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Abstract

When a system administrator configures a network so it is secure, he understands very

well the users, data, and most importantly the intent—what he is trying to do. However,

he has a limited understanding of the mechanisms by which components interact and

the details of each component. He could easily misconfigure the network so a hacker

could steal confidential data. In addition to this complexity, about one hundred new se-

curity vulnerabilities are found each week, which makes it even more difficult to manage

the security of a network installation—because of the largenumber of program vulner-

abilities and challenging time constraints. Even professional administrators find this a

difficult (impossible) task. How does one enable the system administrator to securely

configure the network with a limited understanding of its components, program bugs and

their interactions?

The solution is a security analysis framework that modularizes information flow be-

tween the system administrator, security expert and the bugexpert. The administrator

specifies what he is trying to do, the security expert specifies component behavior, the bug

expert specifies known bugs. We developed a rule based framework—Multihost, Multi-

stage, Vulnerability Analysis (MulVAL)—to perform end-to-end, automatic analysis of

multi-host, multi-stage attacks on a large network where hosts run on different operating

systems. The MulVAL framework has been demonstrated to be modular, flexible, scal-

able and efficient. We used the framework to find serious configuration vulnerabilities in

software from several major vendors for the Windows XP platform.
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Chapter 1

Introduction

1.1 What is security management?

When a system administrator configures a network to keep it secure, he or she must

consider the users, data, services, servers and most importantly thepolicy—which data

should be accessible to which principals. But even the most experienced system adminis-

trator finds it daunting to keep track of the details of every component, all the mechanisms

by which components interact and what data should be accessible to which principals.

He could easily misconfigure the network so a hacker could steal confidential data. How

does one enable a system administrator to securely configurethe network with a limited

understanding of its components and their interactions?

About one hundred new security vulnerabilities are found per week. It becomes even

more difficult to manage the security of a network installation in the presence of a large

number of security weaknesses in software under challenging time constraints. It is dif-

ficult to answer questions likeIs this bug relevant on my network? What is the best

work-around?In a large network, the diversity of software is high. When a new vulner-
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ability is reported, it is quite likely that the vulnerability advisory is pertinent to some

installed software on the network. Thus, with a high likelihood the vulnerability adver-

sary is relevant to his network. Any security bug on the network could have network-level

consequences. A diligent system administrator will have toperform a security analysis

of the whole network each time a bug is reported—a cumbersomeand error-prone task.

The costs of having a security vulnerability and taking actions to close it are high.

Using a tool to help in these tasks will reduce errors, save costs by eliminating redundant

actions, and streamline actions by prioritizing between multiple bugs and actions. It also

gives the administrator a chance to plan ahead (“what if I finda problem with the web

server?”). It also provides an opportunity to do rigorous risk estimation.

I define Security Managementas the processes to enable the system administrator

to configure the network securely with a limited knowledge ofthe components and the

program vulnerabilities in these components. One can use sound software engineering

practices to guarantee that an individual program is secure—yet be vulnerable to an attack

if the file system permissions allow anyone to overwrite the executable or if an untrusted

user is allowed to be a part of the trusted groups. In this thesis, we study the problem

of ensuring that programs are configured correctly and that they do not wrongly use the

operating system security primitives—even in the presenceof program vulnerabilities.

Most of the security management issues are currently performed manually in an ad hoc

manner. In this thesis, we describe a framework to formalizemanagement to introduce

measurement, streamline the remediation process, and reduce mistakes and costs.
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1.2 Why is security management hard?

The security of a network depends on two orthogonal elements: individual program se-

curity and host and network configuration. Methods to improve individual program secu-

rity in improve individual programs security include usingsafe programming languages

where possible, reducing trusted computing bases, using sound cryptographic primitives,

and ensuring length-checked input fields. Tremendous advances have been made in soft-

ware engineering—the art and science of writing secure programs. One can design and

implement a very secure program—but still be vulnerable to an attack if the file system

permissions allow an untrusted user to overwrite the secureprogram (or a kernel mode

component of the operating system). The untrusted user can just replace the secure pro-

gram with arbitrary code of his choice. There are host wide configuration elements—like

group memberships, firewall rules, networked file system configurations—which can ef-

fect the security of all programs.

We classify security vulnerabilities into two classes—program vulnerabilitiesand

configuration vulnerabilities. Program vulnerabilities are security problems caused in

a single program by poor software engineering. Configuration vulnerabilities are security

holes caused by configuration issues such as firewall rules, file system permissions and

group assignment.

1.2.1 Configuration vulnerabilities

At installation time, programs modify configuration elements that affect the security of

all users and programs of the host. In particular, an installation program might open an

attack path through a previously installed program. For example, we have noticed that in

Windows XP, many kernel mode driver programs set file protection that lets any member

3



of Power Users group overwrite the kernel-mode executable. If the installation of

a program adds an untrusted userjoe to thePower Users group, the host becomes

prone to an attack by the untrusted userjoe through the already installed kernel mode

drivers.

Memberships of groups have to be carefully controlled. Adding an untrusted user to a

trusted group can result in a security breach. However, it isdifficult to determine what the

trusted groups on a host are. For example, each Windows XP host has an built-in group

Power Configuration Operators . A system administrator might be interested

in determining the security consequences of adding a user tothis group. I could not find

documentation for the security behavior of this group. It would be very difficult for an

administrator to determine if membership of this group is equivalent being a member of

the Administrators group. To answer this question, one will have to look at each

resource thatPower Configuration Operators has access to and see if it is

used by a privileged part of the operating system. Since the number of resources is large,

answering this question is difficult.

As we will demonstrate later in the thesis, managing the security of a single host itself

is hard—we have found serious holes in professionally managed machines. On a large

network—where the number of configuration elements and their interactions between

various elements is large—managing the security is even harder. System administrators

are forced tosecurelyconfigure hosts running different operating systems to inter-operate.

For example, the administrators of the Princeton University network will have to ensure

that users can access their files from Windows, Linux and Solaris hosts. These operating

systems have different semantics and one needs to be carefulto ensure that the differing

semantics are mapped properly. There is no framework to reason about the correctness

configuration issues and we address that problem in this thesis.
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Vendor and software
Name

Description Common Name Resources

Adobe
Acrobat, Create Suite,
Illustrator, InDesign,
Pagemaker, Pagemaker
Plus Photoshop, Pre-
miere, and Version Cue
various versions

Multiple vulnerabilities
have been reported in
multiple Adobe prod-
ucts that could let local
malicious users obtain
elevated privileges or
execute arbitrary code.
No workaround or
patch available at time
of publishing. There
is no exploit code
required.

Adobe Multiple
Product Privilege
Elevation or
Arbitrary Code
Execution
CVE-2006-0525

Security Fo-
cus, ID: 16451,
January 31, 2006

Figure 1.1: Sample CERT advisory, from US CERT bulletin SB06-033. I found these
vulnerabilities using the tool set described in this thesis. CERT’s advisory is based on
these findings.

1.2.2 Program vulnerabilities

In addition to the configuration issues discussed above, security attacks are made possible

because of a large number of security holes in individual programs. The United States

Computer Emergency Readiness Team (US-CERT) releases a weekly compilation of new

program vulnerabilities, exploits, trends, and maliciouscode that have been recently re-

ported. Occasionally, they also update information about already known computer secu-

rity risks—where they incorporate a new understanding of the computer security risks.

A sample entry in the weekly bulletin is shown in figure 1.1. A typical weekly bul-

letin contains around 92 advisories regarding various security threats, as shown in table:
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ID Release date Number of items

SB06-026 January 26, 2006 65

SB06-019 January 19, 2006 81

SB06-012 January 12, 2006 108

SB06-005 January 5, 2006 115

Average 92

When an administrator discovers a security vulnerability in his network, he is forced

to take remediation measures quickly. Exploit codes for bugs become available shortly

after a bug advisory has been published. The exploit is oftenavailable before the software

vendor releases a patch. For example, a vulnerability was found in the WMF (Windows

Media Format) handling engine in December 2005; the exploitcode was widely available

two weeks before a patch was available [41].

When a new vulnerability advisory is reported, it is quite likely that the advisory

could affect the security of the network. The system administrator needs to identify if

the bug is relevant to his network. He needs to identify the machines that are using the

affected software and identify which individual installations are affected. He needs to

determine if an adversary could exploit the bug. An adversary cannot exploit the bug if

the affected module is disabled or is hidden behind a firewall. If the adversary can exploit

a bug, the administrator will have to determine the network-level consequences. Then,

the administrator needs to determine what is the best remediation measure. It is very

common that a vulnerability advisory explains the details of security vulnerabilities in

multiple products. Given the large number of vulnerabilities reported, it is very common

that the administrator has multiple problems to attend to, but he cannot identify which are

more important problems. There is no mechanism to prioritize the remediation actions.

6



To summarize, program vulnerability management is hard because of complex se-

mantics for components, a large number of bug advisories, and limited response time.

The procedures administrators adopt are ad hoc, cumbersomeand error-prone.

1.2.3 Lack of quantitative risk measurement

The national critical infrastructure is at risk from malicious attacks through the public

network because of reliance on networked control systems for the management of the

infrastructure. For example, the national power grid is monitored by highly distributed

Supervisory Control and Data Acquisition (SCADA) systems that attackers potentially

may exploit to cause widespread power outages by remote control through the Internet

from anywhere in the world. To combat this potential threat,the operators of control

systems need the ability to more easily measure the current risk and the amount of risk

reduction achieved by countermeasures. Similarly, the ability to quantify the risk in an

enterprise network is valuable.

The community has been working on quantifying various aspects affecting security

like user’s skill level (is this user likely to open email attachments?), the perceived at-

tacker’s skill level, and the importance of the program affected by the bug. However, the

risk estimations do not have a formal model for the software environment (in particular

the operating system behavior) and the adversarial behavior. As a result the estimations

tend to be ad hoc and error prone. For example, when a bug is reported in a library

file, the vulnerability scoring systems ignore the surrounding software context like what

programs are using this library, the privilege level of the programs using this library,

and dependencies between various libraries. In an enterprise network too, it valuable to

quantify the risk reduction achieved by actions of the administrator. The mechanisms to

quantify the risk in current network posture are little understood.

7



1.3 What is the solution?

As we discussed in the previous section, configuration issues are orthogonal to software

engineering issues. Professional system administrators and developers have a difficult

time in understanding the security semantics of the operating system. Even in the absence

of program vulnerabilities, we found that professionally managed networks have serious

configuration holes. Program vulnerabilities make it even harder for the administrator

to manage the security of a network. When a new vulnerabilityis reported, it is hard

to determine if it is relevant on a network. It is even harder to understand the network-

level consequences of a bug. The adversary could adopt an attack path using multiple

vulnerabilities and misconfigurations in multiple software. A local (response) action by

the system administrator like adding or deleting a firewall rule, or adding or deleting a

user from a group can have global effects. It is a cumbersome and error prone task to

reason about the transitive effects of multiple vulnerabilities and misconfigurations.

The solution we propose to these problems is an end-to-end scanning and analysis

framework that assists the administrator. This solution isbased on the insight that even

though the individual components of a network are complex, each component has a very

well defined deterministic behavior and a limited number of mechanisms by which it

interacts with other components. By incorporating knowledge of different components

such as operating system, users and groups, firewall rule sets and networked file systems,

the tool could help the administrator in secure configuration. In addition to configura-

tion bugs, there could be program vulnerabilities—bugs internal to the software. We use

off-the-shelf vulnerability scanners to recognize the existence of already known bugs.

We designed and built a configuration scanner to obtain some information not available

from off-the-shelf products. Our framework computes the transitive closure of the effects

8



of configuration and program vulnerabilities over the wholenetwork to see which prin-

cipal can access what data. The framework flags accesses not allowed by the systems

administrator as attack paths.

Although many programs are installed on any machine, we can do security analysis

and find a large number of previously unknown configuration holes by asking simple

questions likewho is using a program?, andwho is allowed to modify a program and its

configuration?, who are the users of the machine?, andwhat each user is allowed to do on

each host?. As we will show later in the thesis, we foundnew configuration vulnerabili-

ties in theMacromedia Dreamweaverprogram from Macromedia Inc. andSimple Service

Discovery ProtocolandUniversal Plug and Playprograms from Microsoft Corporation

by using this black-box approach.

We do not have to understand the programs’ details to do this analysis. In the case of

vulnerabilities, just information like whether a bug can beremotely exploited and whether

it is a privilege-escalation bug or denial-of-service bug is sufficient for our analysis. De-

spite the large number of program vulnerabilities, the effects of the vulnerabilities can

be classified into a small number of categories. The effects of a remotely exploitable

privilege-escalation vulnerability in aSimple Mail Transfer Protocolserver is the same

as the one in theHyperText Transfer Protocolserver—in both the cases the adversary

gains control of the user account of the programs. Similarly, the security effects of bugs

in at andcron daemons in Unix are similar—both give you access to the administrative

account of the machine. A large amount of analysis is feasible by just taking a black-box

approach to the programs.

We can analyze the network by just analyzing the configurations. This black-box ap-

proach to perform a complete network security analysis is very different from traditional

program vulnerability analysis. In program vulnerabilityanalysis, static/dynamic analy-

9



sis of the binary or source of the program has been proved to beeffective. In our analysis,

we do not analyze individual program binary or source code, but only information such

as, who is allowed to modify the program executable, who is using it, what CERT vul-

nerability advisories apply to it and what is the formal semantics of those advisories.

1.4 Contributions

A central contribution of this thesis is the development of new techniques to reason about

the correctness of configurations. This thesis develops a scalable logic-programming ap-

proach to automatically identify how the adversary can leverage multiple vulnerabilities

to launch a multi-stage attack on a network. The contributions of this thesis are as fol-

lows:

• A formal model of the behavior of the Windows operating system (chapter 4).

• A formal model of the behavior of the Unix operating system (chapter 5).

• A framework to integrate the models of various components ina network such as

operating systems, firewalls, networked file systems (chapter 5). This contribution

is joint work with Xinming Ou and Andrew Appel and these results have been

published [35, 34].

• A framework to automatically recognize how an adversary canlaunch mutli-stage

attacks exploiting weak configuration and program vulnerabilities (chapters 5 and

4).

• A first step towards quantitative risk estimation (chapter 7).

• A first step towards analysis of potential attack scenarios (chapter 5).

10



• A design for improved vulnerability scanners that separatescanning and analysis

phases, and significantly reduces the trusted computing base of current vulnerabil-

ity scanners (chapter 6).

• A practical demonstration of our approach on the Windows operating system shows

that software from several major vendors has serious configuration problems (chap-

ter 7).

A key contribution of our work is the adoption of Datalog as the modeling language to

integrate information from various sources. We showed thatdeclarative specification and

evaluation can overcome the scalability problems with previous approaches. Declarative

specification permits the model to be clean, thus making it easier to debug our model.

It allows us to cleanly separate specification from implementation details. This thesis

demonstrated how one can integrate information from the following sources to perform

an end-to-end network security analysis:

• Model of behavior of various components of the network like firewalls, networked

file systems and operating systems.

• Formal specification of software vulnerabilities.

• Formal specification of the effects of exploiting a softwarevulnerability.

• Configuration information from a host.

• Output of readily available vulnerability scanners.

• Output of network infrastructure management tools.

• Formal security policy, specified by the administrator.

11



Implementation of the techniques presented in this thesis yielded a tool that admin-

istrators and developers could use to verify the software configuration of a single host

(chapters 4 and 7). In fact, we used the tool to find serious vulnerabilities in software

from major commercial vendors. The thesis also gives us a better understanding of cur-

rent scanning technologies and proposes solutions to address their shortcomings.

1.5 Thesis organization

In chapter 2, I discuss how system administrators spend tremendous efforts in configu-

ration and vulnerability management. I introduce the notion of a security expertand a

bug expert. In chapter 3, I give an exhaustive overview of the Windows security model.

I show how privilege escalation attacks are possible because of poor application of the

security model. In chapter 4, I discuss how one can formally describe the Windows se-

curity model. I discuss how it is possible to automatically recognize privilege-escalation

attacks in a Windows host made possible by poor configuration. In chapter 5, I show how

to extend the Windows model to reason about multi-host, multi-stage attacks involving

hosts running Windows and Unix, networked filesystems, and firewalls. I discuss how

the framework can be used to plan for potential attack scenarios too. In chapter 6, I dis-

cuss the advances made in building vulnerability scanners and propose a design for better

scanner to address the shortcomings of the current scanners. In chapter 7, I discuss how

we used my tool to find privilege-escalation attacks on a single Windows host. I then

discuss how my tool has found multi-stage attacks on a real network. I also discuss how

the tool might be used to perform quantitative risk analysisin the future. I summarize the

contributions in chapter 8.
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Chapter 2

Background and Related Work

In this chapter, we outline the different challenges a system administrator has to face. An

administrator will have to deal with the reality that many programs are insecure in their

default installation. He will have to expend immense resources in configuring firewalls

and certain individual programs. We discuss these issues insection 2.1. We then discuss

the challenges of dealing with a large number of security bugs in section 2.2. We discuss

recent advances in program vulnerability recognition in section 2.4.

2.1 Configuration Management

It is quite well known that many programs are insecure in their default installation and

that the administrator has to expend significant efforts towards securing the configura-

tion. These insecurities are different from the buffer overflow vulnerabilities that are

typical—thousands of which are found per year. We now give some examples to illus-

trate that configuration is a significant problem in computersecurity. To make matters
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worse, administrators and developers do not have tools thatcan study the overall impact

of configuration across different programs. This thesis is an attempt to solve this problem.

Oracle A vulnerability advisory released in 2002 discusses some problems with Oracle

9i Application Server [7]:

• Exposing sensitive information

• Letting anonymous users deploy certain applications

• Poor access control on sensitive resources

• Using well-known default passwords

• Allowing remote command execution without authentication

• Using world-readable temporary files—thus exposing sensitive data

• Administrative interface using no authentication by default

Pete Finigan discusses how Oracle Database Server in its default configuration can

lead to a large number of privilege-escalation attacks [19].

Novell Groupwise WebAccess Novell GroupWise WebAccess is an easy-to-use mes-

saging system that offers a wide range of powerful communication and collaboration

capabilities. It lets one send and receive mail messages, appointments, tasks, notes and

attached files over the web. An advisory was released in 2003 that discusses how one

could gain unauthorized access to a vulnerable server because of the poor configuration

file. The configuration file allowed any user to access any file by default [42].
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Applications for the Windows platform As we will show later in the thesis, the access

control model of Windows is more general and complex than that of Unix. Because of

the complexity of the model, the application and operating system developers need to

be careful in using operating system model. In this chapter we will discuss how poor

application of operating system model in commercial software from Adobe, Macromedia,

Microsoft, AOL, IBM, Symantec, and Trend Micro results in privilege escalation.

Network firewall management A network firewall is a device that can filter network

packets based on various attributes like the protocol, port, source, and destination ad-

dress. Network firewalls are widely used to limit the abilityof users and attackers to send

network packets to parts of the network. With a large number of firewalls, it very quickly

becomes difficult for an administrator to manage the firewallrules. There exist a large

number of tools that can manage firewall rule sets automatically [23, 24, 4, 6].

2.2 Vulnerability management

In addition to configuration management, dealing with software vulnerabilities on net-

work hosts poses a great challenge to network administration. With the number of vul-

nerabilities discovered each year growing rapidly, it is very difficult for system adminis-

trators to keep the software on their network machines free of security bugs. The differ-

ent tasks for system administrators to manage their network’s security are: vulnerability

recognition, host configuration, network configuration, understand operating system se-

mantics, and understand adversaries.

Does the advisory apply to software on my system?The crux of the problem is that

there is no framework to automatically analyze the effects of a vulnerability advisory. In
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the wake of new vulnerabilities, assessment of their security impact on the network is

important in choosing the right countermeasures: patch andreboot, reconfigure a fire-

wall, dismount a file-server partition, and so on. One of the daily chores of a system

administrator is to read bug reports from various sources (such as CERT and BugTraq)

and understand which reported bugs are actually security vulnerabilities in the context of

his own network. Vulnerability reports are written in an ad hoc manner like this:

OpenSSH 3.x, 4.x; Red

Hat Fedora Core3 &

Core4

A vulnerability has been reported in

’scp’ when performing copy opera-

tions that use filenames due to the

insecure use of the ’system()’ func-

tion, which could let a malicious

user obtain elevated privileges.

CVE-2006-0225

An administrator will have to manually check if this report is relevant on his network—

that is, if any version between 3.0 and 4.999 of OpenSSH is installed on any machine in

the administrator’s system— and then do further research tounderstand its implications.

