
Formal verification of a realistic compiler

Xavier Leroy
INRIA Paris-Rocquencourt

Domaine de Voluceau, B.P. 105, 78153 Le Chesnay, France
xavier.leroy@inria.fr

Abstract
This paper reports on the development and formal verifica-
tion (proof of semantic preservation) of CompCert, a com-
piler from Clight (a large subset of the C programming lan-
guage) to PowerPC assembly code, using the Coq proof as-
sistant both for programming the compiler and for proving
its correctness. Such a verified compiler is useful in the con-
text of critical software and its formal verification: the veri-
fication of the compiler guarantees that the safety properties
proved on the source code hold for the executable compiled
code as well.

1. Introduction
Can you trust your compiler? Compilers are generally

assumed to be semantically transparent: the compiled
code should behave as prescribed by the semantics of the
source program. Yet, compilers—and especially optimizing
compilers—are complex programs that perform complicated
symbolic transformations. Despite intensive testing, bugs
in compilers do occur, causing the compilers to crash at
compile-time or—much worse—to silently generate an
incorrect executable for a correct source program.

For low-assurance software, validated only by testing,
the impact of compiler bugs is low: what is tested is the
executable code produced by the compiler; rigorous testing
should expose compiler-introduced errors along with errors
already present in the source program. Note, however,
that compiler-introduced bugs are notoriously difficult to
expose and track down. The picture changes dramatically
for safety-critical, high-assurance software. Here, validation
by testing reaches its limits and needs to be complemented
or even replaced by the use of formal methods such as
model checking, static analysis, and program proof. Almost
universally, these formal verification tools are applied to
the source code of a program. Bugs in the compiler used to
turn this formally verified source code into an executable
can potentially invalidate all the guarantees so painfully
obtained by the use of formal methods. In a future where
formal methods are routinely applied to source programs,
the compiler could appear as a weak link in the chain that
goes from specifications to executables. The safety-critical
software industry is aware of these issues and uses a variety

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

of techniques to alleviate them, such as conducting manual
code reviews of the generated assembly code after having
turned all compiler optimizations off. These techniques
do not fully address the issues, and are costly in terms of
development time and program performance.

An obviously better approach is to apply formal methods
to the compiler itself in order to gain assurance that it pre-
serves the semantics of the source programs. For the last
five years, we have been working on the development of a
realistic, verified compiler called CompCert. By verified, we
mean a compiler that is accompanied by a machine-checked
proof of a semantic preservation property: the generated
machine code behaves as prescribed by the semantics of the
source program. By realistic, we mean a compiler that could
realistically be used in the context of production of critical
software. Namely, it compiles a language commonly used
for critical embedded software: neither Java nor ML nor
assembly code, but a large subset of the C language. It
produces code for a processor commonly used in embedded
systems: we chose the PowerPC because it is popular in
avionics. Finally, the compiler must generate code that is
efficient enough and compact enough to fit the requirements
of critical embedded systems. This implies a multi-pass com-
piler that features good register allocation and some basic
optimizations.

Proving the correctness of a compiler is by no ways a
new idea: the first such proof was published in 1967 [16]
(for the compilation of arithmetic expressions down to stack
machine code) and mechanically verified in 1972 [17]. Since
then, many other proofs have been conducted, ranging from
single-pass compilers for toy languages to sophisticated code
optimizations [8]. In the CompCert experiment, we carry
this line of work all the way to end-to-end verification of a
complete compilation chain from a structured imperative
language down to assembly code through 8 intermediate
languages. While conducting the verification of CompCert,
we found that many of the non-optimizing translations per-
formed, while often considered obvious in the compiler lit-
erature, are surprisingly tricky to formally prove correct.

This paper gives a high-level overview of the CompCert
compiler and its mechanized verification, which uses the Coq
proof assistant [7, 3]. This compiler, classically, consists of
two parts: a front-end translating the Clight subset of C to
a low-level, structured intermediate language called Cminor,
and a lightly-optimizing back-end generating PowerPC as-
sembly code from Cminor. A detailed description of Clight
can be found in [5]; of the compiler front-end in [4]; and of
the compiler back-end in [11, 13]. The complete source code

of the Coq development, extensively commented, is available
on the Web [12].

The remainder of this paper is organized as follows. Sec-
tion 2 compares and formalizes several approaches to estab-
lishing trust in the results of compilation. Section 3 de-
scribes the structure of the CompCert compiler, its perfor-
mance, and how the Coq proof assistant was used not only
to prove its correctness but also to program most of it. By
lack of space, we will not detail the formal verification of
every compilation pass. However, section 4 provides a tech-
nical overview of such a verification for one crucial pass of
the compiler: register allocation. Finally, section 5 presents
preliminary conclusions and directions for future work.

2. Approaches to trusted compilation

2.1 Notions of semantic preservation
Consider a source program S and a compiled program C

produced by a compiler. Our aim is to prove that the seman-
tics of S was preserved during compilation. To make this
notion of semantic preservation precise, we assume given se-
mantics for the source and target languages that associate
observable behaviors B to S and C. We write S ⇓ B to
mean that program S executes with observable behavior B.
The behaviors we observe in CompCert include termination,
divergence, and “going wrong” (invoking an undefined oper-
ation that could crash, such as accessing an array out of
bounds). In all cases, behaviors also include a trace of the
input-output operations (system calls) performed during the
execution of the program. Behaviors therefore reflect accu-
rately what the user of the program, or more generally the
outside world the program interacts with, can observe.

