A FORMAL APPROACHTO PRACTICAL

NETWORK SECURITY MANAGEMENT

SUDHAKAR GOVINDAVAJHALA

A DISSERTATION
PRESENTED TO THEFACULTY
OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OFPHILOSOPHY

RECOMMENDED FORACCEPTANCE
BY THE DEPARTMENT OF

COMPUTER SCIENCE

NOVEMBER 2006

(© Copyright by Sudhakar Govindavajhala, 2006. All rightsereed. Patent pending.

Abstract

When a system administrator configures a network so it isreedie understands very
well the users, data, and most importantly the intent—wleaishrying to do. However,
he has a limited understanding of the mechanisms by whichpoaents interact and
the details of each component. He could easily misconfigueenetwork so a hacker
could steal confidential data. In addition to this complgxatout one hundred new se-
curity vulnerabilities are found each week, which makesé@remore difficult to manage
the security of a network installation—because of the largmber of program vulner-
abilities and challenging time constraints. Even prof@sai administrators find this a
difficult (impossible) task. How does one enable the systdmiaistrator to securely
configure the network with a limited understanding of its gaments, program bugs and
their interactions?

The solution is a security analysis framework that moda&siinformation flow be-
tween the system administrator, security expert and theexpgrt. The administrator
specifies what he is trying to do, the security expert speotitenponent behavior, the bug
expert specifies known bugs. We developed a rule based frarkewMultihost, Multi-
stage, Vulnerability Analysis (MulVAL)—to perform end-t&nd, automatic analysis of
multi-host, multi-stage attacks on a large network whergt$iaun on different operating
systems. The MulVAL framework has been demonstrated to bauhag flexible, scal-
able and efficient. We used the framework to find serious cardigon vulnerabilities in

software from several major vendors for the Windows XP ol

Acknowledgments

This dissertation represents a significant milestone in ifiey 11 would not have
reached this point without the support, guidance, and aagaument of many people
and organizations along the way. | would like to acknowleddew of them here.

| owe a lot to the Princeton University community; thank yowveryone at Princeton
for providing me with the opportunity, encouragement, arativating environment.

Thanks to my advisor Andrew, for his guidance through out tay st Princeton. He
has been very patient, always available, encouraging,respiring. | admire Andrew for
his clarity of thought, opinion on various things in life sightful thoughts at crisis times
and his ability to come up with incredible ideas. | would likethank Ed Felten for the
numerous insightful discussions during the last five yeagpgcially in handling critical
situations. | would like to thank Siva Raj Rajagopalan far énthusiasm and insightful
discussions. A good part of the work in this thesis is ingpivg his work. | would like
to thank Jennifer Rexford for her great enthusiasm, esfheamhelping me learn about
related work. 1 would like to thank Brian Kernighan for theisive feedback on an earlier
draft of the thesis. (Incidentally, the first programmingtb®ok | read was authored by
Brian.) | would like to thank David Walker on insightful ide@n presentation of my
ideas.

| would like to thank Larry Peterson, the current Chair of thepartment, for en-
thusiastically helping me resolve various administratss&ies and identifying funding
sources towards the end of the program. Thanks to Melissasdawthe graduate co-
ordinator, for helping me negotiate the academic requirgmand keeping me on track.
Thanks to the technical “csstaff” staff—Jim Roberts, S&aitlin, Joe Crouthamel, Steve
Elgersma, Chris Tengi, Chris Miller, Paul Lawson, Brian dsnand Chris Sanchez for

keeping the systems running and for being patient with méewtiombarded them with

iv

lots of support requests. | appreciate the time Joe Crouthand Chris Miller spent on
teaching me aspects of system and network administratiwauld like to thank Anthony
Scaturro, Leila Shahbender, and Kevin Graham at Office a@irin&tion Technology for
giving me valuable feedback about the vulnerability analysol. | would like to thank
Donna O’Leary, Ginny Hogan, Michele Brown and Jennifer Visddr helping me with
administrative issues.

| would like to thank Prasad Rao for valuable discussionsgingithe XSB Prolog
system. Thanks to the folks on various mailing lists suchrasctuser (Linux discussion
list in the department), unix-list (Princeton Unix Grouphd csgrad (Graduate Students
in the department list). The members of these discussistshiave been very patient
with some of my less thoughtful questions and have been abluesource to get some
tough technical questions answered.

| would like to thank the persons | shared the Security Lal8A)Iand other offices for
providing me with a pleasant place to work and accommodaiitugitions like my over-
flowing desk. The list includes: David Penry, Limin Jia, WuaQg, Lujo Bauer, Spyros
Triantafyllis, Ram Rangan, Jason Blome, Manish Vachhara)deil Vachharajani, Ja-
son Lawrence, Yilei Shao, Seshadri Comandur, Brent Waders, Jordan Boyd-Graber.
Thanks to Alex Halderman for numerous discussions and eagement. | would like to
thank Vasanth Bala for encouragement when things were athy reorking out. | would
like to thank David August and his students for enthusia#ifitbelping me get acclima-
tised to Princeton after my arrival in USA. David even drove (and Ram Rangan) to
Udipi restaurant in my first week to make me feel at home.

My work has been supported by ARDA grant NBCHC030106, DARR#gF30602-
99-1-0519, and by New Jersey Commission on Science and dgynand Princeton

University. Thank you for making this work possible.

| would like to thank my parents, brother and my wife for thepgart they have
always given me in whatever | do. | owe a thank you to a largelremof individuals and
organizations that have helped me. Here are some names @rticufar order: Varugis
Kurien, Adrian Oney, Brandon Baker, Scott Field, Wayne Bpy&aolan Zhang, John

Lambert, Miles McQueen, Michael Steiner, Josyula Rao, RngrRang, Daniel Dantas,

Xinming Ou, and Matt Thomlinson.

Vi

To my wife, my brother and my parents for all the support

Vil

Contents

Abstract

11
1.2

1.3
1.4
15

2.1
2.2
2.3
2.4

Introduction

What is security management?

1.2.3 Lack of quantitative risk measurement
What is the solution?
Contributions

Thesis organization

Background and Related Work
Configuration Management
Vulnerability management
Roles of security expertand bugexpert.
Program vulnerability recognition

2.4.1 The OVAL language and scanner
2.4.2 \Vulnerabilityeffect

viii

........ 1

25 Related Work 24

2.6 Summary ... e e 28

Introduction to Windows 29

3.1 WindowsObjects 30
3.1.1 Reqgistry 30
3.1.2 SEerviCes 32

3.2 Windows Security Overviewo e e 33
3.2.1 Security Identifiers Lo 34
3.2.2 Accountprivileges 35
3.23 Token 38
3.2.4 SecurityDescriptor 39
3.25 ACEaccessmaskformat 40
3.2.6 Determiningaccess 42

3.3 Privilegeescalation 44

34 Summary ... e e e 45

Formal modeling of Windows 47

4.1 Datalogoverview e 47

4.2 Modeling the Windows Access Control algorithm 49

4.2.1 Objectprotection 50
422 Processcredentials L. 53
4.2.3 Modelingaccesscheck L. 54
4.3 Modeling privilege escalation. 57
4.4 DISCUSSION o vttt e e 60

5 Analyzing multi-stage attacks 62

5.1 The MulVAL interactionrules 64
5.1.1 Vulnerabilityrules oL 64
5.1.2 Exploitmodelingrules 65
5.1.3 Fileaccess 69
5.1.4 Trojan horse programs 71
5.1.5 Networked FileSystems 73

5.2 Modelingthenetwork 74

5.3 Policy specification 57
5.3.1 Policy specification 76
5.3.2 Bindinginformation 76

5.4 AnalysisAlgorithm 77

5.5 Hypotheticalanalysis 78

5.6 DISCUSSION 80

6 Wulnerability scanning 82

6.1 Evolution of vulnerability scanning technology 82

6.2 Open Vulnerability AssessmentlLanguage 85
6.2.1 Linuxtests 86
6.2.2 Windowstests 89

6.3 Example of formal vulnerability specification 91

6.4 Nextgenerationscanners 92
6.4.1 Drawbacks of current vulnerability scanning tecoges 94
6.4.2 Nextgenerationscanner, 95

7 Practical experience 97

7.1 Single host configuration vulnerabilities 97
7.1.1 Service misconfigurations 98
7.1.2 Registry misconfigurations 031
7.1.3 File misconfigurations 104
7.1.4 Summaryoffindings, 106
7.1.5 Misconfigurationsin System Restore. 106

7.2 Networksecurityanalysis 109
7.2.1 Asmallreal-worldexample 109
7.2.2 Anexample multistageattack 411

7.3 Attack graph or attacktrace? 117

7.4 Quantitative buganalysis 118

7.5 Performance and Scalability 121
7.5.1 Scanning adistributednetwork L. 125

8 Conclusion 127

8.1 Reasons for configuration problems 128

8.2 Contributions 129

8.3 Moving forward from lessonslearned 131

8.4 Conclusion 133

Xi

Xli

Chapter 1

Introduction

1.1 Whatis security management?

When a system administrator configures a network to keepcitree he or she must
consider the users, data, services, servers and most mmplgrthepolicy—which data
should be accessible to which principals. But even the mgetreenced system adminis-
trator finds it daunting to keep track of the details of evasgnponent, all the mechanisms
by which components interact and what data should be atdedsi which principals.
He could easily misconfigure the network so a hacker coulal stnfidential data. How
does one enable a system administrator to securely configeneetwork with a limited
understanding of its components and their interactions?