Typical vulnerability reports sent to discussions lists that are written in natural language

are hard to read; the manual process of recognizing existence of a vulnerability in a host

is labor intensive and error-prone. There is a need to automate the process of determining

if vulnerable software is installed on a host.

Can the adversary reach the vulnerability? Upon recognizing that a vulnerability

report is indeed relevant to his network, the administratorwill have to understand the

host and network configurations to see if the vulnerability can be exploited. If the affected

client program is disabled (host configuration), then an adversary cannot exploit it. If the

vulnerability is in a particular module of a program and the module is disabled, then

the adversary cannot exploit it (program configuration). Ifthe network uses a firewall
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to block access to the affected server program, an external adversary cannot exploit it

(network configuration). It is a tedious process for the administrator to understand the

host and network configuration. For examples, firewall rule sets are notoriously difficult

for a human to understand.

What happens when a bug is exploited? The result of exploiting a bug could be one

of: denial of service, loss of confidentiality, loss of integrity, or privilege escalation. It is

very hard to automatically understand the effects of adata corruption(loss of integrity) or

auser name leaked(loss of confidentiality) bug. The effects of a denial-of-service bug can

easily be quantified as a loss of service. The result of a privilege-escalation bug is easily

quantified—the adversary obtains privileges of the vulnerable program. An adversary

could use the additional privileges obtained to launch further attacks. About 80% of

reported vulnerabilities are either privilege escalationor denial of service. The ability

to model privilege-escalation and denial-of-service attacks yields substantial benefits in

current systems. This experience in modeling these attacksis useful in extending the

model to other attacks in the future.

Results of a privilege-escalation exploit When a privilege-escalation bug in a program

is exploited, the adversary gets control of the privilege level of the vulnerable program.

In Windows, a compromise of a program would result in the adversary gaining the priv-

ileges of the principal using the program. In Unix, a compromise of a program would

result in the adversary gaining the privileges of the principal running the program only if

the program isnot a setuidprogram. In Unix, a compromise of asetuidprogram would

result in the adversary gaining the privileges of the owner of the program file. In Win-

dows, a compromise of mostserviceprograms results in a complete control of the host.

Let us consider theRemote Procedure Callserver programs in Windows and Linux. A
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compromise of this program in Windows gives the adversary (among other things), the

ability to shut down the host. A compromise of the same program in Linux does not give

the adversary the ability to shut down the host.

The system administrator needs to have a very good understanding of details of the

operating system to determine the damage after a privilege-escalation attack. A typical

system administrator may not have a detailed understandingof the operating system se-

mantics. In today’s world, system administration is a highly specialized task. A web

server administrator knows the intricacies of a web server from one vendor, but not nec-

essarily that of the database or operating system or even webserver products from other

vendors. A Unix administrator knows the intricacies of Unix, but not necessarily the intri-

cacies of Windows. An Oracle database administrator knows the details of configuration

and semantics of Oracle database server, but not that of rival products from Microsoft or

IBM or Sybase. Still, it is very common that an enterprise’s business flows are critically

dependent on the interaction of applications across different expert domains (web server,

application server, database, and operating system). How does one guarantee that there

are no gaps across the different expert domains? In practiceis it infeasible for even a pro-

fessional system administrator to understand the securitysemantics of all the programs

on the network. Even if the administrator does know the semantics of all the programs

on the network, how do we know that the administrator has not made a mistake in the

cumbersome details?

2.3 Roles of security expert and bug expert

Determining the impact of exploiting a privilege-escalation bug requires a detailed under-

standing of the operating system semantics. It is hard for a typical system administrator
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to have detailed understanding of the operating system security semantics. A system

administrator really understands only the local elements of the network—the users and

data. He also understands very well his intent—the local network security policy. It is

hard for him to deal the complexity posed by the complex semantics of the individual

components—like operating systems. We introduce the notion of a security expert—a

principal who understands the detailed security semanticsof the operating system. The

operating system designer would be an ideal candidate for the security expert. For the

system described in this thesis, I acted the role of a security expert.

Both the system administrator and the security expert cannot predict which program

will have the next publicly reported vulnerability and whatwill be its consequences. We

introduce the notion of abug expertwhich is an abstraction for the bug reporting com-

munity. The work described in this thesis is about enabling the modularity of information

flow between the system administrator, the security expert,and the bug expert.

2.4 Program vulnerability recognition

Each time a security is released, a diligent system administrator will have to determine

if the bug affects his network. Traditionally, this determination is done manually—the

system administrator has to watch the vulnerability discussion lists, read and the under-

stand the natural language descriptions of the bugs and see if installations on his network

are affected. As we discussed in chapter 1, about a hundred program vulnerabilities are

reported each week. Even on a small network with about a hundred hosts, this manual

examination of network is infeasible in practice. Recently, the bug-reporting community

has started to provide these kinds of information in formal,machine-readable formats so

that a program can automatically recognize the vulnerability.

19



2.4.1 The OVAL language and scanner

The Open Vulnerability Assessment Language (OVAL) [49] is an XML-based language

for specifying machine configuration tests. When a new software vulnerability is dis-

covered, an OVAL definition can specify how to check a machinefor its existence. The

OVAL schema supports multiple platforms—Windows, Solaris, HP-UX, and Linux in

particular. A vulnerability is defined as a boolean combination of elementary tests on

a host. Each elementary tests properties such as operating system version, architecture

version, software version, file permissions and network servers listening for incoming

connections. A sample vulnerability definition can be foundin figure 2.1.

A OVAL definition can be fed to an OVAL-compatible scanner, which will conduct

the specified tests on the host and report the result. Currently, Mitre Corporation pro-

vides OVAL vulnerability definitions for the Windows, Red Hat Linux and Solaris plat-

forms. OVAL-compliant scanners are available for Windows and Red Hat Linux plat-

forms. Mitre Corporation’s OVAL vulnerability definitionshave been created since 2002

and new definitions are being submitted and reviewed on a daily basis. Any principal

can submit a new vulnerability advisory to be added to Mitre’s OVAL Database. When

the OVAL board at Mitre Corporation accepts the submission,the advisory is added to

Mitre’s OVAL bug database. As of January 31, 2005, the numberof OVAL definitions

for each platform is:

Platform Submitted Accepted

Microsoft Windows 543 489

Red Hat Linux 203 202

Sun Solaris 73 57

Total 819 748
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<definition id="OVAL864" class="vulnerability">
<reference source="CVE">CVE-2003-0542</reference>
<criteria>

<software operation="AND">
<criterion test_ref="rrt-206"

comment="Red Hat Enterprise 3
is installed" negate="false" />

<criterion test_ref="rvt-304"
comment="httpd version is less
than 2.0.46" negate="false"

/>
</software>

</criteria>
<tests>

<rpmversioncompare_test id="rvt-304" >
<name datatype="string" operator="equals">

httpd
</name>

<tested_version operator="equals">
2.0.46

</tested_version>
</rpmversioncompare_test>
<rpminfo_test id="rrt-206">

<name operator="equals">
redhat-release

</name>
<version operator="pattern match">

ˆ3.S
</version>

</rpminfo_test>
</tests>

</definition>

Figure 2.1: A sample (Linux) OVAL definition
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For example, we ran the OVAL scanner on one machine using the latest OVAL definition

file and found the following vulnerabilities:1

VULNERABILITIES FOUND:

OVAL Id CVE Id

-------------------------

OVAL2819 CAN-2004-0427

OVAL2915 CAN-2004-0554

OVAL2961 CAN-2004-0495

OVAL3657 CVE-2002-1363

-------------------------

Besides producing a list of discovered vulnerabilities, the OVAL scanner can also

output detailed machine configuration information in the System Characteristics Schema.

Some of this information is useful for reasoning about multistage attacks. For example,

the protocol and port number a service program is listening on, in combination with the

firewall rules and network topology expressed, helps determine whether an attacker can

send a malicious packet to a vulnerable program.

The security community is converging towards using OVAL schema for vulnerability

recognition. OVAL-compliant vulnerability scanners and definitions are available from

vendors such as ThreatGuard, Red Hat, and Qualys.

1CVE is a list of standardized names for vulnerabilities and other information security exposures. CVE
aims to standardize the names for all publicly known vulnerabilities and security exposures [14].
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2.4.2 Vulnerability effect

One can find detailed information about the vulnerability effects from OVAL’s web site2.

For example, the OVAL description for the bugOVAL2961 is:

Multiple unknown vulnerabilities in Linux kernel 2.4 and 2.6 allow local

users to gain privileges or access kernel memory, as found bythe Sparse

source code checking tool.

This informal short description highlights the effect of the vulnerability—how the

vulnerability can be exploited and the consequence it can cause. If a machine-readable

database were to provide information on the effect of a bug such asOVAL2961 is only

locally exploitable, one could formally prove properties likeif all local users are trusted,

then the network is safe from remote attacker. Unfortunately, OVAL provides the infor-

mation about the effect of a vulnerability only in natural language (English), not in a

format with a formal semantics. Fortunately, the ICAT database [33] classifies the effect

of a vulnerability in two dimensions: exploitable range andconsequences.

• exploitable range:local, remote

• consequence:confidentiality loss, integrity loss, denial of service, or privilege es-

calation

A local exploit requires that the attacker already have some local access on the host.

A remoteexploit does not have this requirement. A typical local-access vulnerability

is a buffer overrun in a local privileged program like the operating system kernel or a

weak protection on a sensitive operating system or application file. An adversary requires

unprivileged shell access to the host to exploit the vulnerability. A typical remote-access

2http://oval.mitre.org
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vulnerability is a buffer overrun in a program that listens on the network waiting for

incoming requests. Two most common exploit consequences areprivilege escalationand

denial of service. Currently all OVAL definitions have corresponding ICAT entries (the

two can be cross-referenced by CVE Id). We recommend that theOVAL and ICAT be

merged into a single database that provides both kinds of information. We use the above

classification in determining the effects of exploitation of a vulnerability.

2.5 Related Work

There is a long line of work on automatic vulnerability analysis. Kuang formalizes se-

curity semantics of Unix as a set of rules, and conducts search for ways a system can be

broken into based on those rules [3]. The Computerized Oracle and Password System

(COPS) is a freely-available, reconfigurable set of programs and shell scripts that enable

system administrators to check for possible security holesin their UNIX systems. The

COPS tool includes the following components:

• file.chk anddir.chk checks to ensure that important files and directories such as

/etc/passwd, .profile, /etc/rc, /, /bin and/bin are not world-

writeable.

• pass.chkchecks for poor password choices.

• group.chk andpasswd.chkcheck for problems with the password and group files

such as empty lines and null passwords.

• cron.chk, rc.chk checks to ensure that none of the programs that are started asa

part of the system boot reference world-writeable files.
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The COPS tool also incorporated the Kuang rule set. NetKuangis extended the rule

set in Kuang by considering impact of configuration across the networks, such as the

contents of.rhosts file. When these tools were authored, configuration was the major

problem for network security and not software vulnerabilities. Thus, the focus is on

identifying configuration weaknesses and not on integrating software vulnerabilities into

the model.

Levitt and Templeton proposed arequiresandprovidesmodel for computer attacks [46].

One attack provides capabilities that support the next attack, which in turn may provide

new capabilities to support following attacks. It is not clear if the model has been imple-

mented.

Ritchey and Amman proposed using model checking for networkvulnerability anal-

ysis [39]. Sheyner, et. al extensively studied attack-graph generation based on model-

checking techniques [43]. In MulVAL, instead of model-checking, we adopt a logic-

programming approach and use Datalog in the modeling and analysis of network sys-

tems. The difference between Datalog and model-checking isthat derivation in Datalog

is a process of accumulating true facts. Since the number of facts is polynomial in the

size of the network, the process will terminate efficiently.Model checking, on the other

hand, checks temporal properties of every possible state-change sequence. The number

of all possible states is exponential in the size of the network, thus in the worst case model

checking could be exponential. However, in network vulnerability analysis it is normally

not necessary to track every possible state change sequence. For network attacks, one can

assume themonotonicity property— gaining privileges does not hurt an attacker’s ability

to launch more attacks. Thus when a fact is derived stating that an attacker can gain a

certain privilege, the fact can remain true for the rest of the analysis process. Also, if at a

certain stage an attacker has multiple choices for his next step, the order in which he car-
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ries out the next attack steps is irrelevant for vulnerability analysis under the monotonicity

assumption. While it is possible that a model checker can be tuned to utilize the mono-

tonicity property and prune attack paths that do not need to be examined, model checking

is intended to check rich temporal properties of a state-transition system. Network secu-

rity analysis requires only a small fraction of model-checking’s reasoning power. And it

has not been demonstrated that the approach scales well for large networks.

Amman et. al proposed a graph-based search algorithms to conduct network vulnera-

bility analysis [1]. This approach also assumes the monotonicity property of attacks and

has polynomial time complexity. The central idea is to use anexploit dependency graph

to represent the pre- and postconditions for exploits. Thena graph search algorithm can

“string” individual exploits and find attack paths involvesmultiple vulnerabilities. This

algorithm is adopted in Topological Vulnerability Analysis (TVA) [25], a framework that

combines an exploit knowledge base with a remote network vulnerability scanner to an-

alyze exploit sequences leading to attack goals. However, it seems building the exploit

model involves manual construction, limiting the tool’s use in practice. In MulVAL, the

exploit model is automatically extracted from the off-the-shelf vulnerability database and

no human intervention is needed. Compared with a graph data structure, Datalog pro-

vides a declarative specification for the reasoning logic, making it easier to review and

augment the reasoning engine when necessary.

Datalog has also been used in other security systems. The Binder [18] security lan-

guage is an extension of Datalog used to express security statements in a distributed

system. In D1LP, the monotonic version of Delegation Logic [29], Datalog is extended

with delegation constructs to represent policies, credentials, and requests in distributed

authorization. The success of Datalog in Binder led us to examine its use in vulnerability

analysis, and its successful application as a security language in Binder and now in our
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work to network security analysis is a convincing demonstration that it is an excellent

language for security analysis.

Recent works by Ramakrishnan and Sekar [37], and the one by Fithen et al [20] con-

sider vulnerabilities on a single host and use a much finer grained model of the operating

system than ours.The goal is to analyze intricate interactions of components on a single

host that would render the system vulnerable to certain attacks. The result of this analysis

could serve as attack methodologies to be added as interaction rules in MulVAL. Specifi-

cally, it is possible that one can write an interaction rule that expresses the attack pre and

postconditions without mentioning the details of how the low-level system components

interact. These rules can then be used to reason about the vulnerability at the network

level. Thus the work on single-host vulnerability analysisis complementary to ours.

MulVAL leverages existing work to gather information needed for its analysis. OVAL

provides an excellent baseline method for gathering per-host configuration information [49].

Also, research in the past ten years has yielded numerous tools that can manage network

configurations automatically [23, 24, 4, 6]. Although theseworks do not directly involve

vulnerability analysis, they provide a good abstraction for the network model, which is

used in MulVAL and simplifies its reasoning process.

Intrusion detection systems have been widely deployed in networks and extensively

studied in the literature [15, 32, 27]. Unlike IDS, MulVAL aims at detecting potential at-

tack pathsbeforean attack happens. The goal of the work is not to replace IDS, but rather

to complement it. Perhaps, an administrator could use our system to identify strategically

important locations on the network and deploy an intrusion detection system to detect

attacks on these choke points. Having an a priori analysis onthe configuration of a net-

work is important from the defense-through-depth point of view. Undoubtedly, the more

problems discovered before an attack happens, the better the security of the network.
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A major difference between MulVAL and the previous works is that MulVAL adopts

Datalog as the modeling language, which makes integrating existing bug databases straight-

forward. Datalog also makes it easy to factor out various information needed in the rea-

soning process, which enabling us to leverage off-the-shelf tools and yield a deployable

end-to-end system.

2.6 Summary

Security management of a large network is hard because for two reasons:

• The semantics of the components is complicated.

• The number of details the administrator has to keep track of is large.

It is hard for a typical system administrator to know the nuances of components as well

as an expert like the operating system kernel designer or Computer Emergency Response

Team (CERT). Neither the administrator nor the security expert can predict the future

buffer overflows that will be reported. For efficient networkmanagement, it is important

to effectively leverage strengths of the system administrator, the security expert and the

bug expert. In this thesis, I describe a framework to effectively modularize the informa-

tion flow between these three principals.
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Chapter 3

Introduction to Windows

Previous work has shown that it is possible to analyze a network comprising Unix hosts,

networked file systems and firewalls to check if an adversary could leverage ubiquitous

program vulnerabilities to launch a multi-step attack [34,35]. We now illustrate that au-

tomatic configuration analysis is feasible and that even fora single host, this analysis can

produce useful results. In particular, we built a model to analyze the configuration for the

Windows platform. In chapter 7, we show that this is useful for analysis of configuration

of even a single host—the model uncovered previously unknown serious security bugs.

Microsoft Windows NT, Windows 2000 and Windows XP use a general model to

control access to resources. Unix has a simple access control model with three privileges

given to users, groups, and others for operations on just a few kinds of objects (such

as files and directories). In contrast, Windows attaches access-control lists (prioritized

“allow” and “deny” by groups) comprising up to 30 different privileges for operations on

about 15 different kinds of objects [10]. For example, on a “service” object one can have

the privilege “choose what program.exe is run to effectuatethe service.”
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3.1 Windows Objects

In Unix, one has to deal with various operating system objects like files, directories,

threads and processes. One uses primitives like locks, message queues and semaphores

for interprocess communication. One uses sockets for network programming. Standard

textbooks provide excellent introduction to Unix and how touse these objects [2, 44].

In addition to these mechanisms, Windows provides other primitives, the most important

of which are theregistry, servicesandWindows Management Instrumentation. We now

discuss these primitives briefly. For a more detailed treatment, we refer the reader to the

textbook by Russinovichet al. [40].

3.1.1 Registry

The Windows registry is a centralized hierarchical database to store configuration infor-

mation for the operating system and applications and services running under Windows.

It is the repository for both system-wide and per-user settings. It is a vital resource of the

operating system—the operating system does not boot if the registry is corrupted. In fact,

the most common reason for the Windows operating system not to boot is a corrupted reg-

istry. The registry stores a wide range of configuration settings, from boot parameters to

user desktop settings to program settings. Many of the Control Panel applets, command-

line tools, and Microsoft Management Console (MMC) plug-ins that ones uses each day

perform some of their functions by reading, editing, or adding registry subkeys or entries.

Because Windows provides the services of the registry, eachindividual application

does not have to maintain its configuration in application specific configuration files. This

frees the application developer from the hassle of designing and implementing application

specific configuration files. Thus, the developer can use his time only in development
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Key Value
Current version 1.7.12
Geckover 1.0.1
Install Directory C:\Program Files\Mozilla Firefox
PathToExe C:\Program Files\Mozilla Firefox\firefox.exe
Description Mozilla Firefox (1.0.7)
Uninstall Log Folder C:\Program Files\Mozilla Firefox\uninstall
Plugins C:\Program Files\Mozilla Firefox\Plugins
YahooPluginPath C:\Program Files\Yahoo!\Shared\npYState.dll

Figure 3.1: Some sample registry keys

tasks. In contrast to Windows, Linux does not have the concept of a global database. Each

program uses ad-hoc formats specific to itself; the net result is that each programmer has

to expend effort in developing custom file parser and modifiers. Another disadvantage of

this approach is that configuration analysis programs like the one described in this thesis

are difficult to develop.

Each entry in the registry is indexed by a key. The keys are hierarchical in structure,

just like files and directories.A\B refers to the keyB that is a subkey of the keyA. It is

very common for programs to store application specific information under the root key

HKEYLOCALMACHINE(HKLM). Each registry key entry in the registry has a security

descriptor that determines who can perform what access to the registry entry. We list

some registry keys installed by the Mozilla browser in figure3.1.

Registry key security. The operations that can be controlled by access-control on reg-

istry keys are: reading a key, writing a key, deleting a key, enumerating subkeys, adding

a subkey, requesting notification for changes to this key or its subkeys. We discuss these

in detail in section 3.2.5.
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3.1.2 Services

Every operating system has a mechanism to start processes atsystem startup, providing

functionality not tied to any particular user. For example,when the operating system

boots up, one would want the network programs and the web server program to to start

automatically, even if no user has logged on. Windows services are similar to Unix

daemon processes, but more general. Some example services are:

• Task schedulerservice is used to run a program at a designated time. The Unix

equivalent of this service iscron .

• Uninterruptible Power Supply service is used to monitor the battery status of an

UPS power supply through a serial port.

• Windows Time Servicemaintains date and time synchronization on all computers

using Network Time Protocol.

• Print Spooler service queues and manages print jobs locally and remotely.

