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Abstract— Clustering is the process of grouping a set of objects 

into a number of clusters.  K-means and  Fuzzy c-means (FCM) 
algorithm have been extensively used in cluster analysis.  
However, they are sensitive to noise and do not include any 
information about spatial context.  A Penalized Fuzzy c-means 
algorithm (PFCM) was developed to overcome the drawbacks of 
FCM algorithm.  Euclidean distance measure is commonly used 
by many researchers in traditional clustering algorithms.  In this 
paper, a comparative study on hybrid fuzzy data clustering 
algorithm using different distance metrics such as Euclidean, City 
Block and Chessboard is proposed. The K-means, FCM and 
hybrid K-PFCM algorithms are experimented and tested on five 
real-world benchmark data sets from UCI machine learning 
repository. The experimental results show that FCM and hybrid 
K-PFCM algorithms report good performance for Chessboard 
distance. The hybrid K-PFCM algorithm shows best objective 
function value than K-means algorithm.  The performance of the 
algorithms is also evaluated through standard cluster validity 
measures. The Hybrid K-PFCM algorithm is effective under the 
criteria of PC, PE and intra-cluster distance. 

 
Index Terms— Data clustering, K-means, Fuzzy c-means, 

Penalized Fuzzy c-means, Hybrid K-PFCM, Distance metrics, 
Cluster validity measures. 

I. INTRODUCTION 

Most organizations generate enormous amount of data and 
store them in files, databases or other repositories.  In recent 
days, the data continues to grow at a phenomenal rate.  The 
huge amount of stored data contains valuable information, 
which could be used to increase the efficiency, to provide 
valuable services to customers and to gain the competitive 
advantage.  Extracting information and knowledge from a 
large database is a difficult task.  Hence, a process for 
converting huge volume of data to knowledge will become 
invaluable.  The area of knowledge discovery in databases 
(KDD) has arisen over the last decade to address this 
challenge. 
     Data mining is one of the steps in KDD process.  It is 
defined as finding meaningful information in a database.  It is 
the process of extracting previously unknown, valid and 
potentially useful information from large databases.  There 
are many data mining functions including association rules, 
classification, clustering, regression, summarization, 
sequence discovery and time series analysis [1]. 
     Clustering is a process of grouping a set of data elements 
into a number of clusters such that data elements within the 

 
Manuscript received on January 2013. 

     O.A. Mohamed Jafar,  Research Scholar,  P.G. & Research Department 
of Computer Science, A.V.V.M. Sri Pushpam College (Autonomous), 
Poondi, Thanjavur, Tamil Nadu, India.  
     R. Sivakumar, Associate Professor, P.G. & Research Department of 
Computer Science, A.V.V.M. Sri Pushpam College (Autonomous), Poondi, 
Thanjavur, Tamil Nadu, India.  

same cluster are similar to one another and are dissimilar to 
the elements in other clusters.   
 
There are many methods for solving clustering problems in 
the literature.  K-means and Fuzzy c-means algorithm are the 
important partitioning methods and are widely used for data 
clustering and image segmentation.  However, they are 
sensitive to noise and are easily struck at local optima.  They 
do not incorporate any information about spatial context.  To 
overcome the drawbacks of fuzzy c-means algorithm, many 
derivatives were proposed in the literature.  Penalized FCM 
algorithm (PFCM) is one such algorithm to produce effective 
and robust result.   Distance metrics have played key role in 
data clustering problems.  Distance metric is used to 
determine the similarity between data points.  Euclidean 
distance is commonly used in many classical fuzzy clustering 
algorithms.  In this paper, we study the performance of 
K-means, FCM and hybrid K-PFCM algorithms for data 
clustering problems by using different distance metrics 
including Euclidean, City Block and Chessboard.  We 
evaluate the algorithms through benchmark data sets such as 
Wine, Teaching Assistant Evaluation, Mammographic Mass, 
Image Segmentation, and Glass. 
The rest of this paper is organized as follows.  Section 2 
briefly describes the background which includes the 
clustering algorithms and the related works of K-means, FCM 
and PFCM algorithms.  In section 3, Methodology is 
explained.  Experimental Results and Discussions are given in 
section 4.  Finally, conclusions are drawn in section 5. 