About one hundred new security vulnerabilities are foundvpeek. It becomes even
more difficult to manage the security of a network instatlatin the presence of a large
number of security weaknesses in software under challgrgime constraints. It is dif-
ficult to answer questions likés this bug relevant on my network? What is the best

work-around?In a large network, the diversity of software is high. Wheneavrvulner-

ability is reported, it is quite likely that the vulneraltyliadvisory is pertinent to some
installed software on the network. Thus, with a high liketdd the vulnerability adver-
sary is relevant to his network. Any security bug on the nekveould have network-level
consequences. A diligent system administrator will havpadorm a security analysis
of the whole network each time a bug is reported—a cumbersordesrror-prone task.
The costs of having a security vulnerability and taking @csi to close it are high.
Using a tool to help in these tasks will reduce errors, sagtsdoy eliminating redundant
actions, and streamline actions by prioritizing betweeitiple bugs and actions. It also
gives the administrator a chance to plan ahead (*what if | &ngtoblem with the web

server?”). It also provides an opportunity to do rigorowsk restimation.

| define Security Managemeras the processes to enable the system administrator

to configure the network securely with a limited knowledgehs® components and the
program vulnerabilities in these components. One can usedssoftware engineering
practices to guarantee that an individual program is seeyet be vulnerable to an attack
if the file system permissions allow anyone to overwrite tkecaitable or if an untrusted
user is allowed to be a part of the trusted groups. In thisishege study the problem
of ensuring that programs are configured correctly and tineyt o not wrongly use the
operating system security primitives—even in the presafgarogram vulnerabilities.

Most of the security management issues are currently pagdrmanually in an ad hoc
manner. In this thesis, we describe a framework to formatizmagement to introduce

measurement, streamline the remediation process, andeedistakes and costs.

1.2 Why is security management hard?

The security of a network depends on two orthogonal elemémisvidual program se-
curity and host and network configuration. Methods to imprimdividual program secu-
rity in improve individual programs security include usisgfe programming languages
where possible, reducing trusted computing bases, usingdsaryptographic primitives,
and ensuring length-checked input fields. Tremendous aggamave been made in soft-
ware engineering—the art and science of writing securenarag. One can design and
implement a very secure program—>but still be vulnerablen@tack if the file system
permissions allow an untrusted user to overwrite the seprogram (or a kernel mode
component of the operating system). The untrusted usemsamgplace the secure pro-
gram with arbitrary code of his choice. There are host wid#igoiration elements—Iike
group memberships, firewall rules, networked file systenfigarations—which can ef-
fect the security of all programs.

We classify security vulnerabilities into two classegregram vulnerabilitiesand
configuration vulnerabilities Program vulnerabilities are security problems caused in
a single program by poor software engineering. Configunatidnerabilities are security
holes caused by configuration issues such as firewall rulessyfstem permissions and

group assignment.

1.2.1 Configuration vulnerabilities

At installation time, programs modify configuration elerteethat affect the security of
all users and programs of the host. In particular, an irediath program might open an
attack path through a previously installed program. Fongxa, we have noticed that in

Windows XP, many kernel mode driver programs set file pradadhat lets any member

of Power Users group overwrite the kernel-mode executable. If the inatadh of

a program adds an untrusted ugex to thePower Users group, the host becomes
prone to an attack by the untrusted uger through the already installed kernel mode
drivers.

Memberships of groups have to be carefully controlled. Addin untrusted user to a
trusted group can result in a security breach. HoweverdifiEult to determine what the
trusted groups on a host are. For example, each Windows Xtthaesan built-in group
Power Configuration Operators . A system administrator might be interested
in determining the security consequences of adding a ugardg@roup. | could not find
documentation for the security behavior of this group. ltNdobe very difficult for an
administrator to determine if membership of this group isieglent being a member of
the Administrators group. To answer this question, one will have to look at each
resource thaPower Configuration Operators has access to and see if it is
used by a privileged part of the operating system. Since tinex@r of resources is large,
answering this question is difficult.

As we will demonstrate later in the thesis, managing thergyaf a single host itself
is hard—we have found serious holes in professionally madagachines. On a large
network—where the number of configuration elements and th&ractions between
various elements is large—managing the security is evetlehaBystem administrators
are forced tsecurelyconfigure hosts running different operating systems to-operate.
For example, the administrators of the Princeton Univensgtwork will have to ensure
that users can access their files from Windows, Linux andriSdt@sts. These operating
systems have different semantics and one needs to be cerefusure that the differing
semantics are mapped properly. There is no framework t@reabout the correctness

configuration issues and we address that problem in thissthes

Vendor and software | Description Common Name | Resources
Name

Adobe Multiple vulnerabilities| Adobe Multiple | Security Fo-
Acrobat, Create Suite, have been reported inProduct Privilege cus, ID: 16451,
lllustrator, InDesign,| multiple Adobe prod- Elevation or| January 31, 2006

Pagemaker, Pagemakeucts that could let local Arbitrary Code
Plus Photoshop, Pre-malicious users obtain Execution
miere, and Version Cugelevated privileges or CVE-2006-0525
various versions execute arbitrary code.
No workaround or
patch available at timg
of publishing. There
IS no exploit code
required.

U

Figure 1.1. Sample CERT advisory, from US CERT bulletin SB33. | found these
vulnerabilities using the tool set described in this the€§i€RT’s advisory is based on
these findings.

1.2.2 Program vulnerabilities

In addition to the configuration issues discussed abovearisgattacks are made possible
because of a large number of security holes in individuaymms. The United States
Computer Emergency Readiness Team (US-CERT) releaseskéywempilation of new
program vulnerabilities, exploits, trends, and malicicosle that have been recently re-
ported. Occasionally, they also update information abtready known computer secu-
rity risks—where they incorporate a new understanding efabmputer security risks.
A sample entry in the weekly bulletin is shown in figure 1.1. ypital weekly bul-

letin contains around 92 advisories regarding various isggdireats, as shown in table:

ID Release date | Number of items
SB06-026| January 26, 2006 65
SB06-019| January 19, 2006 81
SB06-012| January 12, 2006 108
SB06-005| January 5, 2006 115

Average 92

When an administrator discovers a security vulnerabifithis network, he is forced
to take remediation measures quickly. Exploit codes forsbiogcome available shortly
after a bug advisory has been published. The exploit is @tailable before the software
vendor releases a patch. For example, a vulnerability waisdan the WMF (Windows
Media Format) handling engine in December 2005; the exptale was widely available
two weeks before a patch was available [41].

When a new vulnerability advisory is reported, it is quitkely that the advisory
could affect the security of the network. The system adrriaigr needs to identify if
the bug is relevant to his network. He needs to identify themrees that are using the
affected software and identify which individual instaitats are affected. He needs to
determine if an adversary could exploit the bug. An advgrsannot exploit the bug if
the affected module is disabled or is hidden behind a fireWfdlhe adversary can exploit
a bug, the administrator will have to determine the netwexlel consequences. Then,
the administrator needs to determine what is the best rexhedimeasure. It is very
common that a vulnerability advisory explains the detaflsecurity vulnerabilities in
multiple products. Given the large number of vulneral@btreported, it is very common
that the administrator has multiple problems to attendabhle cannot identify which are

more important problems. There is no mechanism to pri@itie remediation actions.

To summarize, program vulnerability management is harchbge of complex se-
mantics for components, a large number of bug advisoried lianted response time.

The procedures administrators adopt are ad hoc, cumberaonderror-prone.

1.2.3 Lack of quantitative risk measurement

The national critical infrastructure is at risk from mabais attacks through the public
network because of reliance on networked control systemg®® management of the
infrastructure. For example, the national power grid is raed by highly distributed
Supervisory Control and Data Acquisition (SCADA) systeinattattackers potentially
may exploit to cause widespread power outages by remoteotahtough the Internet
from anywhere in the world. To combat this potential threéhe operators of control
systems need the ability to more easily measure the cunsdnaind the amount of risk
reduction achieved by countermeasures. Similarly, thetalbd quantify the risk in an
enterprise network is valuable.

The community has been working on quantifying various atspaffecting security
like user’s skill level (s this user likely to open email attachmerjisthe perceived at-
tacker’s skill level, and the importance of the program etiée by the bug. However, the
risk estimations do not have a formal model for the softwamarenment (in particular
the operating system behavior) and the adversarial beha¥goa result the estimations
tend to be ad hoc and error prone. For example, when a bug astegepin a library
file, the vulnerability scoring systems ignore the surrangdoftware context like what
programs are using this library, the privilege level of thegrams using this library,
and dependencies between various libraries. In an enderpgtwork too, it valuable to
guantify the risk reduction achieved by actions of the adstiator. The mechanisms to

guantify the risk in current network posture are little ureteod.