The strongest notion of semantic preservation during com-
pilation is that the source program S and the compiled
code C have exactly the same observable behaviors:

∀B, S ⇓ B ⇐⇒ C ⇓ B (1)

Notion (1) is too strong to be usable. If the source lan-
guage is not deterministic, compilers are allowed to select
one of the possible behaviors of the source program. (For
instance, C compilers choose one particular evaluation or-
der for expressions among the several orders allowed by the
C specifications.) In this case, C will have fewer behaviors
than S. Additionally, compiler optimizations can optimize
away “going wrong” behaviors. For example, if S can go
wrong on an integer division by zero but the compiler elim-
inated this computation because its result is unused, C will
not go wrong. To account for these degrees of freedom in
the compiler, we relax definition (1) as follows:

S safe =⇒ (∀B, C ⇓ B =⇒ S ⇓ B) (2)

(Here, S safe means that none of the possible behaviors of
S is a “going wrong” behavior.) In other words, if S does not
goes wrong, then neither does C; moreover, all observable
behaviors of C are acceptable behaviors of S.

In the CompCert experiment and the remainder of this pa-
per, we focus on source and target languages that are deter-
ministic (programs change their behaviors only in response
to different inputs but not because of internal choices) and
on execution environments that are deterministic as well
(the inputs given to the programs are uniquely determined
by their previous outputs). Under these conditions, there

exists exactly one behavior B such that S ⇓ B, and simi-
larly for C. In this case, it is easy to prove that property (2)
is equivalent to:

∀B /∈ Wrong, S ⇓ B =⇒ C ⇓ B (3)

(Here, Wrong is the set of “going wrong” behaviors.) Prop-
erty (3) is generally much easier to prove than property (2),
since the proof can proceed by induction on the execution
of S. This is the approach that we take in this work.

From a formal methods perspective, what we are really
interested in is whether the compiled code satisfies the func-
tional specifications of the application. Assume that these
specifications are given as a predicate Spec(B) of the observ-
able behavior. We say that C satisfies the specifications,
and write C |= Spec, if C cannot go wrong (C safe) and
all behaviors of B satisfy Spec (∀B, C ⇓ B =⇒ Spec(B)).
The expected correctness property of the compiler is that it
preserves the fact that the source code S satisfies the specifi-
cation, a fact that has been established separately by formal
verification of S:

S |= Spec =⇒ C |= Spec (4)

It is easy to show that property (2) implies property (4) for
all specifications Spec. Therefore, establishing property (2)
once and for all spares us from establishing property (4) for
every specification of interest.

A special case of property (4), of considerable historical
importance, is the preservation of type and memory safety,
which we can summarize as “if S does not go wrong, neither
does C”:

S safe =⇒ C safe (5)

Combined with a separate check that S is well-typed in a
sound type system, property (5) implies that C executes
without memory violations. Type-preserving compilation
[18] obtains this guarantee by different means: under the
assumption that S is well typed, C is proved to be well-
typed in a sound type system, ensuring that it cannot go
wrong. Having proved properties (2) or (3) provides the
same guarantee without having to equip the target and in-
termediate languages with sound type systems and to prove
type preservation for the compiler.

2.2 Verified, validated, certifying compilers
We now discuss several approaches to establishing that a

compiler preserves semantics of the compiled programs, in
the sense of section 2.1. In the following, we write S ≈ C,
where S is a source program and C is compiled code, to
denote one of the semantic preservation properties (1) to
(5) of section 2.1.

Verified compilers. We model the compiler as a total
function Comp from source programs to either compiled
code (written Comp(S) = OK(C)) or a compile-time error
(written Comp(S) = Error). Compile-time errors corre-
spond to cases where the compiler is unable to produce code,
for instance if the source program is incorrect (syntax error,
type error, etc.), but also if it exceeds the capacities of the
compiler. A compiler Comp is said to be verified if it is
accompanied with a formal proof of the following property:

∀S,C, Comp(S) = OK(C) =⇒ S ≈ C (6)

In other words, a verified compiler either reports an error or
produces code that satisfies the desired correctness property.

Notice that a compiler that always fails (Comp(S) = Error

for all S) is indeed verified, although useless. Whether the
compiler succeeds to compile the source programs of interest
is not a correctness issue, but a quality of implementation
issue, which is addressed by non-formal methods such as
testing. The important feature, from a formal verification
standpoint, is that the compiler never silently produces in-
correct code.

Verifying a compiler in the sense of definition (6)
amounts to applying program proof technology to the
compiler sources, using one of the properties defined in
section 2.1 as the high-level specification of the compiler.

Translation validation with verified validators In
the translation validation approach [22, 20] the compiler
does not need to be verified. Instead, the compiler is
complemented by a validator : a boolean-valued function
Validate(S,C) that verifies the property S ≈ C a posteriori.
If Comp(S) = OK(C) and Validate(S,C) = true, the
compiled code C is deemed trustworthy. Validation can
be performed in several ways, ranging from symbolic inter-
pretation and static analysis of S and C to the generation
of verification conditions followed by model checking or
automatic theorem proving. The property S ≈ C being
undecidable in general, validators are necessarily incomplete
and should reply false if they cannot establish S ≈ C.

