
SEPARABILITY AND TRIANGULATED CATEGORIES
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Abstract. We prove that the category of modules over a separable ring object

in a tensor triangulated category admits a unique structure of triangulated

category which is compatible with the original one. This applies in particular
to étale algebras. More generally, we do this for exact separable monads.
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Introduction

Given a ring spectrum in the topological stable homotopy category, or more gen-
erally a ring object in any tensor triangulated category, the modules over that ring
do not form a triangulated category in any obvious way. This might be considered
a serious drawback of triangulated categories. To circumvent that problem, one
usually needs to descend to some model, consider the category of modules down
there, and then take the homotopy category to expect producing some reasonable
triangulated category. The aesthetical and technical costs of this complication are
evident. Our purpose here is to prove that obstacles vanish when the ring object in
question is separable (hence solving an old private conjecture of Giordano Favi) :

Main Theorem. Let C be a tensor triangulated category and A a separable ring
object in C, meaning that the multiplication µ : A⊗A→ A has a bimodule section.
Then the category of left A-modules in C has a triangulation in which distinguished
triangles are the ones whose underlying triangle of objects is distinguished in C.

Note that the notion of A-module in C and that of separability are the standard
ones, repeated in Definitions 2.4 and 3.1 respectively. What is new here is their
harmonious interaction with the triangular structure. We are actually going to
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prove this theorem in greater generality, without tensor structure on C, replacing
the ring object A by any exact separable monad (Def. 3.5). By duality, our results
extend to co-modules over co-rings, or co-monads; see Remark 5.19. But for this
short introduction, let us stick to ordinary rings and modules.

The true interest of our Main Theorem is that it offers a new type of con-
struction that can be performed on triangulated categories, without descending to
models. There are actually very few such general constructions, beyond localization
of course, which is arguably the most important one. Interestingly, we shall see in
Example 6.3 that Bousfield localization is a special case of our construction.

There is a disclaimer to be made about the above result, which brings us to an
important second theme of the paper. As stated, the theorem only holds for pre-
triangulated categories, that is, without Verdier’s octahedron axiom. The reason
is that Verdier’s axiom might be perfectible, as also indicated by the recent work
of Matthias Künzer [17]. The natural improvement consists in requiring a mor-
phism axiom for octahedra, analogous to the morphism axiom for triangles. These
considerations extend to higher octahedra à la Beilinson-Bernstein-Deligne [5]. Let
us postpone this somewhat technical discussion to Section 5 and simply say that
there is a way to improve the axiomatic, due to Künzer [15, 16]; see alternatively
Maltsiniotis [19] for a neat compact presentation. Comfortingly, this improved ax-
iomatic is satisfied by the homotopy category of any stable model category, so there
is no real restriction in terms of applications; see Remarks 5.12 and 5.14. With this
improved axiomatic, our theorem holds true and actually extends to any higher
order of triangulation, including the infinite one, as we shall see in Theorem 5.17.

The organization of the paper is the following : Sections 1, 2 and 3 recall standard
material, with minor modifications for compatibility with the suspension. The work
starts in Section 4, where we prove the weak version of our Main Theorem without
the octahedron. In Section 5, we present the higher axioms and prove the full
fledge version of the result. We finally provide examples in Section 6. For instance,
Theorem 6.5 and Corollary 6.6 give us :

Theorem. Let R be a commutative ring and let A be a flat and separable R-algebra
(e.g. a commutative étale R-algebra). Then the derived category of A-modules
D(A – Mod) is triangular equivalent to the category of A-modules in D(R – Mod).

In terms of tensor triangular geometry [3], this opens the way to étale morphisms
of tensor triangulated categories, extending the theory of [2] beyond the Zariski
topology. This will be the subject of forthcoming work.

Finally, let us stress the fact that separability is important beyond algebra and
algebraic geometry. For instance, Rognes [23] offers a thorough investigation of
(commutative) separable and étale algebras in stable homotopy theory and provides
many examples. The reader interested in this direction is also referred to the recent
work of Baker-Richter [1] and Hess [11].

1. Pre-triangulated categories

1.1. Definition. A suspended category (or triangulated category of first order) is an

additive category C with an auto-equivalence Σ : C
∼−→C that we call the suspension.

For simplicity, we consider Σ as an isomorphism, Σ−1Σ = IdC = ΣΣ−1, to avoid
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overloading the notation with natural isomorphisms. A triangle in C is a diagram

a
f // b

g // c h // Σa , often represented as

(1.2)

c

·���
h

����
a

f
// b

g
]];;;;;; or even

a
f // b

g

��
c

h // Σ(a)

if space permits.

The morphism f : a → b is called the base of the triangle. Morphisms of triangles
are the obvious morphisms of (periodic) diagrams, see (1.4) below. The broken
arrow c · // a indicates a morphism of degree one from a to c, that is, c→ Σ a.

1.3. Definition. A pre-triangulated category (or triangulated category of second or-
der) is a suspended category (C,Σ) as above, together with a collection of distin-
guished triangles (a. k. a. exact triangles) subject to the following axioms :

(TC 2.1) Bookkeeping Axioms :

(TC 2.1.a) Every triangle isomorphic to a distinguished triangle is distinguished.

(TC 2.1.b) For every object a in C, the two triangles 0 // a 1 // a // 0 and

a
1 // a // 0 // Σa are distinguished.

(TC 2.1.c) A triangle ∆ =
(
a

f // b
g // c h // Σa

)
is distinguished if and only if

σ(∆) :=
(

Σa
Σf // Σb

Σg // Σc
−Σh // Σ2a

)
is distinguished; and ∆ is distinguished if and only if

τ(∆) :=
(
c

h // Σa
Σf // Σb

Σg // Σc
)

is distinguished.

(TC 2.2) Existence Axiom : Every morphism f : a → b is the base of some distin-
guished triangle.

(TC 2.3) Morphism Axiom : For every pair of distinguished triangles, every mor-
phism on their bases, as in the following left-hand commutative square :

(1.4)

∆ =

(
a

f //

α

��

b
g //

β

��

c
h //

∃ γ
��

Σ(a)
)

Σα

��

∆′ =

(
a′

f ′
// b′

g′
// c′

h′
// Σ(a′)

)
,

extends to a morphism of triangles (α, β, γ) : ∆−→∆′, meaning of course
that all three squares above commute.

