In Proceedings of the 6th International Symposium on Distributed Autonomous Robotics Systems (DARS02)
Fukuoka, Japan, June 25-27, 2002

Mobile Sensor Networ k Deployment using Potential
Fields: A Distributed, Scalable Solution to the Area
Coverage Problem

Andrew Howard, Maja J Matari¢, and Gaurav S Sukhatme

Robotics Research Laboratories, Department of Computer Science, University of Southern
California, Los Angeles, CA 90089-0781
ahoward@usc.edu, mataric@usc.edu, gaurav@usc.edu

Abstract. This paper considers the problem of deploying a mobile sensor network in an
unknown environment. A mobile sensor network is composed of a distributed collection of
nodes, each of which has sensing, computation, communication and locomotion capabilities.
Such networks are capable of self-deployment; i.e., starting from some compact initial con-
figuration, the nodes in the network can spread out such that the area ‘covered’ by the network
is maximized. In this paper, we present a potential-field-based approach to deployment. The
fields are constructed such that each node is repelled by both obstacles and by other nodes,
thereby forcing the network to spread itself throughout the environment. The approach is both
distributed and scalable.
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1 Introduction

This paper considers the problem of deploying a mobile sensor network in an un-
known environment. A mobile sensor network is composed of a distributed collec-
tion of nodes, each of which has sensing, computation, communication and locomo-
tion capabilities. It is this latter capability that distinguishes a mobile sensor network
from its more conventional static cousins. Locomotion facilitates a number of useful
network capabilities, including the ability to self-deploy; that is, starting from some
compact initial configuration, the nodes in the network can spread out such that the
area ‘covered’ by the network is maximized.

Our approach is motivated by the need to deploy sensor networks in environ-
ments that may be both hostile and dynamic. Consider, for example, a scenario
involving a hazardous materials leak in a damaged structure. We would like our
sensor network, whose nodes are equipped with chemical sensors, to rapidly de-
ploy throughout the environment and return real-time data indicating the location
and concentration of hazards. This kinds of scenario imposes two important con-
straints on our deployment algorithm: prior models of the environment are either
incomplete, inaccurate or unavailable, and network nodes may be lost or destroyed.

In this paper, we describe a potential-field-based approach to deployment, in
which nodes are treated as virtual particles, subject to virtual forces. These forces
repel the nodes from each other and from obstacles, and ensure that an initial, com-
pact configuration of nodes will quickly spread out to maximize the coverage area



of the network (it should be noted that nowhere do we reason about coverage explic-
itly; rather, coverage is an emergent property of the algorithm). In addition to these
repulsive forces, nodes are also subject to a viscous friction force. This force is used
to ensure that the network will eventually reach a state of static equilibrium; i.e., all
nodes will ultimately come to a complete stop. The viscous force does not, how-
ever, prevent the network from reacting to changesin the environment; if something
is moved, the network will automatically reconfigure itself for the modified environ-
ment before return once again to a static equilibrium. Thus, nodes move only when
it is necessary to do so, saving a great deal of energy.

The potential field approach described in this paper relies on only one assump-
tion: that each node is equipped with a sensor that allows it to determine the range
and bearing of both nearby nodes and obstacles (suitable sensors can be constructed
using scanning laser range-finder or omni-camera). Using this information, the node
can determine the virtual forces acting it, and convert this information into a control
vector to be sent to its motors. No other information is required. It should be empha-
sized that this approach does not require models of the environment, localization, or
communication between nodes. As a result, the algorithm is both robust and highly
scalable.

In the remainder of this paper, we develop the potential field theory underlying
the deployment algorithm, and demonstrate that this algorithm has the desired prop-
erty that the network will converge to a state of static equilibrium. We describe a
series of simulation experiments that both validate the general approach and reveal
some of its emergent properties. These experiments include realistic sensor-based
simulations of a network containing 100 nodes in a large, complex environment.

2 Redated Work

The concept of coverage as a paradigm for evaluating many-robot systems was in-
troduced by Gage [5]. Gage defines three basic types of coverage: blanket coverage,
where the objective is to achieve a static arrangement of nodes that maximizes the
total detection area; barrier coverage, where the objective is to minimize the prob-
ability of undetected penetration through the barrier; and sweep coverage, which is
more-or-less equivalent to a moving barrier. According to this taxonomy, the de-
ployment problem described in this paper is a blanket coverage problem.