• DHCP Client service manages network configuration by registering and updating

IP addresses and Domain Name Server (DNS) names.

One can control the following attributes for a Windows service:

• Process sharingcontrols whether the started service runs in its own processor

shares the process with other services. All services that shares processes run under

a shared auxiliary process.

• Start type controls whether the process starts during system startup or is started on

demand by a user.
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• Error control specifies the action to take if the service fails to start. Actions in-

clude logging, restarting the system in recovery mode, failing the startup and ig-

noring the error.

• Binary path specifies the path to the service executable

• Account namespecifies the name of the account under which the service should

run. This is usually one ofLocal System , Local Service andNetwork

Service .

• Dependenciesspecifies the services that must be started before this service can be

started.

Service security. The operations that can be controlled by access-control on services

are: starting a service, stopping a service, reading the configuration of a service, mod-

ifying the configuration of a service, querying the status ofa service, enumerate other

services that are dependent on this service, pause or continue a service. We discuss these

in detail in section 3.2.5.

3.2 Windows Security Overview

There are three pieces of information that are needed to makean access control decision:

1. Who is the principal requesting the access?

2. What are the intentions of the principal (specified in the request)?

3. What is the protection on the object to be accessed?
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Windows uses the notion ofsecurity identifiersto identify principals. Atokenis a

structure that stores the authorization attributes of a principal—such as whether he is

a super user and the groups the user is a member of. Asecurity descriptoris a per-

object data structure maintained by the operating system that stores an object’s security

settings. Anaccess control strategyis the algorithm the system uses to determine whether

a requested access should be granted. We now briefly describehow Windows implements

these notions.

3.2.1 Security Identifiers

Windows userssecurity identifiers (SIDs)to identify various entities that perform actions

in a system. A SID could represent n user, or a built-in account (like Administrator ,

and Local System accounts), or local and domain groups, or local computers, or

domains, or domain members. A SID is a variable length binaryvalue that contains

information about the structure format, an authority number identifying the agent that

issued the SID, a variable number of sub-authority values that identify trustees relative to

the issuing authority. When a SID is displayed in clear text,each SID carries anSprefix,

and its various components are separated with hyphens:S-1-5-21-346327843-89743984-

384343-1128

SIDs are long and Windows takes care to generate random values for each SID. For

our discussion the details of the SID structure are not important and it suffices to know

that except for a few well-known SIDs, SIDs are globally unique numbers. Some well-

known standard SIDs are:

• S-1-1-0 . This SID represents the groupEveryone .

• S-1-5-11 . This SID represents the groupAuthenticated Users .
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• S-1-5-18 . This SID represents theLocal System account, the account under

which all operating system processes run. The closest equivalent to this account in

Unix is the user withuseridof 0. However, one cannot log on to system under this

account.

• S-1-5-19 . This SID represents theLocal Service account. This account

is used to run services that do not need administrative privileges and do not need

access to the network.

• S-1-5-20 . This SID represents theNetwork Service account. This account

is used to run services which do not require administrative privileges, but need

access to the network.

• S-1-5-32-544 . This SID represents theAdministrators group.

3.2.2 Account privileges

Windows provides a flexible access control model where one the owner of a resource can

specify the level of access each user has. This model is useful in protecting access to

a single object. However, sometimes users perform operations that have a system-wide

impact. For example, the ability to shut down a system or change the time of a system has

system-wide impact. The capability to perform these actions will have to be controlled

carefully. Windows uses the notion ofprivilegesto achieve this purpose. When a user

logs onto a host, after authentication, the system identifies the privileges associated with

the user and stores this information in the kernel as a part ofthe the process control block

for the user’s shell.

We now briefly discuss some of the important privileges in Windows, and refer the

reader to the documentation for the details [11]. The various privileges in Windows are:

35



SeAssignPrimaryTokenPrivilege (replace a process-level token, described in

section 3.2.3),SeAuditPrivilege (generate security audits),SeDebugPrivilege

(debug arbitrary programs),SeLoadDriverPrivilege (load/unload device drivers),

SeChangeNotifyPrivilege (skip directory traversal access checks, needed to re-

ceive notifications of changes to files and directories),SeLockMemoryPrivilege

(lock pages in memory),SeRemoteShutdownPrivilege (force shutdown with a

remote system),SeBackupPrivilege (open arbitrary files for reading bypassing any

security checks),SeRestorePrivilege (open arbitrary files for writing bypassing

any security checks),SeSecurityPrivilege (control and view audit messages and

other functions),SeShutdownPrivilege (shut down the host),SeTcbPrivilege

(act as a part of the operating system),SeTakeOwnershipPrivilege (take owner-

ship of arbitrary files and objects), andSeSystemtimePrivilege (change the sys-

tem time).

Super privileges There are a large number of privileges whose possession willenable

the adversary to obtain complete control of the host. TheSeBackupPrivilege and

SeRestorePrivilege privileges let the process bypass the access checks on a file.

Anyone with this privilege will be able to read and write any file (in particular the ker-

nel) respectively. In fact, even theSeBackupPrivilege might be sufficient to give

unlimited access to the system. In certain environments, depending on the operating

system configuration, this privilege might allow the program to open a memory mapped

file and read off passwords from the memory. TheSeLockMemoryPrivilege can

be exploited for denial-of-service attacks on a system. TheSeDebugPrivilege en-

ables a user openany process on the system, ignoring the security descriptor on the

process and launch further attacks. TheSeTakeOwnershipPrivilege enables a
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user to take ownership of any object even if the user is otherwise not allowed access. The

SeLoadDriverPrivilege can be used to load and unload device drivers, which run

in kernel space—thus compromising the kernel. TheSeCreateTokenPrivilege

can be used to generate arbitrary user accounts with arbitrary group membership and

privilege assignment. TheSeTcbPrivilege allows the adversary to act as a part of

the operating system. Using this privilege he could create auser shell (technically, a lo-

gon session) that includes the SIDs of more privileged usersor groups and then obtain

unauthorized access to their resources.

SeChangeNotifyPrivilege is a privilege that is usually granted to all users. This priv-

ilege allows a user to register for notification of changes toa particular file or directory.

This privilege also allows a user to skip the access checks onthe parent directories when

trying to access a file or a directory. This feature allows accesses on deeply nested files to

be efficient—by skipping access checks on the parent directories1. However, this feature

means a restrictive access control setting on a parent directory is not sufficient to prevent

access to the file or directory. We used our tool to discover that certain files in the oper-

ating system’sSystem Restoredirectory have poor access control. As we will discuss in

chapter 7, an adversary withSeChangeNotifyPrivilege may be able to leverage

this weak access control to launch a subtle attack on the operating system through System

Restore.

When a user logs onto the system, the system determines the privileges associated

with the user and adds the list of privileges to the process attributes (“token”) for the

user’s shell program. Each process inherits the attributesand hence the privileges from

1This does not result in security problems because when one creates a file, the operating system (op-
tionally) automatically copies appropriate security descriptors from its parents. It takes more time to create
files, and security descriptors are larger because of inherited permissions from parents, but accesses to files
are quicker.
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its parent. A process might temporarily disable or permanently remove privileges from

its attributes. A system administrator can use the Local Security Policy Editor in the

Administrative Tools folder of the Control Panel to assign privileges and rights to groups

and accounts.

3.2.3 Token

A token is a per-process (per thread in some cases) data structure, maintained in the

kernel as a part of the process control block, that contains the security information. It

stores information regarding the user account, a list of account privileges for the user

account, a list of SIDs representing the user, groups the user belongs to, the session

identifier and other security related information associated with the process or thread. A

token is created when a user logs on to a system and is attachedto the initial process

(typically userinit.exe ) that is started on behalf of the user. A child process inherits

its parent’s token. When a process makes a certain request (like opening a file in write

mode or opening a service to configure its properties), the kernel consults the token of

the calling process to determine the privileges of the process. Tokens are not a fixed size

data structure.

A restricted tokenis a special kind of token where some of the SIDs are marked

“restricted”. In section 3.2.6, we describe the access control algorithm—where given

a process token, object protection, and requested access—Windows makes a decision

whether to allow the access. When an access control decisionis made using a restricted

token, then the access control decision is made twice. The first time, it is made using the

normal algorithm. The second time, the access control decision is made using the SIDs

that are marked restricted. The access is granted only if both scans of the access control

list grant the requested access.
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3.2.4 Security Descriptor

A security descriptoris a per-object data structure identifying who can perform what

action of the object. A security descriptor can be set on objects like processes, threads,

semaphores, sections, waitable timers, registry keys, files and services. A security de-

scriptor consists of the following attributes: a revision number (version of the security

model), flags (controlling inheritance characteristics),owner SID, group SID a discre-

tionary access-control list (specifying who has what access to the object) and a sys-

tem access-control list (specifying which attempted operations by which users should

be logged). For our discussion only the owner SID and discretionary access-control list

(DACL) are relevant.

An access-control list(ACL) is a list of zero or moreaccess control entries(ACEs)

which say who is allowed what access to an object. A simplifiedWindows ACE would

look like:

+/- Trustee Mask Flags

+ Alice write INHERIT ONLY

- Bob read INHERITED

+ Everyone read NO INHERIT

The first column in the ACE describes whether it is a positive or negative ACE. A

positive ACE grants specified access and a negative ACE denies it. The second column

indicates the target user or group (physically representedby a SID) and the third column

specifies the permissions in question (physically represented as a 32-bit mask). The fourth

column lists the flags that control how an ACE of a parent object (directory) propagates

to its child objects (files).
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3.2.5 ACE access mask format

Each Access Control Entry has a 32-bit mask that specifies theset of permissions asso-

ciated with the entry. This 32-bit mask is interpreted differently, depending on the object

type. The layout of various access masks is as shown in figure 3.6. These permissions

are classified into the following three classes:

• Object specific permissions.Some permissions are specific to an object. For ex-

ample, the file append permissionFILE APPENDDATA is only meaningful for

files. The permissionSERVICE START—one that allows a principal to start a

service—is not meaningful for files and registry keys. The object specific permis-

sions for files, directories, registry keys, and services are shown in figures 3.2, 3.3,

3.4, and 3.5 respectively.

• Standard permissions.Some permissions are common to all objects. These are:

– DELETETo delete an object.

– READCONTROLTo read the security descriptor.

– WRITEDACTo write the security descriptor.

– WRITEOWNERTo write the owner of the resource.

– SYNCHRONIZETo wait on object handle.

This standard set of permissions allows one to treat objectspolymorphically. One

would want to use this polymorphism to have a single default access-control list

that can apply to all objects. However, one cannot have a default access-control list

apply to different kinds of objects because certain permissions are object-specific.

To solve this problem, Windows introduces the idea ofgeneric permissions.
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FILE READ DATA 0x0001 Read data from the file
FILE WRITE DATA 0x0002 Write data to the file
FILE APPEND DATA 0x0004 Append data to the file
FILE EXECUTE 0x0020 The right to execute a file

Figure 3.2: File access rights

FILE ADD FILE 0x0002 Create a file in the directory.
FILE ADD SUBDIRECTORY 0x0004 Create a subdirectory.
FILE DELETE CHILD 0x0040 Delete a directory and all the files in it.
FILE LIST DIRECTORY 0x0001 List the contents of a directory
FILE WRITE DATA 0x0002 Create a file in the directory
FILE APPEND DATA 0x0004 Create a subdirectory
FILE TRAVERSE 0x0020 Traverse a directory

Figure 3.3: Directory access rights

• Generic permissions.For each object type, these four permissions—GENERICREAD,

GENERICWRITE, GENERICEXECUTE, GENERICALL—are mapped to a

set of its standard and object-specific access rights. For example, theGENERICREAD

file permission is mapped ontoFILE READDATA, FILE READATTRIBUTES,

SYNCHRONIZE, READCONTROL,andFILE READEA. TheGENERICREAD

registry permission is mapped ontoKEY ENUMERATESUBKEYS, KEY NOTIFY,

KEY QUERYVALUE, andREADCONTROL.

KEY CREATE SUB KEY 0x0004 Create a subkey of a registry key.
KEY ENUMERATE SUB KEYS 0x0008 Enumerate subkeys of a registry key
KEY QUERY VALUE 0x0001 Read the value of the key
KEY SET VALUE 0x0002 Set a value for the registry key
KEY NOTIFY 0x0010 To request notification for changes in a key

Figure 3.4: Registry access rights
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Access Right Needed to
SERVICE CHANGECONFIG Change the configuration.
SERVICE ENUMERATEDEPENDENTS Enumerate all dependent services.
SERVICE INTERROGATE Ask service to report its status immediately.
SERVICE PAUSECONTINUE Pause or continue the service.
SERVICE QUERYCONFIG Query the service configuration.
SERVICE QUERYSTATUS Query the status of the service
SERVICE START Start the service.
SERVICE STOP Stop the service.
SERVICE USERDEFINED CONTROL Send user defined code to the service.

Figure 3.5: Specific access rights for service.

Bit Flag
0-15 Object type specific rights
16 DELETE
17 READ CONTROL
18 WRITE DAC
19 WRITE OWNER
20 SYNCHRONIZE
28 GENERICALL
29 GENERICEXECUTE
30 GENERICWRITE
31 GENERICREAD

Figure 3.6: Access mask format

3.2.6 Determining access

After an adversary has gotten hold of a process, he tries to access resources from this

privilege level. We now describe the algorithm the Windows kernel uses to determine

whether an access should be allowed. In making this decision, the kernel considers the

following inputs:

• The authorization attributes for the principal requestingaccess. This information is

available by looking at the process token of the process requesting access.

• The intentions specified in the request.
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• The security settings for the object to be accessed. The protection level of the object

is expressed in the Discretionary Access Control List (DACL) of the object.

No ACL implies no protection If an object does not have a discretionary access control

list, then any access is permitted on the object. Such a DACL is called aNull DACL.

SeTakeOwnershipPrivilege privilege gives write-owner access The privilege SeTake-

OwnershipPrivilege in the caller’s token gives WRITEOWNER access to any resource.

With WRITE OWNER permission, one can change the owner SID of a resource to one of

the SIDs in the caller’s process token. (Technically, the SID in the process token will have

to be marked as having the potential for being an owner.) After obtaining the ownership

of a resource, the adversary will be able to get full control of the resource by launch-

ing further attacks, as described below. To summarize, the SeTakeOwnershipPrivilege

will give the adversary complete control over all resourceson a host, thus resulting in

system-wide compromise.

Owner always gets accessThe owner of a resource always gets WRITEDAC access.

The owner can use the WRITEDAC permission to reset the ACL to give an arbitrary

entity arbitrary access. Thus, the owner of a resource can always get full access to the

resource.

Consult the Access Control List If none of the previous rules apply, then the kernel

consults the access control list. Each Access Control Entry(ACE) in the access-control

list is examined from first to last looking for an entry that denies or allows the action. An

ACE is processed if the ACE is an access-deny or access-allowed ACE and the SID in

the ACE matches a SID in the caller’s access token. If it is an access-denied ACE, then
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the access is denied. If the ACE is an access-allowed ACE, then the access is allowed

provided the process token is not a restricted token (refer section 3.2.3). If the ACE is an

access-allowed ACE and if the process is a restricted token,then the system rescans the

ACL’s ACEs looking for ACEs with access matches for the access the user is requesting

and a match of the ACE’s SID with any of the callers restrictedSIDs. Only if both scans

of the ACL grant the requested access right is the user granted access to the object. If the

end of the list is reached without a matching ACE, the requestis denied.

3.3 Privilege escalation

It is possible that weak configuration on a file or registry key’s security descriptor can

allow an adversary to modify the resource state. (We will later show in chapter 7 that this

indeed is the case.) Then, the adversary can inject corrupted data into a higher privileged

process reading the corrupted data. Sometimes, the data corruption presents the adversary

with an immediate opportunity to attack. If the adversary isable to overwrite a driver file,

then the adversary can corrupt the kernel and hence get complete control of the host. If an

adversary can write to a program used in the operating systemstartup, then the adversary

can completely compromise the integrity of the host and all its users. Alternatively, the

adversary will try to write to a dynamically linked library that is loaded by a more

privileged process. If the adversary can write to a registrykey storing the executable

or library name to be executed under certain conditions, it provides the adversary with

another avenue of attack. For example, when a user logs on to ahost, the operating system

looks at the value in the keyHKLM\SOFTWARE\Microsoft \WindowsNT\Current

Version \Winlogon \Userinit and executes the file name referenced as the first

program running on behalf of the user. Sometimes, a registrykey stores the name of a
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library that is loaded by processes. If a process loads or executes the file references by

a registry key, and if the adversary can write to the registrykey, then the adversary can

compromise the process. If the adversary can inject data into a process executing at a

higher level privilege level, he can immediately gain access to the higher privilege level.

For any object, aWRITEDACpermission can be used to change the security descrip-

tor of the object and then take control of the object. AFILE WRITEpermission can be

used overwrite a file and then take control of the principal executing the file or loading

the library. AKEY WRITEcan be used to overwrite the contents of the registry key and

take control of whoever trusts this registry key. ASERVICE CHANGECONFIGcan be

used to overwrite the attributes of the service. In particular, the adversary could configure

a malicious program to be executed when the service is started. He could also configure

the user account which runs the program to be an administrator. If the adversary could

cause the service to be restarted (say by rebooting the machine), the malicious program

runs as an administrator. After compromising the administrative account, the adversary

can get complete control of the host and any principal trusting the host.

3.4 Summary

The number of types of objects in Windows is large. The most important object types

used by adversaries in attacking Windows are files, registrykeys, and services. Windows

uses a complex access control model to protect access to objects. In traditional Unix,

there is no mechanism to specify that a particular user (who is not already the file owner)

gets read access to a file. One can only specify this at a granularity of the current group

the user belongs to. In contrast, in Windows it is possible tospecify that a particular

user gets read access to a resource. Similarly, in Unix it is not possible to specify that a
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user can only append a file and not overwrite its existing contents. In Windows, one can

granularly specify that a user can perform a particular operation such as append a file,

change the security settings of a resource, start/stop a service, and get notified when a

file content changes. Thus, Windows uses a flexible and general access control model to

control access to resources.

The downside to this general model is that even professionalsoftware developers do

not understand the model correctly and wrongly apply the model. A wrong security de-

scriptor on an object provides the adversary to launch a privilege escalation attack. Thus

software from major vendors has serious privilege-escalation vulnerabilities because of

wrong application of access control model. In the next chapter, we will show how to

model the semantics of Windows formally. In chapter 7, we discuss how the model finds

privilege escalation vulnerabilities.
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Chapter 4

Formal modeling of Windows

In this chapter, we demonstrate how to model the access control semantics of Windows

(Windows NT, Windows 2000 and Windows XP) as described in thelast chapter. We use

the formal model of access control semantics of Windows to automatically identify meth-

ods by which an adversary can increase the privileges he holds. We show in section 7.1

how we used our framework to find serious security bugs in configuration of software

from several major vendors.

4.1 Datalog overview

Our system adopts Datalog as the modeling language for elements in the analysis. We

found that declarative semantics is sufficient for encodingthe interactions of operating

systems, network firewalls, and file systems and for modelingattacks using program

vulnerabilities. Datalog allows us to cleanly specify the semantics, thus it is easy to

determine if we made a mistake in understanding the operating system model. Datalog
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has the additional advantage that evaluation of all facts implied by a Datalog program is

theoretically polynomial in complexity and efficient in practice.

Syntactically, Datalog is a subset of Prolog [9] with limited forms of clauses. The

reasoning rules in our system are declared as Datalog clauses. A literal, p(t1, . . . , tk) is

a predicate applied to its arguments, each of which is eithera constant or a variable. In

the formalism of Prolog, a variable is an identifier that starts with an upper-case letter. A

constant is one that starts with a lower-case letter. LetL0, . . . , Ln be literals. A reasoning

rule in Datalog is represented as a Horn clause:

L0 :- L1, . . . , Ln

Semantically, it means ifL1, . . . , Ln are true thenL0 is also true. The left-hand side

is called theheadand the right-hand side is called thebody. A clause with an empty body

is called afact. A clause with a nonempty body is called arule. A Datalog program is

a set of facts and reasoning rules to infer from these facts. The execution of a Datalog

program infers from these facts using the reasoning rules. The significant differences

between Datalog and Prolog are:

• Data constructors.Datalog does not have data constructors; each of the arguments

to a predicate is either a constant or a variable. In Prolog, adata constructor can

be supplied as an argument. One cannot encode a list as an argument to a Datalog

predicate; the argument to a Prolog predicate can be a data constructor that encodes

a list.