This notion of pre-triangulated category is the same as in Neeman [21, Def. 1.1.2],
except for the numbering of the axioms, which is not important. An additive functor
F : C−→C′ between pre-triangulated categories is called exact if it commutes with
the suspensions and preserves distinguished triangles.
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1.5. Remarks. It is intuitively clear that the “meat” of Definition 1.3 is contained in
axioms (TC 2.2) and (TC 2.3), which assert the existence of triangles and morphisms
thereof. The other axioms are only shuffling existing information around.

We have introduced some redundancy, in the bookkeeping axioms for instance,
to make the analogy with the higher axiomatic of Section 5 more transparent.

A triangulated category in the sense of Verdier [24] consists of a pre-triangulated
category which satisfies moreover the octahedron axiom. We shall return to this
point in Remark 5.8.

1.6. Lemma. Let C be a suspended category with a collection of distinguished trian-
gles satisfying the bookkeeping axioms (TC 2.1) and the morphism axiom (TC 2.3).
In other words, C is almost a pre-triangulated category, except for axiom (TC 2.2).

Let ∆ =
(
a

f // b
g // c h // Σa

)
be a distinguished triangle. Then :

(a) f is a weak kernel of g and h is a weak cokernel of g.

(b) If k : c→ c is such that (0, 0, k) is an endomorphism of ∆, then k2 = 0.

(c) If d = (p, q, s) is an endomorphism of the triangle ∆ which is an idempotent
on the base, that is, p2 = p and q2 = q, then e := 3d2 − 2d3 = (p, q, 3s2 − 2s3)
is an idempotent endomorphism, e2 = e, of ∆.

(d) Let p = p2 : a→ a and q = q2 : b→ b be idempotents such that fp = qf :

(1.7)

a
f //

p

��

b
g //

q

��

c
h //

∃ r

��

Σ(a)

Σp

��
a

f
// b g

// c
h

// Σ(a) .

Then there exists an idempotent r = r2 : c→ c such that (p, q, r) is a morphism.

Proof. This is standard. For instance, the proof of (a) in [21, 1.1.3 and 1.1.10]
applies verbatim and doesn’t use the existence of triangles – our missing (TC 2.2).
Point (b) follows from (a); indeed kg = 0 implies that k = k̄ h for some k̄ and
then k2 = k̄hk = 0 since hk = 0. Then, (c) follows from (b) as in [4, 1.14] :
d2 − d = (0, 0, s2 − s) is also an endomorphism of ∆; hence k := s2 − s squares to
zero by (b) and commutes with s; then, s+k−2sk = 3s2−2s3 is an idempotent by
direct computation. (This is the trick of lifting idempotents modulo nilpotence.)
Part (d) follows easily from the morphism axiom (TC 2.3) and part (c). �

1.8. Definition. Recall that an additive category C is idempotent-complete if every
idempotent morphism e = e2 : x → x splits, that is, there is a decomposition
x = im(e)⊕im(1−e), under which e becomes ( 1 0

0 0 ). Any additive category admits an
idempotent completion ι : C−→C\. We proved in [4] that for C (pre-) triangulated,
C\ inherits a unique structure of (pre-) triangulated category such that ι is exact.

1.9. Remark. Let C be an idempotent-complete additive category and I be a small
category. It is well-known that the additive category Fun(I,C) of functors from I
to C and natural transformations (I-shaped diagrams in C) is idempotent-complete
as well. Indeed, let F ∈ Fun(I,C) and e = e2 : F → F an idempotent natural
transformation. Denote by e′ = 1 − e the idempotent complement. Since C is
idempotent-complete, we split every object F (i) = im(ei)⊕ im(e′i) in C. For every
α : i → j the morphisms F (α) : F (i) → F (j) commutes with the idempotents :
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ejF (α) = F (α)ei which forces F (α) to be diagonal : F (α) =
(
ejF (α)ei 0

0 e′jF (α)e′i

)
.

Then F = G ⊕ G′ where G(i) = im(ei) for every i ∈ I and G(α) = ejF (α)ei for
every α : i→ j, and similarly for G′ with e′ instead of e.

1.10. Proposition. Let C be an idempotent-complete suspended category and let e =

(p, q, r) be an idempotent endomorphism of a triangle ∆ =
(
a

f // b
g // c h // Σa

)
;

see (1.7). Then the triangle ∆ is the direct sum of two triangles, as follows :

im(p)
(
qfp 0
0 q′fp′

)
im(q)

(
rgq 0
0 r′gq′

)
im(r)

(
Σ(p)hr 0

0 Σ(p′)hr′

)
Σ im(p)

⊕ // ⊕ // ⊕ // ⊕
im(p′) im(q′) im(r′) Σ im(p′)

where (p′, q′, r′) = (1− p , 1− q , 1− r) is the idempotent complement of e.

Proof. The triangle ∆ is just a special type of diagram in C. Since Σ is additive,
it is clear that im(Σp) = Σ(im p) and the two direct summands of ∆ produced by
Remark 1.9 are the ones of the statement. �

2. Monads, rings and modules

We review the notions of monad, ring objects and modules and refer the reader
to Mac Lane [18]. Simultaneously, we adapt the terminology to the presence of a
suspension (Def. 1.1), by requiring the structures to be “stable”.

2.1. Definition. Let C be a category. A monad on C is a triple (M,µ, η), often just
written M , where M : C→ C is an endofunctor, µ : M2 → M (the multiplication)
and η : IdC → M (the unit) are natural transformations such that the following
diagrams, expressing associativity and two-sided unit, commute :

(2.2)

M3
Mµ //

µM

��

M2

µ

��
M2

µ
// M

and

M
Mη //

GGGGGGGGG

GGGGGGGGG M2

µ

��

M
ηMoo

wwwwwwwww

wwwwwwwww

M .

When the category C is suspended, we say that an additive monad M is stable if
M , µ and η commute with suspension : ΣM = MΣ, µΣ = Σµ, ηΣ = Ση.

2.3. Example. Let C be a monoidal category with tensor ⊗ : C × C → C and
unit 11 ∈ C, see [18, Chap. VII]. A (unital and associative) ring object in C is a triple
(A,µ, η) where A is an object of C and where the multiplication µ : A ⊗ A → A
and the unit η : 11 → A are morphisms in C satisfying the usual associativity and
two-sided unit conditions analogous to (2.2). Let M : C→ C be the functor A⊗−,
with the obvious µ : M2 →M and η : Id→M . Then M is a monad on C.

Of course, for R a commutative ring and for C = R – Mod with ⊗ = ⊗R, the
ring objects in C are the usual R-algebras. In particular, ring objects in Z – Mod
are ordinary rings. So, monads are generalizations of rings and algebras.