Translation validation generates additional confidence in
the correctness of the compiled code, but by itself does not
provide formal guarantees as strong as those provided by
a verified compiler: the validator could itself be incorrect.
To rule our this possibility, we say that a validator Validate
is verified if it is accompanied with a formal proof of the
following property:

∀S,C, Validate(S,C) = true =⇒ S ≈ C (7)

The combination of a verified validator Validate with an
unverified compiler Comp does provide formal guarantees
as strong as those provided by a verified compiler. Indeed,
consider the following function:

Comp′(S) =
match Comp(S) with

| Error→ Error

| OK(C)→ if Validate(S,C) then OK(C) else Error

This function is a verified compiler in the sense of defini-
tion (6). Verification of a translation validator is therefore
an attractive alternative to the verification of a compiler,
provided the validator is smaller and simpler than the com-
piler.

Proof-carrying code and certifying compilers The
proof-carrying code (PCC) approach [19, 1] does not at-
tempt to establish semantic preservation between a source
program and some compiled code. Instead, PCC focuses
on the generation of independently-checkable evidence that
the compiled code C satisfies a behavioral specification
Spec such as type and memory safety. PCC makes use of a
certifying compiler, which is a function CComp that either
fails or returns both a compiled code C and a proof π of the
property C |= Spec. The proof π, also called a certificate,
can be checked independently by the code user; there is no
need to trust the code producer, nor to formally verify the
compiler itself. The only part of the infrastructure that

needs to be trusted is the client-side checker: the program
that checks whether π entails the property C |= Spec.

As in the case of translation validation, it suffices to
formally verify the client-side checker to obtain guarantees
as strong as those obtained from compiler verification of
property (4). Symmetrically, a certifying compiler can be
constructed, at least theoretically, from a verified compiler,
provided that the verification was conducted in a logic
that follows the “propositions as types, proofs as programs”
paradigm. The construction is detailed in [11, section 2].

2.3 Composition of compilation passes
Compilers are naturally decomposed into several passes

that communicate through intermediate languages. It is
fortunate that verified compilers can also be decomposed
in this manner. Consider two verified compilers Comp1 and
Comp2 from languages L1 to L2 and L2 to L3, respectively.
Assume that the semantic preservation property ≈ is tran-
sitive. (This is true for properties (1) to (5) of section 2.1.)
Consider the error-propagating composition of Comp1 and
Comp2:

Comp(S) = match Comp1(S) with

| Error→ Error

| OK(I)→ Comp2(I)

It is trivial to show that this function is a verified compiler
from L1 to L3.

2.4 Summary
The conclusions of this discussion are simple and define

the methodology we have followed to verify the CompCert
compiler back-end. First, provided the target language of
the compiler has deterministic semantics, an appropriate
specification for the correctness proof of the compiler is the
combination of definitions (3) and (6):

∀S,C,B /∈ Wrong, Comp(S) = OK(C) ∧ S ⇓ B =⇒ C ⇓ B

Second, a verified compiler can be structured as a com-
position of compilation passes, following common practice.
However, all intermediate languages must be given appro-
priate formal semantics.

Finally, for each pass, we have a choice between prov-
ing the code that implements this pass or performing the
transformation via untrusted code, then verifying its results
using a verified validator. The latter approach can reduce
the amount of code that needs to be verified.

3. Overview of the CompCert compiler

3.1 The source language
The source language of the CompCert compiler, called

Clight [5], is a large subset of the C programming language,
comparable to the subsets commonly recommended for
writing critical embedded software. It supports almost all
C data types, including pointers, arrays, struct and union

types; all structured control (if/then, loops, break, con-

tinue, Java-style switch); and the full power of functions,
including recursive functions and function pointers. The
main omissions are extended-precision arithmetic (long
long and long double); the goto statement; non-structured
forms of switch such as Duff’s device; passing struct and
union parameters and results by value; and functions
with variable numbers of arguments. Other features of

Clight C#minor Cminor

CminorSelRTLLTLLTLin

Linear Mach PPC

simplifications

type elimination

stack pre-

-allocation

instruction

selection

CFG

construction

register

allocation

code

linearization

spilling, reloading

calling conventions

layout of

stack frames

PowerPC code
generation

CSELCM

constant propagation

branch tunneling

instr. scheduling

parsing, elaboration

(not verified)

assembling, linking

(not verified)

Figure 1: Compilation passes and intermediate languages.

C are missing from Clight but are supported through
code expansion (“de-sugaring”) during parsing: side effects
within expressions (Clight expressions are side-effect free)
and block-scoped variables (Clight has only global and
function-local variables).

The semantics of Clight is formally defined in big-step op-
erational style. The semantics is deterministic and makes
precise a number of behaviors left unspecified or undefined
in the ISO C standard, such as the sizes of data types, the re-
sults of signed arithmetic operations in case of overflow, and
the evaluation order. Other undefined C behaviors are con-
sistently turned into “going wrong” behaviors, such as deref-
erencing the null pointer or accessing arrays out of bounds.
Memory is modeled as a collection of disjoint blocks, each
block being accessed through byte offsets; pointer values are
pairs of a block identifier and a byte offset. This way, pointer
arithmetic is modeled accurately, even in the presence of
casts between incompatible pointer types.

3.2 Compilation passes and intermediate languages
The formally verified part of the CompCert compiler

translates from Clight abstract syntax to PPC abstract
syntax, PPC being a subset of PowerPC assembly language.
As depicted in figure 1, the compiler is composed of
14 passes that go through 8 intermediate languages. Not
detailed in figure 1 are the parts of the compiler that are not
verified yet: upstream, a parser, type-checker and simplifier
that generates Clight abstract syntax from C source files
and is based on the CIL library [21]; downstream, a printer
for PPC abstract syntax trees in concrete assembly syntax,
followed by generation of executable binary using the
system’s assembler and linker.