• Declarative semantics. Datalog has pure declarative semantics. The order in

which clauses appear in a Datalog program does not affect itslogical meaning

and the evaluation result. In Prolog, such order is important and affects the result
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of evaluation [9], due to the depth-first search strategy andside-effect of operators

like cut.

• Negation. Datalog does not have negation and one cannot express rules like Alice

will buy a mango if she cannot find an orange. Adding a new fact to a Datalog pro-

gram cannot invalidate any fact that can be derived from the program. (Technically,

the negation operator in Prolog is implemented using the cutoperator.)

• Polynomial Termination. Prolog is a Turing-complete language—computation

may never terminate. In contrast, the complexity of determining whether a literal

is implied by a Datalog program is polynomial in the size of the program [16].

Datalog has been used as a security language for expressing access control poli-

cies [18]. The efficiency of Datalog and existing off-the-shelf Datalog evaluation en-

gines [48, 38] makes it readily usable in practice. Datalog is attractive for the formal

model of the security analysis described in this dissertation because it gives us a clear

specification of the semantics of network components such asoperating systems and net-

worked filesystems.

4.2 Modeling the Windows Access Control algorithm

We now show to model the semantics of Windows access control.We adopt Datalog

for the model. We use certain constructs that are not in pure Datalog, As we show in

section 4.4, the usage of these constructs does not adversely affect the running time of

our program.
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4.2.1 Object protection

An access control entryis encoded as the primitive predicateace( aceType(Type),

aceRights(RightsList), Sid) that specifies that an access control entry of type

Type (one ofACCESSALLOWEDACETYPEor ACCESSDENIED ACETYPE) grants

or denies to the entities represented by the identifierSid the rights specified in the list

RightsList . An example usage is:

ace(aceType(’ACCESS_ALLOWED_ACE_TYPE’),

aceRights([’FILE_WRITE_DATA’]),

sid(’S-1-5-21-854245398-1637723038-725345543-1003’) ).

The predicatedacl(AclList) encodes adiscretionary access control list (DACL),

whereAclList is a list of access control entry predicates, storing the entries in the same

order as they appear in the security descriptor. In case the object does not have any pro-

tection (“null DACL”), we encode this asdacl(null) . If the object has an DACL of

length zero, then the DACL is encoded asdacl([]) . All other DACLs are encoded

as dacl([HeadAce | ACLTail]) whereHeadAce is a predicate that describes

the first access control entry andACLTail is a list of predicates for subsequent access

control entries. A sample DACL predicate is:

dacl([

ace(aceType(’ACCESS_ALLOWED_ACE_TYPE’),

aceRights([’FILE_WRITE_DATA’]),

sid(’S-1-5-21-854245398-1637723038-725345543-1003’) )

|

[ ace(aceType(’ACCESS_ALLOWED_ACE_TYPE’),

aceRights([’FILE_READ_DATA’]),
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sid(’S-1-5-21-854245398-1637723038-725345543-1003’) )

]

])

A security descriptor is encoded as the predicate

securityDescriptor(Owner, Dacl)

whereOwner represents the security identifier of the owner andDacl is a predicate that

encodes the discretionary access control list.

When a kernel makes an access control decision, the decisionwill require the ability

to decide what a single access control entry means. The predicatecheckACE(Result,

AceEntry, RequestedAccess, SidsList) is the predicate that models the de-

cision making at a granularity of a single access control entry. Result is one ofallowed

or denied , AceEntry is an access control entry predicate,RequestedAccess

is the access requested andSidsList is a list of security identifiers of the groups

in the process token. The predicatecheckACE(Result, AceEntry, Access,

SidsList) means that an elementary access control decision, using theaccess control

entry AceEntry , for a requestAccess by a principal whose list of security identi-

fiers of the groups in the process token isSidsList , is Result (one ofallowed ,

denied ).

checkACE(allowed,

ace( aceType(’ACCESS_ALLOWED_ACE’), AceRights, Sid),

Access, SidsList) :-

accessInAceMask(Access, AceRights),

sidInGroup(Sid, SidsList).
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checkACE(denied,

ace( aceType(’ACCESS_DENIED_ACE), AceRights, Sid),

Access, SidsList) :-

accessInAceMask(Access, AceRights),

sidInGroup(Sid, SidsList).

The predicatesidInGroup(Sid, SidList) recursively searches theSidList

to see ifSid is present:

sidInGroup(Sid, [ Sid | _ ]).

sidInGroup(Sid, [ _ | Tail]) :-

sidInGroup(Sid, Tail).

The predicate checkAccessList(Result, RequestedAccess, Acl,

SidsList) models the algorithm the kernel uses to decide whether an access control

list Acl allows or deniesRequestedAccess to a principal withSidsList as the

list of security identifiers of the groups in the process token. This predicate examines the

Acl from first to last and unifies theResult variable toallowed or denied accord-

ingly. If there is no access control on the object, then the request is granted. If the end of

the list is reached, then access is denied. Formally, we write this as:

checkAccessList(allowed, Access, dacl(null), SidsList) .

checkAccessList(Result, Access,

dacl(acl([AclHeadEntry| AclTail])), SidsList) :-

(

checkACE(Result, AclHeadEntry, Access, SidsList);
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checkAccessList(Result, Access,

dacl(acl(AclTail)), SidsList)

).

% An empty access control list denies access

checkAccessList(denied, Access,

dacl(acl([])), SidsList)

In the formalism of Prolog, an identifier starting with(like RequestedAccess )

is an anonymous variable, and it can bind to any value. So, in the above rule the predicate

checkAccessList(allowed, RequestedAccess, dacl(null), SidsList)

means that it does not matter what the requested access is andwhat SIDs are a part of the

process token of the calling process.

4.2.2 Process credentials

When a principal access an object, the kernel looks up the process token of the process

making the request to determine its credentials: the user, the privileges, the groups the

user belongs to and the restricted groups the user belongs to. The predicate

processToken(UserSid, Privileges, Groups, RestrictedGr oups)

encodes the credentials of the process requesting the access. UserSid is the user iden-

tity on behalf of whom the process runs,Privileges is the set of privileges (like

SeTakeOwnershipPrivilege , SeSystemtimePrivilege ) the process holds,

Groups is the set of groups the user belongs to andRestrictedGroups is the set of

restricted groups the user belongs to. A sample process token looks like:

processToken( ’S-1-5-21-1214440339-507921405-1060284 298-500’,
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privileges([

’SeBackupPrivilege’,

’SeChangeNotifyPrivilege’,

’SeSystemtimePrivilege’

]),

groups([’S-1-1-0’, ’S-1-2-0’,

’S-1-5-11’, ’S-1-5-32-544’]),

restrictedGroups([])

)

4.2.3 Modeling access check

The predicatewindowsAccessCheck(Result, ObjectProtection,

RequestedAccess, RequestingToken) models the algorithm the kernel uses

in determining whether to permit anRequestedAccess access to an object with pro-

tectionObjectProtection by a process with tokenRequestingToken . The vari-

ableResult is instantiated toallowed or denied accordingly. In section 3.2.6, we

described the algorithm the kernel uses to make an access control decision. We now

formally describe the algorithm.

No ACL implies no protection. If a file does not have an Access Control List (“Null

DACL”), then any access is permitted on the file. The formal rule is:

windowsAccessCheck(allowed,

securityDescriptor( Owner, dacl(null)),

RequestedAccess,

RequestingProcessToken).
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SeTakeOwnershipPrivilege privilege gives write-owner access. The privilege Se-

TakeOwnershipPrivilege in the caller’s token gives WRITEOWNER access to any re-

source. With WRITEOWNER permission, one can change the owner SID of a resource

to one of the SIDs in the caller’s process token. (Technically, the SID in the process token

will have to be marked as having the potential for being an owner.)

After obtaining the ownership of a resource, the adversary will be able to get full

control of the resource by launching further attacks, as described below. Similarly, as we

discussed in section 3.2.2, any super privilege will give the adversary complete control

over all the resources of the host. In our model, we encode these multi-step attacks as a

single step as follows:

windowsAccessCheck(allowed, SecDescriptor, RequestedA ccess,

processToken(Owner, PrivList, GroupSids,

TokenRestrictedSids)

) :-

hasSuperPrivilege(true, PrivList).

%Check if token has a ‘‘ super’’ privileges

Owner always gets access.The owner of a resource always gets WRITEDAC access.

The owner can use the WRITEDAC permission to reset the ACL to give an arbitrary

entity arbitrary access. Thus the owner of a resource alwaysget full access to the resource.

This is expressed as:

windowsAccessCheck(allowed,

securityDescriptor(Owner, Dacl),

RequestedAccess,

processToken(Owner, PrivList, GroupSids,
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TokenRestrictedSids).

Consult the Access Control List. We now need to evaluate the access control list from

first to last, trying to see if we come across an entry that allows or denies the access.

Formally, we write this as:

windowsAccessCheck(allowed,

securityDescriptor(ObjectOwner, dacl(Acl)),

RequestedAccess,

processToken(ProcessOwner, PrivList, Groups,

TokenRestrictedSids)

) :-

checkAccessList(allowed, RequestedAccess, Acl, Groups) ,

( processIsNotRestricted(TokenRestrictedSids) ;

/ * ; is the Prolog OR operand. * /

processIsRestricted(TokenRestrictedSids),

checkAccessList(allowed, RequestedAccess,

Acl, TokenRestrictedSids)

).

Everything else is denied. If none of the above rules match, then the access cannot be

allowed and hence access is denied. We model this as:

windowsAccessCheck(denied, SecurityDescriptor,

RequestedAccess, ProcessToken) :-

not windowsAccessCheck(allowed, SecurityDescriptor,

RequestedAccess, ProcessToken).
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Atomic permissions The predicates that we discussed above—windowsAccessCheck ,

checkAccessList andcheckACE—take as argument the access requested. In our

model, theRequestedAccess argument is an atomic permission likeFILE READDATA

and FILE READATTRIBUTES. In practice, one requests more than one permission,

like FILE READDATAandFILE WRITEDATA—to read and write a file. To check

for such nonatomic permissions, we will have to call the corresponding access check

function on each atomic permission requested. This is a deviation from the way the ker-

nel implements the algorithm. However, this deviation is functionally equivalent when

used with atomic predicates. The kernel implementation avoids calling the function more

than once for nonatomic permission by doing some clever bit manipulation. Since it

is not straightforward to do bit manipulation in Datalog, inour model access check

can only be called on an elementary permission likeFILE READDATA. This makes

our reasoning rules easier to write and debug and thus increases the assurance of our

system. However, Windows allows a principal to request morethan one permissions—

like all of FILE READDATA, FILE WRITEDATA, DELETE, READCONTROL,

WRITEDAC—simultaneously. To model the behavior of Windows in our model, when

a principal requests bothFILE WRITEDATAandWRITEDAC, we invoke the predi-

catewindowsAccessCheck twice—the first time withFILE WRITEDATAand the

second time withWRITEDAC.

4.3 Modeling privilege escalation

We use the predicateresource(Type, Name, Dacl) to identify various resources

on a host.Type indicates the type of the resource—it is one ofservice , registry
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andfile . Nameidentifies the resource andDacl is the protection on the resource. By

scanning the host, one could generate the list of all the resources on a machine.

The predicateuserToken(Principal, Token) identifies that the principal

Principal gets the tokenToken when he logs in. We generate this predicate for

each user on the machine.

canWrite(Principal, resource(Type, Name, Dacl)) is a derived pred-

icate that specifies that principalPrincipal can write the resource of typeType

(service , registry , file ) identified byNameand with a security descriptorDacl .

If the adversary hasWRITEDACor GENERICWRITEpermissions, he can write to

the resource. We write this formally as:

canWrite(Principal, resource(Type, Name, Dacl)) :-

userToken(Principal, ProcessToken),

windowsAccessCheck(allowed, Dacl,

’WRITE_DAC’, ProcessToken).

canWrite(Principal, resource(Type, Name, Dacl)) :-

userToken(Principal, ProcessToken),

windowsAccessCheck(allowed, Dacl,

’GENERIC_WRITE’, ProcessToken)

If the adversary hasFILE WRITEDATApermission on a file, he could overwrite the

file. We write this as:

canWrite(Principal, resource(file, Name, Dacl)) :-

userToken(Principal, ProcessToken),

58



windowsAccessCheck(allowed, Dacl,

’FILE_WRITE_DATA’, ProcessToken).

If the adversary hasKEY SET VALUEpermission on a registry key, he could over-

write the contents of the key. We write this as:

canWrite(Principal, resource(registry, Name, Dacl)) :-

userToken(Principal, ProcessToken),

windowsAccessCheck(allowed, Dacl,

’KEY_SET_VALUE’, ProcessToken).

If the adversary hasSERVICE CHANGECONFIGpermission on a service, he could

reconfigure the service. We write this as:

canWrite(Principal, resource(service, Name, Dacl)) :-

userToken(Principal, Token),

windowsAccessCheck(allowed, Dacl,

’SERVICE_CHANGE_CONFIG’, Token);

trusts(Principal, Resource) is a predicate that specifies thatPrincipal

trustsResource . If a principal executes code in a file, he trusts the file. Since any one

who can configure a service can get administrative access to amachine indirectly, an

administrator should trust any service resource. We write this as:

trusts(Administrator, resource(service, Name, Dacl)).

If a principalTarget trusts aresource(Type, Name, Dacl) and if a prin-

cipal Attacker can write to this resource, then the adversaryAttacker can launch a

privilege escalation toTarget . This is formally encoded as:
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execCode(Attacker, Target) :-

canWrite(Attacker, Resource),

trusts(Target, Resource).

4.4 Discussion

In the formal description of Windows, we used two constructsthat are not allowed in pure

Datalog: negation and lists. But the use of negation in this program has a well-founded

semantics [21]. The complexity of a Datalog program with well-founded negation is

polynomial in the size of input [17]. Similarly, when we use lists, we are not constructing

new data structures from them. In fact, each time a list is consulted to make a decision, the

size of the list is decreased. In the absence of lists, the program terminates in polynomial

time. Since our usage of lists is well-founded, our program terminates in polynomial

time.

We used our tool to see how software from various vendors is configured in the de-

fault installations. We found that unprivileged users on a Windows XP host can obtain

administrator privileges through misconfigurations. We discuss the detailed findings of

our automatic analysis tool in section 7.1. These misconfigurations can be classified as

follows:

• Files. Some vendors’ software is vulnerable to a traditional file-system-based

Trojan-horse vulnerability. The executable files in the software distribution are

configured to allow an untrusted guest user to overwrite the files; thus a guest user

can introduce malicious code into the executables.

• Registry. Each registry key has a security context attached to it controlling access

to the key. Some registry keys store sensitive information like the path to the exe-
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cutable acting as an user’s shell, the library to be loaded bya program, the identity

of an operating system object1 etc. If an adversary can overwrite the contents of a

sensitive key with the path of his library or executable, he could cause his code to

be executed [47, 28]. The standard configuration of softwarefrom several vendors

allows an untrusted guest user to overwrite sensitive registry keys.

• Services.Several vendors poorly apply the Windows access control model to their

services; a common mistake is to assign theSERVICE CHANGECONFIGper-

mission indiscriminately to untrusted users. This permission allows a principal to

set both the executable and the account under which the service runs. Using this

permission, an untrusted guest user could cause an evil program to run as an ad-

ministrator.

1Windows identifies certain operating system objects (“classes”) by globally unique identities like
4D36E96B-E325-11CE-BFC1-08002BE10318

61



Chapter 5

Analyzing multi-stage attacks

Single-host privilege escalations are useful to the adversary only if he has access to a

host. Typically, adversaries adopt a sequence of attack steps to reach a final target. To

obtain access to sensitive resources, besides Windows hosts, adversaries have to attack

other components in the network such as Unix hosts, networked filesystems, and database

systems. The number of components in a large network is high,complexity of compo-

nent interaction is high, the semantics of components are nontrivial, and sometimes the

components have known security bugs. Even professional system administrators have

difficulty in managing the security of a small network with a couple of hundred users.

How does administrator protect the network from mistakes hecould make? On a large

network, the problem quickly becomes intractable.

In chapters 3 and 4, we discussed the security model of the Windows operating

system. We described how one can automatically analyze a single host to determine

if privilege escalations are possible because of bad configuration. In this chapter we

show that the solution to the large network management problem is a rule-based expert

system that integrates configuration scanning, vulnerability scanning and automatically
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determines the transitive closure of all security attacks on the network. After determin-

ing all possible accesses, the framework identifies accesses that are not allowed by the

administrator—these are security attack paths. The tool webuilt is called Multihost,

Multistage Vulnerability Analyzer (MulVAL).

MulVAL reasoning rules specify semantics of different kinds of exploits, compromise

propagation, and multi-hop network access. The MulVAL rules are carefully designed so

that information about specific vulnerabilities is factored out from the data generated by

vulnerability scanners. The interaction rules characterize general attack methodologies

(such as “Trojan Horse client program”), not specific vulnerabilities. Thus the rules do

not need to be changed frequently, even if new vulnerabilities are reported frequently. We

have predicates in our system that model each of the following properties:

• Vulnerabilities

• Exploit propagation

• User and data binding

• User behavior

• Network behavior

• Host configuration

• Security policy

In the rest of this chapter, we describe in detail various components of our system.
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5.1 The MulVAL interaction rules

5.1.1 Vulnerability rules
vulScannerOutput(Host, VulId, ProgramPath) is a predicate speci-

fying that a vulnerability with identityVulId has been found in the program located at

the pathProgramPath on hostHost .

vulProperty(VulId, ExploitRange, ExploitConsequence) is a pred-

icate specifying whether the vulnerabilityVulId can be exploited locally or remotely

and what happens when the vulnerability is exploited.ExploitRange is one oflocal

or remote . ExploitConsequence is one of privilegeEscalation ,

denialOfService , confidentialityCompromised and integrity

compromised .

dependsOn(Host, ProgramPath, LibraryPath) is a predicate that spec-

ifies on the hostHost , the program at the pathProgramPath uses the library at path

LibraryPath .

vulExists(Host, Program, ExploitRange, ExploitConseque nce)

is a derived predicate that specifies that a vulnerability exists in a host along with infor-

mation about whether it is remotely exploitable and its consequences. We derive this

predicate as follows:

vulExists(Host, Program, ExploitRange, ExploitConseque nce) :-

vulProperty(VulId, ExploitRange, ExploitConsequence),

vulScannerOutput(Host, VulId, Program).

If there is a security bug in a library used by a program, then the program could be

vulnerable. We express this as:

vulScannerOutput(Host, VulId, ProgramPath) :-
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vulScannerOutput(Host, VulId, LibraryPath),

dependsOn(Host, ProgramPath, LibraryPath).

We need to capture transitive dependencies—if libraryLibrary1 usesLibrary2

and libraryLibrary2 usesLibrary3 , thenLibrary1 usesLibrary3 . We write

this formally as follows:

dependsOn(Host, Library1, Library3) :-

dependsOn(Host, Library1, Library2),

dependsOn(Host, Library2, Library3).

5.1.2 Exploit modeling rules

The details of exploiting each vulnerability are unique. For example, the specific de-

tails of exploiting a buffer overflow bug inSimple Mail Transfer Protocol (SMTP)server

would be different from a buffer overflow bug inHypertext Transfer Protocol (HTTP)

server. However, there are lots of common traits between these bugs. For example, both

these programs are network servers, where they listen over the network for incoming re-

quests. Thus, an adversary can attempt to exploit these bugsover the network. Typically

a buffer overflow bug results in crashing the server program (an example ofdenial-of-

serviceattack), or capturing the server program’s privilege (privilege-escalationattack).

When answering the questionwhat happens after a successful attack, the details of the

specific attack become unimportant, and it is sufficient to know whether the server pro-

gram crashed or has been completely taken over to determine the overall effects of a

successful attack.

The mechanisms of attacking different client programs are surprisingly similar. For

example, even thoughMicrosoft Wordis very different fromAdobe Acroread, the mech-
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anism an adversary would use to attack vulnerabilities in these programs is similar, like

sending a malicious file that triggers a buffer overrun bug within the application to take

over the process running on behalf of the target. A similar technique is employed in ex-

ploiting a vulnerability in a Web browser, an e-mail client,or an instant messenger client.

To facilitate these exploits, the adversary will deliver a malicious web page to a vulnera-

ble web browser or its components (such as Internet Explorerand Java Virtual Machine

plugin of Firefox browser), or a malicious e-mail to an e-mail client (such as Pine, Mutt,

Outlook Express) or send a malicious instant message to the user using a vulnerable client

(such as Skype, Yahoo! Messenger, and MSN Messenger).