2.4. Definition. Let M : C→ C be a monad. The Eilenberg-Moore category of (left)
M -modules M–ModC is defined as follows. A left M -module is a pair (x, λ) where
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x is an object of C (the underlying object) and λ : Mx→ x is a morphism (the left
action) such that the following diagrams both commute :

M2x
Mλ //

µx

��

Mx

λ

��
Mx

λ
// x

and

x
ηx //

CCCCCCCC

CCCCCCCC Mx

λ

��
x .

A morphism f : (x, λ) → (x′, λ′) of left M -modules is a morphism f : x → x′

in C which is M -linear, i.e. such that λ′ ◦M(f) = f ◦ λ. There is a free module
functor FM : C→M–ModC defined by FM (y) :=

(
M(y), µy

)
. It has a right adjoint

GM : M–ModC → C which forgets the action. See [9]. We define the Kleisli
category of free M -modules M–FreeC as the full subcategory FM (C) of M–ModC ;
see [12]. (1) The above functors FM and GM restrict to an adjunction between C

and M–FreeC :

C
FM(free module)

{{wwwwwwwwwww

FM

$$HHHHHHHHHHHH

M–FreeC
� �

(fully faithful)
//

GM

;;wwwwwwwwwww
M–ModC .

GM (forget action)

ddHHHHHHHHHHHH

When C is suspended and M is stable, then both M–ModC and M–FreeC inherit
an obvious suspension such that FM and GM commute with suspension.

2.5. Example. When A = (A,µ, η) is a ring object in a monoidal category C =
(C,⊗, 11) as in Example 2.3, the above constructions yield the natural categories of
left A-modules and free left A-modules (still relatively to the ambient C).

2.6. Remark. For M additive, if C is idempotent-complete then so is M–ModC.

2.7. Remark. Given an adjunction F : C � D : G, let η : IdC → GF be the unit
and ε : FG→ IdD the counit of this adjunction. Then M := GF is a monad on C,

with unit η and multiplication µ := GεF : M2 = G(FG)F
GεF→ GF = M . One

says that M is realized by the adjunction (F,G). Given a monad M : C→ C, there
are in general many adjunctions realizing M . They form a category in which the
Kleisli construction M–FreeC is initial and the Eilenberg-Moore M–ModC is final :

2.8. Proposition ([18, Thm. VI.5.3]). Let M : C → C be a monad realized by an
adjunction F : C � D : G. Then there are unique functors L and K as follows :

C

FM

yysssssssssssss

F

��
FM

%%KKKKKKKKKKKKK

M–FreeC ∃ !L
//_____

GM

99sssssssssssss
D

G

OO

∃ !K
//_____ M–ModC

GM

eeKKKKKKKKKKKKK

such that F = L ◦ FM , G ◦ L = GM , G = GM ◦K and K ◦ F = FM . Moreover, L
is fully faithful. Finally, if C and D are suspended, if M is stable and if (F,G) is
an adjunction of functors commuting with suspension, then the functors L and K
commute with suspension as well.

1In [18], M–ModC and M–FreeC are denoted CM and CM and called (free) M -algebras.
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Proof. See the reference [18]. Compatibility with suspension is an easy exercise. �

2.9. Remark. If we assume moreover that C is (pre-) triangulated and that the stable
monad M : C→ C is an exact functor, it is legitimate to wonder whether M can be
realized by an adjunction F : C � D : G in which D is also (pre-) triangulated and
F and G are exact. This seems a difficult problem in general but if one requires
G faithful, in the spirit of M -modules, then there is essential at most one solution,
as we explain now. This is very probably in the literature already but it is worth
observing it here anyway.

2.10. Proposition. Let C be an additive category, F : C � D : G an adjunction
with faithful right adjoint G and with D pre-triangulated. Let M = GF : C → C

be the corresponding monad. Then the fully faithful functor L : M–FreeC−→D of
Proposition 2.8 is moreover ⊕-cofinal (a. k. a. dense), that is, every object of D is
a direct summand of the image by L of an object of M–FreeC. In other words, L

induces an equivalence between idempotent completions L\ : (M–FreeC)
\ ∼−→D\.

Proof. For x ∈ D, the counit εx : FGx → x fits in a distinguished triangle

FGx
εx // x

ϕ // y // ΣFGx in D. So, ϕεx = 0 hence G(ϕ)G(εx) = 0. But G(εx)
is split surjective (one of the unit-counit relations) hence G(ϕ) = 0. Since we as-
sume G faithful, we get ϕ = 0 which implies that εx is split surjective already in the
pre-triangulated category D. Hence x is a direct summand of FGx = L(FMGx). �

2.11. Definition. We could call the idempotent completion (M–FreeC)
\

the category
of projective M -modules (relatively to C) and denote it M–ProjC.

3. Separability

Again, we start by recalling standard terminology, cum grano salis.

3.1. Definition. A ring object A = (A,µ, η) in a monoidal category C = (C,⊗, 11)
is called separable if multiplication µ : A ⊗ A → A admits a section as two-sided
A-module, i.e. a morphism σ : A → A ⊗ A such that µσ = idA and such that the
following diagram commutes :

(3.2)

A⊗A
µ

��

σ⊗1

xxqqqqqqqqqq
1⊗σ

&&MMMMMMMMMM

A⊗A⊗A

1⊗µ &&MMMMMMMMMM A

σ

��

A⊗A⊗A

µ⊗1xxqqqqqqqqqq

A⊗A .

3.3. Remark. This is the usual definition of separable R-algebra when C = R – Mod
and R is commutative; see DeMeyer-Ingraham [8, § II.1] or Knus-Ojanguren [13,
§ III.1]. (Over a field K, a commutative K-algebra A is sometimes called “(classi-
cally) separable” if L ⊗K A is reduced for every extension L/K. An algebra over
K is separable if and only if it is “classically separable” and has finite dimension
as a vector space over K. See [8, Thm. 2.5].) In general, our separable R-algebras
need not be finitely generated as R-modules, nor commutative.
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Over the integers, there exists no commutative separable Z-algebra A, which
is finitely generated projective as a Z-module, except of course the trivial ones
Z × · · · × Z; see Example 6.2 below. The analogous result in topological stable
homotopy theory is due to Rognes, see [23, Thm. 1.3, p. 4], who proved that there is

no commutative Galois ring object in SHfin, the stable homotopy category of finite
CW -complexes, beyond the obvious 11⊕ · · · ⊕ 11; see Example 6.2 below.