The front-end of the compiler translates away C-specific
features in two passes, going through the C#minor and Cmi-
nor intermediate languages. C#minor is a simplified, type-
less variant of Clight where distinct arithmetic operators are
provided for integers, pointers and floats, and C loops are re-
placed by infinite loops plus blocks and multi-level exits from
enclosing blocks. The first pass translates C loops accord-
ingly and eliminates all type-dependent behaviors: operator
overloading is resolved; memory loads and stores, as well as
address computations, are made explicit. The next inter-
mediate language, Cminor, is similar to C#minor with the
omission of the & (address-of) operator. Cminor function-

local variables do not reside in memory, and their address
cannot be taken. However, Cminor supports explicit stack
allocation of data in the activation records of functions. The
translation from C#minor to Cminor therefore recognizes
scalar local variables whose addresses are never taken, as-
signing them to Cminor local variables and making them
candidates for register allocation later; other local variables
are stack-allocated in the activation record.

The compiler back-end starts with an instruction se-
lection pass, which recognizes opportunities for using
combined arithmetic instructions (add-immediate, not-and,
rotate-and-mask, etc.) and addressing modes provided by
the target processor. This pass proceeds by bottom-up
rewriting of Cminor expressions. The target language is
CminorSel, a processor-dependent variant of Cminor that
offers additional operators, addressing modes, and a class of
condition expressions (expressions evaluated for their truth
value only).

The next pass translates CminorSel to RTL, a classic
register transfer language where control is represented as a
control-flow graph (CFG). Each node of the graph carries
a machine-level instruction operating over temporaries
(pseudo-registers). RTL is a convenient representation to
conduct optimizations based on dataflow analyses. Two
such optimizations are currently implemented: constant
propagation and common subexpression elimination, the
latter being performed via value numbering over extended
basic blocks. A third optimization, lazy code motion,
was developed separately and will be integrated soon.
Unlike the other two optimizations, lazy code motion is
implemented following the verified validator approach [24].

After these optimizations, register allocation is performed
via coloring of an interference graph [6]. The output of this
pass is LTL, a language similar to RTL where temporaries
are replaced by hardware registers or abstract stack loca-
tions. The control-flow graph is then “linearized”, producing
a list of instructions with explicit labels, conditional and un-
conditional branches. Next, spills and reloads are inserted
around instructions that reference temporaries that were al-
located to stack locations, and moves are inserted around
function calls, prologues and epilogues to enforce calling con-
ventions. Finally, the “stacking” pass lays out the activation
records of functions, assigning offsets within this record to

abstract stack locations and to saved callee-save registers,
and replacing references to abstract stack locations by ex-
plicit memory loads and stores relative to the stack pointer.

This brings us to the Mach intermediate language, which
is semantically close to PowerPC assembly language. In-
struction scheduling by list or trace scheduling can be per-
formed at this point, following the verified validator ap-
proach again [23]. The final compilation pass expands Mach
instructions into canned sequences of PowerPC instructions,
dealing with special registers such as the condition registers
and with irregularities in the PowerPC instruction set. The
target language, PPC, accurately models a large subset of
PowerPC assembly language, omitting instructions and spe-
cial registers that CompCert does not generate.

From a compilation standpoint, CompCert is unremark-
able: the various passes and intermediate representations are
textbook compiler technology from the early 1990’s. Per-
haps the only surprise is the relatively high number of in-
termediate languages, but many are small variations on one
another: for verification purposes, it was more convenient
to identify each variation as a distinct language than as dif-
ferent subsets of a few, more general-purpose intermediate
representations.

3.3 Proving the compiler
The added value of CompCert lies not in the compila-

tion technology implemented, but in the fact that each of
the source, intermediate and target languages has formally-
defined semantics, and that each of the transformation and
optimization passes is proved to preserve semantics in the
sense of section 2.4.

These semantic preservation proofs are mechanized using
the Coq proof assistant. Coq implements the Calculus
of Inductive and Coinductive Constructions, a powerful
constructive, higher-order logic which supports equally
well three familiar styles of writing specifications: by func-
tions and pattern-matching, by inductive or coinductive
predicates representing inference rules, and by ordinary
predicates in first-order logic. All three styles are used in
the CompCert development, resulting in specifications and
statements of theorems that remain quite close to what
can be found in programming language research papers.
In particular, compilation algorithms are naturally pre-
sented as functions, and operational semantics use mostly
inductive predicates (inference rules). Coq also features
more advanced logical features such as higher-order logic,
dependent types and an ML-style module system, which
we use occasionally in our development. For example,
dependent types let us attach logical invariants to data
structures, and parameterized modules enable us to reuse a
generic dataflow equation solver for several static analyses.

Proving theorems in Coq is an interactive process: some
decision procedures automate equational reasoning or Pres-
burger arithmetic, for example, but most of the proofs con-
sist in sequences of“tactics”(elementary proof steps) entered
by the user to guide Coq in resolving proof obligations. In-
ternally, Coq builds proof terms that are later re-checked by
a small kernel verifier, thus generating very high confidence
in the validity of proofs. While developed interactively, proof
scripts can be re-checked a posteriori in batch mode.