7

1.3 What is the solution?

As we discussed in the previous section, configuration saue orthogonal to software
engineering issues. Professional system administratatdavelopers have a difficult
time in understanding the security semantics of the opegatystem. Even in the absence
of program vulnerabilities, we found that professionallgmaged networks have serious
configuration holes. Program vulnerabilities make it evander for the administrator
to manage the security of a network. When a new vulnerabsityeported, it is hard
to determine if it is relevant on a network. It is even hardeunderstand the network-
level consequences of a bug. The adversary could adopt ack atath using multiple
vulnerabilities and misconfigurations in multiple soft@at local (response) action by
the system administrator like adding or deleting a firewaléy or adding or deleting a
user from a group can have global effects. It is a cumbersamesaor prone task to
reason about the transitive effects of multiple vulneitibg and misconfigurations.

The solution we propose to these problems is an end-to-eathswy and analysis
framework that assists the administrator. This solutiobased on the insight that even
though the individual components of a network are complaghecomponent has a very
well defined deterministic behavior and a limited number afchanisms by which it
interacts with other components. By incorporating knowkeaf different components
such as operating system, users and groups, firewall ridasdtnetworked file systems,
the tool could help the administrator in secure configuratitn addition to configura-
tion bugs, there could be program vulnerabilities—bugeriml to the software. We use
off-the-shelf vulnerability scanners to recognize thestemce of already known bugs.
We designed and built a configuration scanner to obtain safeemation not available

from off-the-shelf products. Our framework computes tlamsitive closure of the effects

of configuration and program vulnerabilities over the whoétwork to see which prin-
cipal can access what data. The framework flags accessediovaed by the systems
administrator as attack paths.

Although many programs are installed on any machine, we casedurity analysis
and find a large number of previously unknown configuratiofesidy asking simple
guestions likavho is using a programandwho is allowed to modify a program and its
configuration?who are the users of the machin@hdwhat each user is allowed to do on
each host?As we will show later in the thesis, we fouméw configuration vulnerabili-
ties in theMacromedia Dreamweav@rogram from Macromedia Inc. arf®@mple Service
Discovery ProtocoandUniversal Plug and Playprograms from Microsoft Corporation
by using this black-box approach.

We do not have to understand the programs’ details to do tiakysis. In the case of
vulnerabilities, just information like whether a bug carremotely exploited and whether
it is a privilege-escalation bug or denial-of-service bsgufficient for our analysis. De-
spite the large number of program vulnerabilities, the @feof the vulnerabilities can
be classified into a small number of categories. The effetts remotely exploitable
privilege-escalation vulnerability in &imple Mail Transfer Protocaderver is the same
as the one in thélyperText Transfer Protocaerver—in both the cases the adversary
gains control of the user account of the programs. Simildnky security effects of bugs
in at andcron daemons in Unix are similar—both give you access to the agtnative
account of the machine. A large amount of analysis is feasipljust taking a black-box
approach to the programs.

We can analyze the network by just analyzing the configunatid his black-box ap-
proach to perform a complete network security analysis g déferent from traditional

program vulnerability analysis. In program vulnerabili#galysis, static/dynamic analy-

sis of the binary or source of the program has been proved ¢fféetive. In our analysis,
we do not analyze individual program binary or source code oply information such
as, who is allowed to modify the program executable, who isgig, what CERT vul-

nerability advisories apply to it and what is the formal seiies of those advisories.

1.4 Contributions

A central contribution of this thesis is the development@iiitechniques to reason about
the correctness of configurations. This thesis developslalsie logic-programming ap-
proach to automatically identify how the adversary canidage multiple vulnerabilities
to launch a multi-stage attack on a network. The contrimgiof this thesis are as fol-

lows:

A formal model of the behavior of the Windows operating sgs{ehapter 4).

¢ A formal model of the behavior of the Unix operating systefma(ater 5).

e A framework to integrate the models of various components imetwork such as
operating systems, firewalls, networked file systems (@&rdyt This contribution
is joint work with Xinming Ou and Andrew Appel and these rdésuhave been

published [35, 34].

e A framework to automatically recognize how an adversaryleanch mutli-stage
attacks exploiting weak configuration and program vuln#iteds (chapters 5 and

4).
o A first step towards quantitative risk estimation (chaptgr 7

e A first step towards analysis of potential attack scenacbater 5).

10

e A design for improved vulnerability scanners that sepasanning and analysis
phases, and significantly reduces the trusted computirgdfagurrent vulnerabil-

ity scanners (chapter 6).

e A practical demonstration of our approach on the Windowsaiogg system shows
that software from several major vendors has serious camfiigun problems (chap-

ter 7).

A key contribution of our work is the adoption of Datalog as thodeling language to
integrate information from various sources. We showeddleatarative specification and
evaluation can overcome the scalability problems with jones approaches. Declarative
specification permits the model to be clean, thus makingsteedo debug our model.
It allows us to cleanly separate specification from impletagon details. This thesis
demonstrated how one can integrate information from thieviehg sources to perform

an end-to-end network security analysis:

e Model of behavior of various components of the network likevialls, networked

file systems and operating systems.
e Formal specification of software vulnerabilities.
e Formal specification of the effects of exploiting a softwandnerability.
e Configuration information from a host.
e Output of readily available vulnerability scanners.
e Output of network infrastructure management tools.

e Formal security policy, specified by the administrator.

11

Implementation of the techniques presented in this thesldgd a tool that admin-
istrators and developers could use to verify the softwardigaration of a single host
(chapters 4 and 7). In fact, we used the tool to find seriousarabilities in software
from major commercial vendors. The thesis also gives ust@ienderstanding of cur-

rent scanning technologies and proposes solutions to s<ireir shortcomings.

1.5 Thesis organization

In chapter 2, | discuss how system administrators spendetndous efforts in configu-
ration and vulnerability management. | introduce the nowd a security experaind a
bug expert In chapter 3, | give an exhaustive overview of the Windowsisiéy model.

| show how privilege escalation attacks are possible bexatipoor application of the
security model. In chapter 4, | discuss how one can formadlscdbe the Windows se-
curity model. | discuss how it is possible to automaticaflgagnize privilege-escalation
attacks in a Windows host made possible by poor configuratiochapter 5, | show how
to extend the Windows model to reason about multi-host, irstdge attacks involving
hosts running Windows and Unix, networked filesystems, amavélls. | discuss how
the framework can be used to plan for potential attack seesné&vo. In chapter 6, | dis-
cuss the advances made in building vulnerability scanmetpeopose a design for better
scanner to address the shortcomings of the current scarinerkapter 7, | discuss how
we used my tool to find privilege-escalation attacks on alsigindows host. | then
discuss how my tool has found multi-stage attacks on a remalamk. | also discuss how
the tool might be used to perform quantitative risk analystbe future. | summarize the

contributions in chapter 8.

12

Chapter 2

Background and Related Work

In this chapter, we outline the different challenges a sysadministrator has to face. An
administrator will have to deal with the reality that manypgrams are insecure in their
default installation. He will have to expend immense resesitin configuring firewalls

and certain individual programs. We discuss these issugsation 2.1. We then discuss
the challenges of dealing with a large number of securitysbogection 2.2. We discuss

recent advances in program vulnerability recognition ictiea 2.4.

2.1 Configuration Management

It is quite well known that many programs are insecure inrtdefault installation and
that the administrator has to expend significant effortsaiols securing the configura-
tion. These insecurities are different from the buffer dosv vulnerabilities that are
typical—thousands of which are found per year. We now givaesexamples to illus-

trate that configuration is a significant problem in compwseeurity. To make matters

13

worse, administrators and developers do not have toolctrastudy the overall impact

of configuration across different programs. This thesisiatseempt to solve this problem.

Oracle A vulnerability advisory released in 2002 discusses sorablpms with Oracle

9i Application Server [7]:

e Exposing sensitive information

Letting anonymous users deploy certain applications

Poor access control on sensitive resources

Using well-known default passwords

Allowing remote command execution without authentication

Using world-readable temporary files—thus exposing seesilata

Administrative interface using no authentication by défau

Pete Finigan discusses how Oracle Database Server in dsltebnfiguration can

lead to a large number of privilege-escalation attacks.[19]

Novell Groupwise WebAccess Novell GroupWise WebAccess is an easy-to-use mes-
saging system that offers a wide range of powerful commuioicaand collaboration
capabilities. It lets one send and receive mail messagesjr@ments, tasks, notes and
attached files over the web. An advisory was released in 2883discusses how one
could gain unauthorized access to a vulnerable server beazfuthe poor configuration

file. The configuration file allowed any user to access any filddfault [42].

14

Applications for the Windows platform As we will show later in the thesis, the access
control model of Windows is more general and complex thaih dh&nix. Because of
the complexity of the model, the application and operatipgfesn developers need to
be careful in using operating system model. In this chap&emwl discuss how poor
application of operating system model in commercial sofed#eom Adobe, Macromedia,

Microsoft, AOL, IBM, Symantec, and Trend Micro results injilege escalation.

