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Abstract

Given an image of an atomic crystal, we propose a variational method which at each image
location determines the local crystal state and which localizes and characterizes crystal defects.
In particular, the local crystal orientation and elastic distortion are detected, as well as dis-
locations, and grain and twin boundaries. To this end an energy functional is devised whose
minimization yields a tensor field G describing the local crystal strain at each point. The desired
information about the local crystal state can then be read off from this tensor field; in partic-
ular, its curl provides information about grain boundaries and dislocations. As is typical for
variational image processing, the energy functional is composed of a fidelity and a regularization
term. It has a simple L2-L' type structure so that its minimization can be performed via a split
Bregman iteration. GPU parallelization results in short computing times.

1 Introduction

Due to continuing improvements in imaging technology it is nowadays possible to obtain images
of materials with atomic resolution, for example, photographs of metallic polycrystals from trans-
mission electron microscopy (TEM). This provides a visualization of the lattice defects in metallic
(or other) crystalline structures, which are known to influence or even determine the macroscopic
material properties, such as elastic and plastic behavior or yield stresses. It is to be expected that
the analysis of such experimental images soon becomes a standard tool to understand and validate
models of material properties or of material evolution (such as crystallization, Ostwald ripening,
or processes of elastic and plastic deformation).

Images of crystals are often very large, and the local crystal structure and defects are typically
tedious and even difficult to spot and characterize with the naked eye. Also, one might have a
large number of such images, for example a time series, so that there is a need for a fast automated
analysis of crystal images. This article proposes a variational method to automatically localize
and characterize crystal defects (grain boundaries, twin boundaries, and dislocations with their
Burgers vector) in large crystal images and in reasonable computing time (cf. Fig. 1). The method
also provides the local crystal orientation and elastic distortion. It is not only of benefit for the
analysis of images from physical experiments, but also for the automatic evaluation of simulated
data: Modern physical crystal models such as the phase field crystal [6] combined with modern
numerical schemes such as GPU-parallelizable PDE solvers [7] quickly lead to large simulation
results.

Our method is based on finding a tensor map G : Q — R?*2 which at each point in the given
crystal image u : 2 — R encodes the local crystal distortion relative to a fixed reference crystal.



Figure 1: Given a crystal image (left), our method computes a distortion map G : Q — R2*2 whose curl
magnitude indicates crystal defects (second image; single spots are dislocations, dotted and continuous lines
are low and high angle grain boundaries). Polar decomposition of G yields the local crystal orientation (third
image, OF "l /3), and dist(G~!,S0(2)) can be taken as a measure of crystal strain (right, ONE" M0.1).
Image size is 2048 x 2048, computing time approximately 10 min.

The curl of this tensor field will serve to identify and characterize crystal defects, while other
types of information such as the crystal orientation or deformation can directly be read off from G.
The field G will be found by minimizing an L?-L' type energy, for which a GPU-parallelized split
Bregman iteration is employed.

In the following we will briefly recall the crystal defects of interest and describe related methods
before we introduce and discuss the different terms of the proposed energy functional in Sec.2. The
minimization algorithm is described in Sec. 3, and numerical experiments are presented in Sec. 4.

1.1 Grain boundaries, dislocations, and twin boundaries

In a perfect atomic crystal, atoms are arranged in a Bravais lattice: the atom positions are (in 2D)
given by nia; + ngas for two fixed vectors aj,as € R? and all integers ni,ng. A real specimen of
a polycrystalline material is typically not homogeneous, but is composed of a number of perfectly
crystalline regions (so-called grains) at different crystal orientations, which meet at so-called grain
boundaries (Fig. 2 left). Grain boundaries can be characterized by the mismatch angle between the
two adjacent grain orientations. Low angle grain boundaries usually consist of a string of point
defects in the crystal (cf. Fig. 1).

Another type of crystal defect to be detected by our method are dislocations. In 2D, these are
points where a line of atoms terminates in an otherwise perfect crystal (edge dislocation, Fig.2
middle). If a closed, lattice-aligned curve is drawn around the dislocation, it cannot be mapped
onto an undisturbed reference lattice without breaking it up at one point (Fig.2 middle right).
The vector spanning the resulting gap is the Burgers vector. It characterizes the dislocation; for
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Figure 2: Grain boundary between two grains (left), dislocation with a terminating line of atoms (middle
left), same dislocation enclosed by a curve on the lattice and same curve mapped into an undisturbed lattice
region (middle right), and a twin boundary between two mirror-symmetric lattice variants.

instance, only dislocations with opposite Burgers vectors can annihilate.

A twin boundary is the final crystal defect of interest (Fig.2 right). Here, the crystal lattice
can occur in two symmetric variants. At a twin boundary, two crystal regions with different crystal
variants share a line of atoms along which they meet.

Physicists are interested, for instance, in how defects move and grain boundaries behave or in
how the grain size distribution evolves over time. To this end crystal images are often analyzed
manually (e. g. [18]). The proposed algorithm aims to alleviate the need for manual analysis of such
images.

1.2 Related methods

Several methods for the automatic analysis of crystals do already exist, however, none combines the
universality of an image as input (be it a photograph of a pattern, a phase field crystal simulation
result, or a TEM image) with the versatility of the crystal distortion as output (from which crystal
orientation, defects, and other information can be directly inferred). Indeed, the methods either
require the set of all atom positions as input or can only detect grains (and potentially their strain),
but ignore defects such as dislocations.

The method in [2] segments a crystal image u :  — R into disjoint regions with different crystal
orientations, using the Chan—Vese level-set approximation of the piecewise constant Mumford—
Shah segmentation. We will later borrow the fitting term from their segmentation functional. The
method can be extended to yield also a global deformation ¢ : Q — R? to account for strained
crystals. Due to the many high-dimensional, nonlinearly coupled degrees of freedom (several level
set functions, the deformation, the crystal orientation in each region) the functional is difficult and
slow to minimize. However, restricting themselves to the mere Mumford—Shah crystal segmentation,
the authors in [3] find an efficient, convex reformulation via functional lifting (instead of using the
piecewise constant crystal orientation map « : 2 — [0,27) one expresses the functional in terms
of the binary function 1, : Q x [0,27) — {0,1}, 14(z,0) = 1 if a(x) < § and 0 else). An even
more efficient version penalizes the segmentation interfaces according to the jump in «, which can
be further improved by taking the periodicity of the orientation into account [13] (i.e. measuring
the jump in a on S' instead of on [0,27)). A corresponding GPU implementation is very fast, but
needs lots of memory due to the additional dimension from the functional lifting.

