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Abstract—Clustering is the process of grouping a set of olbgec
into a number of clusters. K-means and Fuzzy c-mggFCM)
algorithm have been extensively used in cluster bysés.
However, they are sensitive to noise and do not ude any
information about spatial context. A Penalized Fuzeymeans
algorithm (PFCM) was developed to overcome the drawlsack
FCM algorithm. Euclidean distance measure is commgpnised
by many researchers in traditional clustering algtrms. In this
paper, a comparative study on hybrid fuzzy data stéring
algorithm using different distance metrics such Esiclidean, City

same cluster are similar to one another and asgnlar to
the elements in other clusters.

There are many methods for solving clustering poid in
the literature. K-means and Fuzzy c-means algordhe the
important partitioning methods and are widely ufmddata
clustering and image segmentation. However, they
sensitive to noise and are easily struck at lopthw. They
do not incorporate any information about spatiaitest. To
overcome the drawbacks of fuzzy c-means algoritimamny

Block and Chessboard is proposed. The K-means, FCM andjeriyatives were proposed in the literature. Aeed!FCM

hybrid K-PFCM algorithms are experimented and tested five
real-world benchmark data sets from UCI machine leamg
repository. The experimental results show that FCM ahgbrid
K-PFCM algorithms report good performance for Chessbdar
distance. The hybrid K-PFCM algorithm shows best oltjee
function value than K-means algorithm. The performnce of the
algorithms is also evaluated through standard clestvalidity
measures. The Hybrid K-PFCM algorithm is effective der the
criteria of PC, PE and intra-cluster distance.

Index Terms— Data clustering, K-means, Fuzzy c-means,
Penalized Fuzzy c-means, Hybrid K-PFCM, Distance meri
Cluster validity measures.

I. INTRODUCTION

Most organizations generate enormous amount of alatia
store them in files, databases or other reposg#toria recent
days, the data continues to grow at a phenometel fEhe
huge amount of stored data contains valuable irdtion,
which could be used to increase the efficiencyprovide
valuable services to customers and to gain the ettive
advantage. Extracting information and knowledgamfra
large database is a difficult task. Hence, a m®acd®r
converting huge volume of data to knowledge wiltdme
invaluable. The area of knowledge discovery inadases

algorithm (PFCM) is one such algorithm to produffective
and robust result. Distance metrics have playsdr&le in
data clustering problems. Distance metric is used
determine the similarity between data points. Heein
distance is commonly used in many classical fuhastering
algorithms. In this paper, we study the perforneard
K-means, FCM and hybrid K-PFCM algorithms for data
clustering problems by using different distance riost
including Euclidean, City Block and Chessboard. We
evaluate the algorithms through benchmark datassets as
Wine, Teaching Assistant Evaluation, Mammographash)
Image Segmentation, and Glass.

The rest of this paper is organized as follows.ctia 2
briefly describes the background which includes the
clustering algorithms and the related works of Kange FCM
and PFCM algorithms. In section 3, Methodology is
explained. Experimental Results and Discussioagiaen in
section 4. Finally, conclusions are drawn in sech.

II. BACKGROUND

In this section, we discuss the basic conceptdusitaring
algorithms and related works of K-means, FCM an@MF

A. Clustering Algorithms

(KDD) has arisen over the last decade to address th

challenge.

Data mining is one of the steps in KDD processis
defined as finding meaningful information in a detae. Itis
the process of extracting previously unknown, vadiad
potentially useful information from large databasekhere
are many data mining functions including associatigles,
classification, clustering, regression, summarati
sequence discovery and time series analysis [1].

Clustering is a process of grouping a setaté &lements
into a number of clusters such that data elemeiiténathe
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Clustering is a technique for the discovery nbkledge
from a data set. Itis used to group the datastierno clusters
such that similar items are placed in the sameteriughile
dissimilar items are placed in different clustersThe
groupings of data items are based on similaritysidiilarity
metrics or distance metrics. Clustering of datgeserally
based on two methods, namely, hierarchical mettaob
partitioning methods [2][3].