When a vulnerability is reported on vulnerability reporting mailing lists, typically the

advisory contains information like whether the vulnerability is remotely exploitable or

locally exploitable and whether the vulnerability resultsin a denial of service or privilege

escalation. Such information is also readily available in machine-readable databases on

the Internet [33]. We will show in this thesis that such meta-information is valuable in

conducting a transitive closure of all bugs on a network to understand how an adversary

can launch a multi-stage multi-host attack on the network.

In this section, we describe how we model different kinds of exploits. We introduce

several predicates that are used in the exploit rules.

execCode(P, H, UserPriv) is a predicate specifying that principalP can ex-

ecute arbitrary code with privilegeUserPriv on hostH.

netAccess(P, Src, Dest, Protocol, Port) is a derived predicate spec-

ifying that principalP can send packets from machineSrc to port Port on machine

Dest through protocolProtocol .

networkService(Host, Program, Protocol, Port, Priv) is a pred-

icate specifying that a service programProgram is running on hostHost at privilege
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levelPriv . This program is serving requests over the network by listening on portPort

of protocolProtocol .

setuidProgram(H, Program) is a predicate specifying thatProgram is a

setuid program on hostH. In a Unix system, when a setuid is executed, it runs at the

privilege of the owner of the program1.

Remote privilege escalation Suppose that an adversary is trying to attack a network

server program. He will be able to successfully attack the program only if the following

conditions are met:

• A vulnerable program is listening on the network.

• The vulnerability can be remotely exploited.

• The network configuration allows the adversary to send a malicious packet(s) to

the port the program is listening on.

If the bug is a privilege escalation bug, upon on successful attack, the adversary gets

hold of the network server’s process, thus getting hold of the userid running the network

server process. We write this formally as:

%% Remote network server attack

execCode(Attacker, Host, ProgramUserId) :-

vulExists(Host, Program, remoteExploit,

privilegeEscalation),

networkService(Host, Program, Protocol,

1A common use of setuid programs is a situation wherein a program is run by various users, but still has
to keep track of statistics or data over different runs. Examples include programs like GNOME Mahjongg
(the program has to maintain a list of highest scores across different users) andpasswd (a program to
change user passwords that are stored in a common file).
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Port, ProgramUserId),

netAccess(Attacker, _AttackerSource,

Host, Protocol, Port).

In the formalism of Datalog, an identifier starting with(like AttackerSource )

is an anonymous variable, and it can bind to any value. So, in the above rule the predicate

netAccess(Attacker, AttackerSource, Host, Protocol, Port) means

that it does not matter from which host theAttacker launches the attack.

Local privilege escalation In Unix, when a setuid program is executed, then the pro-

gram executes with the privileges of the user owning the program—typicallyroot . As

we discussed in chapter 3, certain programs in Windows are executed in a privileged

context. To attack these privileged programs, the adversary first obtains access to some

privilege level on the target host, and then exploits the vulnerability in the privileged

program. An adversary can attack a privileged program if:

• The privileged program is vulnerable.

• The vulnerability can be locally exploited.

• The adversary already has (shell) access to the host.

Upon successful attack, the adversary gets hold of the privileges of the privileged

program. We encode this formally as:

%% Local attack against a privileged program

execCode(Attacker, Host, ProgramUserId) :-

vulExists(Host, Program, localExploit, privilegeEscala tion),

privilegedProgram(Host, Program, ProgramUserId),

execCode(Attacker, Host, _SomeUser).
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Kernel. On many occasions, programming flaws in the kernel of the operating sys-

tem resulted in both locally exploitable and remotely exploitable vulnerabilities [30, 45].

Hence, we model the operating system kernel as both a networkservice running as

root , and a local privileged program. That is, the consequence ofexploiting a privilege-

escalation bug in kernel (either local or remote) will result in a compromise of the admin-

istrative account of the machine and hence the whole system.

Remote-exploit-client An adversary can attack a client program if the following con-

ditions are met:

• TheProgram is vulnerable to a remote exploit.

• TheProgram is client software with privilegePriv .

• TheAttacker is some principal that originates from a part of the network where

malicious users may exist.

The consequence of the exploit is that the attacker can execute arbitrary code with privi-

legePriv . We encode this formally as:

execCode(Attacker, Host, Priv) :-

vulExists(Host, VulID, Program),

vulProperty(VulID, remoteExploit, privEscalation),

clientProgram(Host, Program, Priv),

malicious(Attacker).

5.1.3 File access

After exploiting a client or server program, the adversary gets hold of a certain privilege

level on a host. Among other things, one of the things the adversary could try is to tamper
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with critical operating system files—like the password file,kernel program, and programs

in the system directory. Or the adversary could try to steal confidential data from users’

directories. Thus we need to model file access semantics.

In traditional Unix, the permissions that can be placed on anobject areread, write and

execute. When a principal is granted a permission to a file object, theoperating interprets

the permissions as follows:

• read Permission to read the file. For directories, this means permission to list the

contents of the directory.

• write permission to write to (change) the file. For directories, this means permis-

sion to create and remove files in the directory.

• executepermission to execute the file (run it as a program). For directories, this

means permission to access files in the directory.

There are three categories of users who may have different permissions to perform any

of the above operations on a file object: the file’s owner, the file’s group and everyone

else.

localFileProtection(Host, User, Access, FilePath) is a predi-

cate specifying that theUser on machineHost can have specifiedAccess to the file

FilePath .

accessFile(Principal, Host, Access, Path) is a predicate specify-

ing thatPrincipal can access the file specified byPath on Host . Access can be

one ofread , write andexecute .

If an attackerAttacker can execute code on machineHost as a userUser , then

he can access whatever filesUser can access. We encode this formally as:
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accessFile(Principal, Host, Access, Path) :-

execCode(Principal, Host, User),

localFileProtection(Host, User, Access, Path).

5.1.4 Trojan horse programs

A Trojan horse is a malicious program that is disguised as legitimate software—one that

masquerades as a benign program. The program may look usefulor interesting (or at

the very least harmless) to an unsuspecting user, but is actually harmful when executed.

It could be an otherwise useful software that has been corrupted by a cracker inserting

malicious code that executes while the program is used. For example, it is very common

for intruders to break-in to a system and replace theSecure Shellexecutable with a mali-

cious executable that provides the functionality ofSecure Shell, but in addition captures

the user’s passwords and uploads it to a global server. A Trojan horse program may also

even install a back-door program on the compromised system that allows the adversary

to enter the host at a later time.

An adversary usually introduces a Trojan horse program as follows: he obtains certain

privileges on a host and then replaces legitimate programs with a Trojan-horse version.

When a user executes such programs, the attacker obtains theprivileges of the user. A

special case of Trojan-horse is where the adversary replaces an executable file used in

operating system boot process. In that case, the adversary can gain complete control of

the host. We model this as follows:

execCode(Attacker, Host, User) :-

accessFile(Attacker, Host, write, Path),

not privilegedProgram(Host, Path),
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localFileProtection(Host, User, exec, Path).

execCode(Attacker, Host, Owner) :-

accessFile(Attacker, Host, write, Path),

privilegedProgram(Host, Path),

fileOwner(Host, Path, Owner).

Suppose that an adversary has the capability to overwrite a file. To determine whether

overwriting this file is useful in a Trojan-horse attack, we need to determine a) if file is

an executable file and b) if the target does indeed execute thefile. In determining the

answers to these questions, we make certain conservative approximations.

We assume that any file (in the system directories) that is marked executable is indeed

an executable. There could be files that are marked executable, but they are merely used

to store data (like statistics)—so overwriting these files does not result in a Trojan-horse

attack. For example the file/etc/ppp/options file in a Fedora Core 4 machine is

marked executable, but it is merely a configuration file and isnot directly executed. It is

very hard to automatically understand when a file is indeed anexecutable and the strategy

of checking ifexecute permission is granted is a good heuristic. In practice, we found

that very few data files are mistakenly marked as executable files. Thus, it is reasonable

to assume that any file (in the system directories) that is marked executable is indeed

executable.

If an adversary can tamper with or overwrite an executable program, a successful

Trojan-horse attack results only after the target actuallyexecutes the program. It is really

hard to determine the circumstances under which an executable file is indeed executed.

For example, it is hard to answer questions like“who are using the grep program”and

“when is the executable /usr/bin/zipinfo used”. We assume that a file that is marked
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executable is executed by the owner of the file. If an executable file is owned by an

administrator, then we assume that all userswill use the file. This is conservative yet

pragmatic given that our approach is to treat programs as black boxes.

5.1.5 Networked File Systems

A networked file system allows sharing a file system between many computers, so that

one could easily access files from all of them. In cluster environments where there a

large number of identical machines, it is a hassle for the administrator to maintain each

machine. The solution adopted is that the administrator maintains a single host and then

lets the changes propagate to other hosts automatically using networked file systems.

After getting certain access on a host, one way an adversary can propagate the attack

to other hosts is to use the networked file systems. The adversary corrupts the file on the

client share, and the file system copies the changes back on tothe server share. From the

server share, the corrupted file can automatically propagate to other clients mounting the

share. There a large number of networked file systems, likeAndrew File System (AFS),

Network File System (NFS)andServer Message Block (SMB, Samba). Of these, we show

here how to model theNetwork File System (NFS). We hypothesize that modeling other

networked file systems should be similar.

NFS protocol is based onRemote Procedure Call (RPC). NFS is assigned an RPC pro-

tocol number of 100003.nfsExportInfo(Server, Path, Access, Client)

nfsMounted(Server, ServerPath, Access, Client, ClientPa th) are

predicates that are generated by looking at the NFS configuration file on the client side.

However, if an administrative account is compromised on theclient side, then the attacker

can mount any files. We encode this as:
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nfsMounted(Anything) :-

execCode(P, Client, root).

If files are mounted on the client side using the NFS protocol,and if the adversary can

access files on the client side, then the adversary can accessthe files on the server side.

We encode this as:

accessFile(P, Server, Access, SrvPath) :-

nfsExportInfo(Server, Path, Access, Client),

nfsMounted(Server, SrvPath, Access, Client, ClntPath),

netAccess(P, Client, Server, rpc, 100003).

accessFile(P, Client, Access, ClntPath).

5.2 Modeling the network

An attacker can propagate a multi-stage multi-host by sending malicious packets over the

network to compromise vulnerable server programs. The ability of the attacker to send

malicious packets depends on how the network infrastructure is configured. It is very

common to usenetwork firewallsto allow or block certain network packets, depending

on various characteristics. Thus, the system administrator can achieve certain goals like

block all Internet access from this class of hosts, block all programs that use UDP traffic,

do not allow any traffic on port 23 in TCP protocol.

Packet flow is controlled by switches, routers and firewalls.Modeling the elements

of the network infrastructure is important in determining the options an adversary has in

attacking a network. The problem of modeling network infrastructure to determine what

kind of activities are allowed is well studied [6, 4]. We run network analysis tools which

produce host to host reachability information. We abstractthis information as a set of
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host access control lists (hacl). We feed the hacl into our analysis. A host access control

list specifies all accesses between hosts that are allowed bythe network. It consists of a

collection of entries of the following form:

hacl(Source, Destination, Protocol, DestPort).

One can use these abstracted entries to determine the network access an adversary has

as follows:

netAccess(P, H2, Protocol, Port) :-

execCode(P, H1, Priv),

hacl(H1, H2, Protocol, Port).

If a principalPhas access to machineH1under some privilege and the network allows

H1 to accessH2 throughProtocol andPort , then the principal can access hostH2

through the protocol and port. This allows for reasoning about multi-host attacks, where

an attacker first gains access on one machine inside a networkand launches an attack

from there.

5.3 Policy specification

The analysis we described earlier can be used to compute which user can access what

resource and which user can obtain what privileges. An administrator can access all the

resources of his domain and can obtain the privileges associated with his any user in his

domain. This is normal behavior. On the other hand, a situation where a untrusted user

can access confidential files or can obtain unwanted privileges is a real problem. We

need a mechanism to specify which accesses are allowed. In our framework, the system

administrator specifies allowed behavior through a security policy.
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5.3.1 Policy specification

The security policy specifies which principal can access what data. Each principal and

data is given a symbolic name, which is mapped to a concrete entity by the binding

information discussed in section 5.3.2. Each policy statement is of the form

allow(Principal, Access, Data) .

The arguments can be either constants or variables (variables start with a capital letter

and can match any constant). Following is an example policy:

allow(Everyone, read, webPages).

allow(user, Access, projectPlan).

allow(sysAdmin, Access, Data).

The policy says anybody can readwebPages , user can have arbitrary access to

projectPlan . And sysAdmin can have arbitrary access to arbitrary data. Anything

not explicitly allowed is prohibited.

The policy language presented in this section is quite simple and easy to make right.

However, the MulVAL reasoning system can handle more complex policies as well (see

section 5.6).

5.3.2 Binding information

Principal binding maps a principal symbol to its user accounts on network hosts. For

example:

hasAccount(user, projectPC, userAccount).

hasAccount(sysAdmin, webServer, root).

Data binding maps a data symbol to a path on a machine. For example:
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dataBind(projectPlan, workstation, ’/home’).

dataBind(webPages, webServer, ’/www’).

The binding information is provided manually.

5.4 Analysis Algorithm

The analysis algorithm is divided into two phases:attack simulationandpolicy checking.

In the attack simulation phase, all possible data accesses that can result from multistage,

multi-host attacks are derived. This is achieved by the following Datalog program.

access(P, Access, Data) :-

dataBind(Data, H, Path),

accessFile(P, H, Access, Path).

That is, ifData is stored on machineHunder pathPath , and principalP can access

files under the path, thenP can accessData . The attack simulation happens in the

derivation ofaccessFile , which involves the Datalog interaction rules and data tuple

inputs from various components of MulVAL. For a Datalog program, there are at most

a polynomial number of facts that can be derived. We execute our Datalog programs

in off-the-shelf Datalog engine XSB [38]. The engine guarantees (through its tabling

mechanism) that each fact is computed only once. Hence, the attack simulation phase is

polynomial.

In the policy checking phase, the data access tuples output from the attack simulation

phase are compared with the given security policy. If an access is not allowed by the

policy, a violation is detected. The following Prolog program performs policy checking.
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policyViolation(P, Access, Data) :-

access(P, Access, Data),

not allow(P, Access, Data).

This is not a pure Datalog program because it uses negation. But the use of negation

in this program has a well-founded semantics [21]. The complexity of a Datalog program

with well-founded negation is polynomial in the size of input [17]. In practice the policy

checking algorithm runs very efficiently in the XSB environment (see section 7.5).

5.5 Hypothetical analysis

One important usage of vulnerability reasoning tools is to conduct “what if” analysis.

For example, the administrator would like to ask“Will my network still be secure if two

CERT advisories arrive tomorrow?”.After all, an important purpose of using firewalls

is to guard againstpotentialthreats. Even there is no known vulnerability in the network

today, one might be discovered tomorrow. Analysis that can reveal weaknesses in the

network under hypothetical circumstances is useful in improving security. Performing

this kind of hypothetical analysis is easy in our framework.We introduce a predicate

bugHyp to represent hypothetical software vulnerabilities. For example, following is a

hypothetical bug in the web service programhttpd on hostwebServer .

bugHyp(webServer, httpd,

remoteExploit, privEscalation).

The fake bugs are then introduced into the reasoning process.

vulExists(Host, VulID, Prog) :-
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bugHyp(Host, Prog, Range, Consequence).

vulProperty(VulID, Range, Consequence) :-

bugHyp(Host, Prog, Range, Consequence).

The following Prolog program will determine whether a policy violation will happen

with two arbitrary hypothetical bugs.

checktwo(P, Acc, Data, Prog1, Prog2) :-

program(Prog1),

program(Prog2),

Prog1 @< Prog2,

cleanState,

assert(bugHyp(H1, Prog1, Range1, Conseq1)),

assert(bugHyp(H2, Prog2, Range2, Conseq2)),

policyViolation(P, Acc, Data).

The twoassert statements introduce dynamic clauses about hypothetical bugs in

two programs (Prolog backtracking will cycle through all possible combination of two

programs.). The policy check is conducted with the existence of the dynamic clauses. If

no policy violation is found, the execution will back track and another two hypothetical

bugs (in two different programs) will be tried.@<is the term comparison operator in

Prolog. It ensures a combination of two programs is tried only once. If there exist two

programs whose hypothetical bugs will break the security policy of the network, the

violation will be reported bychecktwo . Otherwise the network can withstand two

hypothetical bugs.
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5.6 Discussion

Coverage. We model privilege escalation attacks and denial-of-service attacks. We do

not model vulnerabilities whose exploit consequence is confidentiality loss or integrity

loss. The ICAT database does not provide precise information as to what confidential

information may be leaked to an attacker and what information on the system may be

modified by an attacker. ICAT statistics show that 84% of vulnerabilities are labeled

with only privilege escalation or denial of service, the twokinds of exploits modeled in

MulVAL. It seems in reality privilege-escalation bugs are the most common target for

exploit in a multistage attack.

More complex policies. The two-phase separation in the MulVAL algorithm allows us

to use richer policy languages than Datalog without affecting the complexity of the attack

simulation phase. The MulVAL reasoning system supports general Prolog as the policy

language. Should one need even richer policy specification,the attack simulation can

still be performed efficiently and the resulting data accesstuples can be sent to a policy

resolver, which can handle the richer policy specification efficiently.

No policy? Because the attack simulation isnotguided by or dependent on the security

policy, it is possible to use MulVAL without a security policy; the system administrator

may find useful the raw report of who can access what. However,the policy is useful in

filtering undesirable accesses from harmless accesses.

Hypothetical analysis. Is it really possible that a real network can survive two general

hypothetical bugs? Networks are large and complex. A large number of security bugs

are reported in software and hence in any large network system administrators have to
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manage a large number of software bugs. For example, as we describe in section 7.2.1,

a standard vulnerability scanner found several bugs in a professionally managed network

used by hundreds of users. The system administrators explained that they were aware of

the security bugs, but hypothesized that exploiting the bugis difficult and that the vulner-

able program is accessible only from a couple of trusted hosts on the internal network.

Hence, fixing these security bugs was not the most important issue they had to attend

to. Sometimes, removing a security bug network from a network results in disruption

of business processes and the immediate risk of exploitation is low. In these scenarios,

an administrator may decide that the cost of fixing the security bug is not worth the cost

and may instead of deploy a intrusion detection system to monitor the vulnerable soft-

ware. Administrators also follow a “defense in depth” strategy where they prepare for

circumstances where a particular software may be compromised. In such situations, it is

very useful for the administrator to have a tool that can answer questions such as “what

happens if a particular host is compromised”.
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Chapter 6

Vulnerability scanning

In this chapter I describe the state of the art in vulnerability scanning and how improve-

ments can be made. In section 6.1, I describe the evolution ofvulnerability scanning

technology. In section 6.2, I describe a state-of-the-art framework developed by the Mitre

Corporation to concisely specify the properties of a bug. This framework can be used to

quickly identify the existence of a bug on a network. In section 6.3, I show how one spec-

ifies a vulnerability in the framework. In section 6.4, I outline the drawbacks of current

vulnerability scanners, even state-of-the-art ones. In that section, I outline the design of

a next generation scanner to addresses these shortcomings.

6.1 Evolution of vulnerability scanning technology

An important component of a network’s security management is to understand the current

known vulnerabilities in software installed on the networkand determine whether any of

the hosts in the administrator’s domain are vulnerable. To obtain information about the

existence and exploit details of current known vulnerabilities, an administrator subscribes
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to vulnerability discussion and information dissemination mailing lists such as BugTraq,

US-CERT’s Cyber Security Bulletins, and Full Disclosure mailing list. In figure 6.1, we

show an advisory in Ethereal software that was discussed on many discussion lists on 24

April 2003. This advisory details information such as the affected versions of the pro-

gram, the affected versions of the operating system distribution that deliver the vulnerable

software, how the adversary can exploit the vulnerability,and how the administrator can

get the updated versions of the software that fix this vulnerability.

The advisory mentions the details of the vulnerability in natural-language format and

not in a format with formal semantics. The main drawback of this approach is that the

process of determining if a vulnerability exists on a given host requires manual interven-

tion, which is a slow and error-prone process. On large networks, the process of manual

discovery of vulnerabilities is infeasible because of the large number of machines and

limited number of system administrators. There is a need to consolidate management

of vulnerabilities, from discovery to real-time reportingto managed security monitoring

reports. This consolidation can be classified into the following stages:

• Manual: This is the most primitive phase, where an administrator reads the vul-

nerability advisory and manually checks information such as the version of the

program and the operating system, the configuration optionsfor the program (like

whether modulemod perl of Apache web server is enabled). Examples include

opening the vulnerable program and clicking the “About” tabin the case of ap-

plications with graphical interfaces, checking the valuesof registry keys through

Regedit , and usingwinver command in Windows to open a graphical session

listing various operating system parameters.
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--------------------------------------------------- ------------------
Red Hat Security Advisory

Synopsis: Updated ethereal packages fix security vulnerab ilities
Advisory ID: RHSA-2003:076-01
Issue date: 2003-04-23
Updated on: 2003-04-23
Product: Red Hat Linux
Keywords:
Cross references:
Obsoletes: RHSA-2002:290
CVE Names: CAN-2003-0081 CAN-2003-0159
--------------------------------------------------- ------------------

1. Topic:

Updated ethereal packages are now available which fix a form at
string bug and a heap-based buffer overflow.