Network firewall management A network firewall is a device that can filter network
packets based on various attributes like the protocol,, podrce, and destination ad-
dress. Network firewalls are widely used to limit the abibfyusers and attackers to send
network packets to parts of the network. With a large numbé&rewalls, it very quickly
becomes difficult for an administrator to manage the firemaks. There exist a large

number of tools that can manage firewall rule sets automti@s, 24, 4, 6].

2.2 \Vulnerability management

In addition to configuration management, dealing with safewulnerabilities on net-
work hosts poses a great challenge to network administraiéith the number of vul-
nerabilities discovered each year growing rapidly, it ispgifficult for system adminis-
trators to keep the software on their network machines ffes=courity bugs. The differ-
ent tasks for system administrators to manage their netgvedcurity are: vulnerability
recognition, host configuration, network configurationgarstand operating system se-

mantics, and understand adversaries.

Does the advisory apply to software on my system? The crux of the problem is that

there is no framework to automatically analyze the effet® wulnerability advisory. In

15

the wake of new vulnerabilities, assessment of their sgcuripact on the network is
important in choosing the right countermeasures: patchrahdot, reconfigure a fire-
wall, dismount a file-server partition, and so on. One of thdydchores of a system
administrator is to read bug reports from various sourcashi{sas CERT and BugTraq)
and understand which reported bugs are actually securitevabilities in the context of

his own network. Vulnerability reports are written in an aschmanner like this:
OpenSSH 3.x, 4.x; Red A vulnerability has been reported inCVE-2006-0225

Hat Fedora Core3 & 'scp’ when performing copy operg

Core4 tions that use filenames due to the

)
1

insecure use of the 'system()’ fun

\"ZJ

tion, which could let a malicious

user obtain elevated privileges.
An administrator will have to manually check if this rep@televant on his network—

that is, if any version between 3.0 and 4.999 of OpenSSH talled on any machine in
the administrator’s system— and then do further researcimtierstand its implications.
Typical vulnerability reports sent to discussions listattare written in natural language
are hard to read; the manual process of recognizing existeiha vulnerability in a host
is labor intensive and error-prone. There is a need to auttha process of determining

if vulnerable software is installed on a host.

Can the adversary reach the vulnerability? Upon recognizing that a vulnerability
report is indeed relevant to his network, the administraidr have to understand the
host and network configurations to see if the vulnerability be exploited. If the affected
client program is disabled (host configuration), then aresshry cannot exploit it. If the
vulnerability is in a particular module of a program and thedule is disabled, then

the adversary cannot exploit it (program configuration)thié network uses a firewall

16

to block access to the affected server program, an extethedrsary cannot exploit it
(network configuration). It is a tedious process for the adstiator to understand the
host and network configuration. For examples, firewall retes @re notoriously difficult

for a human to understand.

What happens when a bug is exploited? The result of exploiting a bug could be one
of: denial of service, loss of confidentiality, loss of intiég or privilege escalation. It is
very hard to automatically understand the effects@éta corruption(loss of integrity) or
auser name leake(ioss of confidentiality) bug. The effects of a denial-ofvsee bug can
easily be quantified as a loss of service. The result of alpgetescalation bug is easily
guantified—the adversary obtains privileges of the vulbkrgrogram. An adversary
could use the additional privileges obtained to launchhienrtattacks. About 80% of
reported vulnerabilities are either privilege escalatoyrdenial of service. The ability
to model privilege-escalation and denial-of-service cksayields substantial benefits in
current systems. This experience in modeling these attigckseful in extending the

model to other attacks in the future.

Results of a privilege-escalation exploit When a privilege-escalation bug in a program
is exploited, the adversary gets control of the privilegeelef the vulnerable program.
In Windows, a compromise of a program would result in the askg gaining the priv-
ileges of the principal using the program. In Unix, a compiserof a program would
result in the adversary gaining the privileges of the ppatrunning the program only if
the program isiot a setuidprogram. In Unix, a compromise ofsetuidprogram would
result in the adversary gaining the privileges of the owrfethe program file. In Win-
dows, a compromise of moserviceprograms results in a complete control of the host.

Let us consider th&®emote Procedure Cadlerver programs in Windows and Linux. A

17

compromise of this program in Windows gives the adversamyofag other things), the
ability to shut down the host. A compromise of the same pnograLinux does not give
the adversary the ability to shut down the host.

The system administrator needs to have a very good unddmstpof details of the
operating system to determine the damage after a priviésgeiation attack. A typical
system administrator may not have a detailed understaraditige operating system se-
mantics. In today’s world, system administration is a hyggbecialized task. A web
server administrator knows the intricacies of a web semanfone vendor, but not nec-
essarily that of the database or operating system or eversembr products from other
vendors. A Unix administrator knows the intricacies of Urbut not necessarily the intri-
cacies of Windows. An Oracle database administrator knbesletails of configuration
and semantics of Oracle database server, but not that dépreducts from Microsoft or
IBM or Sybase. Still, it is very common that an enterprisaisibess flows are critically
dependent on the interaction of applications across eéiffieexpert domains (web server,
application server, database, and operating system). H@&s dne guarantee that there
are no gaps across the different expert domains? In prasticefeasible for even a pro-
fessional system administrator to understand the secseityantics of all the programs
on the network. Even if the administrator does know the séim&of all the programs
on the network, how do we know that the administrator has radema mistake in the

cumbersome details?

2.3 Roles of security expert and bug expert

Determining the impact of exploiting a privilege-escalatbug requires a detailed under-

standing of the operating system semantics. It is hard fgpigal system administrator

18

to have detailed understanding of the operating systenrise@emantics. A system
administrator really understands only the local elemehth® network—the users and
data. He also understands very well his intent—the localoed security policy. It is
hard for him to deal the complexity posed by the complex seitsiof the individual
components—Ilike operating systems. We introduce the naifca security experta
principal who understands the detailed security semanfitise operating system. The
operating system designer would be an ideal candidate ésécurity expert. For the
system described in this thesis, | acted the role of a sgoexjert.

Both the system administrator and the security expert damealict which program
will have the next publicly reported vulnerability and wiveitl be its consequences. We
introduce the notion of &ug expertwhich is an abstraction for the bug reporting com-
munity. The work described in this thesis is about enablegmhodularity of information

flow between the system administrator, the security expad,the bug expert.

2.4 Program vulnerability recognition

Each time a security is released, a diligent system admatastwill have to determine
if the bug affects his network. Traditionally, this detemaiion is done manually—the
system administrator has to watch the vulnerability diseauslists, read and the under-
stand the natural language descriptions of the bugs and isstaillations on his network
are affected. As we discussed in chapter 1, about a hundogpigm vulnerabilities are
reported each week. Even on a small network with about a feghldosts, this manual
examination of network is infeasible in practice. Receritlg bug-reporting community
has started to provide these kinds of information in formadchine-readable formats so

that a program can automatically recognize the vulnetgbili

19

2.4.1 The OVAL language and scanner

The Open Vulnerability Assessment Language (OVAL) [49]nsXML-based language
for specifying machine configuration tests. When a new sawulnerability is dis-
covered, an OVAL definition can specify how to check a maclamets existence. The
OVAL schema supports multiple platforms—Windows, SolaH$-UX, and Linux in
particular. A vulnerability is defined as a boolean comborabf elementary tests on
a host. Each elementary tests properties such as opergBtgsversion, architecture
version, software version, file permissions and networkessrlistening for incoming
connections. A sample vulnerability definition can be foiméigure 2.1.

A OVAL definition can be fed to an OVAL-compatible scanner,igfhwill conduct
the specified tests on the host and report the result. Ciyrdwitre Corporation pro-
vides OVAL vulnerability definitions for the Windows, Red Hanux and Solaris plat-
forms. OVAL-compliant scanners are available for Windowsl &ed Hat Linux plat-
forms. Mitre Corporation’s OVAL vulnerability definitionsave been created since 2002
and new definitions are being submitted and reviewed on g 8asis. Any principal
can submit a new vulnerability advisory to be added to Mst®@VAL Database. When
the OVAL board at Mitre Corporation accepts the submissiba,advisory is added to
Mitre’s OVAL bug database. As of January 31, 2005, the nunab&VAL definitions

for each platform is:

Platform Submitted Accepted
Microsoft Windows 543 489
Red Hat Linux 203 202
Sun Solaris 73 57
Total 819 748

20

<definition id="OVAL864" class="vulnerability">
<reference source="CVE">CVE-2003-0542</reference>
<criteria>
<software operation="AND">
<criterion test_ref="rrt-206"
comment="Red Hat Enterprise 3
is installed" negate="false" />
<criterion test_ref="rvt-304"
comment="httpd version is less
than 2.0.46" negate="false"
/>
</software>
</criteria>
<tests>
<rpmversioncompare_test id="rvt-304" >
<name datatype="string" operator="equals">
httpd
</name>
<tested_version operator="equals">
2.0.46
</tested_version>
</rpmversioncompare_test>
<rpminfo_test id="rrt-206">
<name operator="equals">
redhat-release
</name>
<version operator="pattern match">
"3.S
</version>
</rpminfo_test>
</tests>
</definition>

Figure 2.1: A sample (Linux) OVAL definition

21

For example, we ran the OVAL scanner on one machine usingtbstlOVAL definition

file and found the following vulnerabilities:

VULNERABILITIES FOUND:
OVAL Id CVE Id
OVAL2819 CAN-2004-0427
OVAL2915 CAN-2004-0554
OVAL2961 CAN-2004-0495
OVAL3657 CVE-2002-1363

Besides producing a list of discovered vulnerabilitieg MVAL scanner can also
output detailed machine configuration information in thet®yn Characteristics Schema.
Some of this information is useful for reasoning about nstétge attacks. For example,
the protocol and port number a service program is listenimgrocombination with the
firewall rules and network topology expressed, helps datexiwhether an attacker can
send a malicious packet to a vulnerable program.

