rate of each node to its session parts (instead
of sessions), and in that every node in the path–including the
source and destination nodes–must update the MMF rate esti-
mate. According to step 2 of MMF UpdateState(), the demands
of adjacent links are updated and passed to the link scheduling
algorithm. Viewed globally, the end-to-end computation and
link scheduling processes happen in parallel. The link schedul-
ing is not aware of whether the end-to-end process is complete;
it simply reacts to the link demand updates. As soon as the end-
to-end bandwidth allocation converges to the MMF rates, the
link demands stabilize and the link scheduling algorithm can
converge.

VII. BLUETOOTH IMPLEMENTATION

A. Design

Bluetooth [30] is an instance of a multi-channel asyn-
chronous TDMA system with a special constraint that a node
can be master to at most seven adjacent links. Channels are
implemented as frequency hopping sequences and termed as
piconets. A Bluetooth ad hoc network is termed as a scatternet.

Figure 6 depicts the implementation of the end-to-end band-
width allocation algorithm, the link scheduling algorithm and
the coordination mechanism over the Bluetooth protocol stack.
The Bluetooth Baseband layer operates according to the asyn-
chronous TDMA scheme presented in section II. The Blue-
tooth Link Manager Protocol (LMP) is used for exchange of
baseband control packets. Ideally, the link scheduling proto-
col and coordination mechanism would be implemented in the
Baseband with the control packets being LMP messages. The
current Bluetooth specification does not offer periodic schedul-
ing at the Baseband layer. We have therefore implemented the
link scheduling and coordination mechanisms in software, at
the application layer.

Procedure MMF UpdateState
Update algorithm at node u for a control packet p of ses-
sion i to be forwarded on link l

1 ri = min(φu, p.rate) /*update the session rate*/;
τi = �ri · Tsystem� ;

2 τl =
∑

j∈F (l) τj /*update demand of link l*/;

if (δ(u)
i == 2) /*u is intermediate node of i*/ then
τk =

∑
j∈F (k) τj /*update demand of the other link k

adjacent to u where session i belongs*/;

end
3 if (φu ≤ p.rate) then

p.rate = φu; p.constrained = 1;

end
if (φu ≥ p.rate) then

FC(u) = FC(u)
⋃{i};

end
4 if (|FC(u)| == |F (u)|) then

φu = CR
u − ∑

j∈F (u) rj + maxj∈F (u) rj ;

else

φu =
CR

u −∑
j∈F C(u) δ

(u)
j ·rj∑

j∈F (u) δ
(u)
j −∑

j∈F C(u) δ
(u)
j

;

end
5 if exists j in FC(u) such that rj ≥ φu then

for all j in FC(u) such that rj ≥ φu do
FC(u)=FC(u)-{j};

end
repeat step 4;

end

Fig. 5. Update algorithm for session rate, link demands and MMF rate estimate
φu.

We use the Bluetooth sniff mode to instruct the Baseband to
transmit according to the schedule maintained at the applica-
tion layer. Sniff mode is a low power mode where a slave can
listen to a master for only a window of Nsniff attempt slots
within a period of Tsniff slots. Before entering sniff mode
the nodes must agree on a slot offset within the period where
they will commmunicate. The Bluetooth Host Controller Inter-
face (HCI) exports a function where a node (either master or
slave) can initiate sniff mode on a link. We can thus directly
map Tsystem to Tsniff . Each node will impose different non-
overlapping sniff windows to its neighbors. When, during the
execution of the coordination mechanism, the local schedule
of a node is modified at the application layer, we instruct the
hardware to start sniff mode on link l on that offset by setting
Nsniff attempt = τl + J

(u)
l . Sniff mode has also been used in

other approaches specifically targeted for scatternet scheduling
[31][32].