2. Relevant releases/architectures:

Red Hat Linux 7.2 - i386, ia64
Red Hat Linux 7.3 - i386
Red Hat Linux 8.0 - i386
Red Hat Linux 9 - i386

3. Problem description:

Ethereal is a package designed for monitoring network traff ic on
your system. Ethereal 0.9.9 and earlier allows remote attac kers
to cause a denial of service (crash) and possibly execute
arbitrary code via carefully crafted SOCKS packets. Additi onally,
a heap-based buffer overflow in the NTLMSSP code for Etherea l
0.9.9 and earlier allows remote attackers to cause a denial o f
service and possibly execute arbitrary code. Users of Ether eal
should update to the erratum packages containing Ethereal v ersion
0.9.11 which are not vulnerable to these issues.

4. Solution:

Before applying this update, make sure all previously relea sed
errata relevant to your system have been applied.
...

Figure 6.1: Sample vulnerability advisory on the Full Disclosure mailing list.
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• Scripting Some of the repetitive tasks are scripted. Small scripts arewritten to test

for the existence of specific bugs. These scripts can be run automatically with little

human interference. To detect a new bug, one has to change theprogram that tests

for the vulnerability.

• Data-driven vulnerability scanning: The main drawback of the previous stage

is that any time a new vulnerability definition is out, the program that recognizes

the bug has to be changed. This ad hoc programming can introduce errors. A

better solution is to define a schema to describe bugs and thenuse a program that

understands the schema to automatically recognize bugs. The advantage of this

approach is that when a new vulnerability is reported, one just needs to write the

specification for the vulnerability. It is much easier to getthe specification right

than to correctly write a script to identify the existence ofthe vulnerability.

Currently, the Open Vulnerability Assessment Language (OVAL) represents the most

advanced stage of this evolution process. The schema has been developed by the Mitre

Corporation and Mitre also released a reference implementation; other vendors have

also released OVAL-compatible scanners. OVAL compatible vulnerability definitions

are available for download at the websitehttp://oval.mitre.org and from other

vendors. We discuss in detail the OVAL schema and its reference implementation because

it represents the state of the art in vulnerability scanning. We then discuss the limitations

of current systems and how we designed better scanners.

6.2 Open Vulnerability Assessment Language

In section 2.4.1 of this thesis, we briefly introduced the idea of formal representation

of security advisories and automatic recognition of security vulnerabilities. The OVAL

85



schema is a standard schema that one can use the specify the security vulnerabilities [49].

An OVAL vulnerability test is defined as a boolean combination of one or more elemen-

tary tests. An elementary test is used to query properties such as the existence of a file,

the permissions on a file, the operating system version, the processes running on a host,

the ports that are bound to network server programs and the version information of soft-

ware installed on the host. An example OVAL vulnerability definition, when written in

pseudo-code would read:

This host is vulnerable if

-- The host runs Red Hat Linux 6.2 operating system

and

-- Apache 1.3.4 is installed on the host

and

-- Apache program listening on port 80

and

-- Config file /etc/apache.conf is world-writeable.

or

-- Config file /etc/httpd.conf is world-writeable.

6.2.1 Linux tests

The current definitions for the vulnerabilities and definition intrepreters on the Linux plat-

form use the following tests:file test, permission test, uname test, process test, network

server test, rpminfo testand therpmversion test. We now briefly describe the functional-

ity of each of these tests.
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Red Hat Package Manager An important problem system administrators face in sys-

tems management is conflict management between several software products. Before

installing a new software, an administrator will have to (manually) check that its prerequi-

site software is already installed. Installation of new software might replace a library file

used by another software, which might render some of the already existing software un-

usable. In the worst case, the machine might be rendered unbootable. Operating system

vendors provide mechanisms to automatically track the dependencies between various

software and check for conflicts before software is installed. TheRed Hat Package Man-

ager is an open source application package management system that is used to maintain

package specific information (such as version information,required libraries, installation

scripts and files used by the package) and a database of all packages installed on a host,

a list of files on the host and the programs that use the file. It is widely used by various

distribution vendors for their Linux distributions. Each application package is supplied

to the Red Hat Package Manager as a Red Hat Package Manager (RPM) package. To

determine properties of an application installed on a host (such as version information,

files required), one needs to just consult the RPM database.

File test. A file test is used to test the existence of a file. After determining the existence

of the file, this test can be used to retrieve properties of thefile such as owner, group, last

time the file was accessed or accessed, the time the file was created and a checksum.

OVAL schema usesrft as the prefix to identify a file test.

Permission test. A permission test is used to test the permission bits of a file.One can

test whether a file is readable, writeable, or executable by either the owner or the group or

the world. One can also test whether the setuid or setgid bitsof a fie are turned on—these
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bits imply that upon execution the program in the file runs on behalf of the owner of the

file. OVAL schema usesret as the prefix to identify this test.

Uname test. A uname test is used to obtain properties such as the machine hardware

name (like i686), the host name, the operating system name (like Linux), the operating

system build version (like “#1 Wed Aug 25 13:34:40 UTC 2004”), the operating system

version (like 2.6.11-1.1369FC4) and the processor type (like i686). OVAL schema uses

rut as the prefix to identify this test.

Process test. A process test is used to obtain properties such as the command or pro-

gram name to check, the amount of CPU time the process has consumed, the process ID

of the process, the parent process’s process ID, the scheduling priority of the process (ad-

justed using thenice command), the scheduling class, the start time of the process, the

terminal (tty) on which the process was started and the user owning the process. OVAL

schema usesrct as the prefix to identify this test.

Network server test. This test is used to check if a program is listening on the net-

work, either for a new connection or as part of an ongoing connection. One can retrieve

the name of the communication program, the internet protocol address of the network in-

terface on which the program listens, the local port, the remote internet protocol address,

the remote port, the transport layer protocol, the process identity of the process and the

user account which owns the network server process. OVAL schema usesrlt as the

prefix to identify this test.

Rpminfo test. This test checks the RPM header for a given RPM package. It is used to

retrieve the architecture the package was packaged for, theepoch number for the RPM,
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the release number for the RPM, and the version number for thesoftware built in the

RPM. OVAL schema usesrrt as the prefix to identify this test.

Rpmversion test. This test checks the installed RPM against a given epoch, version

and release number to determine if the installed RPM is an earlier or later version com-

pared to the affected version. A majority of the tests in the OVAL vulnerability database

maintained by the Mitre Corporation use this test to determine the version of a program.

One supplies the information for the first RPM that does not have the given security flaw

and the interpreter checks if the software installed is vulnerable. OVAL schema usesrvt

as the prefix to identify this test.

The above tests are supported by the standard reference implementation. In addi-

tion to these tests, there are other tests that are supportedby the schema, but not by the

standard reference implementation. These tests are used toobtain information such as

the network interfaces on the host, information regarding the user’s password, password

aging and lockout.

6.2.2 Windows tests

The current definitions for the vulnerabilities and definition intrepreters on the Windows

platform use the following tests:registry test, file testand themetabase test. We now

briefly describe the functionality of each of these tests.

Registry test. The Windows registry test specifies a particular registry key (or keys) to

test. One can test if the value stored in a registry key matches a regular expression. OVAL

schema useswrt as the prefix to identify this test.
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File test. This test is used to test the file metadata information. One can retrieve the

owner, the time of access, the creation time, time of last modification, the checksum of

the file, type of the file (one of directory, standard file, and named pipe), The meta data

associated with a file also contains the “version” of the file.One can use the file test to

retrieve the version of the file. OVAL schema useswft as the prefix to identify this test.

Metabase test. The Windows metabase is a database that is very similar to thereg-

istry. A metabase is used to store information for theInternet Information

Services program. One can use this test to retrieve information stored in the spec-

ified metabase keys. OVAL schema useswmt as the prefix to identify this test.

The standard reference implementation supports the above tests. In addition, the Win-

dows schema supports a large number of other tests that are not implemented in the ref-

erence implementation. These tests are used to obtain information such as the account

privileges of an account, the configuration settings available under active directory, the

audit policy of the system (such as writing to the security log when a user logs on or off,

when a user changes password and when a user executes a file), the audit policy on a

given file or registry key (such as writing to the security logwhen a particular user opens

a file for a read operation), the security descriptor that determines which principals can

access a file or registry key, the group memberships of a givengroup, the network inter-

faces of the system, the account lockout policy, the password policy, the network ports

open on a host, the properties of processes on the system, andthe information regarding

the file system.
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6.3 Example of formal vulnerability specification

We now show how to formally encode the vulnerability we discussed above. The vulner-

ability advisory released by the vendor is shown in figure 6.1. The vulnerability affects

Ethereal 0.9.9 and earlier on operating systems Red Hat Linux 7.2 through 9 oni386

architecture and Red Hat Linux 7.2 on ia64 architecture. Thus we need to write an OVAL

test that tests the operating system, architecture and program version.

Testing for Operating System. The procedure to test the version of an operating sys-

tem in a Red Hat Linux system is to check the version of aredhat-release RPM

package. We show how to test for Red Hat Linux 9 system; testing for other versions is

similar. The test is:

<rpminfo_test id="rrt-201" comment="Red Hat 9 is installe d">

<name operator="equals">redhat-release</name>

<version datatype="int" operator="equals">9</version>

</rpminfo_test>

Testing for architecture. We show how to test fori386 architecture. The test for

ia64 is similar.

<uname_test id="rut-201" comment="ix86 architecture">

<machine_class operator="pattern match">ˆi. * 86

</machine_class>

</uname_test>

Testing program version The test to check for Ethereal versions 0.9.9 and earlier is:
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<rpmversioncompare_test id="rvt-206">

<name operator="equals">ethereal</name>

<tested_version operator="equals">

0.9.11

</tested_version>

<installed_version operator="equals">

earlier

</installed_version>

</rpmversioncompare_test>

Complete vulnerability definition. In figure 6.2, we show a complete vulnerability

definition that uses the above tests as elementary tests. This definition is listed in the

OVAL vulnerability database maintained by the Mitre Corporation, with the reference

identifier beingOVAL54. Besides the criteria needed to recognize a vulnerability,the

complete definitions also incorporates other useful information such as the definition au-

thor, the dates, description.

6.4 Next generation scanners

The current state-of-the-art scanner suffers from two weaknesses: insufficient function-

ality and large trusted base. We now explain why these issuesare problems and how we

designed a better scanner.
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<definition id="OVAL54" class="vulnerability">
<affected family="redhat">

<redhat:platform>Red Hat Linux 9</redhat:platform>
<product>Ethereal</product>

</affected>
<contributors>

<submitter organization="The MITRE Corporation">
Jay Beale

</submitter>
</contributors>
<cveid status="CAN">2003-0081</cveid>
<dates>

<created date="2003-08-17"/>
<modified date="2004-05-05">

Corrected syntax errors in the sql
verion of the definition.

</modified>
<status_change date="2004-03-25">INTERIM
</status_change>
<status_change date="2004-05-25">ACCEPTED
</status_change>

</dates>
<description>

Format string vulnerability in packet-socks.c
of the SOCKS dissector for Ethereal 0.8.7 through 0.9.9
allows remote attackers to execute arbitrary code via
SOCKS packets containing format string specifiers

</description>
<status>ACCEPTED</status>
<version>1</version>
<criteria>

<software operation="AND">
<criterion test_ref="rrt-201"

comment="Red Hat 9 is installed" />
<criterion test_ref="rut-201"

comment="ix86 architecture" />
<criterion test_ref="rvt-206"

comment="ethereal version
0.9.9 and earlier/>

</software>
</criteria>

</definition>

Figure 6.2: Sample Vulnerability Definition in OVAL database (OVAL54).
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6.4.1 Drawbacks of current vulnerability scanning technologies

Insufficient functionality. We show in chapter 7 how our tool found serious vulnera-

bilities in the configuration of software from major vendorsfor the Windows platform.

These vulnerabilities were in the security configuration ofcertain Windows services and

registry keys installed by various vendors. The current vulnerability scanners do not

support scanning the security configuration of service objects in Windows. An OVAL

scanner is meant to recognize already existing vulnerabilities. One has to supply the vul-

nerability definition to recognize the existence of a vulnerability. Thus an OVAL scanner

can never recognize the existence of an unknown bug. We wrotea sophisticated scanner

to query the configuration of services and other operating system objects. We then used

the tool to find previously unknown vulnerabilities.

Scanners are too heavy. Another drawback of current scanners is that the collectionof

configuration data from the host is not separated from the analysis of the configuration

data. The collection phase of the vulnerability scanner needs to collect certain privi-

leged information and hence needs to run from an administrative account. The analysis

phase involves understanding the vulnerability definition, consulting the configuration

data from the collection phase and determining if the vulnerability does indeed exist on

the host. Because collection of data is not separated from configuration analysis, both the

collection and analysis phases need to run with administrative privileges. The net result

it that the trusted computing base of the vulnerability scanner is much larger than it needs

to be; it is well understood that this is a bad idea.
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6.4.2 Next generation scanner

We built a new scanner that extends the functionality of an OVAL scanner to scan the

configuration settings of Windows services and registry key’s security context. Our scan-

ner scans the entire registry and identifies registry keys whose data contain the name

or path of an executable file or library. It is very common in Windows to use a reg-

istry key to store the file or library to invoke upon certain conditions being met. For

example, when a user logs onto a host, the system should determine what is the first

program that runs on behalf of the user. The path to this program is stored in the key

HKLM\SOFTWARE\Microsoft \WindowsNT\Current Version \Winlogon \

Userinit . If a sensitive key can be overwritten by the adversary, the adversary can

make the key point to his executable content. The adversary then waits for the system

to execute his content. Our tool identifies sensitive registry keys and for each sensitive

registry key, our tool investigates the security descriptor to see if the key’s contents can

be overwritten by the adversary. Our tool enumerates the services on a Windows host and

investigates the security descriptor on each service if theservice presents the adversary

with an opportunity to attack the system.

We modified the OVAL (Linux) scanner so that it works in two phases. The first phase

needs administrative privileges and collects all the configuration data into a database. The

second phase does the analysis of the configuration data and the vulnerability definition

and determines if the vulnerability specified by the definition exists on the host. In this

design, only the first phase needs administrative privileges, the second phase can run un-

der a nonadministrative account. In figure 6.4.2, we show howthe better scanner reduces

the trusted computing base and the size of the configuration snapshot.

Another advantage of separating the configuration collection from analysis is that

configuration collection can be run before information about a vulnerability is available.
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Tests Lines of code Size of configuration snapshot
File and file permission test 250 20 MB

Process test 150 1 MB
Network server test 1 1 KB

Uname test 50 1 KB
RPM tests 2000 10 MB

Total 2451 31MB

Figure 6.3: We designed a two-phase scanner that separates configuration information
collection from analysis. In contrast, the OVAL scanner hasa trusted computing base of
17354 lines of code.

If configuration collection is run after a vulnerability is publicly known, there is the pos-

sibility that the adversary has already compromised the machine. If the adversary has

already compromised the host, then he may be able to hijack the OVAL scanner, tricking

the scanner to believe that the vulnerability does not exist. We suggest that the configura-

tion collector be run periodically or each time a change is made to the host configuration

and that the results be stored in a centralized server. When avulnerability advisory is

released, one check if the host is vulnerable by running the analyzer on the centralized

server—thus not relying on the information provided by the host after a vulnerability is

publicly known.

If one maintains configuration information on a centralizedand trust-worthy server,

then it is easy to maintain a historical database of the configuration of the host. When

it is suspected that a host has been compromised, a historical database of host configu-

ration can be used to perform an analysis of what the adversary could have done after

compromising a host.
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Chapter 7

Practical experience

In this chapter, we describe our experience with deploying our tool. Our tool found two

classes of security attacks on real networks: attacks usingconfiguration vulnerabilities

and attacks leveraging interaction of multiple vulnerabilities. We first describe how our

tool found previously unknown vulnerabilities in the configuration of a single host.

7.1 Single host configuration vulnerabilities

Our tool to analyze a Windows host comprises two phases: configuration collection and

analysis. The configuration collector queries the securitydescriptors of all files, registry

keys and services in the host. There are a large number of objects that are owned by

the Administrator’s account and whose security descriptorconfiguration prevents anyone

other than an Administrator from modifying it. Such objectswould not aid the adversary

in a privilege escalation attack and can be safely ignored sothat our analysis phase is

efficient. Our configuration collector filters such objects and passes the configuration of

the rest of the objects for closer analysis. The configuration collector can run without
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the administrative privileges. The data from the configuration phase is fed to the analysis

engine, which could potentially run on a different host. Theanalysis phase uses the formal

model of the operating system encoded in Datalog to reason about the configuration data.

The analysis phase identifies privilege escalation attacksagainst the host as described in

chapter 4.

We used our tool to see how software from various vendors is configured in the default

installation. Figure 7.2 shows how unprivileged users on a Windows XP host can obtain

administrator privileges through several paths. Figure 7.1 shows how software from sev-

eral vendors is configured in hosts in a professionally managed network. These results

indicate that unprivileged users can gain administrator privileges through several paths.

We hypothesize that even professional software developersand professional system ad-

ministrators have a limited understanding of the semanticsof the operating system. We

suggest that developers and administrators use tools like ours to examine how software

is configured. We found three classes of bugs: file system misconfigurations, registry

misconfigurations and service misconfigurations.

7.1.1 Service misconfigurations

Several vendors poorly apply the Windows access control model to their services; a com-

mon mistake is to assign theSERVICE CHANGE CONFIG permission indiscriminately to

services. The Windows XP documentation states, “. . . because this grants the caller the

right to change the executable file that the system runs, it should be granted only to ad-

ministrators” [13]. But that warning fails to explain clearly that permission to configure a

service allows both setting the executableandselecting the account under which the ser-

vice runs, e.g., change the “run-as” account toLocal System [12, 28]. FromLocal
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Figure 7.1: Privilege escalations in a single host of a network managed by full-time pro-
fessionals. LimitedUser is an unprivileged user, NetworkService and LocalService are
low-privileged accounts used to run some operating system programs. Everyone, SrvOp,
AuthUser and PowerUsers are groups. The arcs labeled grpMbrshow that the user is a
member of the group. All other arcs show privilege escalations. There are about thirty
escalation paths from PowerUsers to System. It can been seenfrom the graph that soft-
ware running on even professionally managed hosts has serious problems in using the
operating system’s access control model resulting in serious privilege-escalation vulner-
abilities.
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Figure 7.2: Privilege escalations found in a default configuration of WindowsXP, prior to
Service Pack 2. LimitedUser is an unprivileged user, NetworkService and LocalService
are low-privileged accounts used to run some operating system programs. Everyone,
SrvOp, AuthUser, NetCfgOp, and PowerUsers are groups. The arcs labeled grpMbr show
that the user is a member of the group. All other arcs show privilege escalations. There
are about thirty escalation paths from PowerUsers to System. It can be seen from the
graph that the Microsoft Windows’ security model is complicated that even professional
software developers at Microsoft have a difficult time in using the model correctly. In
addition, we show vulnerabilities in AOL messenger software.

System , all things are possible (including installing password sniffers to launch further

attacks in the guise of any ordinary user).

We now describe specific bugs we discovered; each example is marked with a bullet

• and corresponds to one or more labeled arcs in the graph, marked inboldface.

• In the default configurations of Windows XP, theSSDP Discovery Service(SSDP

in the graph) and theUniversal Plug and Play Device Host service(uPnP in the graph)

granted “permission to configure the service” to theAuthenticated Users group.