II.  BACKGROUND 

In this section, we discuss the basic concepts of clustering 
algorithms and related works of K-means, FCM and PFCM. 

A. Clustering Algorithms 

   Clustering is a technique for the discovery of knowledge 
from a data set.  It is used to group the data items into clusters 
such that similar items are placed in the same cluster while 
dissimilar items are placed in different clusters.  The 
groupings of data items are based on similarity, dissimilarity 
metrics or distance metrics.  Clustering of data is generally 
based on two methods, namely, hierarchical methods and 
partitioning methods [2][3]. 
     Hierarchical methods:  These methods create a 
hierarchical decomposition of the objects.  They can be 
categorized as bottom-up (agglomerative) and top-down 
(divisive).  Bottom-up methods start with each object forming 
a separate group.  They successively merge the objects that 
are close to one another, until all the groups are merged into 
one or until a termination condition holds.  Top-down 
methods begin with one object in a single cluster and  then 
split the cluster into smaller groups until each object is in one 
cluster. 

Hybrid Fuzzy Data Clustering Algorithm Using 
Different Distance Metrics: A Comparative Study 

O.A. Mohamed Jafar, R. Sivakumar 



 
Hybrid Fuzzy Data Clustering Algorithm Using Different Distance Metrics: A Comparative Study 

242 
 

     Partitioning methods:  These methods partition the 
database into predefined number of clusters.  Given a 
database of ‘N’ objects, they attempt to determine ‘K’ clusters 
or groups, which satisfy the following conditions:  each object 
must belong to exactly one group and each group must 
contain at least one object. 
One of the most important fuzzy clustering algorithms is 
fuzzy c-means algorithm.  The problem of fuzzy clustering is 
to partition a collection of n data elements 

1 2{ , ,... }nX x x x= into a collection of c cluster centers 

1 2{ , ,... }cZ z z z= with respect to minimization criterion.  In 

this algorithm, the membership values are given by 

[0,1],ijU u= ∈  1,2,...i n∀ = ; 1,2...j c∀ = where each 

membership value iju indicates the degree to which element 

ix   belongs to cluster  jz . 

     Clustering has been used in many application areas, 
including marketing, customer segmentation, image 
segmentation, pattern recognition, image processing, 
document retrieval, supplier selection and microarray gene 
expression [4][5].  

B. Related Works 

K-means algorithm is the center-based hard partitional 
clustering method [1] [6] [7].  Fuzzy c-means algorithm is 
developed by Dunn [8] in 1973 and improved by Bezdek [9] 
in 1981.  K-means and FCM are widely used to solve data 
clustering problems and are also applied in many real-world 
applications.  LiXiang Jun et al. [10] proposed fuzzy c-means 
clustering algorithm  for macro-economic forecast. Singh 
Yadav et al. [11] proposed fuzzy c-means clustering 
technique for student academic performance evaluation.  The 
drawbacks of K-means and FCM algorithms are sensitive to 
initial cluster centers and converge to local optimal solution.  
Miin-Shen Yang [12] made the fuzzy extension of the 
classification maximum likelihood (CML) procedure in 
conjunction with fuzzy c-partitions and called it a class of 
fuzzy CML procedures.   They derived a generalized type of 
fuzzy c-means clustering algorithms, called the penalized 
FCM (PFCM) algorithms.  Miin-Shen Yang and Chen-Feng 
Su [13] described proposed three approaches, namely Wolfe 
EM, FCM and PFCM to estimate parameters of normal 
mixtures.  Yong Yang and Shuying Huang [14] presented a 
novel extended FCM algorithm for image segmentation. 