Potential field techniques for robatic applications were first described by Khatib
[10] and have since been widely used in the mobile robotics community for tasks
such as local navigation and obstacle avoidance. The related concept of ‘motor
schemas’, which utilizes the super-position of spatial vector fields to generate be-
havior was introduced by Arkin [1]. Both techniques have since been applied to
the problem of formation control for groups of mobile robots [13,2]. The formation
problem is similar, in some respects, to the deployment problem described in this
paper, in that the robots will attempt to maintain a formation based on local sensing
and computation. A key difference, however, is that there is no requirement that the
formation reach a state of static equilibrium.



The deployment problem also is also similar, in some respects, to the multi-
robot exploration and mapping problem. Here, the aim is to build a global map of
the environment by sequentially visiting each location with one or more robots. This
problem has been considered by a number of authors [4,15,14,3] who use a variety
of techniques ranging from topological matching [4] to fuzzy inference [11] and
particle filters [16]. Two good examples are provided by Simmons [14] and Burgard
[3], both of whom build global maps, apply heuristics to select goal locations for
exploration, and use explicit communication to prevent more than one robot from
heading for the same goal. This approach to exploration contrasts markedly with
the approach to deployment described in this paper. As we will show in Section
4, potential field methods are able to achieve good coverage without global maps,
without communication, and without explicit reasoning. Instead, area coverage is an
emergent, system-level property.

Finally, we note that the problem of deployment is related to the traditional
art gallery problem in computational geometry [12]. The art gallery problem seeks
to determine, for some polygonal environment, the minimum number of cameras
that can be placed such that the entire environment is observed. While there exist a
number of algorithms designed to solve the art gallery problem, all of these assume
that we possess good prior models of the environment.

3 Potential Fields

Potential fields are a commonly used and well understood method in mobile robotics,
where they are typically applied to tasks such as local navigation and obstacle avoid-
ance. In this paper, we apply potential fields to the deployment problem. The fields
are constructed in such a way that each node is repelled by both obstacles and by
other nodes, thereby forcing the network to spread itself throughout the environ-
ment.

The basic potential field method is as follows. Each node is subject to a force F
that is the gradient of a scalar potential field U; i.e.,

F=_VU 1)

We divide the potential field into two components: the field U, due to obstacles, and
the field U,, due to other nodes; these fields give rise to repulsive forces F, and F,,,
respectively. ThusU = U, + U, and F = F, + F,,.

Consider the potential field due to obstacles. If we imagine that each node and
each obstacle carries an electric change, we can write down an expression for the
resultant “electrostatic’ potential:

1
U, =k, Z — (2)
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The summation is over all obstacles that can be seen by the node, k, is a constant
describing the strength of the field, and r; is the Euclidean distance between the
node and obstacle . Let x denote the position of the node and let x; denote the
position of obstacle i. The distance r; is then given by r; =| x; — x |. Using these



Fig. 1. (a) Potential field generated by a simple environment; the contours show the lines of
equal potential. (b) Force fields generated by this potential; the arrows indicate the direction
(but not magnitude) of the force.

definitions, the total force F;, due to obstacles can be computed using Equation 1.
We re-write the equation and expand using the chain rule, as follows:
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We then insert the appropriate derivatives to obtain:
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where r; = x; — x. Note that the force is expressed entirely in terms of the relative
positions r; of obstacles, rather than their absolute positions x;. This allows us to
compute the force directly from sensor data, without the need for global localiza-
tion. Figure 1 shows the potential field U, and force field F, generated by a simple
environment.

Consider now the potential field U,, due to other nodes. By analogy with the
obstacle field, we can derive expressions for the potential U,, and force F,, by re-
placing a summation over visible obstacles with a summation over visible nodes;
thus:
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where r; is the relative position of node i.

3.1 TheEquation of Motion and The Control Law

The trajectory of a node subject to force F can be computed using an appropriate
Equation of Mation. We use an equation of the following form:

% =(F —vx)/m (6)



where % denotes the acceleration of the node and m denotes its mass. The second
term on the right hand side of this equation is a viscous friction term in which v is
the viscosity coefficient and x is the node velocity. This term is used to ensure that,
in the absence of external forces, the node will eventually come to a standstill. *
In Section 3.2 we will show that the viscous friction term also guarantees that the
network as a whole will ultimately reach a state of static equilibrium (i.e., a state in
which all nodes have stopped moving).