Hierarchical methods: These methods create a
hierarchical decomposition of the objects. Theyn ¢
categorized as bottom-up (agglomerative) and toprdo
(divisive). Bottom-up methods start with each abferming
a separate group. They successively merge thetsljeat
are close to one another, until all the groupsneeeged into
Topaaho
methods begin with one object in a single clustat ghen
split the cluster into smaller groups until eackecbis in one
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Partitioning methods. These methods partition thei. Select ‘c’ cluster centers randomly from the datia s
database into predefined number of clusters. Gigen ii. Determine the distance between the data pointslaster
database of ‘N’ objects, they attempt to deterifhelusters  centers.

or groups, which satisfy the following conditiorsach object i, - Assign each data poink, to its nearest cluster centar
must belong to exactly one group and each groupt mus
contain at least one object. z X

One of the most important fuzzy clustering algamhis %0]
fuzzy c-means algorithm. The problem of fuzzy ®usg is

to partition a collection of n data elements
X ={X, %,...X} into a collection of ¢ cluster centers

iv. Recalculate the cluster centa[using a; =
i

1)

. o o where N, is the number of data points belonging to the j-th

Z ={2, ,... Z} with respect to minimization criterion. In .-

this algorithm, the membership values are given by Repeat the steps (ii) to (iv) until convergenceeisched.

U =y, 0[0,1], Oi =1,2,..n; 0j =1,2..c where each vi. Return the final cluster centers.

membership valug); indicates the degree to which element;g, 5. cajculate the distance using centers from stepdl an

X belongs to cIusterZ]— _ obtain the membership values bypgisi
Clustering has been used in many applicaticzasa Yy = ;2 : (2)
including marketing, customer segmentation, image c(d \ma
segmentation, pattern recognition, image processing z i
document retrieval, supplier selection and mic@amgene =1 dik
expression [4][5]. Step 3: Set the iteration counter t = 0 and the initidlies
B. Related Works u®,i=1,2..n,j = 1,2.cfrom Step 2.
K-means algorithm is the center-based hard panttio n
clustering method [1] [6] [7]. Fuzzy c-means algon is Zui;“
developed by Dunn [8] in 1973 and improved by B&Z@@ - (t+41) — =1
Step 4:Find a; usingd; =———— 3)

in 1981. K-means and FCM are widely used to sdla S S
clustering problems and are also applied in maairwerld Zzuij
applications. LiXiang Jun et al. [10] proposedzyiz-means 1= i=1
clustering algorithm for macro-economic foreceSingh Step 5:Find the centroicﬁ?ﬂ) by using

Yadav et al. [11] proposed fuzzy c-means clustering n
technique for student academic performance evaluafihe zufnx
. . ]
drawbacks of K-means and FCM algorithms are sessit q =z @)
initial cluster centers and converge to local optisolution. i n

Miin-Shen Yang [12] made the fuzzy extension of the zui;n

classification maximum likelihood (CML) procedura i =

conjunction with fuzzy c-partitions and called itclass of Step 6: Calculate the distancdij2

fuzzy CML procedures. They derived a generalizpé of

fuzzy c-means clustering algorithms, called theafieed gtep 7:Calculate the objective function value
FCM (PFCM) algorithms. Miin-Shen Yang and Chengren J (U(t+1) a) by using

Su [13] described proposed three approaches, nanvelfg PFCM ’
EM, FCM and PFCM to estimate parameters of normal (41 ks > x 1
mixtures. Yong Yang and Shuying Huang [14] presérd ‘IJPFCM (U( )’ a) = ZZ quan _w. Z W“aj( )
novel extended FCM algorithm for image segmentation == J=i