III.  METHODOLOGY 

A. Hybrid K-PFCM Algorithms 

   Hybrid algorithms are based on the combination of two or 
more algorithms.  Recently hybrid algorithms are mainly used 
for improving the performance of clustering results.  In this 
paper, K-means and PFCM algorithms are integrated for 
solving data clustering problems.  The algorithm is 
experimented with benchmark data sets for different distance 
metrics including Euclidean, City Block and Chessboard. 
  The K-PFCM Algorithm is described below: 

Step 1: Let 1 2 nX {x , x ...x }= be the set of data points and 

1 2 ca { , ... }a a a= be the set of cluster centers. 

i. Select ‘c’ cluster centers randomly from the data set. 
ii.  Determine the distance between the data points and cluster 
centers. 

iii.  Assign each data point ix to its nearest cluster center ja  

iv. Recalculate the cluster center ja using  i

i
x j

j
j

x

a
n
∈=
∑

 

                            (1) 

where jn is the number of data points belonging to the j-th 

cluster 
v. Repeat the steps (ii) to (iv) until convergence is reached. 
vi. Return the final cluster centers. 
 
Step 2:   Calculate the distance using centers from step 1 and  
                obtain the membership values by using 

         uij   =  2

1
ij

1 ik

1

d

d

c m

k

−

=

 
 
 

∑

  ;                                         (2) 

Step 3: Set the iteration counter t = 0 and the initial values 
(0), 1,2... , 1,2...iju i n j c= = from Step 2. 

Step 4: Find ( 1)t
jα +  using 1

1 1

n
m
ij

i
j c n

m
ij

j i

u

u
α =

= =

=
∑

∑∑
        (3) 

Step 5: Find the centroid ( 1)t
ja +  by using 

1

1

n
m
ij i

i
j n

m
ij

i

u x
a

u

=

=

=
∑

∑
                                              (4) 

Step 6: Calculate the distance 2
ijd  

 
Step 7: Calculate the objective function value 

( 1)( , )t
PFCMJ U a+ by using  

( 1) 2 ( 1)

1 1 1 1

( , ) ln
c n c n

t m m t
PFCM ij ij ij j

j i j i

J U a u d uω α+ +

= = = =

= −∑∑ ∑∑  

                                                                    (5) 

 where, 0, 0jω α≥ ≥ , 
1

1
c

j
j

α
=

=∑ , j∀ and 

|| ||ij i jd x a= − , 

Step 8: Find the new membership values ( 1)t
iju +  by using  

 

1
2 ( 1)

1
2 ( 1)
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Step 7: If ( 1) ( )max | |t t
ij iju u ε+ − <  then stop otherwise go to 

step 4 
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B. Distance Metrics 

   Clustering methods use distance metrics to determine the 
similarity or dissimilarity between any pair of objects.  The 
distance between data  and centroid can be measured using 
distance metrics.  The following are the important properties 
of distance metrics [15][16][17][18]: 
 
1.   ( , ) 0d x y ≥ for every x and y 

2.   ( , ) 0d x y = only if x = y 

3.   ( , ) 0d x x = for every x 

4.  ( , ) ( , )d x y d y x= for every x and y 

5.  ( , ) ( , ) ( , )d x z d x y d y z≤ +  for every x, y and z 

In this paper,   we have studied the performance of K-means, 
FCM and K-PFCM algorithms using  Euclidean, City Block 
and Chessboard distance metrics.  
Euclidean Distance 
     This distance metric is commonly used for clustering 
applications.  It is also called L2 distance or Pythagorean 
metric.  It is calculated by the following formula: 

2

1

( , ) || || ( )
n

i i
i

d x z x z x z
=

= − = −∑            (7) 

City Block Distance   
     This distance metric is also called L1 distance or 
Manhattan distance.  The city block distance between data 
vector x and the centroid z is given by 

1

( , ) | |
n

i i
i

d x z x z
=

= −∑                           (8) 

Chessboard Distance 
This distance metric is also called Chebyshev norm or L∞ 
norm.  It is named after Pafnuty Lvovich Chebyshev.  The 
Chebyshev distance between data vector x and the centroid z  
is given by 
 