These are not negative results. First of all, we do not assume our rings to be
finitely generated, nor commutative. But even under these assumptions, the theory
of separability should be understood as a relative notion as illustrated both in
algebraic geometry by the well-known importance of étale algebras and in topology
by the many examples to be found in the reference [23] above.

3.4. Example. Let (C,⊗, 11) be a tensor triangulated category and let x ∈ C be a
rigid object, i.e. with an adjunction x⊗− : C � C : Dx⊗− for some Dx ∈ C. Let
us denote by η : 11 → Dx ⊗ x and ε : x ⊗Dx → 11 the associated unit and counit.
Consider the ring object A = end(x) := Dx⊗ x in C with multiplication

µ : A⊗A = Dx⊗ x⊗Dx⊗ x 1⊗ ε⊗ 1→ Dx⊗ 11⊗ x ∼= A .

Suppose now that x is faithful, that is, x⊗− : C→ C is faithful. This is equivalent
to say that ε : x⊗Dx→ 11 is split surjective (as in the proof of Proposition 2.10).
Choose a section σ0 : 11→ x⊗Dx of ε. Then the morphism

σ : A ∼= Dx⊗ 11⊗ x 1⊗ σ0 ⊗ 1→ Dx⊗ x⊗Dx⊗ x = A⊗A

is a section of µ, which satisfies (3.2). In short, for x rigid and faithful, end(x) is
separable. (Note that, in most conventions, the above multiplication on end(x) is
rather the opposite of the one induced by “composition”. However, a ring object is
separable if and only if its opposite is separable.)

Generalizing the notion of separability to monads gives (see [7, 6.3] or [6, 2.9]) :

3.5. Definition. A monad M : C → C is called separable if µ : M2 → M admits a
section σ : M →M2, i.e. µ ◦ σ = idM , satisfying the analogue of (3.2), that is :

(3.6) Mµ ◦ σM = σ ◦ µ = µM ◦Mσ .

If moreover C is suspended (Def. 1.1) and M is stable (Def. 2.1) then we say that
M is stably separable if σ commutes with suspension as well.

On the other hand, there is an a priori unrelated notion of separable functor,
which could be understood as being “split faithful” (see Năstăsescu et. al. [20, § 1]) :

3.7. Definition. A functor G : D→ C is separable if there exist retractions

(3.8) H = Hx,y : C(Gx,Gy)−→D(x, y)

of the maps induced by G on morphisms, which are natural in x, y ∈ D. This means
that H(G(f)) = f for every morphism f in D and that H

(
G(g) k G(f)

)
= g H(k) f

for all morphisms k in C and f, g in D for which the composition makes sense.
When C and D are suspended (Def. 1.1) and G commutes with the suspension,

we say that G is stably separable if H moreover commutes with suspension, meaning
that HΣx,Σy ◦ Σ = Σ ◦Hx,y .
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3.9. Remark. If G : D → C has a left adjoint F : C → D, Rafael [22, Thm. 1.2]
proved that G is separable if and only if the counit ε : FG→ IdD has a section

(3.10) ξ : IdD−→F G

i.e. a natural transformation ξ such that ε ◦ ξ = id. The dictionary between H and
ξ is given by the following formulas for every x, y ∈ D and k : Gx→ Gy in C :

ξx = Hx,FGx(ηGx : Gx→ GFGx) and Hx,y(k) = εy ◦ Fk ◦ ξx .

In the suspended situation, it is then easy to see that G is stably separable if and
only if there exists such a ξ which commutes with suspension.

One does not define a separable monad M by requiring M to be separable as a
functor ! These two notions of separability are actually related as follows :

3.11. Proposition ([6, 2.9 (1)] or [7, Prop. 6.3]). Let M : C→ C be a monad. Then
M is a separable monad if and only if the forgetful functor GM : M–ModC−→C is
a separable functor. Moreover, if we assume that C is a suspended category, then
M is a stably separable monad if and only GM is a stably separable functor.

Proof. Since the forgetful functor GM has a left adjoint FM : C−→M–ModC,
its (stable) separability is equivalent to the existence of a (stable) section ξ :
IdM–ModC

−→FMGM of the unit ε : FMGM → IdM–ModC
as in Remark 3.9. In-

deed, there is an explicit dictionary between such sections ξ and the sections
σ : M →M2 of the monad’s multiplication, as in Definition 3.5. To ξ corresponds

σ : M = GMFM
GMξFM→ GMFMGMFM = M2. Conversely, to σ corresponds

ξ(x,λ) : x
ηx−→ M(x)

σx−→ M2(x)
M(λ)−→ M(x) = FMGM (x, λ)

for every M -module (x, λ). The equivalence is proved in the references. This
correspondence preserves “stability”, hence the second part of the statement. �

4. Pre-triangulation on the category of modules

4.1. Theorem. Let C be a pre-triangulated category and let D is an idempotent-
complete suspended category. Let

C

F ��
D

G

OO

be an adjunction (F left adjoint and G right adjoint) of functors commuting with
suspension. Suppose that the stable monad GF : C → C is exact and that G :
D → C is a stably separable functor (Def. 3.7). Then D is pre-triangulated with
distinguished triangles ∆ being exactly the ones such that G(∆) is distinguished
in C. Moreover, with this pre-triangulation both functors F and G become exact.

Proof. The reader is referred to Definition 3.7 and Remark 3.9 for separability of G.
In particular, we use the notation H for the retraction of G on morphisms as in (3.8)
and ξ : IdD → FG for the section of the counit ε, as in (3.10).

Let us verify (TC 2.1)-(TC 2.3) of Definition 1.3. The bookkeeping axioms
(TC 2.1) are easily verified by applying G to the triangles which are candidate for
distinction and by using the corresponding axioms in C. The main difficulty will
be the existence of distinguished triangles over every morphism (TC 2.2). Indeed,
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the morphism axiom (TC 2.3) is easy, as we now verify. Consider two distinguished
triangles in D and the beginning of a morphism (α, β) :

x
f //

α

��

y
g //

β

��

z
h //

γ

��

Σx

Σα

��
x′

f ′
// y′

g′
// z′

h′
// Σx′ .

Applying G to this diagram, we get a similar diagram to which we can apply
the morphism axiom in C to produce some fill-in map γ̃ : G(z) → G(z′). Then
setting γ := Hz,z′(γ̃) yields a fill-in map as wanted. For instance, γ g = H(γ̃)g =
H(γ̃ G(g)) = H(G(g′)G(β)) = H(G(g′β)) = g′β and similarly for the other square.

We now have (TC 2.1) and (TC 2.3) for D. Let us finally prove axiom (TC 2.2).