The Bluetooth L2CAP layer provides connection-oriented
and connectionless services to upper layer protocols. It can
support both unidirectional and bidirectional logical channels
between two nodes. For the exchange of the link coordina-

11

L2CAP

LMP

Baseband

Bluetooth Radio

Host Controller Interface (HCI)

Coord
MMF

Scheduler
Tsystem

Bbit

Application layer

Bluetooth Host

Fig. 6. Implementation of the end-to-end bandwidth allocation framework
over the Bluetooth stack

tion mechanism control packets we use a bidirectional L2CAP
channel. Each session consists of multiple L2CAP bidirectional
channels, one for each link in the path. Thus, a session at an in-
termediate node is mapped on two L2CAP bidirectional chan-
nels, one to the upstream and the other to downstream link. Ses-
sion data packets or control packets flowing in the forward di-
rection are sent on the downstream L2CAP connection while
session control packets returning to the source to the upstream
L2CAP connection.

When a source receives feedback control packet with nor-
malized rate ri, it adjusts its transmission rate to ri · B/Dslot

bits/sec, where B/Dslot is the ratio of maximum payload bits
per direction over the duration of a full-duplex slot. The Blue-
tooth baseband layer supports half-duplex slots of duration
0.625ms. Each half-duplex slot can support up to B = 216 bits
for payload data (Bluetooth DH1 packets). Slots can be com-
bined in full duplex configurations of (1, 1), (1, 3), (1, 5) half
duplex slots. In the experiments we use (1, 1) configuration.
Thus, a full-duplex slot has duration equal to 2·Dslot = 1.25ms
and a maximum rate R = B/2Dslot = 172.8 Kbps per direc-
tion can be supported.

To enhance performance, in addition to rate adjustment at the
sources, a packet scheduler is used on every link l to decide the
type of packet that will be transmitted on a conflict-free slot.
To expedite convergence of the link scheduling algorithm, link
control packets are given highest priority. When the link con-
trol packet queue is empty, Weighted Round Robin (WRR) is
used to share the bandwidth among the outgoing sessions on
this link. When the demand of link l changes during the the
end-to-end algorithm execution (step 2 of MMF UpdateState()
in Fig. 5), the WRR weight Wi(t) for each session i in the
set of outgoing sessions OUTF (l) of this link is updated as
Wi(t) = ri(t)

min
j∈OUTF (l)

rj(t)
. Then, a new WRR cycle is con-

structed that will schedule sessions in proportion to their new
relative weights. All WRR weights stabilize when all link de-
mands stabilize; the target rates will be enforced when the de-
sired TDMA link schedule has been reached.

B. Experiments

To test the system in complex configurations we use Blue-
Hoc[33], the IBM Bluetooth extensions to the NS simulator

[34]. We have further extended BlueHoc to support scatternets
and the sniff mode. The link scheduling algorithm, the end-
to-end algorithm and the coordination mechanism have been
implemented as separate modules. We have performed experi-
ments on various topology and session configurations. Due to
space limitations, we will present and analyze a representative
case here.

A

E

F

C

G

H

B

J

I D

1

2

3 4

8
5

7

6 9

S1

S3S2

S4

S5

S6

S7

50

49

49

47 50

49

4950

48 50

Fig. 7. Arrows on links denote master-slave relationships. Itali-

cized numbers on each node u denote TR
u = Tsystem −

∑
l∈L(u)

J
(u)
l ,

where Tsystem = 50 slots. The normalized capacities are CR
u =

T R
u /Tsystem; the (normalized) MMF rates are (rS1 , .., rS7) =

(0.125, 0.125, 0.125, 0.208, 0.315, 0.208, 0.125). These rates correspond to
(τS1 , .., τS7) = (6, 6, 6, 10, 15, 10, 6) slots within Tsystem = 50 slots.

We consider the configuration shown in Fig. 7. A period
of Tsystem = 50 slots is used. Nodes start with an arbitrary
conflict-free TDMA schedule; all sources start transmitting at
maximum rate (172.8 Kbps) and subsequently adjust it based
on the values of the received end-to-end control packets. Time
is measured with respect to the time slot reference of the root
node. Each simulation lasts 20000 slots (or 20000× 1.25ms =
25sec).

