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Theorem 2. I ]  such  that G :  = F ‘0, is a  gcrd of (&E, Np,  Dc), implying 

@ D w ~ p =  F,G, D,= FG (34) 

with F,  Fl, G matrices  with  elements in & and 

detF.detGE&DC. (35) 

Then by the  equations  above 

r F  

where 

(37) 

Hence, G2 is a  gcrd of ( E 2 .  A,)  with 

det G ,  = det  Gdet G,det C,. (38) 

Non, by Lemma 5 with (28), (1 I), (321, (29), and  (30),  by (1 8). and by 
Lemma I ,  any gcrd of ( E , ,  A 2 )  must  be  such  that  its  determinant is 
equivalent  to  det 0,det 0,. Hence,  from (38),  (21). and (25), det G -  
det  &det o,. So, from  the  arguments  above 

admits a gcrd G E such that  det G - der g d e t  5,. (39) 

Hence,  the  hypothesis of (39) implies also that  the  conditions of Theorem 
1 are necessary. 

Notice also from (14) and  (34)  that ( Np,  C)  has  to be r.c.. a  sideline 
result. 

Sufficieng: Assume  a  compensator  exists  with 1.r. 
( D , ,  A:) as in  the  theorem  statement. That F I N ,  is an  &stabilizer of the 
loop  with 0, = FG means  that  loop  &stability is realized, i.e.. the  char- 
acteristic  function of (14) is invertible  in @-. 

On the  other  hand, if G E  @ n i X m  is a gcrd of (&o,N,. 0,) with 
det G- det o, det 6,. then  in view  of Lemma 5. (36), (37), (38), (21), 
(25). (28), (29), and (30) existsGI, a  gcrd of ( E ,  A )  such  that  det G I  - 
det D,det 0,. Since the  loop is &stable. we have  in view of ( IO)  and (14) 
and applying  Lemma 4 

In light of (8). the defi-nition of B in (3). (I), and (2) and  in view of the 
fact t h a t f E &  -!E&, we conclude V u o E C “ ,  V c 0 E C m ,  com- 
pleting  the  proof. 

Remark 2: A careful look at the  sufficiency proof of Theorem 1 reveals 
that  condition b) of Theorem 1 may be relaxed to 

b’) G is a  crd of (&OWNp, 0,). 
Call this Theorem Z’. Theorem 1’ has  great value in that  it  requires  only 

b’) for  constructing  the  compensator e. 
The  conditions  established by Theorem 1 are  perfectly  analogous to the 

lumped  parameter  problem [4], [5]. It should be remembered, however, 
that z E B” does  not  imply  in  the  general  case  that lim, - %e( t )  = 0. a  fact 
which has  been  overlooked in  [3]. The  next  theorem  establishes  a  suffi- 
cient  condition for the last. Before stating  it, let us define 

,GI = inverse  Laplace  transform of Ns 

f i w  = inverse  Laplace  transform of AT,. 

Theorem -7: Assume  that  the  compensator  satisfies the conditions of 
Theorem I .  Assume also that the elements o! /v, and N R ,  belong to L, ,  
while their  derivatives  belong to @. Then  &stability is achieved and 
r ( t ) - O a s t - a ,  V u o ~ C ” , V ~ O E C m .  

Pro08 Follon,s straightforwardly  from [2, Lemma 5. I]. 
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New  Relationships  Between  Input-Output 
and Lyapunov Stability 

M. VIDYASAGAR AND A. VANNELLI 

Abstract -In this note we define a concept  called ‘‘small signal  L,-sta- 
bility,” and shotv its relationship to Lyapunov  stability. 

In this note we present several new results concerning  the  relationship 
between the input-output  and  Lyapunov  stability of autonomous nodn-  
ear  systems  described  by 

where u E  R”’, x-€ R“, ‘E R k  denote the input.  state,  and  output of the 
system,  respectively.  Such  relationships  are  valuable  for the following 
reason. Both Lyapunov  theory  and  input-output  theory  are well-devel- 
oped  in  their own right  for  single-loop  systems [1]-[3], as well as for 
large-scale  systems [4]-[6]:  however. the  interrelationships  between the 
two  theories  are  not  completely  understood. An examination of [I]-[6] 
reveals that  many  stability  criteria  are  easier to state  and  prove  in  the 
input-output  setting  than  in the state-space  (Lyapunov)  setting; yet. 
many  problems  are  more  naturally  stated  in  the  state-space  setting  than  in 
the input-output  setting.  Thus, if one  could  conclude  input-output 
stability from Lyapunov  stability, or vice  versa, it would  be possible  to use 
the techniques  and  results  from  one  theory to solve the  problems of the 
other. 