A very fast, but quite ad hoc and thus less flexible approach is to convolve the crystal image
with a small wavelet-like patch resembling a unit cell at some chosen orientation [12]. The resulting
oscillations in the convolution are smoothed out, yielding a gray value which depends on the local



crystal orientation in the image. The map from gray values to orientations is given by a lookup
table that is computed beforehand. Incidentally, dislocations also show up in the convolution via
a different color. The method’s disadvantage is that it breaks down for strained crystals, it cannot
distinguish between orientations which produce the same gray value after convolution, the lookup
table has to be recomputed for different images, and the shading may not vary across the image.

A different type of methods uses snapshots from 3D molecular dynamics simulations as input.
Here the local crystal state can easily be characterized by identifying the nearest neighbors of an
atom. Such methods are not variational and thus relatively fast so that they can sometimes even
be used on the fly during molecular dynamics simulations. The algorithm in [14] first detects
all defect-free regions and then finds the shortest Burgers circuits around regions with defects,
which precisely localizes the dislocation lines and determines their Burgers vectors. A technique
of sweeping out tubes around the dislocation lines and triangulating grain boundaries increases
the method’s robustness [15] (but slows down computations). An approach conceptually similar to
ours determines the local crystal strain from the nearest neighbor positions around each atom and
then identifies dislocations from the strain curl [1].

In contrast to the above approaches, our method simultaneously finds dislocations, grain bound-
aries, and crystal distortion, based solely on a crystal image. A previous version of our method
was published in [8]. That work is also based on identifying a crystal strain field from which all
other information is derived. In the current article, however, we instead consider the inverse of that
strain field which turns out to be more natural. Also, as opposed to [8], we will here discuss the
mathematical well-posedness of the model and propose a model extension as a rigorous remedy for
problems arising from an inherent redundancy in the representation of crystal orientations.

2 Model

This section introduces the variational energy E which we will minimize to obtain the crystal
rotation, strain, and defects from a given crystal image u : @ — R. We will first explain how
crystal defects can be represented by curl concentrations of a distortion field before suggesting a
functional form of E in several steps.

2.1 Dislocations and grain boundaries as curl concentrations of distortion fields

Initially, consider a perfect, undisturbed and unstrained reference crystal occupying R? at a fixed
(arbitrarily chosen) orientation. In comparison, a polycrystal is composed of several perfectly
crystalline (though potentially strained) regions which are connected by grain boundaries and
which may also contain isolated dislocations. Away from these crystal defects, the polycrystal can
be interpreted locally as a deformed version of a piece S C R? of the reference crystal, where
the deformation ¢ = (¢1,¢2)” : S — R? maps each point Z € S of the reference crystal onto its
deformed position = ¢(Z) in the polycrystal. The local state of the polycrystal is fully described
by the deformation gradient

F(z) = Dooo~ (z) = (570, 520, ) 0 67 () € RZ2.

At each crystal position z € R? it encodes how the crystal locally is rotated and distorted. Equiv-
alently, we can consider the inverse deformation 1) = ¢~! which transforms the region ¢(S) of the
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Figure 3: The curve 4 around the dislocation (right) can be mapped back onto a curve % in the reference
crystal via ¢ (left). 4 is no longer closed, the gap being the Burgers vector (gray arrow).

polycrystal into the unstrained reference state. Its deformation gradient is given by
G(z) = Di(x) = D(¢™")(z) = F~!(z).

Not only do F' and G encode the local crystal rotation and distortion, but as we will see, they
also contain information about crystal defects so that the distortion field G' provides a detailed
characterization of the polycrystal state. Our analysis of crystal images will be based on extracting
such a field G from a given image.

The identification of crystal defects from the field G relies on its interpretation as the gradient of
a deformation: Away from defects we can deform any patch of the given crystal back into the chosen
fixed reference state. The gradient of the associated deformation v is given by G. Consequently,
the field G is conservative in defect-free regions, which is equivalent to it having zero curl,

_ _ [ 02.G12—02,G11
0 = curlG = (811(}22—81726‘21) .

At crystal defects, the interpretation of G as a gradient field breaks down so that grain boundaries
and dislocations will be identified with line- and point accumulations of the curl of the distortion
field as detailed below.

Within a grain, the deformations ¢ or v and the distortion fields F' or G typically vary smoothly,
while at grain boundaries, where two differently deformed reference crystal patches meet, the
deformation ¢ obviously is discontinuous. The distortion field G is also discontinuous across the
grain boundary, since otherwise the crystal would be in the same state on either side so that it
could be interpreted as a coherent grain. Thus grain boundaries are represented by the jump set
of the field G, that is, as a network of one-dimensional discontinuity lines (in a real crystal, there
is typically a thin transition region instead of a sharp discontinuity).

As for dislocations, let B be a simply connected neighborhood of a dislocation, containing no
other dislocation. Let the boundary dB be parameterized counterclockwise by « : [0, 1] — R2. Since
OB lies in a defect-free region, around each point x € B we can deform a small neighborhood of
the crystal into the reference state. If we do this consistently between adjacent neighborhoods, we
obtain an image 4 : [0, 1] — R? of the curve 7 in the reference crystal (Fig. 3). Note that the curve
described by 4 may contain self-intersections and typically is no longer closed. We have

1 1
/ cwlGde = [ Gntde = / Gl (1)3(t) dt = / A1) dt = 4(1) — 4(0),
B 0B 0 0

where n' denotes the unit outward normal n to OB rotated counterclockwise by 5- The vector on
the right-hand side is the dislocation’s Burgers vector, which is independent of the originally chosen



Figure 4: Photograph of a synthetic reptile skin (courtesy http://www.stoff4you.de) and regions of curl
concentration detected by our method, showing various dislocations and the corresponding Burgers vectors
(by color-coding).

parameterization 7. It is also independent of the chosen neighborhood B, as long as B contains
only one dislocation. Indeed, had we chosen B instead of B, we would have

/ curlGdx = / curlG dx + / curlGdx — / curlGdx = / curlG dx
B B B\B B\B B

due to curlG = 0 on B\ B and B\ B. Thus the field G has a concentration of non-zero curl at a
dislocation. If the spatial extent of the dislocation is infinitely small, curlG will behave like a Dirac
delta at this point, while for real crystals, curlG will be diffused a little over the width of one to
a few unit cells. As an example, Figure 4 shows the curl concentrations in the scales pattern of a
synthetic reptile skin. These are clearly located in places where an additional row of scales squeezes
in between two rows. The direction of curlG or equivalently of the corresponding Burgers vector
is encoded by color. It indicates the direction in which the additional row of scales is inserted.
A red dot for instance implies that |, 9B Gn'* dz points upwards, thus there is vertical dilation left
and compression right of the dislocation so that additional scales are inserted left of it. Only six
discrete directions can be identified since a 2D hexagonal lattice can only have simple dislocations
with six different Burgers vectors.