The security community is converging towards using OVALetla for vulnerability
recognition. OVAL-compliant vulnerability scanners anefiditions are available from

vendors such as ThreatGuard, Red Hat, and Qualys.

1CVE is a list of standardized names for vulnerabilities atigeoinformation security exposures. CVE
aims to standardize the names for all publicly known vulbgitées and security exposures [14].

22

2.4.2 \Wulnerability effect

One can find detailed information about the vulnerabilifgetfs from OVAL's web sité.

For example, the OVAL description for the b@VAL2961 is:

Multiple unknown vulnerabilities in Linux kernel 2.4 and62allow local
users to gain privileges or access kernel memory, as founthéySparse

source code checking tool.

This informal short description highlights the effect okthulnerability—how the
vulnerability can be exploited and the consequence it casecalf a machine-readable
database were to provide information on the effect of a budp #sOVAL2961 is only
locally exploitable one could formally prove properties likkall local users are trusted,
then the network is safe from remote attackdnfortunately, OVAL provides the infor-
mation about the effect of a vulnerability only in naturahdmage (English), not in a
format with a formal semantics. Fortunately, the ICAT daisd [33] classifies the effect

of a vulnerability in two dimensions: exploitable range amhsequences.
¢ exploitable rangetocal, remote

e consequenceconfidentiality lossintegrity loss denial of serviceor privilege es-

calation

A local exploit requires that the attacker already have some laxadss on the host.
A remoteexploit does not have this requirement. A typical localesscvulnerability
is a buffer overrun in a local privileged program like the caeng system kernel or a
weak protection on a sensitive operating system or appicéite. An adversary requires

unprivileged shell access to the host to exploit the vulbiéite A typical remote-access

2http://oval.mitre.org

23

vulnerability is a buffer overrun in a program that listens the network waiting for
incoming requests. Two most common exploit consequenegsiarege escalatiorand
denial of service Currently all OVAL definitions have corresponding ICAT gaas (the
two can be cross-referenced by CVE Id). We recommend tha®Wd. and ICAT be
merged into a single database that provides both kinds ofrimdtion. We use the above

classification in determining the effects of exploitatidraosulnerability.

2.5 Related Work

There is a long line of work on automatic vulnerability areaty Kuang formalizes se-
curity semantics of Unix as a set of rules, and conducts bBdarovays a system can be
broken into based on those rules [3]. The Computerized @ract Password System
(COPS) is a freely-available, reconfigurable set of programd shell scripts that enable
system administrators to check for possible security hmlgkeir UNIX systems. The

COPS tool includes the following components:

e file.chk anddir.chk checks to ensure that important files and directories such as
letc/passwd, .profile, /etc/rc, /, /bin and/bin are not world-

writeable.
e pass.chkchecks for poor password choices.

e group.chk andpasswd.chkcheck for problems with the password and group files

such as empty lines and null passwords.

e cron.chk, rc.chk checks to ensure that none of the programs that are started as

part of the system boot reference world-writeable files.

24

The COPS tool also incorporated the Kuang rule set. NetKismagtended the rule
set in Kuang by considering impact of configuration acrogsnatworks, such as the
contents ofrhosts file. When these tools were authored, configuration was thjerma
problem for network security and not software vulnerai@t Thus, the focus is on
identifying configuration weaknesses and not on integgatimftware vulnerabilities into
the model.

Levitt and Templeton proposedequiresandprovidesmodel for computer attacks [46].
One attack provides capabilities that support the nextlattahich in turn may provide
new capabilities to support following attacks. It is notasl€ the model has been imple-
mented.

Ritchey and Amman proposed using model checking for netwahkerability anal-
ysis [39]. Sheyner, et. al extensively studied attack-grgeneration based on model-
checking techniques [43]. In MulVAL, instead of model-ckieg, we adopt a logic-
programming approach and use Datalog in the modeling anlgsasaf network sys-
tems. The difference between Datalog and model-checkititatsderivation in Datalog
is a process of accumulating true facts. Since the numbeaab$ is polynomial in the
size of the network, the process will terminate efficienModel checking, on the other
hand, checks temporal properties of every possible stege sequence. The number
of all possible states is exponential in the size of the nekytbus in the worst case model
checking could be exponential. However, in network vulbéity analysis it is normally
not necessary to track every possible state change sequenagetwork attacks, one can
assume thenonotonicity property— gaining privileges does not hurt an attacker’s ability
to launch more attacks. Thus when a fact is derived statiagah attacker can gain a
certain privilege, the fact can remain true for the rest efdéinalysis process. Also, if at a

certain stage an attacker has multiple choices for his rniegt the order in which he car-

25

ries out the next attack steps is irrelevant for vulnergpénalysis under the monotonicity
assumption. While it is possible that a model checker caubed to utilize the mono-

tonicity property and prune attack paths that do not nee@ xamined, model checking
is intended to check rich temporal properties of a statesiteon system. Network secu-
rity analysis requires only a small fraction of model-chiagks reasoning power. And it

has not been demonstrated that the approach scales weltderhetworks.

Amman et. al proposed a graph-based search algorithms ttucbnetwork vulnera-
bility analysis [1]. This approach also assumes the monoityrproperty of attacks and
has polynomial time complexity. The central idea is to usexioit dependency graph
to represent the pre- and postconditions for exploits. Tdagraph search algorithm can
“string” individual exploits and find attack paths involvesiltiple vulnerabilities. This
algorithm is adopted in Topological Vulnerability AnalggiTVA) [25], a framework that
combines an exploit knowledge base with a remote netwonkerability scanner to an-
alyze exploit sequences leading to attack goals. Howeaveeeims building the exploit
model involves manual construction, limiting the tool’'sus practice. In MulVAL, the
exploit model is automatically extracted from the off-tsteelf vulnerability database and
no human intervention is needed. Compared with a graph datetsre, Datalog pro-
vides a declarative specification for the reasoning logiakimg it easier to review and
augment the reasoning engine when necessary.

Datalog has also been used in other security systems. TlikeBjh8] security lan-
guage is an extension of Datalog used to express securignsats in a distributed
system. In D1LP, the monotonic version of Delegation Logi¢][Datalog is extended
with delegation constructs to represent policies, cradntand requests in distributed
authorization. The success of Datalog in Binder led us tonexe its use in vulnerability

analysis, and its successful application as a securityuiage in Binder and now in our

26

work to network security analysis is a convincing demorigimathat it is an excellent
language for security analysis.

Recent works by Ramakrishnan and Sekar [37], and the onethgriet al [20] con-
sider vulnerabilities on a single host and use a much finengdamodel of the operating
system than ours.The goal is to analyze intricate intevastof components on a single
host that would render the system vulnerable to certaiclegtar he result of this analysis
could serve as attack methodologies to be added as intaraates in MulVAL. Specifi-
cally, it is possible that one can write an interaction rilattexpresses the attack pre and
postconditions without mentioning the details of how the-level system components
interact. These rules can then be used to reason about therahility at the network
level. Thus the work on single-host vulnerability analyisisomplementary to ours.

MulVAL leverages existing work to gather information nedder its analysis. OVAL
provides an excellent baseline method for gathering pst-¢unfiguration information [49].
Also, research in the past ten years has yielded numeroisstta can manage network
configurations automatically [23, 24, 4, 6]. Although theseks do not directly involve
vulnerability analysis, they provide a good abstractiontf@ network model, which is
used in MulVAL and simplifies its reasoning process.

Intrusion detection systems have been widely deployed twarks and extensively
studied in the literature [15, 32, 27]. Unlike IDS, MulVALras at detecting potential at-
tack pathdeforean attack happens. The goal of the work is not to replace IDSabher
to complement it. Perhaps, an administrator could use @ienyto identify strategically
important locations on the network and deploy an intrusietedtion system to detect
attacks on these choke points. Having an a priori analysth®monfiguration of a net-
work is important from the defense-through-depth pointiefw Undoubtedly, the more

problems discovered before an attack happens, the bettsetiurity of the network.

27

A major difference between MulVAL and the previous workshattMulVAL adopts
Datalog as the modeling language, which makes integraxistjieg bug databases straight-
forward. Datalog also makes it easy to factor out variousrmition needed in the rea-
soning process, which enabling us to leverage off-thetsbels and yield a deployable

end-to-end system.