The whole Coq formalization and proof represents 42000
lines of Coq (excluding comments and blank lines) and
approximately 3 person-years of work. Of these 42000 lines,

14% define the compilation algorithms implemented in
CompCert, and 10% specify the semantics of the languages
involved. The remaining 76% correspond to the correctness
proof itself. Each compilation pass takes between 1500
and 3000 lines of Coq for its specification and correctness
proof. Likewise, each intermediate language is specified in
300 to 600 lines of Coq, while the source language Clight
requires 1100 lines. An additional 10000 lines correspond
to infrastructure shared between all languages and passes,
such as the formalization of machine integer arithmetic and
of the memory model.

3.4 Programming and running the compiler
We use Coq not only as a prover to conduct semantic

preservation proofs, but also as a programming language to
write all verified parts of the CompCert compiler. The spec-
ification language of Coq includes a small, pure functional
language, featuring recursive functions operating by pattern-
matching over inductive types (ML- or Haskell-style tree-
shaped data types). With some ingenuity, this language suf-
fices to write a compiler. The highly imperative algorithms
found in compiler textbooks need to be rewritten in pure
functional style. We use persistent data structures based
on balanced trees, which support efficient updates without
modifying data in-place. Likewise, a monadic programming
style enables us to encode exceptions and state in a legible,
compositional manner.

The main advantage of this unconventional approach,
compared with implementing the compiler in a conventional
imperative language, is that we do not need a program logic
(such as Hoare logic) to connect the compiler’s code with
its logical specifications. The Coq functions implementing
the compiler are first-class citizens of Coq’s logic and can
be reasoned on directly by induction, simplifications and
equational reasoning.

To obtain an executable compiler, we rely on Coq’s extrac-
tion facility [15], which automatically generates Caml code
from Coq functional specifications. Combining the extracted
code with hand-written Caml implementations of the unver-
ified parts of the compiler (such as the parser), and running
all this through the Caml compiler, we obtain a compiler
that has a standard, cc-style command-line interface, runs
on any platform supported by Caml, and generates PowerPC
code that runs under MacOS X. (Other target platforms are
being worked on.)

3.5 Performance
To assess the quality of the code generated by CompCert,

we benchmarked it against the GCC 4.0.1 compiler at opti-
mization levels 0, 1 and 2. Since standard benchmark suites
use features of C not supported by CompCert, we had to roll
our own small suite, which contains some computational ker-
nels, cryptographic primitives, text compressors, a virtual
machine interpreter and a ray tracer. The tests were run on
a 2 GHz PowerPC 970 “G5” processor.

As the timings in figure 2 show, CompCert generates code
that is more than twice as fast as that generated by GCC
without optimizations, and competitive with GCC at op-
timization levels 1 and 2. On average, CompCert code is
only 7% slower than gcc -O1 and 12% slower than gcc -O2.
The test suite is too small to draw definitive conclusions,
but these results strongly suggest that while CompCert is
not going to win a prize in high performance computing, its

AES cip
her

Alm
abench

Arit
hmeti

c coding

Binary
tre

es

Fannkuch FFT

K-nucle
otid

e

Lem
pel-

Ziv

Lem
pel-

Ziv-W
elc

h

Mandelb
rot

N-body

Number
sie

ve

Quick
sort

Ray tra
cer

SHA1 hash

Spect
ral tes

t

Virt
ual machine

0

1

gcc -O0 CompCert gcc -O1 gcc -O2

Figure 2: Relative execution times of compiled code.

performance is adequate for critical embedded code.
Compilation times of CompCert are within a factor of 2

of those of gcc -O1, which is reasonable and shows that the
overheads introduced to facilitate verification (many small
passes, no imperative data structures, etc.) are acceptable.

4. Register allocation
To provide a more detailed example of a verified compi-

lation pass, we now present the register allocation pass of
CompCert and outline its correctness proof.

4.1 The RTL intermediate language
Register allocation is performed over the RTL intermedi-

ate representation, which represents functions as a control-
flow graph (CFG) of abstract instructions, corresponding
roughly to machine instructions but operating over pseudo-
registers (also called “temporaries”). Every function has an
unlimited supply of pseudo-registers, and their values are
preserved across function call. In the following, r ranges
over pseudo-registers and l over labels of CFG nodes.

Instructions:
i ::= nop(l) no operation (go to l)
| op(op, ~r, r, l) arithmetic operation
| load(κ,mode, ~r, r, l) memory load
| store(κ,mode, ~r, r, l) memory store
| call(sig , (r | id), ~r, r, l) function call
| tailcall(sig , (r | id), ~r) function tail call
| cond(cond , ~r, ltrue , lfalse) conditional branch
| return | return(r) function return

Control-flow graphs:
g ::= l 7→ i finite map

Internal functions:
F ::= { name = id ; sig = sig ;

params = ~r; parameters
stacksize = n; size of stack data block
entrypoint = l; label of first instruction
code = g} control-flow graph

External functions:
Fe ::= { name = id ; sig = sig }

Each instruction takes its arguments in a list of pseudo-
registers ~r and stores its result, if any, in a pseudo-register r.
Additionally, it carries the labels l of its possible successors.
Instructions include arithmetic operations op (with an im-
portant special case op(move, r, r′, l) representing a register-
to-register copy), memory loads and stores (of a quantity κ
at the address obtained by applying addressing mode mode
to registers ~r), conditional branches (with two successors),
and function calls, tail-calls, and returns.

An RTL program is composed of a set of named functions,
either internal or external. Internal functions are defined
within RTL by their CFG, entry point in the CFG, and pa-
rameter registers. External functions are not defined but
merely declared: they model input/output operations and
similar system calls. Functions and call instructions carry
signatures sig specifying the number and register classes
(int or float) of their arguments and results.

