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Abstract
One main open problem in transcendental number theory is to describe

all algebraic relations among the values ζ(s) at the integers s ≥ 2 of the
Riemann zeta function

ζ(s) =
∑
n≥1

1

ns
·

L. Euler proved that the numbers ζ(2n)/π2n are rational for n ≥ 1. The
expected answer to the above question is that the relations ζ(2n)/π2n ∈ Q
generate the ideal of all algebraic relations. In other terms, the numbers

ζ(3), ζ(5), . . . , ζ(2n+ 1), . . .

are expected to be algebraically independent over the field Q(π). So far, very
few results are known in this direction.

This problem of algebraic independence can be seen as a special case of a
problem of Q–linear independence, by introducting the Multiple Zeta Values
(MZV)

ζ(s1, . . . , sk) =
∑

n1>n2>...>nk≥1

1

ns1
1 · · ·nsk

k

,

where k ≥ 1 and sj ≥ 1 (1 ≤ j ≤ k − 1), sk ≥ 2 are again integers. Indeed,
the product of two MZVs is a Q–linear combination of MZVs, and often
there are several such linear combinations giving the same value. Hence
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these numbers satisfy many Q–linear relations, giving rise to rich algebraic
structures. The goal of these lectures is to introduce in a elementary way
these algebraic structures, with the shuffle and stuffle products, as well as
the regularized double shuffle relations.

One central theme will be a conjecture due to D. Zagier, which predicts
the value of the dimension dp of the Q–space spanned by the ζ(s1, . . . , sk)
for s1 + · · · + sk = p and p ≥ 1. The value of dp given by Zagier is actu-
ally an upper bound for that dimension: this amounts to check that there
are sufficiently many Q–linear relations among these numbers, and it looks
like a combinatoric result. But the proofs which are known so far (due to
Goncharov, Terasoma and Brown) involve heavy machinery from algebraic
geometry. The proof by F. Brown yields a generating set for this space,
with the expected number of generators: this is the set of ζ(s1, . . . , sk) for
s1 + · · · + sk = p and si ∈ {2, 3} (i = 1, . . . , k). The proof of Brown’s result
requests a lemma due to D. Zagier, the proof of which we plan to discuss,
together with its variant by Zhonghua Li.

No preliminary background is required; some of the results, which are
easy to state, have a proof which requires deep tools far above the level of
this course: in such cases, we will only discuss the statements, not the proofs.
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Université Pierre et Marie Curie-Paris 6
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