Let f : x → y be a morphism in D and consider a distinguished triangle ∆̂ with
base G(f) in the pre-triangulated category C :

∆̂ =
(
Gx

G(f)
// Gy

ĝ // ẑ
ĥ // ΣGx

)
.

Using naturality of ξ : IdD → FG and ε : FG → IdD, as well as ε ξ = IdD, we see
that the morphism f : x→ y is a direct summand of the morphism FG(f) in D :

x
f //

ξx

��

y //

ξy

��

? //

��

Σx

Σξx

��
F (∆̂) : FGx

FG(f) //

εx

��

FGy
F (ĝ) //

εy

��

F ẑ
F (ĥ) //

��

ΣFGx

Σεx

��
x

f // y // ? // Σx .

The triangle F (∆̂) is distinguished in D since GF is exact. We now want to
construct a direct summand of F ẑ and a triangle with base f which will be a
direct summand of F (∆̂). By Lemma 1.6 (d) applied to D, there is an idempotent

e = (ξxεx , ξyεy , r) = e2 in D of the distinguished triangle F (∆̂) :

FGx
FG(f) //

ξxεx

��

FGy
F (ĝ) //

ξyεy

��

F ẑ
F (ĥ) //

∃ r=r2

��

ΣFGx

Σ(ξxεx)

��
FGx

FG(f)
// FGy

F (ĝ)
// F ẑ

F (ĥ)

// ΣFGx .

Since D is idempotent-complete, Proposition 1.10 gives a decomposition F (∆̂) =
∆ ⊕ ∆′, for triangles ∆ and ∆′ corresponding to the idempotents e and 1 − e
respectively. By construction, the summand ∆ corresponding to e has the form

∆ =
(
x

f // y
g // im(r)

h // Σx
)

where g = rF (ĝ)ξy and h = Σ(εx)F (ĥ)r. Then G(∆) is a direct summand of the

triangle GF (∆̂) which is distinguished in C since GF is exact. A direct summand of
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a distinguished triangle in the pre-triangulated category C is distinguished, see [21,
Prop. 1.2.3]. So, G(∆) is distinguished in C and ∆ is distinguished in D. �

4.2. Remark. Note that we did not require the functor G to be full, in which case
F would be a Bousfield localization by [14, Prop. 4.9.1] for instance. See more in
Example 6.3 below.

4.3. Corollary. Let C be an idempotent-complete pre-triangulated category and let
M : C → C be an exact monad. Suppose that M is a stably separable monad
(Def. 3.5). Then every M -module is projective (relatively to C) : M–ProjC =
M–ModC, i.e. the Eilenberg-Moore category M–ModC is the idempotent comple-
tion of the Kleisli category M–FreeC. More important, M–ModC admits a pre-
triangulation such that

(a) the free-module functor FM : C→M–ModC is exact,

(b) the forgetful functor M–ModC → C is exact.

In fact, the pre-triangulation is characterized by any of the properties (a) or (b).

Proof. Let D = M–ModC. We claim that the free-module/forgetful adjunction FM :
C � D : GM of Definition 2.4 satisfies the assumptions of Theorem 4.1. Indeed,
D = M–ModC is an idempotent-complete suspended category. By Proposition 3.11,
GM is a stably separable functor. Finally, GMFM = M is exact. Then Theorem 4.1

yields a pre-triangulation on D and Proposition 2.10 gives (M–FreeC)
\

= D\ = D.
Uniqueness of the triangulation is easily left to the reader. �

5. Octahedron and higher triangulations

The study of n-triangles for n ≥ 1, or higher octahedra, was initiated in Beilinson
et. al. [5, Rem. 1.1.14]. A 1-triangle is just the data of an object, a 2-triangle is a
good old triangle and a 3-triangle is an octahedron. Let us review this with the goal
of introducing Künzer’s higher axiomatic [15]. See also Maltsiniotis [19]. Since these
references are still somewhat confidential at this stage, we provide explanations,
pictures and examples, to help the reader get acquainted with these objects.

5.1. Definition. Let (C,Σ) be a suspended category (Def. 1.1). Let n ≥ 1. An
n-triangle Θ is defined as a commutative diagram in C

ai,j
fi,j //

gi,j

��

ai,j+1

gi,j+1

��
ai+1,j

fi+1,j

// ai+1,j+1

with objects ai,j indexed by (i, j) ∈ Z2 and morphisms fi,j and gi,j as above,
subject to the following rules :

(i) the diagram lives in a diagonal strip : ai,j = 0 unless 1 ≤ j − i ≤ n,

(ii) the diagram has periodicity : for all (i, j) ∈ Z2, we have ai,j+n+1 = Σ(aj,i) on
objects, whereas fi,j+n+1 = Σ(gj,i) and gi,j+n+1 = Σ(fj,i) on morphisms.
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So, all information contained in Θ is exactly in the finite commutative diagram

(5.2)

a0,1
f0,1 //

��

a0,2
f0,2 //

g

��

a0,3
f0,3 //

g

��

· · ·
f0,n−2 // a0,n−1

f0,n−1 //

g

��

a0,n //

g

��

0

��
0 // a1,2

f //

��

a1,3
f //

g

��

· · · f // a1,n−1
f //

g

��

a1,n
f //

g

��

Σa0,1

Σf0,1
��

0 // a2,3
f // · · · f // a2,n−1

f //

g
��

a2,n
f //

g
��

Σa0,2

Σf0,2
��

. . .
. . .

...
g

��

...

g

��

...

Σf0,n−3

��
0 // an−2,n−1

f //

��

an−2,n
f //

g

��

Σa0,n−2

Σf0,n−2

��
0

0 // an−1,n
f //

��

Σa0,n−1

Σf0,n−1

��
0 // Σa0,n .

Rule (ii) then means that the right-hand column is the suspension of the top row

a0,1
f0,1 // a0,2

f0,2 // a0,3
f0,3 // · · · // a0,n−1

f0,n−1 // a0,n .

That top row is called the base of the n-triangle Θ.

5.3. Remark. These n-triangles Θ should remind the reader of the n-simplices in
Waldhausen’s S·-construction [25], in which the base is composed of admissible
monomorphisms and ai,j is the quotient a0,j/a0,i. Here, we pretend instead that
for every 1 ≤ i < j ≤ n the following triangle is distinguished :

(5.4)

a0,i // a0,j

��
ai,j // Σ(a0,i) .