1,2...
( , ) max | |i i

i n
d x z x z

=
= −                          (9) 

IV.  EXPERIMENTAL RESULTS AND DISCUSSION 

The objective of this paper is to study the performance of 
K-PFCM algorithm to data clustering problems using 
different distance metrics.  The performance is measured by 
the objective function value and cluster validity measures 
such as PC, PE and intra-cluster distance.  The algorithms are 
implemented using Java program.  We used a PC Pentium IV 
by considering the maximum of 100 iterations and 10 
independent test runs for K-means, FCM and K-PFCM with 
the parameter setting of stop criterion Є = 0.00001, weighting 
exponent m = 2 and ω =0.5.  The weighting exponent m and 
the parameter ω  have played key role in FCM and          
K-PFCM algorithms respectively. The objective function 
value of PFCM depends on the parameterω . When ω  = 0, 

PFCMJ  becomes FCMJ . 

The following five real-world data sets from UCI machine 
learning repository have been considered: 
Data set 1:  The wine data set has 178 data points with 13 
attributes such as alcohol, malic acid, ash, alkalinity of ash, 
magnesium, total phenols, flavanoids, nonflavanoid phenols, 
prothocyanins, color intensity, hue, OD280/OD315.  There 

are three categories in the data set: class 1(59 instances), class 
2 (71 instances) and    class 3 (48 instances).  
Data set 2:  The teaching assistant evaluation data set 
consists of 151 objects and 3 different types of classes 
characterized by 5 attributes. 
Data set 3:  The mammographic mass data set, which consists 
of 961 instances and 2 different types characterized by 5 
attributes. 
Data set 4:  The training image segmentation data set has 210 
instances, which consist of seven classes namely brick face, 
sky, foliage, cement, window, path and grass characterized by 
19 attributes. 
Data set 5:  The glass data set has 214 instances with 9 
attributes and 6 classes.   
     Table I summarizes these five data sets with their 
characteristics.  The comparison of K-means and K-PFCM 
with respect to the best objective function value is given in 
Table II.  The best, average and worst objective function 
values (OFV) are shown in the Table III for Euclidean, City 
Block and Chessboard distance metrics.  Both FCM and 
K-PFCM algorithms based on Chessboard distance shows 
better objective function values than Euclidean distance and 
City Block distance for all the five data sets.  Figures 1-3 show 
the best OFV of K-PFCM of three different distance measures 
on various data sets.   The quality of clustering is evaluated 
using cluster validity measures such as PC, PE and 
intra-cluster distance [19]. Table IV summarizes the cluster 
validity measures.  
     The Maxdis and Mindis of K-PFCM Algorithm for 
Chessboard distance are shown in Table V.  The Maxdis 
represents the maximum distance between the cluster centers 
and Mindis represents the minimum distance between the 
cluster centers.  Intra-cluster distance is average of  the sum of 
all the distances between the objects within a cluster and the 
centroid of the cluster.  The smaller intra-cluster value has the 
higher quality of clustering.   It is observed that K-PFCM 
based on Chessboard distance has maximum PC, minimum 
PE and minimum intra-cluster distance.  Table VI shows the 
results of cluster validity measures of FCM and K-PFCM 
algorithms. 

V. CONCLUSIONS 

    Clustering is an important technique for grouping of data 
sets into group of clusters or classes.  The fuzzy clustering 
problem is one of the difficult problems to solve optimally in 
nature.  Many classical clustering algorithms were based on 
Euclidean distance metric.  In this paper, we have made an 
attempt to study the performances of K-means, FCM and 
K-PFCM with different distance metrics such as Euclidean, 
City Block and Chessboard.  Five real-world data sets from  
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UCI machine learning repository, including Wine, Teaching Assistant Evaluation, Mammographic Mass, Image Segmentation, 
and Glass were chosen to validate the performance of the algorithms. The experimental results showed that FCM and K-PFCM 
algorithms reported good results for Chessboard distance.  K-PFCM algorithm showed minimum objective function value than 
K-means algorithm for all the distance metrics.  The results also revealed that the K-PFCM gave the better PC, PE and  
intra-cluster distance.   