Summarizing, the distortion field G describes the crystal rotation and strain at each point, its
lines of discontinuity represent the grain boundaries, and point concentrations of curlG represent
dislocations whose Burgers vector is given by the integral of curlG over a small neighborhood.

2.2 Variational energy

Given an image u : 2 — R of a crystal we aim to extract the crystal distortion field G :  — R?*2,
Following the usual paradigm of variational image processing, G will be chosen as the minimizer of
an energy that is composed of a fitting or fidelity term Eg¢[G], which penalizes a mismatch between
the given image and the extracted field G, and a regularization E,¢|G] of G, which incorporates a
priori knowledge of the structure of G and correspondingly regularizes G in the case of noisy input
data.

The fitting term is taken from [3] and exploits the periodicity of crystals: Consider the perfect
unstrained reference crystal from the previous section and let vy, ...,vg € R? be vectors such that
the reference crystal is invariant under translation by vg, £ = 1,..., K. For instance, vq,...,vg
can be chosen as the position vectors of all nearest neighbor atoms relative to the central atom. If



the lattice is locally deformed by an affine transformation F' = G~!, then the deformed crystal is
invariant under translation by Fvy, ..., Fvg. Hence, the image gray values u(z) and u(x+ F(x)vg),
k=1,..., K, should be identical, suggesting the fidelity term

Eg |G / u(z + G H(z)vg) — u(z))?dz. (1)
Q=1

The fitting term needs to be complemented with a regularizing component in order to reduce
the set of local energy minima and to make the extraction of G stable with respect to noise. In our
case, we are particularly interested in the identification of crystal defects which are represented as
curl concentrations of G. Put differently, curlG is a quantity of interest, and we have the a priori
knowledge that it is concentrated on a sparse set. Since L!-type norms are well-known to promote

sparseness we choose the regularization

E.e|G] :/ |curlG| dz = sup /tr [GVJ‘(QDT)] dz,
Q PECE (BR2), ()| <1

where V+ = (—0,,,0,,)7 and the integrand |curlG| has to be interpreted in a similar sense as the
integrand |V G| of the total variation seminorm.
Altogether we arrive at the energy

E[G] = Fgt[G] + w1 Ereg |G /Q

u(x + Gz )vk)u(x))2dx+w1/ |curlG| dz
k=1 @

for some weighting parameter w; > 0. Note however, that G~! = 0 would globally minimize the
fitting term. Thus we have to prevent G from taking infinitely large values. Also, since G is a
deformation gradient and hence orientation-preserving, we have to prevent det G < 0. One can
achieve this by adding a coercive energy term

coer / fcoer

where feoer(G) is zero for moderate values of G and behaves like
feoer(G) ~ |G|? as |G| — oo and feoer(G) ~ —logdet G as det G — 0.

In our numerical experiments, instead of adding the term FEcoe[G] it was sufficient to initialize G
properly and then look for local minimizers of E[G].

Remark 1. In [8] we considered a variant of the above energy which extracts F' = G~! instead
of G and which is a valid approximation for small crystal strains, that is G ~ I. Using curlG =
curl F + O((G — I)?), we replaced the above energy by

n- 3

Here, crystal defects show up as curl concentrations in the field F', however, the slightly less
nonlinear form of the energy comes at the expense of misleading results if G or F' deviate strongly
from the identity: A simple example is given by Figure 5 where [ g lcurlF[dz = 0 even though
there is a dislocation at the center of B.

u(z + F(z)v )—u(x))de—i—wl/ |curl F'| dz .
k=1 @
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Figure 5: Even though the lattice contains a dislocation, the integral of curlF’ over B (the interior of the
trapezoid) gives zero, fB |curlF'| da = fB curlF'de = faB Fntdz = 0, hence the dislocation is ignored. The
reason lies in the fact that the approximation F' ~ I is not valid since F' interprets the crystal to be roughly
rotated by 7 relative to the reference stencil vy, v.

2.3 Why the curl regularization is insufficient for well-posedness

Unfortunately, the penalization of curlG is not sufficient to guarantee the well-posedness of the
lattice segmentation problem. As we will discuss below, this is associated with the high nonlin-
earity of the fitting term Eg¢[G] and in particular with the lack of quasiconvexity of its integrand

Ja(Go2) = 3oy (u(z + G H(@)vg) — u(@))?.
Recall that a function f : R?*? — R is called quasiconvex if f(G) < f 0,1)2 f(G + Dyp)dzx for

all G € R?*2 ¢ € W& °((0,1)%;R?). A sufficient condition for quas1convex1ty is given by rank-
1-convexity, meaning that t — f(G + tA) is convex for all G € R?*2 and for all A € R?*? with
rank 1. The lack of quasiconvexity of f implies that the functional Ef[¢ fQ (D¢)dzx is not
lower semi-continuous in ¢ € WHP(Q;R?) under weak convergence. As a consequence energies
involving E7 typically have no minimizers, and almost-minimizers ¢ (for which Ef[¢] is small)
exhibit microstructure. Below, we will demonstrate that the same issues occur in the crystal
segmentation problem, since the tensor G can be interpreted as the derivative of a deformation .

To show that fg; is usually non-quasiconvex, assume a noise-free image u to represent a perfect
Bravais lattice with lattice vectors a1, as € R?,

B = {n1a1 +noas : ni,Ng € Z},

and assume (without loss of generality) compatible stencil vectors v = a1, vy = ag,vs,...,vg € B.
Let (ai|az) € R?*2 be the matrix with columns a1, as, then

far(G,z) =0 & Vk:Gloyy€eB & G =(ai]az)M (ar|az)™t for some M € GLy(Z).

Hence t — fgi(I +tA,z) is zero at t = 0 and ¢ = 1 for instance for A = 3 (a1 ® (1 —b,¢)T)(a1]|az) ™
with any b, ¢ € Z. In other words, there is a rank-1 connection between the two minima G = I and
G =1+ A, and thus fg; is not rank-1-convex or quasiconvex.

The implications shall be illustrated in the following concrete example which shows how the
formation of microstructure can interfere with the desired segmentation result. Let us assume, the
image u exhibits an ¢-spaced hexagonal lattice (Fig. 6 left) of a particular orientation for z; < 0 and
rotated by § for z; > 0 so that the line z1 = 0 represents a grain boundary. As stencil vectors we
shall consider the standard set, v, = E(cos(2gk) em(Q’rk))T k=1,...,6. While G = I minimizes
the fitting term for z; < 0, a rotation by % yields zero fitting energy for x1 > 0. Note however,
that G = G1 := %I and G = Gy := %(61|362) represent alternative minimizers for x1 > 0, where
e1, es denotes the standard Euclidean basis. Now (G; and GG can be laminated as in Figure 6 right
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Figure 6: For the two hexagonal crystal grains with grain boundary at z; = 0 (left) and for the stencil
vp = {(cos(2FE),sin(22E))T | k = 1,...,6, the fitting energy can be made arbitrarily small via lamination

(right) with finer and finer lamination width ¢.

with a period t and a boundary layer at 1 = 0 of width . It is easily shown that curlG = 0
everywhere, and the fitting term is zero outside the boundary layer. By letting ¢ — 0, we see

igf E5t[G] + w1 Freg[G] 4+ Ecoer[G] = 0.