A normal unprivileged user is a part of theAuthenticated Users group and hence

a normal user can configure the executable and the account under which these services

run. Then, the adversary needs to make the service reload thenew configuration. He

needs to wait for the service to be restarted (he could, for example, force the system
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Figure 7.3: Privilege escalations found in a machine running just Lotus Notes, PC-
Cillin antivirus, and VMWare. The vulnerable software is Lotus Notes and PC-Cillin
antivirus. The circles in the extreme left column representvarious users installed by the
operating system or other software. The dark nodes are represent the administrative ac-
counts. As one can see the privilege-escalation graph is dense. The escalations from the
LimitedUser account are the most serious among the many shown on the graph. In
the limited space available on this page, it is a significant challenge to make the figure
show complete details and yet be readable. Sometimes, it is difficult to determine which
software installed a particular a registry key or file or service.
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administrator to reboot the machine by consuming too many resources so that the sys-

tem is too slow to respond). We also noticed that usually whena principal is granted

the SERVICE CHANGE CONFIG permission, he is also grantedSERVICE STOPandSER-

VICE START permissions. One could use the Service Controller (sc.exe ) to trivially

reload the service in the new configuration as follows:

$sc config weakService binPath=c:\attack.exe obj=".\Loc alSystem" \

password=""

$sc stop weakService

$sc start weakService

Via the sameSERVICE CHANGE CONFIG mechanism, the following (Windows XP

Professional) access-control decisions give paths fromLocal Service , Network

Service , Network Configuration Operators , andServer Operators

to Local System : • TheLocal Service account has permission to configure the

Universal Plug and Playservice (uPnP), Smart Card Services(SCardSvr) and theSmart

Card Helper Service(SCardDrv). • The Network Service account has permis-

sion to configure theMicrosoft Distributed Transaction Coordinatorservice (MSDTC).

• TheServer Operators group has permission to configureuPnP, Simple Service

Discovery Protocol(SSDP), NetBios over TCP/IP(NetBT), andSmart Card Services

(SCardSvr). The Network Configuration Operators group has permission

to configure theDynamic Host Configuration Protocol(DHCP), NetBT, andDnscache

services. This defeats the principle of least privilege that was the motivation for creating

Local Service andServer Operators . If the adversary were to find a buffer

overflow bug in a program running asLocal Service , this escalation path enables

the adversary to take complete control of the host.

Finally, although Microsoft describesPower Users as “includes many, but not

all, privileges of the Administrators group,” [5, page 31] it is well known that• there are
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many privilege-escalation paths fromPower Users to Local System ; we have

found more than 20 with our tool.

Other vendors’ software also has access-control configuration bugs in their services:

• The Everyone group was granted the permission to configure theMacromedia Li-

censing Service, installed byMacromedia’s Dreamweaver program.

SERVICE USER DEFINED CONTROL weakness. Windows allows each service

to specify a custom control code to be sent to a service. The permission

SERVICE USER DEFINED CONTROL is used to control the set of users who can send

control codes to the services. Control codes represent somegeneral operations such as

start, continue, pause, and stop. One way to create a new service in Windows is to use the

sc.exe utility. Unfortunately, when an administrator creates a service using this utility,

theAuthenticated Users groups is granted this permission by default. This places

the burden of setting the service’s security context on the service creator. Developers do

not understand the security implications well enough to do the right thing. This is a poor

design decision made by thesc.exe utility of the operating system; it could lead to

vulnerabilities. I do not know of services that use user defined control codes, but this is a

weak point in the system.

7.1.2 Registry misconfigurations

Registry The Windows Registry is a global, hierarchical database, where entries are

accessed bykeys. Each registry key has a security context attached to it controlling access

to the key. Some registry keys store sensitive information like the path to the executable

acting as a user’s shell, the library to be loaded by a program, and the identity of an
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operating system object1 . If an adversary can overwrite the contents of a sensitive key

with the path of his library or executable, he could cause hiscode to be executed [47, 28].

• The standard configuration ofAOL includes a registry entry binding the name of a DLL

file to be loaded and executed (in some circumstances) by the AOL software. The access

permissions permit any user to write this entry; the attacker can substitute the name of

his own DLL and wait for some other AOL user to execute it.• We also found several

weaknesses (potential security holes) in several registrykeys from several vendors where

an adversary could escalate his privileges.

7.1.3 File misconfigurations

In addition to Trojan horses via service configuration, somevendors’ software is vul-

nerable to a more traditional kind of file-system-based Trojan-horse vulnerability:• The

Everyone group has been granted the permission to write to 170 executable (.EXE and

.DLL) files from Adobe. The adversary can write to these files and wait for a system

administrator or other user to execute the files.• TheEveryone group has been granted

the permission to write to 103 files from the Trend Micro Internet Security 2006 virus

scanner fromTrend Micro . • TheEveryone group has been granted the permission to

write to 354 files in Lotus Notes program fromIBM .
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Program Name Version Vendor Mechanism #instances Remarks
Lotus Notes 6.5.4 IBM File 354 Everyone
VPN Client Cisco File 18 Interactive

PC-cillin 2006 14.10.23 Trend Micro File 103 Users
PC-cillin 2006 14.10.23 Trend Micro Service 6 Authenticated

Illustrator Adobe File 170 Everyone
Anti-virus Symantec File 6 Everyone

AOL Messenger AOL Registry 2 Everyone
Dreamweaver Macromedia Service 1 Everyone

Flash Macromedia File 1 Everyone
Windows XP Microsoft Service 2 Everyone
Windows XP Microsoft Service 3 Local Service
Windows XP Microsoft Service 1 Network Service
Windows XP Microsoft Registry 20 Local Service
Windows XP Microsoft Registry 20 Network Service
Windows XP Microsoft Service 1 NetCfgOp

Figure 7.4: A summary of vulnerabilities discovered by our tool. Major software vendors
make mistakes in using the operating system access control.It is quite possible that there
are a large number of open vulnerabilities in software that we have not tested. We suggest
that developers use tools like the one we describe in this thesis to test their software.
The column instances reflects the number of objects that leadto a privilege-escalation
vulnerability. For example, Lotus Notes has 354 files that are writeable by any member
of theEveryone group.
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7.1.4 Summary of findings

7.1.5 Misconfigurations in System Restore.

It is common that when an administrator installs a program, he discovers that the instal-

lation has undesirable (sometimes disastrous) consequences. It is useful to be able to roll

back the effects of software installation. Windows provides thesystem restorefacility to

provide a way to easily revert the system to a previously known (good) state. System Re-

store in Windows enables the administrator takes multiple snapshots of the system state

and revert the these snapshots when required. If a software installation were to corrupt

the system state, system restore can be used to go back to a previously known good state.

By design only the administrators group is allowed to run thesystem restore utility.

System Restore stores its files in theC: \System Volume Information direc-

tory. This directory’s ACL is set so that only theLocal System can access the con-

tents of this directory. This directory has a subdirectory with name similar to

restore {34DA1123-3456-76ED-EDAB-1234567890AA }2. On this directory,

any member of theEveryone group has complete access. For each restore point, the

system creates a directory likeRP10 and stores the data for each restore point into the

snapshot subdirectory3. We found that the following files in thesnapshot directory

have weak access control, enabling any member of theEveryone group have complete

access:
1Windows identifies certain operating system objects (“classes”) by globally unique identities like

4D36E96B-E325-11CE-BFC1-08002BE10318
2We conjecture that the hexadecimal number in the directory name is generated by an equivalent of the

guidgen.exe program. This program generates a globally unique 128 bit hexadecimal number. Win-
dows uses globally unique identifiers (GUIDs) to identify objects such as ActiveX classes and interfaces.
However, it is not clear if this identifier is cryptographically strong. When an adversary gets limited access
to a host, he may be able to leverage other attacks to predict this number.

3Windows XP. Version 5.1 (build 2600.xpclntqfe.010827-1803)
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_REGISTRY_MACHINE_SAM

_REGISTRY_MACHINE_SECURITY

_REGISTRY_MACHINE_SOFTWARE

_REGISTRY_MACHINE_SYSTEM

_REGISTRY_USER_.DEFAULT

_REGISTRY_USER_NTUSER_S-1-5-18

_REGISTRY_USER_NTUSER_S-1-5-19

_REGISTRY_USER_NTUSER_S-1-5-20

_REGISTRY_USER_NTUSER_<usersid>

Usually all users are grantedSeChangeNotifyPrivilege privilege, thus the

adversary can skip the restrictive access checks on parent directories. The adversary’s

ability to access these files is only controlled by the accesscontrol settings on the files.

The access control settings on the files allow any member of the Everyone group to

write to the files. Thus an adversary who gains limited accessto the host can corrupt the

files. From the name of the files, we conjecture that these are the files backing up the

registry for the machine and thus the adversary can corrupt the entire registry backup. If

an administrator were to try to usesystem restoreto restore to a previous checkpoint, the

machine’s registry can be compromised and hence the host. The adversary will be able

to corrupt these files only if:

• He knows the complete path to the file. The adversary does not immediately know

the complete path of the corrupted file because he cannot readthe contents of the

C: \System Volume Information directory. The adversary cannot read the

contents of theC: \System Volume Information and hence cannot know

the name of the restore directory. The restore directory hasa name similar to

restore {34DA1123-3456-76ED-EDAB-1234567890AA }, generated by
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using guidgen.exe . If the adversary can leverage other attacks to guess the

name of the restore directory, he could guess the complete path to the file.

• When a user accesses a file, the permissions along the directory path need to be

checked to ensure that the user is allowed access to the file. This could lead to se-

vere run-time performance penalties for deeply nested files. The Windows solution

to these penalties is to copy the security descriptors from parent directories to the

child nodes of the filesystem, and have the kerneloptionally skip access checks

along on the directory path. TheSeChangeNotifyPrivilege privilege in the

process token controls this behavior. This privilege is typically enabled for all users

because most applications in Windows break when this privilege is disabled. Thus

the adversary can skip the restrictive permissions on the parent directories in the

system restore directory. In effect, the only protection onthe system restore reg-

istry snapshots is the security descriptors on the files thatstore the settings, which

are too weak.

Though this attack is more difficult to launch than other attacks, this attack exposes

the weaknesses of using Windows in high-assurance systems.

Determining the name of the restore directory. We conjecture that one can guess the

restore directory name by trying to open the directory

C: \System Volume Information \

restore {34DAXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}and measure the time

taken to get a failure. Applications break if the privilegeSeChangeNotifyPrivilege

is not granted to a user; hence this privilege is granted by default to all users. With this

privilege turned on, when the kernel receives a call to open afile or directory, the kernel

does not perform access checks along the directories in the path, but only performs the
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access check on theleaf node. Thus, when any principal tries to open a file, the system

will have to look up whether the file or directory exists—as opposed to getting an access-

denied error on one of the parent directories. In this particular case, since the parent

directoryC: \System Volume Information always exists, this boils down to de-

termining if the file restore {34DAXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}

exists. In case the file does not exist, we would get an error inopening the file. It is

intuitive that the more the characters that match the file name, the more the time taken

to get the error. Given that modern kernels are highly optimized for speed, it is unlikely

that the kernel deliberately slows down when a file name did not match. By measuring

the time taken to get an error, it should be feasible to determine the number of charac-

ters in the current guess that are correct. One could then launch an incremental attack.

We conjecture that the hierarchy (including the names of thefiles and directories) of the

whole file system can be determined by any user of the Windows system—a potentially

big problem. Previously, Andrew Griffiths has shown that in some Unix systems due to

implementation of various system calls (open in particular), it becomes possible to test

whether or not a file exists in a directory that is unreadable [22].

7.2 Network security analysis

7.2.1 A small real-world example

We ran our tool on a small network used by seven hundred users.We analyzed a subset

of the network that contains only machines managed by the system administrators.4 Our

4In this benchmark we did not model hundreds of user machines.We recommend that these should
be modeled as we did “internet,” as one machine. In this case,unlike “internet, ” the host would have
non-malicious users, but would be assumed to have many vulnerabilities. In our future work we plan to
experiment with such models; at present we recommend our framework for networks of managed, not
unmanaged, hosts.
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internet

dmz

internal

webServer

workStation

webPages
projectPlan

fileServer

fw1

fw2

binaries

Figure 7.5: Network topology for the network discussed in section 7.2.1

tool found a violation of policy because of a vulnerability.The system administrators

subsequently patched the bug.

Network topology. The topology of the network is very similar to the one in Figure 7.5.

There are three zones (internet , dmz and internal ) separated by two firewalls

(fw1 andfw2 ). The administrators manage thewebserver , theworkStation and

the fileserver . The users have access to the public serverworkStation which

they use for their computing needs. The host access control list for this network is:

hacl(internet, webServer, tcp, 80).

hacl(webServer, fileServer, rpc, 100003).

hacl(webServer, fileServer, rpc, 100005).

hacl(fileServer, AnyHost, AnyProtocol, AnyPort).

hacl(workStation, AnyHost, AnyProtocol, AnyPort).

hacl(H, H, AnyProtocol, AnyPort).
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Machine configuration The following Datalog tuples describe the configuration infor-

mation of the three machines.

networkService(webServer , httpd, tcp , 80 , apache).

nfsMount(webServer, ’/www’, fileServer, ’/export/www’) .

networkService(fileServer, nfsd, rpc, 100003, root).

networkService(fileServer, mountd, rpc, 100005, root).

nfsExport(fileServer, ’/export/share’, read, workStati on).

nfsExport(fileServer, ’/export/www’, read, webServer).

nfsMount(workStation, ’/usr/local/share’, fileServer,

’/export/share’).

ThefileServer serves files for thewebServer and theworkStation through

the NFS protocol. There are actually many machines represented byworkStation .

They are managed by the administrators and run the same software configuration. To

avoid the hassle of installing each application on each of the machines separately, the

administrators maintain a collection of application binaries under/export/share on

fileServer so that any change like recompilation of an application program needs to

be done only once. These binaries are exported through NFS totheworkStation . The

directory/export/www is exported towebServer .

Data binding.

dataBind(projectplan, workStation, ’/home’).

dataBind(webPages, webServer, ’/www’).
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Principals. The principalsysAdmin manages the machines with user nameroot .

Since all the users are treated equally, we model one of them as principaluser . user

uses theworkStation with user nameuserAccount . For this organization, the

primary worry is a remote attacker launching an attack from outside the network. The at-

tackers are modeled by a single principalattacker who uses the machineinternet

and has complete control of it. The Datalog tuples for principal bindings are:

hasAccount(user, workStation, userAccount).

hasAccount(sysAdmin, workStation, root).

hasAccount(sysAdmin, webServer, root).

hasAccount(sysAdmin, fileServer, root).

hasAccount(attacker, internet, root).

malicious(attacker).

Security policy The administrators need to ensure that the confidentiality and the in-

tegrity of users’ files will not be compromised by an attacker. Thus the policy is

allow(Anyone, read, webPages).

allow(user, AnyAccess, projectPlan).

allow(sysAdmin, AnyAccess, Data).

Results We ran the MulVAL scanner on each of the machines. The interesting part of

the output was thatworkStation had the following vulnerabilities:

vulExists(workStation, ’CAN-2004-0427’, kernel).
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vulExists(workStation, ’CAN-2004-0554’, kernel).

vulExists(workStation, ’CAN-2004-0495’, kernel).

vulExists(workStation, ’CVE-2002-1363’, libpng).

The MulVAL reasoning engine then analyzed this output in combination with the

other inputs described above. The tool did indeed find a policy violation because of the

bugCVE-2002-1363 —a remotely exploitable bug in thelibpng library. The adver-

sary creates a malicious image file that exploits the bug, then uploads this image to a pop-

ular website and waits for the user to download the picture from the site. When the user

loads the image, the adversary obtains control of the user’saccount onworkStation

machine by launching the exploit. A reasoning rule in our framework for remote exploit

derives that theworkStation machine can be compromised. After obtaining control

of the user’s account on the host, it is trivial for the adversary to accessprojectPlan

files because the user already has access to them. The reasoning rule for file access in

our framework derives that the adversary can accessprojectPlan files. Thus the

projectPlan data can be accessed by the attacker, violating the policy. Our system

administrators subsequently patched the vulnerablelibpng library.

One might be curious that there was only one vulnerability that contributed to the

policy violation though the hostworkStation actually had four vulnerabilities. The

other three bugs on theworkStation are locally exploitable vulnerabilities in the ker-

nel. Since only trusted users access these hosts, after patching thelibpng bug our tool

indicates the policy is no longer violated. These machines have uptimes in the order of

months and upgrading the kernel would require a reboot. Patching these vulnerabilities

would result in a loss of availability, which is best avoided. Our tool showed the adminis-

trators that they can meet the security goals without patching the kernel and rebooting the
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workStation . We expect our tool to be useful in mission-critical systemslike com-

mercial mail servers serving millions of users and servers running long computations.

7.2.2 An example multistage attack

We now illustrate how our framework works in the case of multistage attacks. Let us

consider a simulated attack on the network discussed in the previous example. Suppose

the following two vulnerabilities are reported by the scanner:

vulExists(webServer, ’CVE-2002-0392’, httpd).

vulExists(fileServer, ’CAN-2003-0252’, mountd).

Both vulnerabilities are remotely exploitable and can result in privilege escalation.

The corresponding Datalog clauses from ICAT database are:

vulProperty(’CVE-2002-0392’, remoteExploit, privEscal ation).

vulProperty(’CAN-2003-0252’, remoteExploit, privEscal ation).

The machine and network configuration, principal and data binding, and the security

policy are the same as in the previous example.

Results The MulVAL reasoning engine analyzed the input Datalog tuples. The Prolog

session transcript is as follows:

| ?- policyViolation(Adversary, Access, Resource).

Adversary = attacker

Access = read

Resource = projectPlan;
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Adversary = attacker

Access = write

Resource = webPages;

Adversary = attacker

Access = write

Resource = projectPlan;

We show the trace of the first violation in figure 7.6. Here we explain how the attack

can lead to the policy violation. An attacker can first compromisewebServer by re-

motely exploiting vulnerabilityCVE-2002-0392 to get control ofwebServer . Since

webServer is allowed to accessfileServer , the adversary he can then compro-

mise fileServer by exploiting vulnerabilityCAN-2003-0252 and becomeroot

on the server. Next he can modify arbitrary files onfileServer . Since the executable

binaries onworkStation are mounted onfileServer , their integrity will be com-

promised by the attacker. Eventually an innocent user will execute the compromised

client program; this will give the attacker access toworkStation . Thus the files stored

on it would also be compromised.

One way to fix this violation is movingwebPages to webServer and blocking

inbound access fromdmz zone tointernal zone. After incorporating these counter

measures, we ran MulVAL reasoning engine on the new inputs and verified that the secu-

rity policy is satisfied.

115



|-- policyViolation(attacker,read,projectPlan)
|-- dataBind(projectPlan,workStn,/home)
|-- accessFile(attacker,workStn,read,’/home’)
Rule: execCode implies file access

|-- execCode(attacker,workStn,root)
Rule: Trojan horse installation

|-- malicious(attacker)
|-- accessFile(attacker,workStn,write,’/sharedBinary ’)
Rule: NFS semantics

|-- nfsMounted(workStn,’/sharedBinary’,fileSrv,’/exp ort’,read)
|-- accessFile(attacker,fileSrv,write,’/export’)
Rule: execCode implies file access

|-- execCode(attacker,fileSrv,root)
Rule: remote exploit of a server program

|-- malicious(attacker)
|-- vulExists(fileSrv,CAN-0252,mountd,remote,privEsc )
|-- networkServiceInfo(fileSrv,mountd,rpc,100005,roo t)
|-- netAccess(attacker,fileSrv,rpc,100005)
Rule: multi-hop access

|-- execCode(attacker,webSrv,apache)
Rule: remote exploit of a server program

|-- malicious(attacker)
|-- vulExists(webSrv,CAN-0392,httpd,remote,prvEsc)
|-- networkServiceInfo(webSrv,httpd,tcp,80,apache)
|-- netAccess(attacker,webSrv,tcp,80)
Rule: direct network access

|-- located(attacker,internet)
|-- hacl(internet,webSrv,tcp,80)

|-- hacl(webSrv,fileSrv,rpc,100005)
|-- localFileProtection(fileSrv,root,write,/export)

|-- localFileProtection(workStn,root,read,/home)
|-- not allow(attacker,read,projectPlan)

Figure 7.6: A sample attack tree showing a multi-stage attack on the network shown
in figure 7.5. This trace provides a detailed chain of reasoning that explains why the
security policy of the network is violated. Alternatively,the trace shows the detailed
steps an adversary needs to perform to launch the attack. Thehierarchy in the trace
shows the dependencies between various steps of the attack.The trace is useful for the
administrator to decide where to break the attack chain to foil the attack.
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7.3 Attack graph or attack trace?

In figure 7.6, we represented the attack as an attack trace, where each step in the attack is

shown sequentially. In contrast, in figures 7.1 and 7.2 we show all the attacks possible as

a graph. This raises the question as to how one can efficientlyrepresent all the privilege

escalations possible in a network. What is the best way to efficiently represent all the

privilege escalations possible in a network? Should one present the results as a list of all

attack traces? Or should one present the results in a graph, where each edge represents

an attack step from one location state to another. We note that one can compute one

representation from the other. By interviewing the administrators who used our tool,

we found that representing the graph as an edge makes it easy for them to visualize the

attacks. More importantly, it efficiently represents the attacks.