In what  follows we assume  that f(0,O) = 0 and  that g(0.0) = 0; further 
we assume  that.  corresponding to each initial condition x ( t o )  = x. and 
each  input u( .), ( 1  a)  has  a  unique  solution  for all t 2  to ,  whose  value at t 
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is denoted  by +( t. t o ,  s o .  u ) .  It is clear that $( t, to. .xo. u )  is independent 
of U(T) for T 4 [ r , . r ] .  

In order  to state our results precisely, as well as to compare our results 
to existing ones. it is desirable to introduce a few definitions  and  state two 
kn0v.m results. 

Definiriot~ I :  System ( I )  is reuchable if there exists a time r * >  0 such 
that  for every XE R" there exists a u ( . )  satisfying Q(r*.O.O. 1 0  = a. 

Definirion 2; System ( I )  is unijorm!r ohemable if there exists a func- 
tion a of class KR [7. p. 1141 such  that 

I lg(~(- .O,* .0) .0)112~a(~x~)  V-x ( 2 )  

where I . ,  denotes  the Euclidean norm on R" and , I .  i denotes  the 
&-norm. 

Fact I [ 8 ] :  Suppose system ( I )  is reachable  and uniformly observable. 
and that it is also &-stable  in the following sense: whenever x(0) = 0 and 
u( . )E  Ly. the  resultingr.( . ) E  L.5. Under these conditions the equilibrium 
point .x = 0 of 

i ( r )= f (* ( t ) . 0 )  ( 3 )  

is globally attractive. Le., C(t.0, x.0) + 0 as r - co for all .x E R". 
Fact 2 [ 91: Supposefcan  be written as 

f(*. .> =f l ( -y )+h(~~)  (4) 

and suppose  that fi.fi. and g are all globally Lipschitz continuous.  Under 
these conditions, if x = 0 is a globally exponentially stable  equilibrium 
point of (3). then system ( I )  is finite-gain L,-stable.  i.e.. there exists a 
finite  constant y such that whenever ~ ( 0 )  = 0 and u ( .  ) t L y  the resulting 
y(  . )  E Li  and satisfies 

I I? , I I , sy l lu l l~ .  ( 9  

In this note we give local versions of Facts 1 and 2 by introducing  the 
new  concept of sn~all-signal L,-stability,  which  is defined next. 

Definiriorz 3: System ( I )  is said to be sn~a/l-signal L,-sfuh/e for a given 
p E [ 1,  x ]  if there exist finite constants y, and cp such  that the following is 
true: whenever x(0) = 0. u( .) E Lp" and u( t )  I G c, for all r .  \ve have  that 
? ( - ) E L :  and 

I1 r. I1 , y, I1 u !i F .  (6) 

In Definition 3 it is  important to note  that even  though u( .) is 
pointwise-bounded (since 1 u(f)l C c, for a l l  f). the quantity I z 0 1  , can be 
arbitrarily large if p < co. 

Theorem 1: Supposef. g are continuously differentiable at X = 0. u = 0. 
and  that x = 0 is an  exponentially stable equilibrium point of ( 3 ) .  Under 
these  conditions 

i)  system ( I )  is small-signal L,-stable for all p E [ I .  x ]  and cF = c, 
V p E [ l . m )  and 

ii) if l u l l ~ < c x  and u ( 0 - 0  as I-co. then both x ( r ) - O  and 

Theorem 1 is thus a local version of Fact 2 in that  the  hypothesis is the 
(local)  exponential  stability of the equilibrium .x = 0 of system ( 3 ) .  and the 
conclusions about system ( I )  are also local. 

Proof: The hypotheses  imply that f and g satisfy local Lipschitz 
conditions at x = 0, = O .  Le.. there exist constants ki. X,. and c such 
that 

I . ( t ) -Oasto -22. 

I / ( . ~ , u ) - / ( x l , u l ) l ~ k , ( i x - x l ~ + I u - u l ~ )  (7a)  
I ~ ( x - . u ) - g ( . ~ , . u , ) ~ ~ k , ( ~ . x - . x , ~ + ~ u - u , ~ )  } (7b) 

V x E  B,, u E  B, 

where B, denotes the closed ball of radius c centered at 0. 
The hypotheses also imply [7. p. 2731 that there exists a Lyapunov 

function V: R" - R ,  that is continuously  differentiable at .x = 0. and 
positive constants a,B. y ,  6 such  that 

a ' I . r I ' ~ V ( x ) c 8 ' l . x , '  (sa) e3,( x) < - / S I  V.Y E B, (Xb 1 
I v V ( . x ) l < y  S I  (8c 1 

where denotes the derivative of V along  the trajectories of ( 3 ) .  
Suppose u (  .) is a fixed input  such  that u( t )  c V t  a 0. If we evaluate 

the derivative of V along the trajectory of ( la )  starting at x(0) = 0. xve get 