2.6 Summary

Security management of a large network is hard because tordasons:
e The semantics of the components is complicated.
e The number of details the administrator has to keep track &frge.

It is hard for a typical system administrator to know the neemof components as well
as an expert like the operating system kernel designer orpDtenEmergency Response
Team (CERT). Neither the administrator nor the securityegpan predict the future
buffer overflows that will be reported. For efficient netwarlanagement, it is important
to effectively leverage strengths of the system admirtistréhe security expert and the
bug expert. In this thesis, | describe a framework to efietyi modularize the informa-

tion flow between these three principals.

28

Chapter 3

Introduction to Windows

Previous work has shown that it is possible to analyze a m&te@mprising Unix hosts,
networked file systems and firewalls to check if an adversaunfccleverage ubiquitous
program vulnerabilities to launch a multi-step attack [38]. We now illustrate that au-
tomatic configuration analysis is feasible and that evemfgingle host, this analysis can
produce useful results. In particular, we built a model talgre the configuration for the
Windows platform. In chapter 7, we show that this is usefuldioalysis of configuration
of even a single host—the model uncovered previously unkrngsvious security bugs.
Microsoft Windows NT, Windows 2000 and Windows XP use a gaherodel to
control access to resources. Unix has a simple access tomde| with three privileges
given to users, groups, and others for operations on justvekieds of objects (such
as files and directories). In contrast, Windows attachessaccontrol lists (prioritized
“allow” and “deny” by groups) comprising up to 30 differentiypleges for operations on
about 15 different kinds of objects [10]. For example, onerVge” object one can have

the privilege “choose what program.exe is run to effecttia¢eservice.”

29

3.1 Windows Objects

In Unix, one has to deal with various operating system objé&e files, directories,
threads and processes. One uses primitives like locks,agespieues and semaphores
for interprocess communication. One uses sockets for nktpr@gramming. Standard
textbooks provide excellent introduction to Unix and howuse these objects [2, 44].
In addition to these mechanisms, Windows provides othemipivies, the most important
of which are thaegistry, servicesandWindows Management Instrumentatidie now
discuss these primitives briefly. For a more detailed treatwe refer the reader to the

textbook by Russinovicht al. [40].

3.1.1 Registry

The Windows registry is a centralized hierarchical dataliasstore configuration infor-
mation for the operating system and applications and sesvienning under Windows.
It is the repository for both system-wide and per-user sg#i It is a vital resource of the
operating system—the operating system does not boot ietistry is corrupted. In fact,
the most common reason for the Windows operating systenormtdt is a corrupted reg-
istry. The registry stores a wide range of configurationisgt, from boot parameters to
user desktop settings to program settings. Many of the GbRanel applets, command-
line tools, and Microsoft Management Console (MMC) plug-ihat ones uses each day
perform some of their functions by reading, editing, or aggiegistry subkeys or entries.
Because Windows provides the services of the registry, eatiidual application
does not have to maintain its configuration in applicatioecgjc configuration files. This
frees the application developer from the hassle of desggand implementing application

specific configuration files. Thus, the developer can useitme only in development

30

Key Value

Current version 1.7.12

Geckover 1.0.1

Install Directory C:\Program File§Mozilla Firefox
PathToExe C:\Program FilesMozilla Firefox\firefox.exe
Description Mozilla Firefox (1.0.7)

Uninstall Log Folder| C:\Program FilesMozilla Firefox\uninstall
Plugins C:\Program File§Mozilla Firefox\Plugins
YahooPluginPath | C:\Program FilesYahoo!\ SharednpY State.dll

Figure 3.1: Some sample registry keys

tasks. In contrast to Windows, Linux does not have the carafepglobal database. Each
program uses ad-hoc formats specific to itself; the net resthat each programmer has
to expend effort in developing custom file parser and modifidnother disadvantage of
this approach is that configuration analysis programs hieeane described in this thesis
are difficult to develop.

Each entry in the registry is indexed by a key. The keys arefghical in structure,
just like files and directoriesA\B refers to the keyB that is a subkey of the ke#. It is
very common for programs to store application specific imfation under the root key
HKEYLOCALMACHINE(HKLN). Each registry key entry in the registry has a security
descriptor that determines who can perform what accessetoetistry entry. We list

some registry keys installed by the Mozilla browser in fig8re.

Registry key security. The operations that can be controlled by access-contraégn r
istry keys are: reading a key, writing a key, deleting a keyraerating subkeys, adding
a subkey, requesting notification for changes to this keysmsubkeys. We discuss these

in detail in section 3.2.5.

31

3.1.2 Services

Every operating system has a mechanism to start processgstain startup, providing
functionality not tied to any particular user. For exampien the operating system
boots up, one would want the network programs and the welespregram to to start
automatically, even if no user has logged on. Windows sesviare similar to Unix

daemon processes, but more general. Some example semgces a

e Task schedulerservice is used to run a program at a designated time. The Unix

equivalent of this service isron .

e Uninterruptible Power Supply service is used to monitor the battery status of an

UPS power supply through a serial port.

¢ Windows Time Servicemaintains date and time synchronization on all computers

using Network Time Protocol.
e Print Spooler service queues and manages print jobs locally and remotely.

e DHCP Client service manages network configuration by registering arthtipg

IP addresses and Domain Name Server (DNS) names.
One can control the following attributes for a Windows seevi

e Process sharingcontrols whether the started service runs in its own prooess
shares the process with other services. All services tlaestprocesses run under

a shared auxiliary process.

e Start type controls whether the process starts during system startiggstarted on

demand by a user.

32

e Error control specifies the action to take if the service fails to start.id in-
clude logging, restarting the system in recovery modeinigithe startup and ig-

noring the error.
e Binary path specifies the path to the service executable

e Account namespecifies the name of the account under which the servicddhou
run. This is usually one dfocal System , Local Service andNetwork

Service

¢ Dependenciespecifies the services that must be started before thisceeran be

started.

Service security. The operations that can be controlled by access-controkornces
are: starting a service, stopping a service, reading thégumation of a service, mod-
ifying the configuration of a service, querying the statusafervice, enumerate other
services that are dependent on this service, pause or gerdigervice. We discuss these

in detail in section 3.2.5.

3.2 Windows Security Overview

There are three pieces of information that are needed to emakecess control decision:
1. Who is the principal requesting the access?
2. What are the intentions of the principal (specified in gguest)?

3. What is the protection on the object to be accessed?

33

Windows uses the notion aecurity identifierdo identify principals. Atokenis a
structure that stores the authorization attributes of aggal—such as whether he is
a super user and the groups the user is a member o$eddrity descriptolis a per-
object data structure maintained by the operating systanstiores an object’s security
settings. Araccess control strategy the algorithm the system uses to determine whether
arequested access should be granted. We now briefly deboub@/indows implements

these notions.

3.2.1 Security Identifiers

Windows usersecurity identifiers (SID4p identify various entities that perform actions
in a system. A SID could represent n user, or a built-in act@ike Administrator :
andLocal System accounts), or local and domain groups, or local computars, o
domains, or domain members. A SID is a variable length binatye that contains
information about the structure format, an authority numidentifying the agent that
issued the SID, a variable number of sub-authority valuasitfentify trustees relative to
the issuing authority. When a SID is displayed in clear teath SID carries a8 prefix,
and its various components are separated with hypt#s5-21-346327843-89743984-
384343-1128

SIDs are long and Windows takes care to generate randomsvidueach SID. For
our discussion the details of the SID structure are not itgmdrand it suffices to know

that except for a few well-known SIDs, SIDs are globally wequmbers. Some well-

known standard SIDs are:
e S-1-1-0 . This SID represents the grolgveryone .

e S-1-5-11 . This SID represents the groduthenticated Users

34

e S-1-5-18 . This SID represents tHeocal System account, the account under
which all operating system processes run. The closest algunit/to this account in
Unix is the user withuseridof 0. However, one cannot log on to system under this

account.

e S-1-5-19 . This SID represents thieocal Service account. This account
is used to run services that do not need administrativelpges and do not need

access to the network.

e S-1-5-20 . This SID represents tHéetwork Service account. This account
is used to run services which do not require administratrrelpges, but need

access to the network.

e S-1-5-32-544 . This SID represents th&dministrators group.

3.2.2 Account privileges

Windows provides a flexible access control model where oa®wmer of a resource can
specify the level of access each user has. This model is lusefuotecting access to
a single object. However, sometimes users perform op@stivat have a system-wide
impact. For example, the ability to shut down a system or ghdhe time of a system has
system-wide impact. The capability to perform these astwill have to be controlled
carefully. Windows uses the notion pfivilegesto achieve this purpose. When a user
logs onto a host, after authentication, the system idestifie privileges associated with
the user and stores this information in the kernel as a pdhteothe process control block
for the user’s shell.