Obviously, there is no optimal tensor field G. Furthermore, the near optimal tensor fields G exhibit
undesired microstructure for x; > 0, and the grain boundary does not show up in curlG.

The above lamination construction is only possible due to the non-quasiconvexity of fgt, which
enables the tensor field G to maintain a low fitting energy while at the same time G can still be
interpreted as the gradient of a continuous deformation, G = D1 (which is equivalent to curlG = 0).
Let us note that even despite a proper initialization near the desired local minimizer G one has to
expect minimization problems due to the above issues, especially in the presence of noise. Also, it
is not the particular form of our fitting term which is responsible for this behavior, but rather the
nonlinearity inherent in the segmentation problem. Indeed, even if the fitting integrand were as
simple as fg;(G) = dist?(G, P) (where the point group P denotes the set of rotations and reflections
which leave the lattice invariant) it would still be non-quasiconvex. This can be readily seen since
t — fa(G + tA) = minpep |G + tA — P|? for a rank 1 matrix A is non-convex as the pointwise
minimum of quadratic functions.

2.4 Additional H'-type gradient regularization

The previous discussion implies that the L!-type curl regularization is not sufficient to prevent the
formation of undesired microstructure and to guarantee existence of minimizers. Consequently,
we need additional regularization of the full gradient VG or parts thereof. There are different
alternatives, the simplest of which is |[VG ||%2 It is preferable for its strict quadratic convexity,
and its smoothing property typically stabilizes the numerical optimization and helps to avoid local
minima. Nevertheless, ||VG ||%2 seems an inappropriate choice at first glance, since its tendency
to smooth out the tensor field G counteracts the concentration of curlG at grain boundaries and
dislocations. Indeed, the TV-seminorm |G|ty = [, |[VG|dz instead would still allow sharp grain
boundaries across which G jumps, and terms such as [, |[divG|dz (to be interpreted in the same
weak sense) would even allow point concentrations of curlG at dislocations. However, it turns
out that a regularization with |[VG|?, experimentally yields the visually most attractive results.



Figure 7: The original crystal image (left) and |curlG| for the optimal tensor field G, once obtained with
additional regularization |[VG||7, (middle) and once with [, |divG|dz instead (right).

The reason partly lies in the fact that images of crystals have a smallest scale, the interatomic
distance. Thus, the grain boundaries and dislocation cores always have a finite, non-zero width.
L'-type regularizations such as fQ |divG| dz now indeed lead to very localized concentrations of
curlG in single pixels, however, such pixels are scattered across the whole core region of the crystal
defects. Such point clouds of pixels with high curlG make it difficult to visually separate nearby
crystal defects, while an L?-type regularization smooths out curlG over the defect cores, which
can then easily be distinguished (Fig.7). Furthermore, inside the grains we expect G to vary
gradually, since large grains might be strained in some regions but not in others. ||VG H%Q is the
most appropriate regularization for such situations, while L!-type regularizations would lead to the
notorious staircasing effect with piecewise constant G.

The existence of minimizers with this additional regularization is standard by the direct method
of the calculus of variations. Indeed, the total energy to be minimized is given by

E[G] = Eg[G] + wi|curlGl 1 + w2 | VG732 + Eeoer[G] s

and we have E[G] > 0 and E[I] < co. Now along a minimizing sequence G, i € N, the G; are
bounded in H'(Q;R?*?) due to the boundedness of the energy. Thus, a subsequence converges
weakly in H'(Q; R?*2) against a tensor field G*, which is a minimizer of E due to the weak lower
semi-continuity of E (||curlG||;1 and [[VG||7, have convex lower-semicontinuous integrands and are
thus lower semi-continuous, and Fgi[G] and Ecee[G] are lower semi-continuous by Fatou’s lemma
since we may assume pointwise convergence of G; to G*, where det G* # 0 almost everywhere due
to Fcoer). Thus we have the following:

Theorem 1. Given an image u € C(S;R), the energy E[G] admits minimizers in H'(Q;R?*2).

The question remains what the interplay is between the L?-norm of the gradient and the L!-
norm of the curl. The strength of the L? gradient regularization seemingly renders ||curlG||:
superfluous, the more so because the total curl in a dislocation should be fixed a priori by fitting
G to the crystal in the far field. To see this, consider a crystal on R? with a dislocation of Burgers
vector b = (b,0)T at the origin. Assuming the crystal to be linearly elastic, the corresponding
deformation tensor field G qualitatively behaves like

—sin b’l" 2 2 ) = %>
G =150 (T30 50) . = e
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in cylindrical coordinates (7, 6), where € is the radius of the dislocation core (see for instance [5]).
Now consider the simplified toy model for automatic dislocation detection,

E[G) = |G — Gylj2 + willewlG 1 + wa|[ VG

in which we replaced the complicated fitting term Eg[G] by the simpler L2-difference to the true
tensor field G. Then the L' regularization of curlG is irrelevant:

Lemma 1. The minimizers of E are independent of the value of wi > 0.

Proof. We will show that any minimizer G satisfies ||curlG/||;1 = ||curlGy|[ 1 so that the minimiza-

tion of E for different values of w is equivalent.
First we find |curlG| ;1 > |lcurlGy||i: For the minimizing G we have (using the Cauchy—
Schwarz inequality)

00 o'} 2
00 > |G — Gl = [, Jo,0)1G — Gyl? dsdr > [ ﬁ(faBr (G — Gp)nt|ds) dr
> 5% 2] faBT(O) (G - Gy) ldS‘ dr = [° 5| fBr curlGds — [ (0) curlGy ds‘ dr

and thus |lcurlG||1 > | [pe curlG ds| = | [z curlGyds| = [|curlGy 11 (in the above, nt denotes the
unit normal to 0B,.(0), rotated by 7).

Next we consider the minimizer G of E for w; = 0 and show [curl@|| ;1 < |curlGy||1: Indeed,
G satisfies the Euler-Lagrange equation —wAG + G = Gy, and so does the curl, —ng(curlé) +
curlG = curlGy. Hence,

HCUTIG5HL1 > fR2 curng- Cur}gl dz = fR2 ng Cul"lG) + CuI“lG) lcur}g‘ dz

= Jo curlG - ﬁ‘ﬁg' dz + wy [po tr ( (curlG)Tvlcur}gl) dz > ||curlG|| 1,

(2 A |2 ~
since tr (V(curlG)TVfuﬂg‘) |V‘(§1111;15‘)| — KV(CTiiQFI 1O > 0 (note that curl@ is sufficiently

smooth and decaying for the above to make senbe)
The above implies that G globally minimizes E independently of the value of ws. O

In addition, the above proof shows that for a given crystal image we may expect our extracted
tensor field to be just a smoothed version of the underlying true physical tensor field.