C
lll. METHODOLOGY where,w=0,a; 2 0, ZO'j =1, [j and
A. Hybrid K-PFCM Algorithms =
Hybrid algorithms are based on the combinatibtwo or dij =l X—§ Il

more algorithms. Recently hybrid algorithms areéniyaused  gep 8: Find the new membership vaIuElngﬂ) by using
for improving the performance of clustering resulta this

paper, K-means and PFCM algorithms are integrated f (di? —wln a')_%m—l)

solving data clustering problems.  The algorithm is U =—— — (6)
experimented with benchmark data sets for diffedéstance Z (dii —-wln ak) %m-l)

metrics including Euclidean, City Block and Chesaioo =1

The K-PFCM Algorithm is described below: . Step 7:If max |ui§t+l) _ j(t) k £ then stop otherwise go to
Step 1:Let X ={X , X ,..X .} be the set of data points and ‘en 4
step

a={a, a,...8,} be the set of cluster centers.

242




International Journal of Soft Computing and Engineering (IJSCE)
I SSN: 2231-2307, Volume-3, | ssue-6, January 2014

B. Distance Metrics are three categories in the data set: class 1§68nices), class
Clustering methods use distance metrics to ohiterthe 2 (71 instances) and = class 3 (48 instances).

similarity or dissimilarity between any pair of ebfs. The Data set 2. The teaching assistant evaluation data set

distance between data and centroid can be meassiegl COnsists of 151 objects and 3 different types afssts

distance metrics. The following are the importartperties  characterized by 5 attributes.

of distance metrics [15][16][17][18]: Data set 3: The mammographic mass data set, which consists
of 961 instances and 2 different types charactérizg 5

1. d(x, y)=Ofor every x and y attributes. o _

2. d(x y)=Oonlyifx=y Dataset 4: The training image segmentation data set has 210
' ' instances, which consist of seven classes namally facce,

3. d(x X) = Ofor every x sky, foliage, cement, window, path and grass cheraed by

4. d(x y)= d(y Xforevery xandy 19 attributes. _ _

5. d(x < d % Y+ d y Yforeveryx yandz Data set 5: The glass data set has 214 instances with 9
' - ' attributes and 6 classes.

In this paper, we have studied the performandé-wieans, Table | summarizes these five data sets withirt

FCM and K-PFCM algorithms using Euclidean, Citp&#  characteristics. The comparison of K-means andFK?

and Chessboard distance metrics. with respect to the best objective function valsigiven in

Euclidean Distance Table Il. The best, average and worst objectivection

This distance metric is commonly used for tElieg yalues (OFV) are shown in the Table IlI for Euctide City
applications. It is also called,ldistance or Pythagorean gjock and Chessboard distance metrics. Both FCH an

metric. Itis calculated by the following formula: K-PFCM algorithms based on Chessboard distance show
n better objective function values than Euclidearatise and
d(x 2 =|| x= z|E . /Z (= iZf (7) cCity Block distance for all the five data setsgiies 1-3 show
i=1 the best OFV of K-PFCM of three different distanueasures
City Block Distance on various data sets. The quality of clustergvaluated

This distance metric is also called, distance or using cluster validity measures such as PC, PE and
Manhattan distance. The city block distance betwe&ta intra-cluster distance [19]. Table IV summarizes thuster

vector x and the centroid z is given by validity measures.

n The Maxdis and Mindis of K-PFCM Algorithm for
d(x 2 :Z| X= Z| (8) Chessboard distance are shown in Table V. Waeadis

i=1 represents the maximum distance between the closteers
Chessboard Distance and Mindis represents the minimum distance between the

This distance metric is also called Chebyshev nornh,  cluster centers. Intra-cluster distance is aves&ghe sum of
norm. It is named after Pafnuty Lvovich Chebyshébhe all the distances between the objects within atefusnd the
Chebyshev distance between data vector x and tieo@kz  centroid of the cluster. The smaller intra-clusi@ue has the

is given by higher quality of clustering. It is observed t&aPFCM
based on Chesshoard distance has maximum PC, mmnimu
d(x 2 = max | X— Z (9) PE and minimum intra-cluster distance. Table \dve the
i=1,2.n results of cluster validity measures of FCM and KC
algorithms.