Convergence delay is determined by DS , the time until the
link demands stabilize due to the end-to-end algorithm conver-
gence, and DL, the additional delay needed by the distributed
link scheduling algorithm to converge to a TDMA schedule re-
alizing these demands. The table in Fig. 8 includes DS and DL

Convergence Delay (slots) and Overhead (%)
Root DS DL DS + DL OS(%) OL(%)

A 1523 469 1992 11.5 9.7
B 3145 178 3323 8.5 7.2
C 1995 282 2277 17.05 11.80
D 1718 733 2451 12.54 10.2
E 2529 196 2725 15.8 8.78
F 2765 327 3092 11.25 10.3
G 2836 392 3228 8.74 7.05
H 1943 436 2379 12.56 9.9
I 1982 361 2343 16.31 11.86
J 2225 543 2768 15.44 9.2

Fig. 8. Convergence delay and control overhead in the configuration of Fig. 7,
for different choices of the root node.

that resulted from different choices of the root node. Both de-
lay components depend on the location of the root and the order
with which the end-to-end algorithm satisfies the sessions–in

12

increasing order of MMF rates. According to Fig. 7, sessions
S1, S2, S3 and S7 first receive the lowest MMF rate (0.125) due
to the first-level bottleneck node A. Then the MMF rates of S5

(0.315) and S4,S6 (0.208) will be allocated by the second-level
bottleneck nodes G and B, respectively.

In addition to the location of the root, the delay component
DS depends on the transient states of the TDMA schedule. Dur-
ing the TDMA schedule modifications, some links may be oc-
casionally allocated a few slots. Since slots are shared by link
control packets, as well as control and data packets of various
sessions, this may delay the circulation of the control packets
of some sessions and, consequently, increase the convergence
delay of the end-to-end algorithm. This phenomenon was ob-
served in the case of maximum DS (3145 slots) where node B
is the root. Link 3 was allocated 5 slots or less until slot 904;
links 4 and 8 were constantly being rescheduled at the expense
of link 3 during this period. Link 3 is in the control path of
sessions S1 and S2, which belong to the set of sessions whose
MMF rates must be computed first; this slowed down the end-
to-end algorithm convergence. This behavior did not arise for
all other choices of the root. The minimum DS (1523 slots) was
observed when the root was selected as the first-level bottleneck
node A.

The delay component DL depends on the order link demands
have stabilized, and the location of the root with respect to
this order. The link demands stabilize in the order they are
”removed” (along with bottleneck nodes and sessions) during
the end-to-end algorithm execution. In Fig. 7, the first de-
mands to stabilize will be of links 1-4 because these links are
crossed by the first-level sessions S1,S2,S3 and S7 (and only
those sessions). Then, links 5-9 will follow, due to the second-
level sessions S4-S6. This reasoning provides the order for de-
mand stabilization among groups of links. The order within a
group depends on the specific experiment run. According to
Fig. 8, maximum DL (733 slots) occurred when node D was
selected as root. In this run, the last demand to stabilize (at slot
DS = 1718) was link 9, the only link adjacent to the root. We
observed that, although at slot DS the link demands at lower
tree levels had already been stabilized and satisfied, the entire
tree was rescheduled from the root downwards. This worst-case
global re-scheduling did not occur for similar scenarios; for ex-
ample, when node I was selected as root, it was adjacent to
the slowest converging demand (link 6 at slot DS = 1982) but
in this run the tree was partially re-scheduled and convergence
occurred within 361 slots. Incidentally, the minimum DL was
observed for the root being B, the case that yielded maximum
DS . In all experiments DL is less than 2Tsystem(N −1) = 900
slots, the delay bound of the tree link scheduling algorithm.

Another quantity of interest during convergence is the con-
trol overhead, expressed as the fraction of slots used for con-
trol packet transmissions. The control overhead consists of the
overhead due to the link coordination mechanism (SC INFO,
SC UPD, SC UPD ACK, STABLE REQ and STABLE ACK
packets) and the overhead due to the circulating end-to-end con-
trol packets. According to Fig. 8, the link control overhead
is greater during DS (maximum OS = 17.05%) because the
link demands change constantly during this period. After the
link demands stabilize, the link control overhead OL is in the

order of 10% on the average. Link control overhead is domi-
nated by the STABLE REQ/STABLE ACK packet exchanges–
a node must request permission from its parent for each unsta-
ble child link it needs to reschedule. Similar to ATM networks,
the end-to-end control overhead is regulated at the source by
sending 1 control for every P data packets. The parameter P
can be adjusted to trade-off increased speed of convergence for
increased overhead. In the experiments we use P = 19; this
yields a fixed overhead of 5%.