- V ( . Y ( f ) ) l  d =Tb'( .Y) ' f ( .Y.U)  dr I lal 

=cI~~(.~)'f(.~.O)+~V(.x)'[f(.~,u)-~f(.~.o)] 

G -1.1- '+ykl/.rJJul if J . \-(r)/<min{8.e} 

(9) 

where in the last step we  use (7a).  (8b).  and (8c). Since :.y(O)( G 6. there 
exists a T >  0 such  that I . x ( f  I G 6 Vr E [ O .  71. Hence. (9) holds Vr E [O. TI .  
Observe now that the right side of (9) is negative whenever !.x1 > y k i '  u ' .  
This implies that 

If xve now  select  the constant c, such that 

(17). 

we can repeat the above argument  to show that ( 1  I )  holds  for a// r 2 0.' 
Hence. xvhenever I u ( r )  c c,. V r  2 0. w-e have 

It now readily follo\vs  from ( 1  b) and ( 7 b )  that 

This shows that system ( I )  is small-signal L,-stable. 

a s  before. we have 
Now l e t p E [ I . x j .  and let [ ( ( - ) E L ,  satisfy u ( r )  e c ,  V r a 0 .  Then, 

Let ,~ = VI  .2 . Then w is continuously  differentiable except at .x = 0. and 
there it is directionally differentiable. Hence. if x f 0. we  have 2tt.k = I; 
so that ( 15) becomes 

where we use @a). Dividing both sides of (16) by Zn. gives 

where c is an  appropriate constant. Xow the comparison  principle [ I O ]  
gives 

As sho\vn in [ 1 I ] .  if u (  . ) E  L,. then so is  the  convolution on the right side 
of ( 1 X). Hence. 1v( )) E L,. and since 

t ' rE [O.T* ] :  henw ( I l l  holds v.lth T replaced by 7. and we get 1 . ~ ( 7 ) 1 < 6 .  This 
'Suppo.re (I?) holds. and le1 F be thejrrsr time such that .\(71[ = 6  Then r(r11<6 

contradiction shows that no such P Csists. and I I I )  holds Yr 2 0 
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It is now’ easy  to see that  system ( I )  is small-signal L,-stable. 
Finally,itissh0wnin[11]thatifu(~)EL,andu(r)-Oast-~~then 

so does the convolution on the  right  side of (18). From  this  it  readily 
follows  that x ( t )  -, O,y(t) -f 0 as r -, co. 0 

Corol lu~ 1.1: Suppose x = 0 is a  globally  exponentially  stable  equi- 
librium of  (31, and  the  functions off. g are  globally  Lipschitz  continuous. 
Then system ( I )  is Lp-stable  for all p E [ 1. ,x].  

To give a  local  version of Fact 1 we need another  pair of definitions. 
Definition 4: System ( I )  is locul(y reuchuhle if there is a  function f i  of 

class K such that the following is true:  there  exists  a I *  > 0 and  a c > 0 
such  that whenever x €  R“ and I x I  S c, there  exists  a u( . )  satisfying 

i) l u ( r ) l < P ( I x , )  forallr2O  (2la) 

ii) +(t*.O,O, 1 4 )  = x .  (21b) 

Definirion 5: System ( I )  is lo call^ uniformly obsenohie if there  exists  a 
function a of class K and  a c > 0 such  that. whenever I x I < c. we have 

I I g ( ~ ( ~ . 0 , * . 0 ) , 0 ) 1 1 2 ~ a ( ! s ; ) .  (22) 

Theorem 2: Suppose system ( I )  is locally  reachable.  locally  uniformly 
observable, and small-signal L,-stable. Then  the  equilibrium x = 0 of (3) 
is attractive. 

Proof: Suppose j x I c, and  select  an  input U( .) with I U( t )  I G p( i x I ) 
such  that $( t*,O,O. U) = x. Let u ( . )  be the  input  in L,  defined by 

Clearly, $ ( r * . O , O , z l ) = . x  and l u ( r ) l G P ( l x l )  V t 2 0 .  Now- consider  the 
solution  trajectory + ( r , O , x , O ) .  It is  easy to see. because system ( la)  is 
autonomous.  that Q ( r . 0 , x . O )  =+( t+  r*.O,O. u ) .  Since  system ( 1 )  is 
small-signal L,-stable, it follows that  for  sufficiently  small 1 x ’  we have 

l l g (Q(~ ,o .o ,u ) .u (~ ) ) I l , ~c~ i l u (~ ) l l , ~c r ; .  (24) 

However, for I 2 r * .  we have,  by  (22) that 

a ( ! 9 ( t . 0 . 0 , u ) l ) = a ( l g ( r - t * , O . s . O ) l )  

where y ( . )  = g(+(..O,O. u) .  u( . ) ) .  Since the  right  side of (25)  approaches 
zero as 2-m, it  follows  that @ ( t , O , x , O ) - O  as r -x , .  provided. of 
course.  that I x I is sufficiently  small. 