We now briefly discuss some of the important privileges in &éws, and refer the

reader to the documentation for the details [11]. The varijoivileges in Windows are:

35

SeAssignPrimaryTokenPrivilege (replace a process-level token, described in
section 3.2.3)SeAuditPrivilege (generate security audit§eDebugPrivilege

(debug arbitrary programspelLoadDriverPrivilege (load/unload device drivers),
SeChangeNotifyPrivilege (skip directory traversal access checks, needed to re-
ceive notifications of changes to files and directori€&g|_.ockMemoryPrivilege

(lock pages in memory)SeRemoteShutdownPrivilege (force shutdown with a
remote systemfeBackupPrivilege (open arbitrary files for reading bypassing any
security checks)SeRestorePrivilege (open arbitrary files for writing bypassing
any security checksheSecurityPrivilege (control and view audit messages and

other functions)SeShutdownPrivilege (shut down the hosteTcbPrivilege

(act as a part of the operating syste®@TakeOwnershipPrivilege (take owner-
ship of arbitrary files and objects), aigkSystemtimePrivilege (change the sys-
tem time).

Super privileges There are a large number of privileges whose possessioremalble

the adversary to obtain complete control of the host. $BBackupPrivilege and
SeRestorePrivilege privileges let the process bypass the access checks on a file.
Anyone with this privilege will be able to read and write ang ffin particular the ker-

nel) respectively. In fact, even tf&eBackupPrivilege might be sufficient to give
unlimited access to the system. In certain environmentseniding on the operating
system configuration, this privilege might allow the pragrto open a memory mapped
file and read off passwords from the memory. T3&lLockMemoryPrivilege can

be exploited for denial-of-service attacks on a system. S&BebugPrivilege en-
ables a user opeany process on the system, ignoring the security descriptorhen t

process and launch further attacks. T®eTakeOwnershipPrivilege enables a

36

user to take ownership of any object even if the user is otisermot allowed access. The
SelLoadDriverPrivilege can be used to load and unload device drivers, which run
in kernel space—thus compromising the kernel. BeCreateTokenPrivilege

can be used to generate arbitrary user accounts with agbigr@up membership and
privilege assignment. TheTcbPrivilege allows the adversary to act as a part of
the operating system. Using this privilege he could creatsex shell (technically, a lo-
gon session) that includes the SIDs of more privileged useggoups and then obtain

unauthorized access to their resources.

SeChangeNotifyPrivilege is a privilege that is usually granted to all users. This priv
ilege allows a user to register for notification of changea fmarticular file or directory.
This privilege also allows a user to skip the access checkk@parent directories when
trying to access a file or a directory. This feature allowseases on deeply nested files to
be efficient—by skipping access checks on the parent diiestoHowever, this feature
means a restrictive access control setting on a parentdigeis not sufficient to prevent
access to the file or directory. We used our tool to discovat ¢krtain files in the oper-
ating system’'System Restomdirectory have poor access control. As we will discuss in
chapter 7, an adversary witteChangeNotifyPrivilege may be able to leverage
this weak access control to launch a subtle attack on thebpgisystem through System
Restore.

When a user logs onto the system, the system determinesithleges associated
with the user and adds the list of privileges to the procesgates (“token”) for the

user’s shell program. Each process inherits the attribaeishence the privileges from

1This does not result in security problems because when wwes a file, the operating system (op-
tionally) automatically copies appropriate security dggors from its parents. It takes more time to create
files, and security descriptors are larger because of itdtepiermissions from parents, but accesses to files
are quicker.

37

its parent. A process might temporarily disable or permégeemove privileges from
its attributes. A system administrator can use the Locau@gcPolicy Editor in the
Administrative Tools folder of the Control Panel to assigivieges and rights to groups

and accounts.

3.2.3 Token

A tokenis a per-process (per thread in some cases) data structaratamed in the
kernel as a part of the process control block, that contdiassecurity information. It
stores information regarding the user account, a list obant privileges for the user
account, a list of SIDs representing the user, groups the hidengs to, the session
identifier and other security related information ass@dawith the process or thread. A
token is created when a user logs on to a system and is attachbd initial process
(typically userinit.exe) that is started on behalf of the user. A child process irtberi
its parent’s token. When a process makes a certain requlesiofening a file in write
mode or opening a service to configure its properties), theateonsults the token of
the calling process to determine the privileges of the pgec&okens are not a fixed size
data structure.

A restricted tokenis a special kind of token where some of the SIDs are marked
“restricted”. In section 3.2.6, we describe the accessrobatgorithm—where given
a process token, object protection, and requested accessde¥s makes a decision
whether to allow the access. When an access control degssinade using a restricted
token, then the access control decision is made twice. T$tdifine, it is made using the
normal algorithm. The second time, the access control i#cis made using the SIDs
that are marked restricted. The access is granted only lif écdns of the access control

list grant the requested access.

38

3.2.4 Security Descriptor

A security descriptoiis a per-object data structure identifying who can perforimtv
action of the object. A security descriptor can be set onaibjkke processes, threads,
semaphores, sections, waitable timers, registry keys, éitel services. A security de-
scriptor consists of the following attributes: a revisiommmber (version of the security
model), flags (controlling inheritance characteristiesyner SID, group SID a discre-
tionary access-control list (specifying who has what asdesthe object) and a sys-
tem access-control list (specifying which attempted opana by which users should
be logged). For our discussion only the owner SID and dismraty access-control list
(DACL) are relevant.
An access-control lis(ACL) is a list of zero or moreaccess control entrieGACES)

which say who is allowed what access to an object. A simplifi@ddows ACE would

look like:
+/- | Trustee | Mask Flags

+ Alice write INHERIT_ONLY
- Bob read INHERITED

+ | Everyone| read NO_INHERIT
The first column in the ACE describes whether it is a positive@gative ACE. A

positive ACE grants specified access and a negative ACE sl@ni€he second column
indicates the target user or group (physically represebyesl SID) and the third column
specifies the permissions in question (physically reprteskes a 32-bit mask). The fourth
column lists the flags that control how an ACE of a parent dhjeicectory) propagates

to its child objects (files).

39

3.2.5 ACE access mask format

Each Access Control Entry has a 32-bit mask that specifieseéhef permissions asso-
ciated with the entry. This 32-bit mask is interpreted d#f&ly, depending on the object
type. The layout of various access masks is as shown in figéreThese permissions

are classified into the following three classes:

e Object specific permissions.Some permissions are specific to an object. For ex-
ample, the file append permissiéiLE _APPENDDATAIs only meaningful for
files. The permissioiSERVICE START—one that allows a principal to start a
service—is not meaningful for files and registry keys. Thegobspecific permis-
sions for files, directories, registry keys, and servicessdnown in figures 3.2, 3.3,

3.4, and 3.5 respectively.
e Standard permissions.Some permissions are common to all objects. These are:

— DELETETO delete an object.

— READCONTROTMOo read the security descriptor.

— WRITEDACTo write the security descriptor.

— WRITEOWNERO write the owner of the resource.

— SYNCHRONIZHo wait on object handle.
This standard set of permissions allows one to treat obpeadisnorphically. One
would want to use this polymorphism to have a single defacdeas-control list
that can apply to all objects. However, one cannot have aittefecess-control list

apply to different kinds of objects because certain penmnssare object-specific.

To solve this problem, Windows introduces the ide@eheric permissions

40

FILE_READ_DATA 0x0001
FILE_.WRITE_DATA 0x0002
FILE_.APPEND DATA | 0x0004
FILE_.EXECUTE 0x0020

Read data from the file
Write data to the file
Append data to the file
The right to execute a filé

A}

Figure 3.2: File access rights

FILE_.ADD_FILE
FILE_.ADD_SUBDIRECTORY
FILE.DELETE.CHILD
FILE_LIST_DIRECTORY
FILE.-WRITE_DATA
FILE_APPEND.DATA
FILE_.TRAVERSE

0x0002
0x0004
0x0040
0x0001
0x0002
0x0004
0x0020

Create a file in the directory.
Create a subdirectory.
Delete a directory and all the files in it.
List the contents of a directory
Create a file in the directory
Create a subdirectory
Traverse a directory

Figure 3.3: Directory access rights

e Generic permissions.For each object type, these four permissiofSENERICREAD,

GENERICWRITE, GENERICEXECUTE, GENERICALL—are mapped to a

set of its standard and object-specific access rights. Fonple, theGENERICREAD

file permission is mapped onfelLE _-READDATA, FILE READATTRIBUTES,

SYNCHRONIZE, REABCONTROLAandFILE READEA TheGENERICREAD

registry permission is mapped onkEY ENUMERATESUBKEYS, KEY.NOTIFY,

KEY.-QUERYALUE, andREADCONTROL

KEY_CREATE.SUB.KEY

KEY_ENUMERATE.SUB_KEYS

KEY_QUERY_VALUE
KEY_SET_VALUE
KEY _NOTIFY

0x0004 | Create a subkey of a registry key.
0x0008| Enumerate subkeys of a registry key
0x0001| Read the value of the key

0x0002| Set a value for the registry key

0x0010| To request notification for changes in a k|

Figure 3.4: Registry access rights

41

Access Right

Needed to

SERVICECHANGECONFIG
SERVICEENUMERATIBEPENDENTY
SERVICEINTERROGATE
SERVICEPAUSECONTINUE
SERVICEQUERYCONFIG
SERVICEQUERYSTATUS
SERVICESTART

SERVICESTOP
SERVICEUSERDEFINED.CONTROL

Change the configuration.
Enumerate all dependent services.
Ask service to report its status immediate
Pause or continue the service.
Query the service configuration.
Query the status of the service
Start the service.
Stop the service.
Send user defined code to the service

~

D

Figure 3.5: Specific

Bit Flag
0-15 | Object type specific rights
16 DELETE
17 READ_CONTROL
18 WRITE_DAC
19 WRITE_.OWNER
20 SYNCHRONIZE
28 GENERICALL
29 GENERICEXECUTE
30 GENERICWRITE
31 GENERICREAD

access rights for service.