The dynamic semantics of RTL is specified in small-step
operational style, as a labeled transition system. The predi-
cate G ` S t→ S′ denotes one step of execution from state S
to state S′. The global environment G maps function point-
ers and names to function definitions. The trace t records
the input-output events performed by this execution step:
it is empty (t = ε) for all instructions except calls to ex-
ternal functions, in which case t records the function name,
parameters, and results of the call.

Execution states S are of the form S(Σ, g, σ, l, R,M)
where g is the CFG of the function currently executing, l
the current program point within this function, and σ a
memory block containing its activation record. The register
state R maps pseudo-registers to their current values
(discriminated union of 32-bit integers, 64-bit floats, and
pointers). Likewise, the memory state M maps (pointer,
memory quantity) pairs to values, taking overlap between
multi-byte quantities into account [14]. Finally, Σ models
the call stack: it records pending function calls with their
(g, σ, l, R) components. Two slightly different forms of
execution states, call states and return states, appear
when modeling function calls and returns, but will not be
described here.

To give a flavor of RTL’s semantics, here are two of the

rules defining the one-step transition relation, for arithmetic
operations and conditional branches, respectively:

g(l) = op(op, ~r, r, l′) eval op(G, σ, op, R(~r)) = v

G ` S(Σ, g, σ, l, R,M)
ε→ S(Σ, g, σ, l′, R{r ← v},M)

g(l) = cond(cond , ~r, ltrue , lfalse)

l′ =

(
ltrue if eval cond(cond , R(~r)) = true

lfalse if eval cond(cond , R(~r)) = false

G ` S(Σ, g, σ, l, R,M)
ε→ S(Σ, g, σ, l′, R,M)

4.2 The register allocation algorithm
The goal of the register allocation pass is to replace the

pseudo-registers r that appear in unbounded quantity in the
original RTL code by locations `, which are either hardware
registers (available in small, fixed quantity) or abstract stack
slots in the activation record (available in unbounded quan-
tity). Since accessing a hardware register is much faster than
accessing a stack slot, the use of hardware registers must be
maximized. Other aspects of register allocation, such as in-
sertion of reload and spill instructions to access stack slots,
are left to subsequent passes.

Register allocation starts with a standard liveness analy-
sis performed by backward dataflow analysis. The dataflow
equations for liveness are of the form

LV (l) =
[
{T (s, LV (s)) | s successor of l} (8)

The transfer function T (s, LV (s)) computes the set of
pseudo-registers live “before” a program point s as a
function of the pseudo-registers LV (s) live “after” that
point. For instance, if the instruction at s is op(op, ~r, r, s′),
the result r becomes dead because it is redefined at this
point, but the arguments ~r become live because they
are used at this point: T (s, LV (s)) = (LV (s) \ {r}) ∪ ~r.
However, if r is dead “after” (r /∈ L(s)), the instruction
is dead code that will be eliminated later, so we can take
T (s, LV (s)) = LV (s) instead.

The dataflow equations are solved iteratively using Kil-
dall’s worklist algorithm. CompCert provides a generic im-
plementation of Kildall’s algorithm and of its correctness
proof, which is also used for other optimization passes. The
result of this algorithm is a mapping LV from program
points to sets of live registers that is proved to satisfy the
correctness condition LV (l) ⊇ T (s, LV (s)) for all s successor
of l. We only prove an inequation rather than the standard
dataflow equation (8) because we are interested only in the
correctness of the solution, not in its optimality.

An interference graph having pseudo-registers as nodes is
then built following Chaitin’s rules [6], and proved to contain
all the necessary interference edges. Typically, if two pseudo-
registers r and r′ are simultaneously live at a program point,
the graph must contain an edge between r and r′. Interfer-
ences are of the form “these two pseudo-registers interfere”
or“this pseudo-register and this hardware register interfere”,
the latter being used to ensure that pseudo-registers live
across a function call are not allocated to caller-save regis-
ters. Preference edges (“these two pseudo-registers should
preferably be allocated the same location” or “this pseudo-
register should preferably be allocated this location”) are
also recorded, although they do not affect correctness of the
register allocation, just its quality.

The central step of register allocation consists in coloring
the interference graph, assigning to each node r a “color”
ϕ(r) that is either a hardware register or a stack slot, un-
der the constraint that two nodes connected by an interfer-
ence edge are assigned different colors. We use the coloring
heuristic of George and Appel [9]. Since this heuristic is
difficult to prove correct directly, we implement it as unver-
ified Caml code, then validate its results a posteriori using
a simple verifier written and proved correct in Coq. Like
many NP-hard problems, graph coloring is a paradigmatic
example of an algorithm that is easier to validate a posteriori
than to directly prove correct. The correctness conditions
for the result ϕ of the coloring are:

1. ϕ(r) 6= ϕ(r′) if r and r′ interfere;

2. ϕ(r) 6= l if r and l interfere;

3. ϕ(r) and r have the same register class (int or float).

These conditions are checked by boolean-valued functions
written in Coq and proved to be decision procedures for the
three conditions. Compilation is aborted if the checks fail,
which denotes a bug in the external graph coloring routine.