This replaces Waldhausen’s choice of an exact sequence a0,i� a0,j� ai,j .
Waldhausen’s construction is simplicial and the same holds here. The face op-

eration dk is very easy : It removes all objects ai,j with i or j congruent to k
modulo n+ 1 (and composes morphisms over the gap). The degeneracy operation
sk is easy too : For 0 ≤ k ≤ n, it repeats the object a0,k in the extended base :

0 = a0,0 → a0,1 → · · · → a0,k
1−→a0,k → · · · → a0,n. The effect of sk on the rest

of the n-triangle is controlled by the rule (5.4), followed in the most natural way.
So, one has to include zero objects (=cones of identity morphisms) and identity
morphisms at the relevant places. A posteriori, one can forget about the above
recipe (after all, there are no distinguished triangles yet) and describe the simpli-
cial structure by formulas. This is done in our references [15, 16, 19]. We explicitly
unfold the case n = 3 below.
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5.5. Example. A 2-triangle is just a triangle, as in (1.2) – on the right. A 3-triangle

(5.6) Ω =



a0,1
f0,1 // a0,2

f0,2 //

g0,2

��

a0,3

g0,3

��
a1,2

f1,2

// a1,3
f1,3 //

g1,3

��

Σa0,1

Σf0,1
��

a2,3
f2,3

// Σa0,2

Σf0,2
��

Σa0,3



is usually called an octahedron, often presented as

a0,1
f0,1 //

""
a0,2

f0,2 //

g0,2

��								
a0,3

��								

g0,3

ss

a1,2

f1,2

��55555555

·5555

ZZ555

a2,3·oo

·5555

f2,3

ZZ555

a1,3

g1,3

DD								

·

f1,3

MM

or

a0,3

����������

g0,3

��222222222222222222

a0,2

f0,2

77ooooooooooooooo

g0,2

��222222222222222222
a2,3·

f2,3oo

·

��

a0,1

OOOOO
f0,1

ggOOOOOOOOO

OO

a1,3·
f1,3oo

g1,3

ggOOOOOOOOOOOOOOO

a1,2

·�����

BB���
f1,2

77ooooooooooooooo

The four faces which are not triangles are commutative, hence defining the four ar-
rows which are not named in (5.6), like a2,3−→Σa1,2 which must be Σ(g0,2) f2,3. In

the simplicial structure à la Waldhausen, every triangle ∆ =
(
a

f // b
g // c h // Σa

)
yields three degeneracies, namely the following octahedra s0(∆), s1(∆) and s2(∆) :

0 // a
f // b

a
f

// b //

g
��

0

��
c

h
// Σa

Σf
��

Σb

a
1

a
f //

��

b
g

��
0 // c

h
// Σa

c
h

// Σa
Σf

��
Σb

a
f // b

1

g
��

b
g

��
c c

h
//

��

Σa
Σf

��
0 // Σb

Σb .
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And to every octahedron Ω as in (5.6), we can associate four faces, i.e. the triangles :

(5.7)

d3(Ω) =
(
a0,1

f0,1 // a0,2
g0,2 // a1,2

f1,3 f1,2 // Σa0,1

)
d2(Ω) =

(
a0,1

f0,2 f0,1 // a0,3
g0,3 // a1,3

f1,3 // Σa0,1

)
d1(Ω) =

(
a0,2

f0,2 // a0,3
g1,3 g0,3 // a2,3

f2,3 // Σa0,2

)
d0(Ω) =

(
a1,2

f1,2 // a1,3
g1,3 // a2,3

Σ(g0,2) f2,3 // Σa1,2

)
.

5.8. Remark. A pre-triangulated category C is called triangulated in the sense of
Verdier if any pair of composable morphisms a0,1 → a0,2 → a0,3 is the base of an
octahedron Ω as in (5.6), whose four faces {di(Ω)}0≤i≤3 as in (5.7) are distinguished
triangles. The point is that Verdier defines his good octahedra by the distinction of
their four faces. So, being triangulated is a property of a pre-triangulated category,
not an additional structure. As announced, to adapt Theorem 4.1 and Corollary 4.3
beyond pre-triangulated categories, we need the stronger higher axiomatic of [15,
19], whose bookkeeping involves the following :

5.9. Definition. Given an n-triangle Θ, its symmetric σ(Θ) is the n-triangle ob-
tained by applying Σ to every entry of Θ and changing the sign of every horizontal
morphism in the last column :

Σa0,1
Σf0,1 // Σa0,2

Σf0,2 //

Σg
��

· · · // Σa0,n−1
Σf0,n−1 //

Σg
��

Σa0,n

Σg
��

Σa1,2
Σf // · · · // Σa1,n−1

Σf //

Σg
��

Σa1,n
−Σf //

Σg
��

Σ2a0,1

Σ2f0,1
��

. . .
...

Σg

��

...

Σg
��

...

Σ2f0,n−3
��

σ(Θ) = Σan−2,n−1
Σf // Σan−2,n

−Σf //

Σg
��

Σ2a0,n−2

Σ2f0,n−2
��

Σan−1,n
−Σf // Σ2a0,n−1

Σ2f0,n−1
��

Σ2a0,n

The name comes from the fact that the right-hand column of Θ in (5.2) now becomes
the base row of σ(Θ). On the other hand, the translate τ(Θ) is the n-triangle which
has ai+1,j+1 in place (i, j) and similarly for morphisms, without any sign.

5.10. Example. The symmetric and the translate of a 2-triangle a
f // b

g // c h // Σa
are the two triangles which appear in (TC 2.1.c) in Definition 1.3.

We can now formulate the higher triangulation in rather compact form.
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5.11. Definition. Let C be a suspended category (Def. 1.1) and N ≥ 2. We call
triangulation of order N on C a collection of distinguished n-triangles (5.2) for all
n ≤ N (2) such that the following axioms hold true for every 2 ≤ n ≤ N :

(TC n.1) Bookkeeping Axioms :

(TC n.1.a) Any n-triangle isomorphic to a distinguished one is distinguished.

(TC n.1.b) Distinguished triangles are preserved by the simplicial structure à
la Waldhausen, as explained in Remark 5.3 : Degeneracies of distin-
guished (n − 1)-triangles are distinguished n-triangles and faces of
distinguished n-triangles are distinguished (n− 1)-triangles.

(TC n.1.c) An n-triangle Θ is distinguished if and only if its symmetric σ(Θ) is
distinguished; and Θ is distinguished if and only if its translate τ(Θ)
is distinguished. See Definition 5.9 above.

(TC n.2) Existence Axiom : Every (n − 1)-tuple of composable morphisms is the
base of a distinguished n-triangle.