After convergence, only end-to-end control overhead exists
because the sources are never aware that the MMF rates have
been reached. Constant flow of end-to-end control packets is
needed for dynamic recomputation of the session MMF rates
in presence of network dynamics (session additions and re-
movals). The table in Fig. 9 depicts the session throughput

Rates (Kbps) and Delay (ms)
Root MMF T G Davg d95

S1 20.73 20.73 19.69 10.65 ± 1.25
S2 20.73 20.73 19.66 10.71 ± 1.22
S3 20.73 20.73 19.66 10.69 ± 1.20
S4 34.56 34.56 32.83 6.54 ± 0.73
S5 51.84 51.84 49.24 4.284 ± 0.78
S6 34.56 34.56 32.83 6.54 ± 0.73
S7 20.73 20.73 19.68 10.63 ± 1.21

Fig. 9. Session throughput (T), goodput(G) and average delay (Davg) with
95% confidence intervals (d95) for the configuration in Fig. 7, measured at
each session destination after convergence.

and goodput as well as average delay between data packet ar-
rivals measured at the session destination after convergence.
The throughput (goodput) of a session in bps is the number
of bits due to data or control packets (data packets only) the
destination receives for this session from the time of conver-
gence (DS + DL) until the end of the simulation run. The ses-
sion throughputs exactly match the MMF rates; as expected,
the goodput of every session is approximately 5% less than the
throughput on account of the end-to-end control overhead. Ses-
sions within the same MMF group experience similar average
delay (Davg) within a small 95% confidence interval (d95); this
is due to the TDMA schedule periodicity and the WRR link
schedulers employed over each session path.

VIII. RELATED WORK

Provision of end-to-end fairness via distributed link schedul-
ing has not been addressed yet for wireless ad hoc networks.
Weighted fairness, utility-based fairness and maxmin fairness
have been defined and addressed for single-hop sessions (links)
in [35], [36] and [37], respectively. Distributed random ac-
cess MAC protocols are used to coordinate transmissions–
fairness can be realized only in a probabilistic sense. Tassiulas
and Sarkar [38] define single-hop maxmin fairness in slotted
TDMA systems. A distributed token generation mechanism is
used to compute the MMF rates for the network links. However,
the scheduling needs global topology information and a maxi-
mum weighted matching computation at every slot to enforce
these rates. In a sequel paper [39], the token generation mecha-
nism is coupled with back-pressure flow control to compute the

13

maxmin fair rates for end-to-end sessions. The centralized link
scheduling component is still required.

The TDMA link scheduling in [38], [39] can only achieve
long-term fair rates because operation is considered in a slotted
system of infinite horizon. Short term rate guarantees, as well
as bounded delay (to the extent of the system period) can be
achieved by periodic TDMA schedules. Our approach uses a
fixed system period Tsystem combined with a set of local fea-
sibility conditions. Another line of research has focused on
link scheduling algorithms for systems of variable period[8],
[9], [12]. These algorithms try to reach a TDMA link schedule
with short period realizing a given link demand slot allocation
(finding the minimum period and TDMA schedule is an NP-
complete problem). In [8], a centralized heuristic is introduced.
A subsequent semi-centralized implementation [9] requires that
information about each change in topology or demand to be dis-
tributed to all nodes; then each node uses an identical copy of
the centralized algorithm [8] to compute the allocation on its
adjacent links. This approach would not be practical for set-
tings of frequent changes in topology or traffic demands. DSSA
[12], a link scheduling algorithm for Bluetooth scatternets, uses
only local information. Nodes start with knowledge of the de-
mands of their adjacent links and use a heuristic to construct a
TDMA link schedule realizing the demands in a short period.
However, the algorithm termination is not distributed; this ren-
ders implementation harder in dynamic settings. In addition
to the difficulties specific to each algorithm of [8], [9], [12],
variable-period systems by nature need to suspend communica-
tions while a new TDMA schedule is computed in response to
changes in topology or traffic demands. Once the computation
is complete, a signal must be broadcast to the entire network
before operation is resumed.