As shown  in [ 121 the  property of uniform obsenability is not in general 
preserved  under  feedback. In [I21 two new forms of detectabht?:  (rather 
than  obsenrability)  are  introduced  that ore preserved  under arbitraq 
interconnection,  and  these  are used to  prove  alternate  forms of Fact I that 
are  especially  suited  to  large-scale  systems. We can prove local  versions of 
these  results as well. They  are  not  listed here for \vant of space,  but  are 
left to the reader. 
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A Note on the Routh-Hunvitz Test 

M .  M. FAHhiY AND J. O’REILLY 

Abstract-This note  demonstrates how the  c-method in the  original 
Routh-Hmik test  can be applied when the  Routh array contains a row 
with zero  leftmost  element  together with an  all-zero row‘. The  complete 
root  distribution is determined by applying the Criterion  only once to the 
giren polynomial D(s) without either  factoring  out a common divisor or 
shifting  the imaginary axis. 

Since  the  test may become computationally  tedious  due  to  the  inclusion 
of cumbersome  c-terms,  the  recently  reported method of Shamash [I] is 
used to simplify the  computational  scheme.  This method,  being restricted 
to the  case where D( s) has purely- imaginq  roots  constituting  the whole 
set of roots of the  greatest common  even divisor, is here  refined and 
generalized to accommodate all cases in which all-zero rows  appear. 

I. INTRODUCTION 

In  recent  years  there  has  been  a revival of interest  in  the  classical 
Routh-Hunvitz  criterion  [I]-[13].  A  singular case arises when the left- 
most  element of a  certain row in  the Routh  array is zero.  One  efficient 
remedy for this case is to replace  the  resulting  zero by an infinitesimal 
quantity 6 and  continue to  fill  in  the array. Hoxvever. there is a  history of 
statements.  unsupported by example, e.g.. [7], [SI. [14], to the effect  that 
problems  invalidating  the  original test may be  encountered when the  array 
contains  €-terms  and  the given polynomial D ( s )  possesses imaginary-axis 
roots (which  produce  all-zero  rows). 

Accordingly. some modifications  have  been  introduced  to  determine  the 
complete  root  distribution.  Many  authors [3], [4], [7] suggest that  the 
common  divisor be factored  out of D ( s )  or  some  subsidiary  polynomials 
of smaller  degree.  Others [I31 apply  the  criterion tLvice, to D ( s )  and 
D ( -  3 ) .  In [IO], alternatively, the imaginary axis is shifted to the  right and 
to the left by an infinitesimal  amount. 

All the  above  methods.  though  legitimate.  obscure  the  fact  that  the 
Routh-Hunvitz  criterion.  without  any  modification. gives  the complete 
root  distribution met2 in the presence of imaginaq-ais roots  and  c-terms. 
It is our contention  that  no  problems  are  encountered  for  any  case  and 
that  the  correct  answer is  always arrived at. 

In Section I1 we demonstrate how the  root  distribution  can  be  de- 
termined when the  Routh  array  contains  r-terms  and  all-zero rows. The 
criterion is applied  only  once to D(s) without  either  factoring  out  a 
common  divisor or shifting  the  imaginary axis. This  fact must be  em- 
phasized as an  intrinsic merit of the  original  Routh-Hunvitz test. 

Nonetheless.  the  computations may become  tedious to carry  out  due  to 
the  inclusion of cumbersome  €-terms  and,  consequently.  methods  for 
simplifying  the  computational scheme are  valuable.  Shamash [ I ]  has 
recently  proposed  a novel method to form  a  modified.  computationally 
less involved Routh’s  array. His proposition is based on an  implicit 
assumption  that the polynomial D ( s )  possesses imaginary-axis  roots  that 
constitute the whole set of roots of the  greatest  common even divisor. 
Since. at the outset,  one is not  always  aware  whether  such  a  property is 
satisfied  and.  moreover, the appearance of an  all-zero row is not  solely 
attributable to the  presence of imaginary-axis  roots.  Shamash’s  method 
seems  to be of restricted  use. In Section 111 we generalize  this  method 
such  that i t  works  irrespective of the location of roots  and in  all cases  in 
which all-zero rows appear.  Three  examples  are given in  Section IV to 
illustrate the feasibility  and  generality of the  procedure. 
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