Despite the above, the term |[curlG||;1 turns out to be beneficial in numerical experiments, in
fact whenever the crystal image contains noise. Just as in the widely used TV — L? denoising, the
L' regularization of curlG completely eliminates small noise so that in an otherwise curlfree region
all curl due to noise is completely suppressed (see Fig. 8).

2.5 Incorporating the point group

The point group P of a Bravais lattice is the set of rotations and reflections which leave the lattice
(or equivalently and, for us, more relevant, the corresponding lattice stencil vy, ...,vg) invariant.
For the example of a hexagonal crystal lattice, P consists of the six rotations R, by the angles

o= %’r, k=1,...,6, and six corresponding reflections. The point group introduces an equivalence
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Figure 8: Noisy image of a polycrystal (left; 6% Gaussian noise was added to a phase field crystal simulation
result with gray values ranging from 0 to 1, image size is such that interatomic distance is of order 1) and
|curlG| after minimizing E[G] with w1 = 0, wy = 0.12 (middle) and w; = 0.06, wy = 0.12 (right).The
penalization of |curlG| obviously suppresses most of the noise.

relation on deformation tensors G € R?*?: Two matrices G1, Go € R?>*? are defined to be equivalent
if they only differ by an element of the point group, G; ~ G2 < G = PG for some P € P.

If Go ~ G, then the Bravais lattice distorted by G5 ! Jooks identical to the one distorted by
Gfl so that for the purpose of grain segmentation these matrices should be identified with each
other. Our energy does not automatically account for this identification which leads to generic
problems when extracting a tensor field G from polycrystal images: Polycrystals frequently contain
a closed chain of n adjacent grains connected by low angle grain boundaries. In other words, the
corresponding tensor fields G to GG, inside the grains differ only slightly between adjacent grains
so that the grain boundaries consist of strings of dislocations in between which orientation and
distortion smoothly change from G; to Gj41, j =1,...,n—1 (Fig.9 left). However, one will often
notice a large jump from G, to Gy which is incompatible with a low angle grain boundary even
though this would be the physically correct description. The reason is that for this grain boundary,
(1 actually has to be interpreted as PG for a particular P € P such that PG and G,, can form
the correct low angle grain boundary. If this is ignored, a high angle grain boundary with spurious
curl concentration shows up in the extracted tensor field (Fig.9 right).

Once such a problem is identified, our model can be appropriately adapted by introducing a
set of cuts S which are smooth one-dimensional lines that can also form a network (we will later
describe a heuristic method of how to find such a set S). Across S we allow the tensor field G
to jump between different representatives of the same equivalence class of matrices, that is, we
redefine our variational energy as

E[G] = Eg|G] + / wi|eurlG| + wo|VG|? dzz + Eeoer[G] (2)
O\S

which is to be minimized under the constraint
G~ ~ G almost everywhere on §, (3)

where G~ and G respectively represent the value of the tensor field G on either side of S. Hence, if
S cuts a grain in two pieces, half of the grain may be ascribed a distortion PG while the other half
may be assigned a distortion P»G, where P;, P» € P will be selected by the energy minimization in
such a way that all grain boundaries are correctly captured.
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Figure 9: Left: Schematic of a chain of adjacent grains in a polycrystal which form pairwise low angle
grain boundaries. The arrows indicate the local lattice stencil, and the local distortion tensor G in each

grain approximately is a counterclockwise rotation R, by the angle o, with o = 0, 5, &, 7 along the chain,
starting from the top grain in counterclockwise direction. However, to describe the boundary between the
top and the top right grain as a low angle boundary, the angle a = 0 would have to be interpreted as the
equivalent « = 7. Right: Crystal image with low angle grain boundary as well as local crystal orientation
(top) and |curlG| (bottom) for the extracted tensor field G, once with the bottom grain interpreted as oriented
at a = 0 (left), once with a = % (right). The interpretation o = % leads to spurious curl concentration and
the detection of a non-physical high angle grain boundary, while for the interpretation @ = 0 a low angle

grain boundary with isolated dislocations is correctly identified.

3 Algorithm

Here we describe the algorithm used to detect distortion and crystal defects in images based on
minimizing (2) subject to (3). In the exposition we will drop the Ecoer term from the variational
energy. As previously mentioned, initializing the minimization scheme with a properly chosen G
gives good results in the absence of the Egoer term. Subsequently, we will discuss the initialization
of Gy, the solution of (2) in the case that S = (), a heuristic scheme to choose a good candidate for
S, and, lastly, how to obtain a local minimum of (2) for nonempty S, subject to the constraint (3).

3.1 Initialization of G as rotations

The images that are appropriate inputs to this algorithm consist primarily of perfectly crystalline
regions. In these regions, given the appropriate stencil {vx}, G can be correctly described by a
simple rotation in the absence of strain. For this reason, we initialize the algorithm with the initial
guess Go(z) chosen to be a simple rotation matrix at each x:

Co@) = < cosa(z) —sina(z) ) — Ro,

sina(z) cosa(r)

where a(z) € [0,0 + (27)/K) for some arbitrarily fixed § € R is chosen to minimize the integrand
of (1). In practice, we use an exhaustive search over a set of p linearly-spaced angles {a;} to
find a minimizing angle «y in this set; then choose a* to minimize the quadratic interpolation
of Yy (u(x + Ry'vy) — u(x))? at a = ay, ayrq, (where the subscript (¢ & 1) is to be interpreted
mod p). In practice, we find it sufficient to choose p ~ 24/K.

In the strained crystal case, the above suffices if the strain is small. If the strain M is ap-
proximately known, that is, the deformed crystal position x is expected to be obtained from the
reference crystal position Z by x = MR™'Z, or # = RM 'z, then it can be accounted for by testing
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strained rotations R, ;M ~! rather than R, alone in the previous procedure. In most applications,
one would not expect a large, unknown strain; however, if this case does arise, one could include the
term Feoer in the energy for the reasons previously discussed. We will not discuss this possibility
further in this work.

3.2 Unconstrained minimization via split Bregman iteration

First, we discuss the local minimization of (2) in the case that S = (). In this case, the constraint
(3) is trivially satisfied. Due to the L?~L! character of the energy (2), we apply the split Bregman
algorithm to obtain a local minimizer.