Distributed TDMA scheduling schemes of lower complexity
have been proposed for both slot-synchronized [10], [11] and
asynchronous TDMA systems [40], [41], [32]. These schemes
are dynamic but do not target specific link demand allocations.
Hence, they cannot be used for provision of deterministic band-
width guarantees to links or end-to-end sessions.

IX. CONCLUSIONS

We presented a framework where end-to-end bandwidth allo-
cation algorithms currently available for wireline networks can
be used with certain modifications for wireless ad hoc networks
if we can find a set of appropriate local feasibility conditions
and an underlying distributed, self-stabilizing link scheduling
algorithm. The link scheduling is based on an asynchronous
TDMA protocol that does not rely on global slot synchroniza-
tion or knowledge of the number of nodes in the network.

Using this framework, we proposed an algorithm for provi-
sion of end-to-end ABR service to multi-hop sessions. This al-
gorithm can operate for any topology and compute the session
MMF rates with respect to a fraction of the network capacity
provided by the local feasibility conditions. We showed that,
in the case of tree topologies, the network can be fully utilized
and a link scheduling algorithm that can enforce the computed
end-to-end rates exists. We presented an implementation of this
framework over Bluetooth, an existing asynchronous TDMA
wireless technology.

A natural extension for the link scheduling component of the
framework is the design of converging algorithms that provide
rate enforcement in more general topologies than trees (at the
inevitable expense of reduced utilization). Such algorithms are
the subject of our future research efforts.

REFERENCES

[1] S. Chen and C. Nahrstedt. Distributed Quality of Service Routing in ad
hoc networks. Proc. IEEE Journal on Selected Areas in Communications,
17, August 1999.

[2] M. Gerla and T. Tsai. Multicluster, mobile multimedia radio network.
Proc. ACM Baltzer Journal of Wireless Networks, 1:255–65, August
1995.

[3] C.R. Lin. On-demand QoS routing in Multihop mobile networks. In Proc.
IEEE INFOCOM, Anchorage, AK, April 2001.

[4] C. Zhu and M.S. Corson. QoS routing for mobile ad hoc networks. In
Proc. IEEE INFOCOM, New York, NY, June 2002.

[5] E. Arikan. Some complexity results about packet radio networks. Proc.
IEEE Transactions on Information Theory, 30:681–685, July 1984.

[6] I. Holyer. The NP-completeness of edge coloring. Proc. SIAM Journal of
Computing, 10:169–197, 1981.

[7] J. Silvester. Perfect Scheduling in Multihop Broadcast Networks. In Proc.
International Conference on Computer Communications (ICC), London,
England, Sepmteber 1982.

[8] M. Post, P. Sarachik, and A. Kershenbaum. A Biased Greedy Algorithm
for Scheduling Multihop Radio Networks. In Proc. Annual Conference on
Information Sciences and Systems (CISS), Johns Hopkins Univ., March
1985.

[9] M. Post, A. Kershenbaum, and P. Sarachik. A Distributed Evolutionary
Algorithm for Reorganizing Network Communications. In Proc. MIL-
COM, Boston, MA, October 1985.

[10] D.J. Baker and A. Ephremides. The architectural organization of a packet
radio network via a distributed algorithm. Proc. IEEE Transactions on
Communications, 29:1694–1701, 1981.

[11] A. Kershenbaum and M. Post. Distributed Scheduling of CDMA Net-
works with Minimal Information. Proc. IEEE Transactions on Commu-
nications, 39, January 1991.

[12] U. Korner N. Johansson and L. Tassiulas. A distributed scheduling al-
gorithm for a Bluetooth scatternet. In Proc. International Teletraffic
Congress (ITC), Salvador da Bahia, Brazil, September 2001.

[13] G.V. Záruba, S. Basagni, and I. Chlamtac. Bluetrees - scatternet forma-
tion to enable Bluetooth-based ad hoc networks. In Proc. International
Conference on Computer Communications (ICC), St. Petersburg, Russia,
June 2001.

[14] G. Tan, A. Miu, J. Guttag, and H. Balakrishnan. An Efficient Scatternet
Formation Algorithm for Dynamic Environments. In Proc. IASTED Com-
munications and Computer Networks (CCN), Cambridge, MA, November
2002.