Finally, the original RTL code is rewritten. Each reference
to pseudo-register r is replaced by a reference to its location
ϕ(r). Additionally, coalescing and dead code elimination are
performed. A side-effect-free instruction l : op(op, ~r, r, l′) or
l : load(κ,mode, ~r, r, l′) is replaced by a no-op l : nop(l′)
if the result r is not live after l (dead code elimination).
Likewise, a move instruction l : op(move, rs, rd, l

′) is replaced
by a no-op l : nop(l′) if ϕ(rd) = ϕ(rs) (coalescing).

4.3 Proving semantic preservation
To prove that a program transformation preserves seman-

tics, a standard technique used throughout the CompCert
project is to show a simulation diagram: each transition
in the original program must correspond to a sequence of
transitions in the transformed program that have the same
observable effects (same traces of input-output operations,
in our case) and preserve as an invariant a given binary re-
lation ∼ between execution states of the original and trans-
formed programs. In the case of register allocation, each
original transition corresponds to exactly one transformed
transition, resulting in the following “lock-step” simulation
diagram:

S1
∼

S′
1

S2

t
?

....................
∼

S′
2

t
?

.......

(Solid lines represent hypotheses; dotted lines represent con-
clusions.) If, in addition, the invariant∼ relates initial states
as well as final states, such a simulation diagram implies that
any execution of the original program corresponds to an ex-
ecution of the transformed program that produces exactly
the same trace of observable events. Semantic preservation
therefore follows.

The gist of a proof by simulation is the definition of
the ∼ relation. What are the conditions for two states
S(Σ, g, σ, l, R,M) and S(Σ′, g′, σ′, l′, R′,M ′) to be related?
Intuitively, since register allocation preserves program
structure and control flows, the control points l and l′

must be identical, and the CFG g′ must be the result of

transforming g according to some register allocation ϕ as
described in section 4.2. Likewise, since register allocation
preserves memory stores and allocations, the memory states
and stack pointers must be identical: M ′ = M and σ′ = σ.

The non-obvious relation is between the register state R
of the original program and the location state R′ of the
transformed program. Given that each pseudo-register r is
mapped to the location ϕ(r), we could naively require that
R(r) = R′(ϕ(r)) for all r. However, this requirement is
much too strong, as it essentially precludes any sharing of
a location between two pseudo-registers whose live ranges
are disjoint. To obtain the correct requirement, we need to
consider what it means, semantically, for a pseudo-register
to be live or dead at a program point l. A dead pseudo-
register r is such that its value at point l has no influence on
the program execution, because either r is never read later,
or it is always redefined before being read. Therefore, in
setting up the correspondence between register and location
values, we can safely ignore those registers that are dead
at the current point l. It suffices to require the following
condition:

R(r) = R′(ϕ(r)) for all pseudo-registers r live at point l.

Once the relation between states is set up, proving the
simulation diagram above is a routine case inspection on
the various transition rules of the RTL semantics. In doing
so, one comes to the pleasant realization that the dataflow
inequations defining liveness, as well as Chaitin’s rules for
constructing the interference graph, are the minimal suf-
ficient conditions for the invariant between register states
R,R′ to be preserved in all cases.

5. Conclusions and perspectives
The CompCert experiment described in this paper is still

ongoing, and much work remains to be done: handle a
larger subset of C (e.g. including goto); deploy and prove
correct more optimizations; target other processors beyond
PowerPC; extend the semantic preservation proofs to
shared-memory concurrency; etc. However, the preliminary
results obtained so far provide strong evidence that the
initial goal of formally verifying a realistic compiler can be
achieved, within the limitations of today’s proof assistants,
and using only elementary semantic and algorithmic
approaches. The techniques and tools we used are very
far from perfect—more proof automation, higher-level
semantics and more modern intermediate representations
all have the potential to significantly reduce the proof
effort—but good enough to achieve the goal.

Looking back at the results obtained, we did not com-
pletely rule out all uncertainty concerning the correctness of
the compiler, but reduced the problem of trusting the whole
compiler down to trusting the following parts:

1. The formal semantics for the source (Clight) and target
(PPC) languages.

2. The parts of the compiler that are not verified yet: the
CIL-based parser, the assembler, and the linker.

3. The compilation chain used to produce the executable
for the compiler: Coq’s extraction facility and the
Caml compiler and run-time system. (A bug in this
compilation chain could invalidate the guarantees ob-
tained by the correctness proof.)

4. The Coq proof assistant itself. (A bug in Coq’s im-
plementation or an inconsistency in Coq’s logic could
falsify the proof.)

Issue (4) is probably the least concern: as Hales argues [10],
proofs mechanically checked by a proof assistant that gener-
ates proof terms are orders of magnitude more trustworthy
than even carefully hand-checked mathematical proofs.

To address concern (3), ongoing work within the Comp-
Cert project studies the feasibility of formally verifying
Coq’s extraction mechanism as well as a compiler from
Mini-ML (the simple functional language targeted by this
extraction) to Cminor. Composed with the CompCert
back-end, these efforts could eventually result in a trusted
execution path for programs written and verified in Coq,
like CompCert itself, therefore increasing confidence further
through a form of bootstrapping.

Issue (2) with the unverified components of CompCert can
obviously be addressed by reimplementing and proving the
corresponding passes. Semantic preservation for a parser is
difficult to define, let alone prove: what is the semantics of
the concrete syntax of a program, if not the semantics of the
abstract syntax tree produced by parsing? However, several
of the post-parsing elaboration steps performed by CIL are
amenable to formal proof. Likewise, proving the correctness
of an assembler and linker is feasible, if unexciting.