(TC n.3) Morphism Axiom : Given two distinguished n-triangles, every morphism
between their bases extends to a morphism of n-triangles.

A functor between triangulated categories of orderN ≥ 2 is exact up to order N if
it commutes with suspension and preserves distinguished N -triangles (and a fortiori
distinguished n-triangles for all n ≤ N).

A category with triangulation of infinite order, i.e. distinguished n-triangles for
all n ∈ N satisfying (TC n.1-3), is called ∞-triangulated.

5.12. Remark. The homotopy category of a stable model category is∞-triangulated.
Actually, the value D(I) of a triangulated derivator D at any admissible category I is
∞-triangulated, see [19, Thm. 2]. So, morally speaking, all triangulated categories
which appear in real life are ∞-triangulated.

5.13. Remark. It is clear that

Triangulation
of third order

=⇒ Triangulation
à la Verdier

=⇒ Triangulation
of second order

Pre-
triangulation.

One can actually give variants of these definitions, following Verdier, by looking at
n-triangles n ≥ N + 1 whose faces are distinguished (up to some size). See [19].

5.14. Remark. As in Definition 1.3, axioms (TC n.2) and (TC n.3) win the juicy
contest. Bookkeeping axioms are far from trivial, though, and one can actually add
more of them, as in the strong form of the octahedron of [5, Rem. 1.1.13] or the
folding of [16, 1.2.2.2]. Our references do not prove that the homotopy category of
a stable model category satisfies these additional axioms, although it is expected.
In any case, all such axioms easily pass from C to categories of M -modules.

5.15. Remark. When Θ is a distinguished n-triangle, an iterated application of the
faces implies that every triangle as in (5.4) is distinguished. In other words, every
ai,j for 1 ≤ i < j ≤ n is the cone of the morphism a0,i → a0,j composed from the
base of Θ. We shall use this in the proof of the Main Theorem below.

2By convention, all 1-triangles are distinguished – these are just objects of C.
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5.16. Remark. We leave it to the reader to adapt the basic results of pre-triangulated
categories to triangulated categories of order N , as in [21, §§ 1.1-1.2] with n-
triangles, n ≤ N , instead of 2-triangles. In particular, for n-triangles Θ1 and Θ2,
their sum Θ1⊕Θ2 is distinguished if and only if both Θ1 and Θ2 are distinguished.

5.17. Main Theorem. Let C be an idempotent-complete category with a triangu-
lation of order N ≥ 2 (Def. 5.11) and let M be a stably separable monad on C

(Def. 3.5) such that M : C→ C is exact up to order N . Then :

(a) All M -modules in C are projective (relatively to C), i.e. the idempotent com-
pletion of the Kleisli category of free M -modules coincides with the Eilenberg-

Moore category of M -modules : (M–FreeC)
\

= M–ModC.

(b) The category of M -modules M–ModC admits a triangulation of order N such
that, for all n ≤ N , an n-triangle of M -modules Θ is distinguished exactly when
the underlying n-triangle GM (Θ) is distinguished in C.

(c) Both the free-module functor FM : C→M–ModC and the forgetful functor GM :
M–ModC → C are exact up to order N . Each of these properties characterizes
the triangulation on M–ModC.

(d) Let D be an idempotent-complete suspended category and F : C � D : G
an adjunction of functors commuting with suspension (F left adjoint) which
realizes M . Suppose that G is stably separable. Then the functors L and K

M–FreeC
L−→ D

K−→ M–ModC

of Proposition 2.8 have the following properties : K is an equivalence and L is
an equivalence after idempotent completion.

Proof. The category C is in particular pre-triangulated since N ≥ 2. So, we can
apply Corollary 4.3 to get (a) and Theorem 4.1 to show that D is pre-triangulated

in (d). By Proposition 2.10 the functor L\ : M–FreeC
\−→D\ = D is an equivalence.

By (a), K ◦L\ is an equivalence, so the rest of (d) follows. Part (c) will follow from
the proof of (b), which we treat now. The argument is essentially the same as in
the proof of Theorem 4.1 and we only indicate the relevant modifications.

By Proposition 3.11, the forgetful functor GM : M–ModC−→C is stably sep-
arable (Def. 3.7). Let H be a retraction of GM on morphisms as in (3.8) and
ξ : Id→ FMGM be the section of the counit ε : FMGM → Id, as in (3.10).

Let us verify (TC n.1)-(TC n.3) of Definition 5.11. The bookkeeping axioms
are easy to verify by just applying GM to the n-triangles which are candidate for
distinction and by using the corresponding bookkeeping in C. The morphism axiom
(TC n.3) goes as (TC 2.3) : We complete the given morphism between the bases in C,
after applying GM , and we apply the retraction H to everything in sight to recover
a morphism between the original n-triangles in M–ModC. Finally, for (TC n.2), let

a0,1
f0,1−→· · · f0,n−1→ a0,n in M–ModC be an (n − 1)-tuple of composable morphisms.

Complete its image GM (a0,1)
GM (f0,1)→· · · GM (f0,n−1)→GM (a0,n) into a distinguished

n-triangle Θ̂ in C. Then FM (Θ̂) is a distinguished n-triangle in M–ModC since

GMFM is exact. The base of FM (Θ̂) admits an idempotent endomorphism(
ξa0,1εa0,1 , ξa0,2εa0,2 , . . . , ξa0,nεa0,n

)
.

The direct summand of the base of FM (Θ̂) corresponding to this idempotent is

simply the string a0,1
f0,1−→· · · f0,n−1→ a0,n that we want to complete into an n-triangle.



SEPARABILITY AND TRIANGULATED CATEGORIES 17

By the already proven (TC n.3) – this is the key point of our approach – we can
extend the above idempotent endomorphism of the base into an endomorphism of
the whole n-triangle FM (Θ̂) in M–ModC :

d : FM (Θ̂)−→FM (Θ̂) .