IV. EXPERIMENTALRESULTSAND DISCUSSION

The objective of this paper is to study the perfamoe of V. CONCLUSIONS

K-PFCM algorithm to data clustering problems using Clustering is an important technique for growgpof data
different distance metrics. The performance issuezd by sets into group of clusters or classes. The fuagtering
the objective function value and cluster validiteasures problem is one of the difficult problems to solvatimally in
such as PC, PE and intra-cluster distance. Tlitlgis are nature. Many classical clustering algorithms weased on
implemented using Java program. We used a PCuPefid  Euclidean distance metric. In this paper, we hamegle an
by considering the maximum of 100 iterations and 18ttempt to study the performances of K-means, FGM a
independent test runs for K-means, FCM and K-PFAM w K-PFCM with different distance metrics such as ilean,
the parameter setting of stop critertor 0.00001, weighting City Block and Chessboard. Five real-world data fiem
exponent m = 2 andv=0.5. The weighting exponent m and

the parameteraw have played key role in FCM and

K-PFCM algorithms respectively. The objective fuont

value of PFCM depends on the paramépetWhen w = 0,

Jprem becomes ., .

The following five real-world data sets from UCI chéne
learning repository have been considered:

Data set 1. The wine data set has 178 data points with 13
attributes such as alcohol, malic acid, ash, alkgliof ash,
magnesium, total phenols, flavanoids, nonflavamtidnols,
prothocyanins, color intensity, hue, OD280/0OD31bhere
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TABLE | REAL-WORLD UCI REPOSITORY DATA SETS AND THIR CHARACTERISTICS

Data set No. of attributes No. of classes No. of instances (with size of classes)
Wine 13 3 178 (59, 71, 48)
Teaching Assistant 5 3 151 (49, 50, 52)
Evaluation
Mammographic Mass 5 2 961 (516, 445)
Image Segmentation 19 7 210 (30, 30, 30, 30, 30, 30, 30)
Glass 9 6 214 (70, 76, 17, 13, 9, 29)

TABLE II COMPARISON OF K-MEANS AND K-PFCM ALGORITHIS

Best OFV
Data set Distance Metrics K-means K-PFCM
Wine Euclidean 2370689.687 1796188.1
City Block 2938172.782 2216038.760
Chessboard 2341963.645 1775196.
Teaching Assistant  Euclidean 16782.15 10602.595
Evaluation City Block 0730.695 25616.939
Chessboard 11447.982 748 .4
Mammographic Euclidean 74722.541 59571.483
Mass City Block 119517668 93436.237
Chessboard 71237.745 56590.693
Image Euclidean 963775.201 86017.591
Segmentation City Block 4690.196 2210375.506
Chessboard 427696.709 5408.238
Glass Euclidean 338.922 217.590
City Block 14963 750.994
Chessboard 164.439 135.660

UCI machine learning repository, including Wine a€hing Assistant Evaluation, Mammographic Mass gerdegmentation,
and Glass were chosen to validate the performafiibe @lgorithms. The experimental results shovead FCM and K-PFCM
algorithms reported good results for Chessboatdmiie. K-PFCM algorithm showed minimum objectivedtion value than
K-means algorithm for all the distance metrics. e Tlesults also revealed that the K-PFCM gave thebPC, PE and

intra-cluster distance.
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TABLE Il OBJECTIVE FUNCTION VALUES (OFV) OF FCM AND K-PFCM GORITHMS