Let us consider the escalations fromLimited Users toAuthenticated Users ,

Network Service to Authenticated Users , and then toLocal System as

shown in figure 7.1. These escalations have been representedby using four arcs: one each

from Limited Users toAuthenticated Users and fromNetwork Service

to Authenticated Users showing the group memberships and two from

Authenticated Users to Local System showing theSSDPanduPnP services.

If we were to show these escalations as attack traces, the representation would look like:

Limited User-->Authenticated User---(SSDP)--->Local Sy stem

NetworkService-->Authenticated User--(SSDP)-->Local S ystem

Limited User-->Authenticated User---(uPnP)--->Local Sy stem

NetworkService-->Authenticated User--(uPnP)-->Local S ystem
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If there is another escalation fromAuthenticated Users to Local System , then

the graph representation has only one extra arc, while the attack trace representation has

two extra traces.

If there a large number of escalations possible, then we get efficient representation

with attack graphs as against with attack traces. An attack trace is essentially a walk on

the attack graph. It is well known that in a dense graph, the number of unique walks is

super-exponential. Thus number of attack traces will be super exponential if there are

a large number of escalations possible. On the other hand, the complexity of the graph

is bounded by the number of atomic escalations possible. Ourtool computes the total

escalations possible and runs in quadratic time. Thus, the total number of escalations

possible is a quadratic function. Hence, representing the output as an attack graph has

quadratic complexity. Therefore, one should represent theoutput of our tool attack as an

attack graph as opposed a list of escalation traces.

7.4 Quantitative bug analysis

System administrators require the ability to measure the risk of current network posture.

A measurement of risk is valuable to determine the amount of risk reduction achieved

by counter measures. Network administrators have an interest in measuring the security

risk of running an operating system. When an administrator estimates the security risk,

he adopts multiple measures. One measure is the number of bugs that are found in the

operating system in a unit time. This measure is readily available by visiting vulnerability

databases maintained by organizations like CERT and SANS. When an administrator

reads a vulnerability advisory, he is interested in determining whether the bug can be

remotely exploited. This information is usually readily available in the bug advisory. A
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more important question on the administrator is the consequences of the bug—does it

result in an administrative account compromise?

Unfortunately, for a typical system administrator, it is very hard to determine whether

the bug results in an administrative account compromise. Todetermine if a bug can result

in an administrative account compromise, the administrator will have to determine the

program or library affected by the bug. This task is usually easy, because its mentioned in

the vulnerability advisory. The administrator will then have to determine all the programs

that are dependent on this library. If there is a bug in a file (library or program), then any

program using the file is vulnerable. Similarly, we define that a registry key is vulnerable

if the key contains the path to a vulnerable executable. The motivation is that some other

program uses this registry key to determine which program toload.

In today’s dynamic networks, the software environment evolves quickly and it is hard

to determine what programs use what programs or libraries orregistry keys. A bug results

in a system-wide compromise if the program gets used during the operating system boot

or while an administrator logs on to a host. We need to determine when a program gets

used. Unfortunately, it is difficult to determine the conditions under which a program gets

used. To determine when a program gets used, we adopted the conservative approach of

tracing to determine when a file or registry key gets used.

In Windows, there are two important resources—files and registry keys. We want to

monitor registry and file usage. One approach would be to modify the kernel by adding

a tracing driver. The advantage of this approach is that we donot modify much state

(registry keys, audit log settings, file and registry accesscontrol lists that control auditing)

on the system. In a prior system, we were modifying state on the target machine and

sometimes bugs in our code resulted in catastrophic failures, where sometimes I had to

reinstall the operating system. Thus, as opposed to modifying state on the host, we would
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prefer to introduce a tracing driver in the kernel. However,we were advised against it by

an experienced kernel hacker [31]. We were advised that project could easily consume

two full-time developers a year and one very easily would runinto bugs in the kernel. The

fact we do not have access to Windows source code will only make it difficult to pursue

this path.

Instead, we took the approach of using already existing registry and file tracing tools.

Thus, we decided on using usermode tracing tools to monitor registry and file usage. We

used theregmonutility to trace the registry usage. Regmon has the ability to monitor

registry accesses in the boot processes, before any user canlogin. We tried to use the

filemonutility to monitor the file system accesses, but unfortunately, filemon does not

have the ability to monitor the boot processes. It can be run only after a user has logged

on. We decided to use the Windows auditing facility to see what user runs what program.

We turned on the auditing of process execution—whenever any.exe program is executed,

the system writes an entry to the audit log mentioning the path of the program executed

and the privilege level of the process. This means that we cannot trace the usage of other

types of executable content in Windows like the file types:.cmd, .drv, .msc,

.mof, .ocx, .sys, .tsp, .bat, .dos, .cpl . Another problem we face

is that there is no easy way to turn on auditing of uses of all dynamically-linked library

(DLL) files. To audit DLL file accesses, we would have to locateall the DLL files in the

file system and turn on auditing on each of the files. Since thisinvolves changning the

state of the file system on a large number of files, we ignored this approach for now. If

our program modified the state on the target system, a bug in our program may leave the

operating system in an inconsistent state. We decided not totrace the DLL usage at run

time. Instead, we relied on static tools likedependswritten by Steve Miller to tell us what

file uses what DLL.
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From the output of theregmon, filemonand the system log, we determine who is using

the file or registry key. By determining the users of a vulnerable resource, we identify the

ultimate privilege level the adversary obtains by leveraging a vulnerability. We performed

this experiment on a Microsoft Windows XP machine that is notcompletely patched. We

got the following results:

Vulnerable file path Exploit level

C:\Program Files\Common Files\Microsoft Shared\TextConv\mswrd632.wpc User-level

C:\Program Files\Windows Media Player\wmplayer.exe User-level

C:\Program Files\Windows NT\Accessories\wordpad.exe User-level

C:\WINDOWS\system32\crypt32.dll System

C:\WINDOWS\system32\hlink.dll System

C:\WINDOWS\system32\inetcomm.dll System

C:\WINDOWS\System32\Ntoskrnl.exe System

C:\WINDOWS\system32\rpcrt4.dll System

C:\WINDOWS\system32\shell32.dll System

While the number data points is small, we conjecture that a majority of bugs in Win-

dows would result in a system-wide compromise.

7.5 Performance and Scalability

We measured the performance of our Linux scanner on a Red Hat Linux 9 host (kernel

version 2.4.20-8). The CPU is a 730 MHz Pentium III processorwith 128MB RAM.

We measured the performance of our Windows scanner on a Windows XP host. The

CPU is a 2.2GHz Pentium IV processor with 512MB RAM. The analysis engine runs on

a Windows PC with 2.8GHz Pentium 4 processor with 512MB RAM. We constructed
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examples with configurations similar to the network in section 7.2, but with different

numbers of web servers, file servers and workstations.

To analyze a network in the MulVAL reasoning engine, one needs to run the MulVAL

scanner on each host and transfer the results to the host running the analysis engine. The

scanners can execute in parallel on multiple machines. The analysis engine then operates

on the data collected from all hosts. Since the functioning of the scanner is the same on

various hosts, we measured the scanner running time on one host. We measured the run-

ning time for the analysis engine for real and synthetic benchmarks. The running times

(in seconds) are as:

MulVAL Linux scanner 236 s

MulVAL Windows scanner 386 s

§7.2.1 0.08

MulVAL 1 host 0.08

reasoning 200 hosts 0.22

engine 400 hosts 0.75

1000 hosts 3.85

2000 hosts 15.8

MulVAL scanneris the time to run the scanner on one (typically configured) Linux host;

in principle, the scanner can run on all hosts in parallel. The benchmark§7.2.1 is the

real-world 3-host network described in section 7.2.1. Eachbenchmark labeled “n hosts”

consists ofn similar Linux hosts, (approximately one third web servers,one-third file

servers, and one-third workstations), with host access rules (i.e., firewalls) similar to

§7.2.1. Our reasoning engine can handle networks with thousands of hosts in less than a

minute.
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Execution time for hypothetical analysis
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Figure 7.7: Hypothetical analysis. For a network of 1000 hosts running 20 kinds of
installed software, analyzing security assuming the existence of any 1 unreported vulner-
ability takes 12 seconds.

A typical network might have a dozen kinds of hosts: many web servers, many file

servers, many compute servers, many user machines. Depending on network topology

and installed software (e.g., are all the web servers in the same place with respect to

firewalls, and are they all running the same software?) it maybe possible that each group

of hosts can be treated as one host for vulnerability analysis, so thatn = 12 rather than

n = 12, 000. It would be useful to formally characterize the conditionsunder which such

grouping is sound.

To test the speed of our hypothetical analysis discussed in section 5.5, we constructed

synthesized networks with different numbers of hosts and different numbers of programs.

Each program runs on multiple machines. Since the hypothetical analysis goes through all

combination of programs to inject bugs, the running time is dependent on both the number

of programs and the number of hypothetical bugs. Figure 7.7 shows the performance with

regard to different number of hosts, number of programs and number of injected bugs.

The running time increases with the number of hypothetical bugs, because the analysis
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engine will need to go through
(

n

k

)

combinations of programs, wheren is the number of

different kinds of programs andk is the number of injected bugs.k = 0 is the case where

no hypothetical bug is injected. The performance degraded significantly with the increase

of k. But it still only takes 273 seconds fork = 2 on a network with1000 hosts and20

different kinds of programs. Since hypothetical analysis can be performed offline before

the existence of a bug is known, it is not important to have fast real-time response time.

The degraded performance is acceptable. Figure 7.7 shows our system can perform this

analysis in a reasonable time frame for a big network.

The input size (measured by the number of lines) to the MulVALreasoning engine is:

Data Source5 hosts=200 =2000

Data Binding sys admin 26 3004 lines

Policy sys admin 3 3

Principal Binding sys admin 10 10

HACL Smart Firewall 342 3342

Scanner Output OVAL/ICAT 1222 12022

Coverage Our system can reason about privilege escalation vulnerabilities and denial

of service vulnerabilities. We cannot currently reason about confidentiality loss or in-

tegrity loss vulnerabilities. Overall, we could reason about 84% of the Red Hat Linux

bugs reported in OVAL. The detailed statistics are (as of January 31, 2005):

OVAL definitions for Red Hat 202

Those with PrivEsc or only DoS 169

Coverage 84%

5The indicated “Source” shows what person or tool would provide the information in a real installation;
for this benchmark measurement, we constructed the data synthetically.
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Size of our code base To implement our framework on Red Hat platform, we adapted

the OVAL scanner and wrote the interaction rules. The size ofour code base is:

Module Original New

OVAL scanner 13484 668 lines

Interaction rules 393

The modularity and simplicity of our design allowed us to effectively leverage the existing

tools and databases by writing about a thousand lines of code. We note that the small size

and declarative style of our interaction rules makes them easy to understand and debug.

The interaction rules model Unix-style security semantics. The rules are independent of

the vulnerability definitions.

7.5.1 Scanning a distributed network

We measured the performance of running the MulVAL scanner inparallel on multiple

hosts. We used PlanetLab, a worldwide testbed of over 500 Linux hosts connected via

the Internet [36]. We selected 47 hosts in such a way as to get geographical diversity

(U.S., Canada, Switzerland, Germany, Spain, Israel, India, Hong Kong, Korea, Japan).

We were able to log into 39 of these hosts; of these, we successfully installed the scanner

on 33 hosts.6 We ran a script that, in parallel on 33 hosts, opened an SSH session and ran

the MulVAL scanner. We assume that many hosts were carrying anormal workload, as

we made no attempt to reserve them for this use. The first host responded with data in

1.18 minutes; the first 25 hosts responded within 10 minutes;the first 29 hosts responded

within 15 minutes; at this point we terminated the experiment.

6Normally one needs root privileges to install the scanner; PlanetLab gives its users fake “root” privi-
leges in a chroot environment; for production use of MulVAL,root privileges are advisable.
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For a local area network, we expect fast and uniform responsetime. But for dis-

tributed networks, we recommend that scanning be done asynchronously. Each machine,

either when its configuration is known to have changed or periodically, should scan and

report configuration information. Then, whenever newly scanned data arrives or when-

ever new vulnerability data is obtained from OVAL or ICAT, the reasoning engine can be

run within seconds.
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Chapter 8

Conclusion

Despite the fact that business processes are critically dependent on smooth functioning

of networks, today’s networks are surprisingly fragile. Penetration testers, security ex-

perts and expert system administrators have been using ad hoc methods to analyze the

security of a single host and, more generally, a large network. This thesis establishes

that configuration errors are an important problem, and discusses techniques to formal-

ize network security analysis. The thesis presents techniques to formally describe and

reason about the (access control) semantics of operating systems. This thesis presents

techniques to perform automated security analysis of configuration and program vulner-

abilities of a large network. These techniques have found a large number of previously

unknown serious bugs. In section 8.1, we describe reasons why people make mistakes

in configuration. In section 8.2, we describe the contributions of this thesis. We discuss

possible steps forward in section 8.3.
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8.1 Reasons for configuration problems

We have shown that configuration bugs often cause security vulnerabilities. There are

many structural causes for the mistakes that people make in software configuration. A

large enterprise network is typically managed by multiple system administrators, wherein

each administrator is responsible for specific functionality and where there is a limited

overlap between the operational domains of different administrators. Interactions be-

tween administrators may be limited by various barriers such as different business pro-

cesses, different administrative domains, different operating systems and technologies.

The result is that each administrator configures his system independently. The global se-

curity behavior may in fact be dependent on the configurations of multiple hosts, as well

as the dependencies between these hosts.

Operation of a network depends on the interactions of configurations across multiple

boundaries, but network operators typically do not have access to configurations across

boundaries. There is no way to guarantee that policies configured in his network will not

conflict with rest of the network. Worse, the inconsistencies may result in security holes.

It is hard to debug these configuration problems.

Professional system administrators and software developers are guided in their tasks

by the behavior of software system as documented by the vendor. However, as we demon-

strated in this thesis, often the vendors’ documentation isobscure and sometimes even

wrong. Software developers often don’t understand operating-system security semantics

and often can’t predict how these will interact with customers’ security configurations.

To ensure that their programs always work, they tend to ask for too many privileges [8].

System administrators are forced to permit too much access to users because applica-
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tions do not work otherwise. With this leakage of privileges, it is inevitable that there are

security bugs.

Until now, there have been no tools or techniques developed to help administrators

reason about the configuration of the networkas a whole. It is very hard for an adminis-

trator, security expert, or penetration tester to determine the global effects of a potential

configuration change. It is not surprising that configuration issues present the adversary

with a very useful avenue to attack enterprise networks.

8.2 Contributions

This thesis explains new techniques to reason about the correctness of configurations.

These techniques were incorporated into an automated tool to find serious weaknesses in

configuration of the Windows operating system and programs running on the operating

system. The tool found severalnewattacks against a standard Windows host. Thus, the

dissertation work establishes that configuration vulnerabilities are an important avenue of

attacks against common software systems.

This thesis demonstrates that end-to-end, automatic, efficient network security anal-

ysis is feasible for large real networks. We developed new techniques to perform multi-

stage attacks on a network where an adversary leverages multiple weaknesses to incre-

mentally increase the potency of attack. Our work identifiesthat the modularity of infor-

mation flow between the security expert, bug expert and system administrator is crucial

for a security analysis tool to be useful in practice. Our work establishes that the se-

mantics of common operating systems, network environmentsand common failures for

software can be modeled declaratively. Declarative specification allows us clean specifi-

cation, yet efficient evaluation. In fact, we demonstrated that real network configurations
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can be analyzed in polynomial time. Previous work had significant scalability problems

making the systems unusable for more than a handful of hosts.The specification of

semantics in previous work was obscure. By adopting a simplerepresentation for specifi-

cation, we showed how one can design a system whose correctness can be easily verified.

Previous work could not conduct analysis over a heterogeneous network with multiple

operating systems. The ability to conduct analysis over a heterogeneous network—as

described in this thesis—is a significant advancement. Formal specification for typical

operating systems is an important contribution of this thesis.

Quantitative analysis to determine the risk of current network posture is increasingly

in demand. Formal specification is the first step in quantitatively analyzing the risk of

current network posture. Using a formal specification of theoperating system, this thesis

(in section 7.4) presented techniques that use historical data to quantify the probability

that a security bug results in a system-wide compromise. In the future, these techniques

could be improved to determine the risk posture of theentirenetwork.

A concern that an administrator worries about is how much unknown threats the net-

work can withstand. It is difficult to forsee a situation in the near future where no more

software holes are found in commonly used software. It is inevitable that more bugs

will be found in software in the future; however the administrator cannot predict which

software will have what bug in the future and when. In addition, there may be bugs that

exist in a piece of software that are not reported publicly; such bugs are called zero-day

bugs. Or a user account may be compromised with neither the user or administrator be-

ing aware of it. A concern administrators use in configuring hosts is how vulnerable the

network is to unknown threats. That would enable an administrator to plan for potential

emergencies. In this thesis, we describe techniques to rigorously understand what are the

consequences of potential emergencies that can emerge in the future. Previously, there
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is no formal analysis of potential attack scenarios. In fact, the techniques we describe in

this thesis are efficient (see section 7.5 for further details).

8.3 Moving forward from lessons learned

We have a system that already does enterprise-scale analysis of networks of Unix and

Windows hosts, and detailed configuration analysis of individual Windows hosts. Based

on our experience in deploying these prototypes, we identified certain short-term research

that needs to be done and and longer-term research problems that need to be investigated.

Response strategies. We deployed MulVAL on a professionally managed network and

found several serious local privilege escalation vulnerabilities. In some cases, the admin-

istrators and developers were able to identify that changing the security descriptors of

the vulnerable objects was sufficient to solve the security problem. For example, as we

discussed in chapter 7, many security problems resulted because members ofEveryone

group were assigned the permission to “change configuration”

(SERVICE CHANGECONFIG) for certain services, the permission to write to a file or

a registry key. In these cases, it was straightforward to program our tool to change the

security descriptor to disallow untrusted users from modifying the resource or its prop-

erties. In general, administrators found it difficult to identify an appropriate remediation

strategy. In a more complex environment, it is feasible thatthe administrator will have to

choose between various alternatives such as disabling a service, disabling a user, patch-

ing a program, and adding a firewall rule. It is hard for the administrator to identify the

best remedy. We plan on extending our framework to automatically identify least-cost

remedies.
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Quantitative risk estimation. The community has been working on quantifying vari-

ous aspects affecting security such as user’s skill level (is this user likely to open email

attachments?), the perceived attacker’s skill level, the importance of the program affected

by the bug [26]. However, the risk estimations do not have a formal model for the soft-

ware environment and the adversarial behavior. As a result the estimations tend to be ad

hoc and error prone. For example, when a bug is reported in a library file, the vulnerabil-

ity scoring systems ignore the surrounding software context like what programs are using

this library and the privilege level of the programs using this library. We have done pre-

liminary work on formal vulnerability risk analysis yielding results like60% of security

bugs found on the Windows platform result in system-wide compromise. We plan on us-

ing the MulVAL framework to do rigorous quantitative risk estimation and vulnerability

scoring system

Simple models for complex systems In this thesis work, we demonstrated that simple

models can go a long way to reason about complex problems likesecurity. We hypothe-

size that simple models can be used to solve other problems faced by system administra-

tors and developers. For example, sometimes a system administrator installs a program,

only to discover that the program is incompatible with the existing software . He cannot

easily undo the effects of an aborted installation. An efficient framework to describe the

program installation dependencies would enable one to testif a given operation will result

in an inconsistent state before actually installing the software.

In the course of implementing this project, I encountered various instances where the

compiler/linker complained about missing libraries. Sometimes, because of static linking,

some libraries that are common to different components (such as standard input/output

routines) are included in different components, resultingin conflicts during linking. A

132



framework to describe and reason about the program and library dependencies would

make it easier for developers to avoid these errors.

8.4 Conclusion

This dissertation has established that (1) configuration errors are an important source

of attacks against common software systems, (2) it is possible to construct tools to au-

tomatically analyze configurations, (3) efficient, end-to-end, automatic network security

analysis is feasible for large networks, (4) it is possible for the administrator to rigorously

plan for potential attack paths using unknown exploits, (5)it is possible to quantify the

risk profile associated with a bug. The thesis has established that declarative specification

of component behavior is the key to building an efficient and practical framework to per-

form network security analysis. The techniques developed in this dissertation can help

resolve the tension between flexibility and complexity thatexists in managing any large

network.
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