[15] R. Guerin, J. Rank, S. Sarkar, and E. Vergetis. Forming Connected
Topologies in Bluetooth Adhoc Networks. In Proc. International Tele-
traffic Congress (ITC), Berlin, Germany, September 2003.

[16] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a
scalable and robust communication paradigm for sensor networks. In
Proc. ACM MOBICOM, Boston, MA, USA, 2000.

[17] W. Zhang and G. Cao. Optimizing Tree Reconfiguration for Mobile Tar-
get Tracking in Sensor Networks. In Proc. IEEE INFOCOM, Hong Kong,
March 2004.

[18] J. Wieselthier, G.D. Nguyen, and A. Ephremides. On the Construction of
Energy-Efficient Broadcast and Multicast Trees in Wireless Networks. In
Proc. IEEE INFOCOM, Tel Aviv, Israel, April 2000.

[19] P. Sinha, R. Sivakumar, and V. Bharghavan. CEDAR: Core extraction
distributed ad hoc routing. In Proc. IEEE INFOCOM, New York City,
NY, USA, June 1999.

[20] B. Hajek and G. Sasaki. Link Scheduling in Polynomial Time. Proc. IEEE
Transactions on Information Theory, 34:910–917, September 1988.

[21] C. Shannon. A theorem on colouring lines of a network. J. Math. Phys.,
39:148–151, 1948.

[22] T. Salonidis and L. Tassiulas. Performance issues of Bluetooth scatter-
nets and other asynchronous TDMA ad hoc networks. In Proc. Interna-
tional Workshop on Mobile Multimedia Communications (MoMuC), Mu-
nich, Germany, October 2003.

[23] I.A. Cimet C. Cheng and P.R. Kumar. A protocol to maintain a minimum
spanning tree in a dynamic topology. In Proc. ACM SIGCOMM, Stanford,
CA, August 1988.

14

[24] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a
fair queueing algorithm. In Proc. ACM SIGCOMM, Austin, TX, USA,
September 1989.

[25] G. Apostolopoulos, R. Guerin, S. Kamat, A. Orda, T. Przygienda, and
D. Williams. QoS routing mechanisms and OSPF extensions, 1998.

[26] D. Bertsekas and R. Gallager. Data networks.
[27] A. Charny. An algorithm for rate allocation in a packet switching network

with feedback, M.Sc. Thesis, May 1994.
[28] L. Kalampoukas. Congestion Management in High Speed Networks. PhD

thesis, University of California Santa Cruz, September 1997.
[29] S. Kalyanaraman, R. Jain, S. Fahmy, R. Goyal, and B. Vandalore. The

ERICA switch algorithm for ABR traffic management in ATM networks.
TON, 8(1):87–98, 2000.

[30] Bluetooth Special Interest Group. Specification of the Bluetooth system,
version 1.2. In www.bluetooth.com.

[31] P. Johansson, R. Kapoor, M. Kazantzidis, and M. Gerla. Rendezvous
Scheduling in Bluetooth Scatternets. In Proc. International Conference
on Computer Communications (ICC), New York, NY, April 2002.

[32] S. Baatz, M. Frank, C. Kuhl, P. Martini, and C. Scholz. Bluetooth Scat-
ternets: An Enhanced Adaptive Scheduling Scheme. In Proc. IEEE IN-
FOCOM, New York, NY, June 2002.

[33] IBMResearch. BlueHoc: Bluetooth Performance Evaluation Tool. In
http://oss.software.ibm.com/bluehoc/.

[34] NS notes and documentation. In http://www.isi.edu/vint/nsnam.
[35] S. Lu H. Luo and V. Bharghavan. A new model for packet scheduling

in multihop wireless neworks. In Proc. ACM MOBICOM, Boston, MA,
USA, August 2000.

[36] T. Nandagopal, T. Kim, X. Gao, and V. Bharghavan. Achieving MAC
layer fairness in Wireless Packet Networks. In Proc. ACM MOBICOM,
Boston, MA, USA, October 2000.

[37] X. Huang and B. Bensaou. On Max-min Fairness and Scheduling in Wire-
less Ad-Hoc Networks: Analytical Framework and Implementation. In
Proc. ACM MOBIHOC, Long Beach, CA, USA, October 2001.