The split Bregman iteration is obtained from the Bregman iteration, which we describe first. For
simplicity, we consider only linear constraints here, though the Bregman iteration may be applied
to more general convex constraints. Given a convex functional E.[v] subject to a linear constraint

min E.[v], subject to Av =", (4)

the Bregman iteration [4, 11] replaces this problem with an unconstrained formulation:
InvinEC[’U] —i—AHA’U—bH%, (5)

with a parameter A > 0. In general, the solutions to (4) and (5) do not agree except in the limit
A — oo. The advantage of the Bregman iteration (described subsequently) is that if solutions to
Av = b exist, the Bregman iteration applied to (5) converges to some v for which Av = b, as proven
in [11]. Furthermore, if one of the iterative solutions v* found by the Bregman iteration has the
property that Av* = b, then v* solves (4) [9]. Often only a few steps of the Bregman iteration are
required to obtain the minimizing v, though this is highly dependent on the specific problem to be
solved and the choice of initial guess vg. The Bregman iteration is quite simple:

v = argmin E.[v] + || Av — b¥||3,
v
il = oF b — Akt

This iteration is simple to perform as long as one can solve the minimization sub-problem updating
vF to v* 1 efficiently.
Given an energy

Ee[v] = [[C[v]lly + H[v] (6)

with both ||¢[v]||1 and H[v] convex, the split Bregman formulation repurposes the Bregman iteration
to minimize this L?2-L' type energy [9]. The idea is to introduce a new variable ¢ which corresponds
to the L'-type term and then to add the appropriate constraint term to enforce this correspondence

min [, + He] - subject to Cfo] = .
Ch
This minimization problem is solved by the Bregman iteration, which now appears as
{1 ) = arglilin 9]l + H[v] + M[e = ¢[o] = 0|3, (7)
v,

bk+1 _ bk . wk+l + C[,Uk+1] )
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The “split” in “split Bregman” refers to the suggestion to solve the minimization subproblem by
a single alternating minimization step on v**1! and **!, which allows for v**! to depend only on
L?-type terms, and gives an explicit form for y*+1:

ot = argmin H[v] + All* — Co] = b*|3, (8)
Y = shrink(¢[v* ) + b8, 3) 9)
bk-‘rl — bk’ o wk‘-ﬁ-l 4 C[,Uk:-'rl] , (10)
with
shrink(z,w) := % max(|z| — w,0).

||
The advantage of the split Bregman formulation is that the inner minimization problem now has
a strictly L2-type convex energy, while the original problem contains both L!- and L?-type terms.
As split Bregman differs from the original Bregman iteration only in the minimization procedure
for (7) (but not in the formulation of the problem), if a minimizer ¢* to (7) with ¢* = ([v] is found,
this ¥* is a minimizer of (6).
Though the energy Eg¢[G] is nonconvex, we apply the split Bregman scheme:

H[G] = Ex[G) +w2|[VG]3,
([G] = wicurl(G)

and apply the update (8)—(10). While the convergence theorem is not valid for nonconvex Egi[G],
the scheme still appears to be quite successful at finding a local minimum for (2.2). More details
on the computational cost are presented in Section 3.5.

We utilize the Fletcher—Reeves nonlinear conjugate gradient method with Armijo stepsize con-
trol to perform the update (8), as methods incorporating the Hessian will not provide much benefit
given a nonconvex fitting energy Fg¢ but have significantly increased computational cost and mem-
ory requirements. We utilize biquadratic interpolation on the nine nearest grid cells to x to interpo-
late the image value u(z). This interpolation is not even continuous for arbitrary data w, much less
twice continuously differentiable; however, for reasonably well-resolved images, the interpolation is
at least approximately smooth.

3.3 Choosing the cut set S

The minimization problem defined by the energy (2) and the constraint (3) assumes that the cut
set S is known a priori. Here we present a heuristic algorithm for choosing a good set S that
eliminates the problem shown in Figure 9.

To motivate this algorithm, imagine an unstrained polycrystal. Away from dislocations and
grain boundaries, G can be described by a single, constant rotation within each individual grain.
Choose 6 = 0 as the lower bound of the range that «(z) is chosen from. The initialization will
choose the angles a(x) € [0,27/K). A low angle grain boundary, with one grain oriented as a; = ¢;
and the other as ap = —e2, with 0 < 1,62 < 1, will initially be assigned the matrices G|; = R,
on one side and Gg = Rayr/K e, on the other due to the angle bounds on the initial condition. The
minimization algorithm will not be able to resolve this jump in G. The boundary between these
grains will be detected to be a region of high curlG, rather than being correctly interpreted as a
low-angle grain boundary. However, a different choice of 6, for example § = —7/K, alleviates this
problem: the matrices G; = R., and G§ = R_., will be detected by the initialization scheme.
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Algorithm 1 Heuristic algorithm for choosing a good cut set S and initalization Gj.
Choose constants C, o, 7 > 0 with o, 7 « £, the atomic spacing.

1. Locally minimize (2) with S = (), using § = 0 and # = —7/K for initialization, which yields
local minima G and Gs.

2. If [, |curl(G2)| < [q |curl(G1)|, relabel G as G and Gy as Go.
3. Compute |curl(G1)| * ¥, and |curl(G2)| * ¥,, where ¥, is a Gaussian kernel of width o.

4. Define the region ¥, = {x : |(curl(G1)| * ¥,)(z) — (Jeurl(Ga)| * ¥s)(z) > C} and define
Yo =Dil(X}, 7) = {z : dist(x, X)) < 7}.
Define 31 = {z : |(curl(G2)| * ¥, )(z) — (|curl(G1)| * ¥, )(z) > C}.

5. Set ¥ = %5\ ¥; and S = 9%. Choose

) Gi(z), zeXxe
Golw) = {Gg(x), x € X.

In general, for any choice of 0, a low angle grain boundary with orientation angles slightly greater
than and less than 6 will be misinterpreted. To avoid this problem we obtain local minimizers from
two different initializations, one with the choice # = 0 and one with § = —7/K, and we define
the cut set S to be the interface between regions where each of the two solutions is preferred. See
Algorithm 1 for details. Note that, while Algorithm 1 produces a set S that is the union of closed
curves, S may, in general, also contain open curves. We use the choice of S and the initial guess
Gy obtained from Algorithm 1 as input to the variational problem defined by (2) and (3) to obtain
the final tensor field G.

Figure 10 visualizes the effect of Algorithm 1. The solutions Gy and G9 are computed for § = 0
and 6 = 7/6, respectively, with S = (). The set X and the interface S = 93 are computed as
described in Algorithm 1, and Gy is used to initialize the minimization of (2). The resulting tensor
field G is shown at right. The top row shows the local crystal orientations obtained from polar
decomposition of the tensor fields. The bottom row shows the norm of the curl of the tensor fields.
Observe that jumps in G are permitted across S without penalty as long as G ~ G~ across S.