TABLE I  REAL-WORLD UCI REPOSITORY DATA SETS AND THEIR CHARACTERISTICS 

 
Data set      No. of attributes  No. of classes  No. of instances  (with size of classes) 
           

 
Wine          13        3         178 (59, 71, 48) 
Teaching Assistant               5        3         151 (49, 50, 52 )  

     Evaluation                          
Mammographic Mass               5        2          961 (516, 445) 
Image Segmentation           19            7         210 (30, 30, 30, 30, 30, 30, 30)  
Glass                       9            6         214 (70, 76, 17, 13, 9, 29) 

TABLE II  COMPARISON OF K-MEANS AND K-PFCM ALGORITHMS 
                                                  
 

        Best OFV 
 

Data set     Distance  Metrics           K-means              K-PFCM     
 
 
Wine       Euclidean       2370689.687    1796158.191 

City Block       2938172.782    2216038.760 
Chessboard                   2341963.645    1775196.519 

 
Teaching Assistant  Euclidean              16784.152               10602.595 
Evaluation     City Block                           40730.695             25616.939 

Chessboard              11447.982             7401.498 
 

Mammographic   Euclidean               74722.541         59571.483 
Mass       City Block                       119517.686             93436.237 

            Chessboard              71237.745         56590.693 
 

Image       Euclidean           963775.201       418697.591 
Segmentation    City Block                       4591640.196               2210375.506 

            Chessboard          427696.709        185402.238 
  

Glass       Euclidean                      338.922             217.590 
            City Block                           1490.553                   750.994 
            Chessboard                 164.439                   135.660 
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TABLE III   OBJECTIVE FUNCTION VALUES (OFV) OF FCM AND K-PFCM ALGORITHMS 
 

 
Data set                 Method    Distance          Best OFV    Average  OFV   Worst OFV 

Metrics  
 

 
Wine      FCM      Euclidean    1796083.172   1958653.486    9900718.661  

               City Block    2215967.401   2363699.836            10652568.984 
               Chessboard   1775124.133   1906082.667       9483145.687 
 
        K-PFCM    Euclidean    1796158.191   1778323.630       1802787.774 
               City Block    2216038.760   2193848.082       2219640.872 
               Chessboard   1775196.519    1757551.893       1781262.361 
 

Teaching     FCM      Euclidean           10558.080          10808.791            21782.797 
Assistant           City Block            25575.604           26151.897            48938.856 
Evaluation           Chessboard             7358.160           7487.883              16679.034 

 
        K-PFCM    Euclidean            10602.595        10498.794            10729.418      
               City Block            25616.939     25275.459           25640.027 
               Chessboard              7401.498          7313.556           7401.498 
 

Mammographic  FCM      Euclidean           59302.592        61120.728        137052.345 
Mass             City Block            93177.376       96022.174           195190.552 

               Chessboard           56319.471             58129.925        133765.427 
 
        K-PFCM    Euclidean         59571.483        58976.507           59622.366      
               City Block         93436.237        92505.689           93636.909 
               Chessboard        56590.693        56028.089           56809.278 
 

Image       FCM      Euclidean         677266.977        707550.886           2460303.656  
Segmentation          City Block              2743121.046          2932244.536           17359843.776 

               Chessboard       430780.089        444819.228         1573868.257 
 
        K-PFCM    Euclidean        418697.591        414792.324        430385.599      
               City Block             2210375.506           2194187.651            2268071.037 
               Chessboard      185402.238       183520.968           185860.362  
 

Glass      FCM      Euclidean                 154.146               162.185                 656.036      
               City Block               659.105               693.329           2801.969 
               Chessboard               78.431             82.251               309.171 
 