[38] L. Tassiulas and S. Sarkar. Maxmin Fair Scheduling in Wireless Net-
works. In Proc. IEEE INFOCOM, New York, NY, USA, June 2002.

[39] S. Sarkar and L. Tassiulas. End-to-end bandwidth guarantees through
fair local spectrum share in wireless ad-hoc networks. In Control and
Decision Conference (CDC), Maui, HI, USA, December 2003.

[40] N. Johansson, F. Alriksson, and U. Jonsson. JUMP mode - a dynamic
window-based scheduling framework for Bluetooth scatternets. In Proc.
ACM MOBIHOC, Long Beach CA, October 2001.

[41] A. Racz, G. Miklos, F. Kubinszky, and A. Valko. A Pseudo Random
Coordinated Scheduling algorithm for Bluetooth Scatternets. In Proc.
ACM MOBIHOC, Long Beach CA, October 2001.

X. APPENDIX

A. Algorithm Pseudocodes

B. Proof of Theorem 1

Proof: Since Tsystem is set to LB(τ) slots, it suffices to
show that no node runs out of slots in its local schedule during
the algorithm execution. We use induction on the link levels.

Level 1: Starting at slot 0 in its local schedule Sr, the root
r schedules

∑
l∈L(r) τl + J

(r)
l slots, which, by definition, is

less than or equal to LB(τ). In addition, each child node c on

child link l allocates τl +J
(c)
l time-overlapping slots in its local

schedule, which does not exceed LB(τ).
Level k-1: Assume that no node has ran out of slots after all

level k − 1 links have been scheduled. Due to the breadth-first
recursion, each of the level k − 1 nodes that are children of the
same (level k − 2) parent has been assigned a single window,
the windows of such nodes being mutually exclusive.

Therefore, without loss of generality, we can consider a link
lp of level k − 1 and its child node u in isolation. During the

previous iteration u has been allocated τlp + J
(u)
lp

consecutive
slots in Su.

Let CH(u) be the set of children links of node u.

Node u will need
∑

l∈CH(u)(τl + J
(u)
l) slots in Su

Procedure SampleReschedule
begin

SR-1 PrioritizeLinks();
SR-2 lc = GetMaxUnstableChildLink();

if (lc �= −1) then
if (busybit ==0 AND BusyBit(v)==0) then

SR-3 busybit=1;
SR-4 send SC INFO packet to v;

end
end

end

Procedure PrioritizeLinks
Assign priorities to children links in order of appearance
after slot e

(u)
lp

local : CH = set of children links, LINKSET, p, slot
begin

p = |CH |; LINKSET = CH; slot = e
(u)
lp

⊕ 1;
repeat

lc = local schedule[slot];
if (lc ∈ LINKSET) then

plc = p /*set the priority of lc to p*/;
p=p-1;
LINKSET = LINKSET - {lc} ;

end
slot = slot ⊕ 1;

until LINKSET is empty;

end

Function GetMaxUnstableChildLink
Return the maximum priority unstable child link or -1 oth-
erwise
local : CH = set of my children links, Jk equals 1 if I

am slave on child link k and zero otherwise
begin

for p=|CH | down to 1 do
lc = the child link of priority p;
if (not satisfied(lc)) then

return lc;
else

lpsum =
∑

k∈CH:pk<pl
(τk + Jk);

if (lpsum > |[elc ⊕ 1, slp � 1]|)) then
return lc;

end
end

end
return -1;

end

Fig. 10. Procedure SampleReschedule()

15

Algorithm 5: STABLETREE
Data : Asynchronous events at node u 1 Parent

node(link): p(lp) (or none if root), Child node
(link): c (lc)

Result : Corresponding actions
E1 Events: e1: Any adjacent link becomes non-satisfied;