Data set M ethod Distance Best OFV Average OFV Worst OFV
Metrics
Wine FCM Euclidean 1796083.172 1958653.486 9900718.661
City Block 2215967.401 236369%.83 10652568.984
Chessboard 1775124.133 1906082.667 9483145.687
K-PFCM Euclidean 1796158.191 1778836 1802787.774
City Block 2216038.760 219384208 2219640.872
Chessboard 1775196.519 1757931.8 1781262.361
Teaching FCM Euclidean 10558.080 10808.791 21782.797
Assistant City Block 25575.604 26151.897 48938.856
Evaluation Chessboard 7358.160 7487.883 16679.034
K-PFCM Euclidean 10602.595 10498.794 10729.418
City Block 25616.939 275.459 25640.027
Chessboard 7401.498 7313.556 7401.498
Mammographic FCM Euclidean 59302.592 61120.728 137052.345
Mass City Block 93177.376 96022.174 195190.552
Chessboard 56319.471 58129.925 133765.427
K-PFCM Euclidean 59571.483 58976.507 59622.366
City Block 93436.237 50%.689 93636.909
Chessboard 56590.693 0286089 56809.278
Image FCM Euclidean 677266.977 707550.886 2460303.656
Segmentation City Block 27431026 2932244.536 17359843.776
Chessboard 430780.089 4849.228 1573868.257
K-PFCM Euclidean 418697.591 414792.324 430385.599
City Block 2210375.506 2194187.651 2268071.037
Chessboard 185402.238 20358 185860.362
Glass FCM Euclidean 156.14 162.185 656.036
City Block 659.105 693.329 2801.969
Chessboard 78.431 82.251 309.171
K-PFCM Euclidean 217.590 216.057 240.449
City Block 750.994 750.054 799.831
Chessboard 135.660 134.713 160.156
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TABLE IV CLUSTER VALIDITY MEASURES FOR FUZZY

CLUSTERING
Cluster Validity Description &
Measure Best Result

1 n C
Partition Coefficient (PC) — z z uij2

i=1 j=1
Maximum

Partition Entropy (PE) 1 ZZ[UH log,u, ]
n

1
Intra-cluster distance —
n

i=1 j=1
Minimum

k=1 xOG,

m, - centroid of k-th cluster

Minimum

33 [1x-m If

TABLE V MAXDISAND MINDIS OF K-PFCM ALGORITHM FOR

CHESSBOARD DISTANCE

Data set Maxdis Mindis
Wine 761.633 283.125
Teaching Assistant 27.156 13.25
Evaluation

Mammographic 24.299 24.299
Mass

Image 1507.082 81.047
Segmentation

Glass 6.365 2.940

TABLE VI RESULTS OF CLUSTER VALIDITY MEASURES OFEM AND K-PFCM ALGORITHMS

Data set Method Distance PC PE Intra-cluster
Metrics Distance
Wine FCM Euclidean 0.7909 0.5488 56.9890
City Block 0.7670 0.6100 6.7059
Chessboard 0.7934 8541 56.8599
K-PFCM Euclidean 0.7909 0.5488 56.9883
City Block 0.7670 0.6101 T®A8
Chessboard 0.7934 0.5418 .8HR
Teaching FCM Euclidean 0.5586 1.0983 0.4690
Assistant City Block 0.4968 1.2346 0.9170
Evaluation Chessboard 0.5391 1.1277 0.6105
K-PFCM Euclidean 0.5572 1.1015 0.4692
City Block 0.4962 1.2360 0.9131
Chessboard 0.5373 1.1315 1166
Mammaographic FCM Euclidean 0.8195 05128 0.0177
Mass City Block 0.7872 0.4992 0.0257
Chessboard 0.8270 0.4100 0.0174
K-PFCM Euclidean 0.8187 0.4304 0.0177
City Block 0.7868 0.5003 0.0257
Chessboard 0.8270 0.4113 0.0173
Image FCM Euclidean 0.4239 1.8348 19.1562
Segmentation City Block 0.4009 1.8739 118.680
Chessboard 0.4269 1.8060 3.813
K-PFCM Euclidean 0.4505 1.6812 19.1938
City Block 0.4453 1.6737 91669
Chessboard 0.4804 1.5966 3.6891
Glass FCM Euclidean 0.4930 1.4373 0.003
City Block 0.4558 1.5750 0.011
Chessboard 0.5097 1.3737 0.002
K-PFCM Euclidean 0.3741 1.8 0.003
City Block 0.4067 1.6 0.003
Chessboard 0.4373 1.6 0.003
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