        K-PFCM    Euclidean                  217.590             216.057                  240.449 
               City Block               750.994              750.054               799.831 
               Chessboard              135.660              134.713               160.156 
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Fig. 1 Best Objective Function Value of K-PFCM algorithm for Wine, Image Segmentation and Mammographic Mass data sets 

 

 

 
 

Fig. 2  Best Objective Function Value of K-PFCM algorithm for Teaching Assistant Evaluation data set 
 

 

 
 

Fig. 3 Best Objective Function Value of K-PFCM algorithm for Glass data set 
 

 

246



International Journal of Soft Computing and Engineering (IJSCE) 
ISSN: 2231-2307, Volume-3, Issue-6, January 2014 

221 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE IV  CLUSTER VALIDITY MEASURES FOR FUZZY 
CLUSTERING 

 
Cluster Validity         Description &  
 Measure         Best Result 
 

Partition Coefficient (PC) 2 
ij

1 1

1
u

n c

i jn = =
∑∑  

        Maximum 

Partition Entropy (PE)     ij 2 ij
1 1

1
[u log u ]

n c

i jn = =

 
−  

 
∑∑  

           Minimum 

Intra-cluster distance  2

1

1
|| ||

k

K

k
k x C

x m
n = ∈

−∑∑  

   km - centroid of k-th cluster 

          Minimum  

 
TABLE V  MAXDIS AND MINDIS OF K-PFCM ALGORITHM FOR 

CHESSBOARD DISTANCE 
 

Data set        Maxdis             Mindis 
 
 Wine         761.633      283.125  
  
 Teaching Assistant      27.156               11.253 
 Evaluation 
 
 Mammographic          24.299           24.299 
 Mass  
 
 Image          1507.082          81.047 
 Segmentation 
 
 Glass                  6.365        2.940 
 

TABLE VI  RESULTS OF CLUSTER VALIDITY MEASURES OF FCM AND K-PFCM ALGORITHMS 

 
Data set     Method     Distance     PC     PE    Intra-cluster 

    Metrics                                                                        Distance 
 

Wine       FCM     Euclidean     0.7909    0.5488    56.9890           
                City Block     0.7670    0.6100     76.7059 
                Chessboard    0.7934           0.5418    56.8599  
 
          K-PFCM   Euclidean     0.7909    0.5488    56.9883               
                City Block     0.7670    0.6101    76.7048   
                Chessboard    0.7934    0.5418    56.8592          
 

Teaching      FCM     Euclidean     0.5586    1.0983      0.4690 
Assistant           City Block     0.4968    1.2346        0.9170 
Evaluation           Chessboard    0.5391    1.1277      0.6105 

 
K-PFCM   Euclidean     0.5572    1.1015      0.4692    

         City Block     0.4962    1.2360      0.9131               
             Chessboard    0.5373    1.1315      0.6116   

 
Mammographic   FCM     Euclidean     0.8195    0.4285      0.0177      
Mass             City Block     0.7872    0.4992      0.0257      

                Chessboard    0.8270    0.4100      0.0174 
 

K-PFCM   Euclidean     0.8187    0.4304      0.0177            
         City Block     0.7868    0.5003      0.0257   

                Chessboard    0.8270    0.4113      0.0173            
 

Image      FCM     Euclidean     0.4239    1.8348    19.1562 
Segmentation          City Block     0.4009    1.8739    118.680 

                Chessboard    0.4269    1.8060            3.813 
 
          K-PFCM   Euclidean     0.4505    1.6812    19.1938   
                City Block     0.4453    1.6737    149.059  
                Chessboard    0.4804    1.5966         3.6891   
  

Glass       FCM     Euclidean     0.4930    1.4373            0.003 
                City Block     0.4558    1.5750             0.011 
                Chessboard    0.5097    1.3737             0.002 
 
          K-PFCM   Euclidean     0.3741          1.8            0.003 
                City Block     0.4067           1.6         0.003       
                Chessboard    0.4373          1.6         0.003 
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