3.4 Numerical implementation on GPU

Here we describe the numerical implementation used to solve the variational problem (2)—(3). We
indicate the numerical discretization of the domain €2, how the discrete version of the energy is
calculated, how the cut set S is handled numerically, and describe the minimization procedure and
its implementation on the GPU in MATLAB.

For simplicity of exposition, we assume a square domain 2 = [0,L)? C R? and, for compu-
tational simplicity, we use periodic boundary conditions. Numerical tests indicate that for non-
periodic input images u the evolution of G is sufficiently local that discontinuities in u across the
periodic boundary only affect G within a few atomic spacings of 9Q.  is discretized on a (n x n)
rectangular grid with uniform grid spacing Az = n/L. We denote discrete grid locations and
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Figure 10: Top row: Rotation matrices associated with G7, Gz, and result G. Bottom row: |curl(Gi)],
|curl(Ga)|, |curl(G)|. The cut set S, obtained from Algorithm 1, is shown in red. G; and G both exhibit
regions of spurious curl due to a spatially inconsistent identification of crystal orientations. G, however,
which is allowed to jump across S as long as G~ ~ G across S, does not suffer from that deficiency.

function values by fi; = f(zi;) = f(jAz,iAx).
The fitting energy Fjgt is discretized as
n—1 K

EulG) = 802 3 3 (ulayy + Cito) — i)

1,j=0 k=1

2

In order to compute u(z;; + @;jlvk) in terms of the discretized image 4, we apply biquadratic
interpolation. We note that biquadratic interpolation is not even continuous in general, but gives
good numerical results for reasonably well-resolved image data uw. The minimization process also
requires the gradient V u(x;; + é;jlvk), which is computed exactly for the biquadratic polynomial
fitted to each grid cell.

In order to handle the regularizing terms of (2) numerically, we simultaneously enforce the
constraint that G~ ~ G across S and handle the integration over Q \ S by replacing the usual
discretized partial derivatives

0Gj _ G(yijn) — Gij

Oxp, Az ’

where y;;.;, = x;; + epAx and ey, is the ht* standard Euclidean basis vector, by

Ve G(yijn)—Gij &
9Gi gl s (@ij Yijin) ¢ 9,
3 ) R yin)G(y)—Gij 3
al'h (zis ]Z)m ®) . ’ (ijayzj,h) € S?

where (z,y) € S if and only if vz 4+ (1 —~)y € S for some v € [0,1) and R(z,y) is defined by

R(z,y) = argmin| PG(y) — G(2)|l2.
pPeP
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Table 1: GPU Computation times in MATLAB for sections of image in Figure 11, left.
image | total split NCG inter-
size time | Bregman | descent | polation
20487 | 87.4s | 833 s | 73.1 s | 205 s
1024% | 40.9s | 38.1 s | 33.1 s 8.73s
5122 | 14.0s | 114 s 9.88s | 3.34s
2562 | 11.7s 8.97s 7.80s 3.40s
128% | 11.1s | 8.93s 7.81s | 3.60s

Then the regularizing terms in (2) are computed as

n—1

/ w1 |curlG| + wo| VG 2dz ~ Ax? Z wi |eurlGyj| 4 wa | VG512,
Q\s i,j=0
with 1/2
A\~ A~ 2 A\~ A~ 2
I I A e
curlGy;| = ~ - + 2 ~ A
! 8%1 8%2 8:61 8«732
and 9 9
2 Ac(aB) YalCre)
. 0G.; 0G;;
VGlP= > ) + | =2,
bl or1 0xo

where CNJZ(]O‘B ) denotes the (a, B) entry of the matrix Gij.

3.5 Computational effort

For images as in Figure 1 we generally found a total of ten split Bregman steps to be sufficient
given an appropriate choice of Gg. If Algorithm 1 is used to compute Gg, we suggest taking twenty
more split Bregman steps, ten each to produce G1 and Go. For each Bregman step, we perform five
nonlinear conjugate gradient steps for (8). The code is implemented in MATLAB. The included
basic GPU support is utilized without any further optimizations. Computation times on a Tesla S10
GPU are displayed in Table 1 for different image sizes. The computational time is approximately
three times longer if the cost of computing Gg via Algorithm 1 is included.

For an image with 20482 pixels, the minimization takes approximately one and a half minutes,
with the vast majority of the time (over 95%) spent inside the split Bregman iteration. Most of
the iteration time is spent in the nonlinear conjugate gradient steps which in turn spend a third of
their time interpolating the image u to evaluate the fitting energy and its gradient. We observe a
strongly sublinear scaling with image size due to the high GPU parallelization. With more careful
memory allocation or larger GPU memory (the GPU employed had 4 GB of memory available), the
runtimes are short enough that it should be possible to apply this algorithm to even larger images
reasonably quickly.

The interpolation used to evaluate u(z + G~ (x)v;) at each pixel = and each stencil vector vy,
appears to be the compuational bottleneck. This is to be expected; such a computation requires
highly unstructured memory access which is not naturally achieved by the highly parallel GPU
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architecture. An optimized version of this algorithm implemented outside of MATLAB should
allow for significant speedup; alternatively, strong performance may be attainable in a shared
memory distributed computing paradigm such as OpenMP.

4 Results

Here we present numerical results of our method for different types of input data, both from
computer simulations and real images. We examine (1) a time series of output from a phase field
crystal simulation (demonstrating temporal consistency of the output from our algorithm), (2) a
synthetically strained crystal image (showing the ability of our algorithm to detect strain and also
that the presence of isolated dislocations can decrease total strain in a crystal), (3) a variety of
other crystal types and a real HRTEM image (indicating the robustness of our method), and (4)
a series of evolutions closely related to the phase field crystal evolution, measuring the coarsening
rate of the evolutions directly from concentrations of curl measured using our algorithm.

4.1 Coarsening simulations

Defects in atomic crystals are associated with a physical energy (in particular with elastic energy
due to the crystal strain induced by the defects). Their time evolution is typically governed by
dissipative, energy-driven dynamics: The crystal defects move and partially annihilate, thereby
decreasing the total energy. This becomes visible as a coarsening phenomenon; over time, the
average crystal grain size increases. The process can also be simulated, for instance using phase
field crystals (PFC, [6]). Figurell shows the result of our method applied to four consecutive
snapshots in time from such a coarsening simulation. From top to bottom, local crystal orientation,
volume strain, elastic strain, and defect locations are depicted. The crystal orientation is given by
the rotation angle of the rotation matrix R closest to F' = G~! (which can be computed via polar
decomposition F' = RV FTF), the local volume change relative to the perfect crystal is det F' — 1,
elastic strain can be measured as dist(G~1,SO(2)), and the defect locations are places with high
curl magnitude |curlG|, as previously discussed. Grain boundaries and dislocations are clearly
visible (some low angle grain boundaries show up as strings of dislocations). These are also the
places, where elastic and volume strain are concentrated. Single dislocations produce a dipole in the
visualization of volume strain with volume dilation on one side and compression on the opposite
side, so that the direction of the corresponding Burgers vector can be inferred in an intuitive
manner. It is obvious that the grains grow over time, reducing the amount of defects, though some
isolated dislocations seem to survive inside large grains.