Now, by Remark 5.15, every object in FM (Θ̂) outside of the base is the cone of a
morphism of the base, as in (5.4); hence we can apply Lemma 1.6 strictly speaking
(not some extension to higher triangles). By part (c) of that Lemma 1.6, if we let

e := 3d2−2d3, we have that e = e2 is an idempotent on every object of FM (Θ̂). By

Remark 2.6, M–ModC is idempotent-complete. So, by Remark 1.9, FM (Θ̂) splits
up as the direct sum of two n-triangles Θ and Θ′ in M–ModC, such that Θ has the
wanted base. It remains to see that Θ is distinguished. Simply apply GM to the
relation FM (Θ̂) = Θ⊕Θ′ and use that distinguished n-triangles in C are stable by
direct summand, see Remark 5.16. �

5.18. Corollary. Let C be a tensor triangulated category of order N (more precisely,
we only need that, for every fixed object A ∈ C, the functor A ⊗ − is exact up to
order N). Let A be a separable ring object in C (Def. 3.1). Then the category of
left A-modules in C has a unique triangulation of order N such that an n-triangle
of A-modules for n ≤ N is distinguished exactly when the underlying n-triangle of
objects of C is distinguished. �

5.19. Remark. We can apply our results to the opposite category, in order to obtain
the same statements for co-modules over co-ring objects, or more generally over co-
monads. In short, a comonad on C is a triple (W,∇, ε) where W : C→ C is a functor
(e.g. W = H ⊗− for an coring object H), with comultiplication ∇ : W →W 2 and
counit ε : W → 11 making the dual of diagrams (2.2) commute. The category
W–ComodC of W -comodules in C and morphisms thereof is defined as usual, which
amounts to W–ComodC =

(
W op – ModCop

)
op where W op : Cop → Cop is the dual

monad. There is a cofree functor C→W–ComodC, x 7→
(
W (x),∇x

)
, which is right

adjoint to the forgetful functor W–ComodC → C. Rafael’s Theorem says that the
forgetful functor is separable as a functor (Def. 3.7) if and only if W is a separable
comonad, meaning that ∇ : W → W 2 has a retraction as bi-comodule. When C

is moreover idempotent-complete and triangulated of order N ≥ 2 and when W is
exact up to that order, then every W -comodule is a direct summand of a cofree
one and the category W–ComodC admits a unique triangulation of same order N ,
characterized by the property that both functors W–ComodC � C are exact. This
applies in particular to comodules over coring objects. (Phew !)

6. Examples

6.1. Remark. Following up on the first paragraph of the Introduction, if the ring
object (or the monad) in our triangulated category descends to a separable ring ob-
ject in some stable model and if the modules in that model themselves form a stable
model category with a Quillen adjunction of the type “free-module/forgetful”, then
the derived adjunction between homotopy categories has good chances of satisfying
the assumptions of Theorem 5.17 (d). Hence, by that result, the homotopy category
of the modules would be equivalent to the modules in the homotopy category. So,
we recover the same triangulated category as the one obtained via models, if the
latter exists. Theorem 6.5 below provides an illustration of this phenomenon.
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6.2. Example. Let (Mi, µi), i = 1, 2, be two additive monads on an additive cate-
gory C. Then, we can form a monad M1⊕M2 with component-wise multiplication

(M1 ⊕M2)2 = M 2
1 ⊕M1M2 ⊕M2M1 ⊕M 2

2

(
µ1 0 0 0
0 0 0 µ2

)
→ M1 ⊕M2

and obvious unit. If M1 and M2 are separable then so is M1 ⊕M2.
In particular, starting with the trivial separable monad IdC, we obtain by induc-

tion a collection of monads Id⊕nC for every n ≥ 0. When C = (C,⊗, 11) is monoidal,
this corresponds to the ring object 11⊕n with component-wise multiplication. It is
easy to verify that the category of Id⊕nC -modules is just C× · · · × C, with n copies
of C. The free module functor maps x to (x, . . . , x) diagonally, whereas the forgetful
functor G adds up all components (x1, . . . , xn) 7→ x1 ⊕ · · · ⊕ xn. Note that G is
not full and that there exists no retraction of G as a functor. The retraction H
on morphisms, as in Definition 3.7, takes an (n × n)-matrix to its diagonal. The
triangulation on C× · · · × C is the obvious one, “component-wise”.

6.3. Example. Let C be triangulated and let (L, λ) be a Bousfield localization, i.e.
L : C → C is an exact functor and λ : IdC → L is a natural transformation such
that Lλ is an isomorphism L

∼→ L2 and Lλ = λL. Then the inverse of Lλ, say
µ : L2 → L, defines a monad structure on L with unit η = λ. This monad is stably
separable with σ = λL in Definition 3.5. The L-modules are just L-local objects,

i.e. objects of Ker(L)
⊥

, see [14, § 4.9]. The Eilenberg-Moore adjunction coincides

with L : C � Ker(L)
⊥

: G, where G is the fully faithful inclusion; see Remark 4.2.

6.4. Example. Let R be a commutative ring and C = D(R – Mod). Denote by X[0]
the complex with the module X in degree zero and zero elsewhere. The triangulated
category C admits the usual derived tensor product ⊗ = ⊗L

R with unit 11 = R[0]. A
classical R-algebra A, i.e. in R – Mod, might not define a ring object in C because
(A⊗R A)[0] 6= A[0]⊗A[0] unless A is R-flat.

6.5. Theorem. Let R be a commutative ring and A be a flat and separable R-
algebra. Then, A defines a ring object A[0] in D(R – Mod) and the category of A[0]-
modules in D(R – Mod) is canonically equivalent, as an ∞-triangulated category, to
the derived category D(A – Mod) of the ring A.

Proof. We have an adjunction of exact functors F : R – Mod � A – Mod : G, where
F (−) = A⊗R − and G is the direct image (forgetful) functor. Let η and ε be the
unit and counit of this adjunction. Since F and G are exact, we get a derived
adjunction that we denote DF : D(R – Mod) � D(A – Mod) : DG, with unit and
counit Dη and Dε. The functors DF and DG are simply obtained on complexes
by applying F and G in each degree. Similarly, the natural transformations Dη
and Dε are just η and ε in each degree. Note that this derived adjunction induces
the monad M(−) = A[0] ⊗ −. Since A is separable in R – Mod, there exists a
section ξ : IdA – Mod−→FG of the unit ε : FG−→ IdA – Mod by Proposition 3.11
and Remark 3.9. This section extends to a section Dξ : IdD(A – Mod)−→DF ◦DG of
the counit Dε, again simply defined on complexes as ξ in each degree. This proves
that DG is stably separable. We can now conclude by Theorem 5.17 (d). �

Recall that one way to define an étale commutative R-algebra S is to require S to
be separable, flat and of finite presentation. See [13, Def. p. 104] or Grothendieck [10].
Hence the above result specializes to :
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6.6. Corollary. Let R be a commutative ring and let S be a commutative étale R-
algebra. Then the category of S[0]-modules in D(R – Mod) is canonically equivalent,
as an ∞-triangulated category, to the derived category D(S – Mod). �
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