Our discussion up to this point has focused entirely on a virtual physical sys-
tem, i.e., one in which the forces, accelerations, masses, etc. are entirely imaginary.
This virtual physical system must, however, be mapped onto a real physical system
made up of real nodes. Typically, these nodes will have some form of velocity con-
troller; consequently, the mapping from virtual to real physical system is achieved
by defining a control law that maps a virtual force onto a velocity control vector.
In most applications using potential field techniques, such as single-robot obstacle
avoidance, the control law can be entirely arbitrary; in this case, there is little to gain
from preserving the correspondence between a robot’s real and virtual dynamics. In
our application however, it is extremely useful to retain this correspondence: if our
control law is such that the nodes obey the Equation of Motion, we can be certain
that the network will reach static equilibrium (see Section 3.2). This is not the case
for any arbitrary control law.

In deriving a control law for a real node, we must be cognizant of the fact that
real nodes are not ‘free particles’: they have both kinematic and dynamic constraints.
The kinematic constraints can be largely ignored if we make the assumption that
the nodes have holonomic drive mechanisms (i.e. they can move equally well in
any direction). 2 The dynamic constraints, however, cannot be ignored: the node
will have both a maximum velocity and a maximum acceleration, which must be
captured by the control law.

Our control law can be expressed algorithmically as follows. Let v denote the
commanded velocity at some time ¢, and let Av denote the change in the com-
manded velocity between times ¢ and ¢ + At¢. The change in commanded velocity
is determined using a piecewise-constant approximation to the Equation of Motion
(Equation 6):

Av +— (F —vv)/m - At. )

The z and y components of Av are subsequently ‘clipped’ such that —amax <
Av < amax Where amay denotes the largest allowable change in velocity. The com-
manded velocity v is determined using:

v+— v+ Av (8)

1 Strictly speaking, the node will never come to a complete stop; rather, its velocity will
approach zero asymptotically.

2 Even a standard differential drive mechanism can be treated as a holonomic platform if
one is prepared to sacrifice the rotational degree of freedom. Furthermore, if one has omni-
directional sensors, this sacrifice has no functional impact.



and is then clipped to the domain —vpax < v < Umax WHEre v,y is maximum
allowed velocity.

Using this control law, the real node dynamics will closely approximate those
described by the Equation of Motion. There are, however, two regimes in which the
correspondence will fail. Firstly, for small v, the viscous friction term will tend to
produce oscillation rather than asymptotic convergence to zero velocity; this kind of
behavior is typical of discrete control systems and can be eliminated by introducing
a velocity ‘dead-band’. Secondly, large accelerations and velocities will simply be
clipped, in which case the deviation from the virtual dynamics may become arbitrar-
ily large. This deviation is significant only if it prevents the network as a whole from
reaching static equilibrium, or if it significantly increases the time taken to reach this
equilibrium. We assert (without proof) that the acceleration and velocity limits act
like additional non-linear friction terms, and that therefore, these limits will not pre-
vent the system from reaching static equilibrium. The limits may, however, impact
on the time taken to reach equilibrium, and this impact must be determined empiri-
cally.

3.2 Static Equilibrium

One can show that the network as a whole will reach a static equilibrium (i.e. a
situation in which all nodes are stationary) by considering the total energy of the
system. Each node has both potential and kinetic energy: the former arises from
the node’s interaction with the potential field, the latter from the node’s motion.
The total energy of the system is determined by summing these energies for all
nodes. The Equation of Motion includes a viscous friction term that has the effect
of removing energy from the system; i.e., the system is said to be dissipative [8].
For such systems, the total energy will decrease monotonically over time, and since
the potential energy of the system is bounded from below, this necessarily implies
that the total kinetic energy of the system will asymptote to zero. Clearly, therefore,
the network as a whole must asymptotically approach static equilibrium.

This argument rests on the assumption that the environment itself is static, and
therefore does not introduce additional energy into the system or modify the space
of reachable states. In a dynamic environment, however, energy may be added to
or subtracted from the system whenever an object is moved by some agency other
than the network itself. Furthermore, states which where previously unreachable
may now become reachable, and vice-versa. As a consequence, in an environment
that is continually changing, we do not expect the network to reach a state of static
equilibrium. If, however, the environment is changing periodically or intermittently,
the network will reach static equilibrium, but the equilibrium state may be differ-
ent after each change. Consider, for example, a network placed in a closed room:
the network will deploy to fill the room and then stop. If the door to the room is
now opened, the network will start deploying again, spreading beyond its original
confines to seek a new equilibrium state.



Fig. 2. A proto-typical deployment experiment for a 100-node network. () Initial network
configuration. (b) Final configuration after 300 seconds. (c) Occupancy grid generated for
the final configuration; visible space is marked in black (occupied) or white (free); unseen
space is marked in gray.