4.2 Strained crystals

Our proposed method yields the crystal strain field G as its primary output, which is of particular
advantage when deformed or non-equilibrated crystals are analyzed. A simple experiment serves
for illustration: At each numerical time step in a PFC simulation we artificially shift a horizontal
strip inside the material by one pixel, thus creating a drag force on the adjacent crystal regions.
Figure 12 shows the effect, depicting the amount of shear (given by Gi2) and the elastic strain
dist(G™1,50(2)). We can now compare the result of this experiment for two different crystals,
one with defects and one without. A histogram of the elastic strain immediately reveals that—
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Figure 11: Results of our algorithm applied to different snapshots of a phase field crystal (PFC) coarsening
simulation. From top to bottom we show the time evolution of local crystal orientation (OF =@Mz /3), local
volume distortion of the crystal measured as det G=' — 1 (—0.05HE M(.05), elastic strain measured as
dist(G71,S0(2)) (0me M0.1), and |curlG]|.
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Figure 12: PFC simulation of a sheared crystal without (top) and with (bottom) defects, showing the crystal
image (left), the elastic strain dist(G~!,SO(2)) (middle, OME" MW0.15), and G15 (right, —0.2HE M0.2). The
rightmost graph shows a histogram of dist(G~!,SO(2)). The crystal with defects has a higher peak strain,
but lower overall strain.

though the peak strain is higher in the crystal with defects—the strain on average is higher in the
configuration without defects, so the defects have a relaxing effect on the rest of the crystal.

4.3 Different crystal types

The method also works robustly on experimental images. Figure13 shows a photograph of a
bubble raft, a number of bubbles floating on a liquid surface. Such bubbles typically form crystalline
patterns with many characteristics of atomic lattices for which reason they are sometimes examined
as a very illustrative model of defect movement in atomic crystals. Our method identifies a grain
boundary as well as isolated dislocations, even though the reflections and shadows vary strongly
across the image.

Figure 14 shows a high resolution TEM image of a nanocrystalline palladium thin film, courtesy
of Nick Schryvers, from the work [16]. Despite the noise and the different shading across the image,
the method finds a concentration of curlG at the image center, corresponding to a dislocation. It
also identifies two distinct regions of different crystal orientation, even though the angle difference
in between is only 12°. These two orientations belong to symmetric crystal variants so that the
interface represents a twin boundary. Note that twin boundaries do not produce concentrations
in curlG as grain boundaries do. In fact, curlG is zero across a twin boundary since the strain or
deformation gradient fields on either side are rank-one-connected.

The synthetic reptile skin from Figure 4 represents an equally challenging input, since the hexag-
onal scales pattern contains lots of dislocations and the size of the grid cells varies considerably
across the image. This makes an initialization of G with rotations seem rather inappropriate, nev-
ertheless it is sufficient for the minimization to identify all dislocations correctly. Of course, for
the initialization one could in principle also vary the stencil size besides its orientation to start the
optimization closer to the desired minimum.

Lastly, in Figure15 we show the analysis of a crystal image from a PFC simulation which
exhibits a square lattice instead of the six-fold rotational symmetry of hexagonal crystals. The
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Figure 13: Photograph of a bubble raft (courtesy Don Stone, copyright 2009 Board of Regents of the Uni-
versity of Wisconsin System, http://homepages.cae.wisc.edu/ ~stone/bubble)20raft%20movies.htm)
and detected regions of curl concentration, showing a grain boundary and single dislocations.

Figure 14: HRTEM image of a nanocrystalline palladium thin film from [16], detected regions of curl
concentration showing an isolated dislocation, and the crystal orientation obtained from polar decomposition
(14° B W26°) showing a strong twin boundary.
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Figure 15: Results of our algorithm applied to microstructure with cubic symmetry. We show the local
crystal orientation (OF WHlll /2, top left), local volume distortion of the crystal measured as det G=! — 1
(—0.05m M0.05, top middle), elastic strain measured as dist(G~*,SO(2)) (0 M0.05, top right), |curlG|
(bottom left), a zoom-in on |curlG| (bottom middle), and a zoom in on the microstructure (bottom right).

underlying PFC energy is a modification of the standard PFC energy as presented in [17, Sec. VI].
It was originally proposed in [10] in the context of the Swift-Hohenberg equation. An appropriate
stencil for this image is given by v; = (£,0)7, vo = (0,07, v3 = (—=£,0)7, vy = (0,—)T with ¢
being the interatomic distance. Again, grain boundaries and dislocations are properly identiried.
In this particular simulation, the grains are more or less aligned to each other, varying mostly by
only 15° in orientation.

4.4 Simple application: Scaling law for characteristic lengths

The tool devised in this article makes it easy to extract macroscopic characteristics from polycrys-
tals, such as the average length scale of a grain. Such macroscopic characteristics could be used, for
example, to validate physical models by comparing corresponding simulations with physical exper-
iments. As a simple example, consider the model of crystal evolution given by the H—? gradient
descent of the following variant of the PFC energy,

J[u] = / 1[(—A)*Q(Au +u)]? + 1(u2 —6)*da,
Q2 4
where a, 8 € R. This yields a time series of images as in Figure 1 left. To obtain the distance of
each pixel to the nearest defect (of which the average over all pixels is the average length scale)
we postprocess our data as follows. |curlG| is first smoothed with a Gaussian kernel, and then a
distance map is computed to all pixels where the smoothed curl has a larger value than a specified
cutoff.
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Figure 16: Top: Final polycrystal for the evolution of the PFC variant with («, 8) = (0,1), (0,0), and (27 2)
Bottom left: Average length scale as a function of time for the same parameters. Bottom right: Distribution
of the distance to the nearest defect, in units of the average length scale, for («,5) = (0,1) at the initial
time (black), the middle time (dark gray), and the final time of the simulation (light gray).

Figure 16 shows that different values of a and (8 yield the same coarsening rate in time, even
though the final polycrystalhne conﬁguratlons look slightly different. The average length scale
seems to behave roughly like £5 or even t1. Figure 16 additionally shows the distribution of atoms
(or pixels) to the nearest crystal defects, and this distribution seems to be rather stable.
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