OR e2: Scheduling of a link just completed;
begin

if (event e2 occured) then
E1-1 busybit =0;

end
if (busybit ==0) then

if (I am root) then
SampleReschedule();

else
if (wait parent ==0)) then

E1-2 wait parent =1;
E1-3 send STABLE REQ packet to parent p;

end
end

end
end

E2 Event: STABLE REQ packet received from child c;
begin

if (I am root OR satisfied(lp)) then
if (stable(lc)) then

E2-1 send STABLE ACK packet to child c;

else
if (busybit ==0 AND wait parent ==0) then

E2-2 SampleReschedule();

end
end

end
end

E3 Event: STABLE ACK packet received from parent p;
begin

E3-1 wait parent =0;
E3-2 SampleReschedule();

end
E4 Event: SC INFO packet received from node v;

begin
if (I am child of v) then

E4-1 busybit =1;
E4-2 wait parent =0;
E4-3 send SC INFO packet to v;

else
E4-4 AssignSlots(lv) /*Determine new slot positions for

lv*/ ;
E4-5 Initiate distributed coordination mechanism by up-

dating v and affected neighbors with SC UPD
packets.

end
end

Fig. 11. The asynchronous distributed link scheduling algorithm

to schedule its children links in mutually exclusive
windows. Thus node u will have assigned a total of∑

l∈CH(u)(τl + J
(u)
l) + τlp + J

(u)
lp

=
∑

l∈L(u)(τl + J
(u)
l)

slots at the end of iteration k, which, by definition does not
exceed LB(τ). Also, for each link l = (u, c) ∈ CH(u), the
child node c will allocate τl + J

(c)
l in Sc, which does not

exceed LB(τ). Therefore no node runs out of slots at the end
of iteration k. The induction step is complete.

C. Proof of Convergence Theorem

We assume that changes on a link demand are detected by
both node endpoints (not necessarily at the same time instant)
and that control messages are not lost due to channel errors.
Mobility is a special case of link demand changes with a link
failure being transition to zero demand and a link establishment
being a transition from zero to a positive demand satisfying the
local feasibility conditions.

Given an arbitrary set of changes that have stabilized, let
Kmin be the link level such that all links of level Kmin or less
have not been affected by the changes. We will prove conver-
gence by induction on the link levels k > Kmin that have been
affected by the change. We distinguish two cases for Kmin:

Case A Kmin = 0: This is the case where at least one of the
child links of the root has been affected by the changes.

Step 1: Level 1: Link level 1 includes the root and its chil-
dren. Upon detection of any unsatisfied link, the root will run
SampleReschedule() only if it is not busy or after it has finished
scheduling its current link. Let lc the highest-priority unstable
child link. We distinguish two cases for the child node endpoint
c of lc:

Case 1: Node c not busy: the root initiates scheduling of l c

by sending an SC INFO packet to c (line SR-4, Fig. 10).
Case 2: Node c currently busy: the root exits Sam-

pleReschedule(). When node c finishes scheduling, it will send
a STABLE REQ packet to the root (line E1-3, Fig. 11). It also
becomes unavailable for rescheduling its own children until it
receives a response from the root (line E1-2, Fig. 11). Upon
reception of the STABLE REQ packet, the root executes Sam-
pleReschedule(). Since the are no more changes, the highest
priority child will be again node c and it is guaranteed not to
be busy this time (due to line E1-3 node c will not enter Sam-
pleReschedule() upon reception of STABLE REQ packets from
its children.). Then the root initiates scheduling on l c (line SR-
4, Fig. 10). In a similar fashion, the root will eventually sched-
ule all level-1 unstable links in decreasing order of their priority.

Step k: Level k: Assume that all links up-to and including
level k have been scheduled and stabilized. We will show that
all level k +1 unstable links will be scheduled and stabilized in
a finite number of iterations .

Since every level-k node u has been independently assigned
a stable parent link window Wlp = [startlp , endlp], it suffices
to consider one such node in isolation. Each time node u needs
to execute SampleReschedule(), it asks permission from its par-
ent node p by sending a STABLE REQ packet. Since lp is sta-
ble, the parent p will always reply with a STABLE ACK packet
(line E2-1, Fig. 11).

16

As soon as u receives permission to run SampleReschedule(),
we have the same case of the root node and the level-1 links.
Therefore, all unstable children links of node u will eventually
be re-scheduled and stabilized. Since this will happen for all
level-k nodes and their level k + 1 children links, the induction
step is complete.

Case B Kmin > 0: This case can be proven using as initial
inductive step k = Kmin. The initial step holds since it is
similar to the Level-k inductive step of the case Kmin = 0.
For level k > Kmin to k + 1, a similar argument is applicable.
Q.E.D.