Perhaps the most delicate issue is (1): how can we make
sure that a formal semantics agrees with language standards
and common programming practice? Since the semantics in
question are small relative to the whole compiler, manual re-
views by experts, as well as testing conducted on executable
forms of the semantics, could provide reasonable (but not
formal) confidence. Another approach is to prove connec-
tions with alternate formal semantics independently devel-
oped, such as the axiomatic semantics that underlie tools
for deductive verification of programs. (See [2] for an ex-
ample.) Additionally, this approach constitutes a first step
towards a more ambitious, long-term goal: the certification,
using formal methods, of the verification tools, code genera-
tors, compilers and run-time systems that participate in the
development, validation and execution of critical software.

6. Acknowledgments
The author thanks S. Blazy, Z. Dargaye, D. Doligez,

B. Grégoire, T. Moniot, L. Rideau and B. Serpette for
their contributions to the CompCert development, and
A. Appel, Y. Bertot, E. Ledinot, P. Letouzey and G. Necula
for their suggestions, feedback, and help. This work was
supported by Agence Nationale de la Recherche, grant
number ANR-05-SSIA-0019.

7. References
[1] A. W. Appel. Foundational proof-carrying code. In

Logic in Computer Science 2001, pages 247–258.
IEEE, 2001.

[2] A. W. Appel and S. Blazy. Separation logic for
small-step Cminor. In Theorem Proving in Higher
Order Logics, TPHOLs 2007, volume 4732 of LNCS,
pages 5–21. Springer, 2007.

[3] Y. Bertot and P. Castéran. Interactive Theorem
Proving and Program Development – Coq’Art: The
Calculus of Inductive Constructions. Springer, 2004.

[4] S. Blazy, Z. Dargaye, and X. Leroy. Formal
verification of a C compiler front-end. In FM 2006:
Int. Symp. on Formal Methods, volume 4085 of LNCS,
pages 460–475. Springer, 2006.

[5] S. Blazy and X. Leroy. Mechanized semantics for the
Clight subset of the C language. J. Autom. Reasoning,
2009. Accepted for publication, to appear.

[6] G. J. Chaitin. Register allocation and spilling via
graph coloring. In 1982 SIGPLAN Symposium on
Compiler Construction, pages 98–105. ACM Press,
1982.

[7] Coq development team. The Coq proof assistant.
Available at http://coq.inria.fr/, 1989–2009.

[8] M. A. Dave. Compiler verification: a bibliography.
SIGSOFT Softw. Eng. Notes, 28(6):2–2, 2003.

[9] L. George and A. W. Appel. Iterated register
coalescing. ACM Trans. Prog. Lang. Syst.,
18(3):300–324, 1996.

[10] T. C. Hales. Formal proof. Notices of the AMS,
55(11):1370–1380, 2008.

[11] X. Leroy. Formal certification of a compiler back-end,
or: programming a compiler with a proof assistant. In
33rd symp. Principles of Progr. Lang., pages 42–54.
ACM Press, 2006.

[12] X. Leroy. The CompCert verified compiler, software
and commented proof. Available at
http://compcert.inria.fr/, Aug. 2008.

[13] X. Leroy. A formally verified compiler back-end.
arXiv:0902.2137 [cs]. Submitted, July 2008.

[14] X. Leroy and S. Blazy. Formal verification of a C-like
memory model and its uses for verifying program
transformations. J. Autom. Reasoning, 41(1):1–31,
2008.

[15] P. Letouzey. Extraction in Coq: An overview. In Logic
and Theory of Algorithms, Computability in Europe,
CiE 2008, volume 5028 of LNCS, pages 359–369.
Springer, 2008.

[16] J. McCarthy and J. Painter. Correctness of a compiler
for arithmetical expressions. In Mathematical Aspects
of Computer Science, volume 19 of Proc. of Symposia
in Applied Mathematics, pages 33–41. AMS, 1967.

[17] R. Milner and R. Weyhrauch. Proving compiler
correctness in a mechanized logic. In Proc. 7th Annual
Machine Intelligence Workshop, volume 7 of Machine
Intelligence, pages 51–72. Edinburgh University Press,
1972.

[18] G. Morrisett, D. Walker, K. Crary, and N. Glew. From
System F to typed assembly language. ACM Trans.
Prog. Lang. Syst., 21(3):528–569, 1999.

[19] G. C. Necula. Proof-carrying code. In 24th symp.
Principles of Progr. Lang., pages 106–119. ACM
Press, 1997.

[20] G. C. Necula. Translation validation for an optimizing
compiler. In Prog. Lang. Design and Impl. 2000, pages
83–95. ACM Press, 2000.

[21] G. C. Necula, S. McPeak, S. P. Rahul, and
W. Weimer. CIL: Intermediate language and tools for
analysis and transformation of C programs. In
Compiler Construction, volume 2304 of LNCS, pages
213–228. Springer, 2002.

[22] A. Pnueli, M. Siegel, and E. Singerman. Translation

validation. In Tools and Algorithms for Construction
and Analysis of Systems, TACAS ’98, volume 1384 of
LNCS, pages 151–166. Springer, 1998.

[23] J.-B. Tristan and X. Leroy. Formal verification of
translation validators: A case study on instruction
scheduling optimizations. In 35th symp. Principles of
Progr. Lang., pages 17–27. ACM Press, 2008.

[24] J.-B. Tristan and X. Leroy. Verified validation of lazy
code motion. In Prog. Lang. Design and Impl. 2009.
ACM Press, 2009. To appear.