4 Experiments

We have conducted a series of simulation experiments aimed at both validating and
investigating the use of potential fields for the sensor network deployment problem.
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Fig. 3. Network coverage area and average node separation as function of time for a 100-node
deployment experiment. The coverage and separation are plotted on different scales.

Two metrics are of particular interest: coverage (i.e., what is the area covered by the
network) and time (i.e., how long does the network take to deploy).

Our experiments were conducted using the Player robot server [7] in combina-
tion with the Stage [17,6] multi-agent simulator. Stage simulates the behavior of real
sensors and actuators with a high degree of fidelity, and algorithms developed us-
ing Stage can usually be transferred to real hardware with little or no modification.
For these experiments, the simulated sensor network consists of 100 nodes, each of
which is equipped with a scanning laser range finder, a retro-reflective beacon and
an omni-directional mobile robot base. The laser has a 360 degree field-of-view and
can determine the range and bearing of objects out to a range of 4m. The laser also
returns some intensity information, and can therefore distinguish between nodes
(which carry a retro-reflective beacon) and obstacles (which do not). The network is
placed in a complex simulated environment that represents a single floor in a large
hospital.

Figures 2(a) and (b) show the initial and final network configurations for a typi-
cal deployment. From their starting configuration (crammed into the single room at
the top of the figure) the nodes spread out to cover a sizable portion of the environ-
ment; the coverage area in the final configuration is in excess of 500 m?2, a 10-fold
improvement over the initial coverage of around 50 m?2. The temporal behavior of
the network is captured Figure 3(a), which shows a plot of coverage versus deploy-
ment time. From this plot, it is apparent that the rate of coverage decreases with
time, and that the total coverage was still increasing when the experiment was ter-
minated after 300 seconds. We plan to investigate and characterize this curve more
carefully in future experiments.

The deployment is quite fast. The elapsed time for this experiment is 300 sec-
onds, in which time the nodes on the network boundary have traveled a distance of
around 40 m. Since the maximum permitted velocity in this experiment is 0.5 m/s,
the average velocity of the boundary nodes during deployment is just under 15% of



the theoretical maximum. If we restict ourselves to the early phase of the deploy-
ment, the average velocity is higher still: over the first 180 seconds, the nodes reach
35% of the theoretical maximum velocity.

An unexpected, but appealing, feature of the deployment is the evenness of the
node spacing: the average nearest-neighbor separation in the final configuration is
1.6 = 0.4m. The variance is surprisingly low given the lack explicit coordination be-
tween nodes and the structural variability of the environment. As for the separation
distance, it is unclear, at this point, whether the distance is related to external phe-
nomena, such as the scale of features in the environment, or is a function of purely
internal factors, such as the relative weights on the potential fields. In an open en-
vironment, we might expect the average separation to approach 4 m, corresponding
to the range limit on the laser’s field-of-view; it is not obvious, however, what value
we should expect in a highly structured environment such as the one used in this
experiments.

The network coverage produced in this experiment is of a very high quality.
Figure 2(c) shows an occupancy grid generated for the final configuration: areas
that can be seen by the network are shown in black (for obstacles) or white (for
open space); unseen areas are shown in gray. Note that there are no gaps or breaks
in the coverage. The high quality of this coverage can be attributed to the even
spacing of nodes, combined with the fact that the average node separation is about
half the sensor range. This effectively creates a dense, highly redundant network.

Animations of this and other experiments can be found at:

http://robotics.usc.edu/ahoward/movies._html.

5 Conclusion and Further Work

The experiments described in Section 4 are far from complete. To fully characterize
the approach described in this paper, we need to perform a much more extensive
series of experiments, in which we vary both external factors (such as network size,
environment, and initial conditions) and internal factors (such as the weights &, and
ky,, the node mass m and viscosity coefficient »). We are currently in the process of
conducting such experiments.

The experiments described in this paper are, however, quite sufficient to demon-
strate that a potential field approach can be used to deploy mobile sensor networks.
The approach has the advantage that it does not require centralized control, localiza-
tion or communication, and will therefore scale to very large networks. Furthermore,
as demonstrated in Section 3.2, this approach has provable convergence character-
istics.

There are a number of directions in which we would like to expand this research.
We are interested, for example, in how one might apply this approach to coverage
problems in which line-of-sight connectivity is important [9]. For these problems,
would like the deployment to proceed such that the network is fully connected at all
times by line-of-sight relationships. In principle, this requires form of communica-
tion between nodes; in practice, however, it may be the case that connectivity, like
area coverage, can emerge from a combination of purely local rules.
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