Figure 3.6: Access mask format

3.2.6 Determining access

ly.

After an adversary has gotten hold of a process, he triesdesacresources from this

privilege level. We now describe the algorithm the Windowesriel uses to determine

whether an access should be allowed. In making this degitherkernel considers the

following inputs:

e The authorization attributes for the principal requestiegess. This information is

available by looking at the process token of the processasting access.

e The intentions specified in the req

uest.

42

e The security settings for the object to be accessed. Thegdron level of the object

is expressed in the Discretionary Access Control List (DAGLthe object.

No ACL implies no protection If an object does not have a discretionary access control

list, then any access is permitted on the object. Such a DACRlied aNull DACL

SeTakeOwnershipPrivilege privilege gives write-owner amess The privilege SeTake-
OwnershipPrivilege in the caller's token gives WRITBAVNER access to any resource.
With WRITE_OWNER permission, one can change the owner SID of a resooim®et of
the SIDs in the caller’s process token. (Technically, tHe i<he process token will have
to be marked as having the potential for being an owner.) rAfb¢aining the ownership
of a resource, the adversary will be able to get full controthe resource by launch-
ing further attacks, as described below. To summarize, 8l OwnershipPrivilege
will give the adversary complete control over all resouroesa host, thus resulting in

system-wide compromise.

Owner always gets access The owner of a resource always gets WRIDAC access.
The owner can use the WRITBAC permission to reset the ACL to give an arbitrary
entity arbitrary access. Thus, the owner of a resource caayal get full access to the

resource.

Consult the Access Control List If none of the previous rules apply, then the kernel
consults the access control list. Each Access Control EAGE) in the access-control
list is examined from first to last looking for an entry thahaks or allows the action. An
ACE is processed if the ACE is an access-deny or accessadleMCE and the SID in

the ACE matches a SID in the caller's access token. If it iscress-denied ACE, then

43

the access is denied. If the ACE is an access-allowed ACH, ttteeaccess is allowed
provided the process token is not a restricted token (refetien 3.2.3). If the ACE is an
access-allowed ACE and if the process is a restricted tadken, the system rescans the
ACL's ACEs looking for ACEs with access matches for the asdég user is requesting
and a match of the ACE’s SID with any of the callers restricsids. Only if both scans
of the ACL grant the requested access right is the user giateess to the object. If the

end of the list is reached without a matching ACE, the reqisesénied.

3.3 Privilege escalation

It is possible that weak configuration on a file or registry '&esecurity descriptor can
allow an adversary to modify the resource state. (We widilahow in chapter 7 that this
indeed is the case.) Then, the adversary can inject codwat& into a higher privileged
process reading the corrupted data. Sometimes, the datgton presents the adversary
with an immediate opportunity to attack. If the adversarghte to overwrite a driver file,
then the adversary can corrupt the kernel and hence get eterguintrol of the host. If an
adversary can write to a program used in the operating systarup, then the adversary
can completely compromise the integrity of the host andtalusers. Alternatively, the
adversary will try to write to a dynamically linked libranhat is loaded by a more
privileged process. If the adversary can write to a regi&By storing the executable
or library name to be executed under certain conditionstavides the adversary with
another avenue of attack. For example, when a user logs dmastathe operating system
looks at the value in the ke KLM SOFTWAR®Microsoft \WindowsNT\Current
Version \Winlogon \Userinit and executes the file name referenced as the first

program running on behalf of the user. Sometimes, a regigtyystores the name of a

44

library that is loaded by processes. If a process loads auggs the file references by
a registry key, and if the adversary can write to the regikgy, then the adversary can
compromise the process. If the adversary can inject dateargrocess executing at a
higher level privilege level, he can immediately gain asdesthe higher privilege level.
For any object, AVRITEDACpermission can be used to change the security descrip-
tor of the object and then take control of the objectFIAE _"WRITEpermission can be
used overwrite a file and then take control of the principaoexing the file or loading
the library. AKEY_WRITEcan be used to overwrite the contents of the registry key and
take control of whoever trusts this registry key. SERVICECHANGECONFIGcan be
used to overwrite the attributes of the service. In partigithe adversary could configure
a malicious program to be executed when the service is dtdrte could also configure
the user account which runs the program to be an administréitthe adversary could
cause the service to be restarted (say by rebooting the negjchihe malicious program
runs as an administrator. After compromising the admiatste account, the adversary

can get complete control of the host and any principal tngstihe host.

3.4 Summary

The number of types of objects in Windows is large. The mogartant object types
used by adversaries in attacking Windows are files, regikgyg, and services. Windows
uses a complex access control model to protect access tot®bj@ traditional Unix,
there is no mechanism to specify that a particular user (winot already the file owner)
gets read access to a file. One can only specify this at a guatyudf the current group
the user belongs to. In contrast, in Windows it is possiblsgecify that a particular

user gets read access to a resource. Similarly, in Unix ibigossible to specify that a

45

user can only append a file and not overwrite its existingeaist In Windows, one can
granularly specify that a user can perform a particular apen such as append a file,
change the security settings of a resource, start/stopveceeand get notified when a
file content changes. Thus, Windows uses a flexible and gesr@ress control model to
control access to resources.

The downside to this general model is that even professgofalvare developers do
not understand the model correctly and wrongly apply the @ho#l wrong security de-
scriptor on an object provides the adversary to launch alpge escalation attack. Thus
software from major vendors has serious privilege-esitalatulnerabilities because of
wrong application of access control model. In the next alapte will show how to
model the semantics of Windows formally. In chapter 7, wewals how the model finds

privilege escalation vulnerabilities.

46

Chapter 4

Formal modeling of Windows

In this chapter, we demonstrate how to model the accessat@amantics of Windows
(Windows NT, Windows 2000 and Windows XP) as described iddsechapter. We use
the formal model of access control semantics of Windows toraatically identify meth-
ods by which an adversary can increase the privileges heshol# show in section 7.1
how we used our framework to find serious security bugs in gondition of software

from several major vendors.

4.1 Datalog overview

Our system adopts Datalog as the modeling language for elsmethe analysis. We
found that declarative semantics is sufficient for encodirginteractions of operating
systems, network firewalls, and file systems and for modedittgcks using program
vulnerabilities. Datalog allows us to cleanly specify tlmsntics, thus it is easy to

determine if we made a mistake in understanding the opgratistem model. Datalog

47

has the additional advantage that evaluation of all facfdied by a Datalog program is
theoretically polynomial in complexity and efficient in ptece.

Syntactically, Datalog is a subset of Prolog [9] with lintittorms of clauses. The
reasoning rules in our system are declared as Datalog dladdiéeral, p(ti, ...,) is
a predicate applied to its arguments, each of which is edahmnstant or a variable. In
the formalism of Prolog, a variable is an identifier that stavith an upper-case letter. A
constant is one that starts with a lower-case letter.let. ., L, be literals. A reasoning

rule in Datalog is represented as a Horn clause:

Ly - Ly,..., L,

Semantically, it means i+, ..., L, are true thern., is also true. The left-hand side
is called theheadand the right-hand side is called thedy. A clause with an empty body
is called afact A clause with a nonempty body is calledwde. A Datalog program is
a set of facts and reasoning rules to infer from these fade éxecution of a Datalog
program infers from these facts using the reasoning ruldése dignificant differences

between Datalog and Prolog are:

¢ Data constructors. Datalog does not have data constructors; each of the argamen
to a predicate is either a constant or a variable. In Proladpta constructor can
be supplied as an argument. One cannot encode a list as aneargto a Datalog
predicate; the argument to a Prolog predicate can be a daséraotor that encodes

a list.

e Declarative semantics. Datalog has pure declarative semantics. The order in
which clauses appear in a Datalog program does not affetbgisal meaning

and the evaluation result. In Prolog, such order is imparéua affects the result

48

of evaluation [9], due to the depth-first search strategysade-effect of operators

like cut

¢ Negation. Datalog does not have negation and one cannot expressikdédite
will buy a mango if she cannot find an orangedding a new fact to a Datalog pro-
gram cannot invalidate any fact that can be derived from tbgram. (Technically,

the negation operator in Prolog is implemented using th@patator.)

e Polynomial Termination. Prolog is a Turing-complete language—computation
may never terminate. In contrast, the complexity of detamng whether a literal

is implied by a Datalog program is polynomial in the size @ grogram [16].

Datalog has been used as a security language for expresstegsacontrol poli-
cies [18]. The efficiency of Datalog and existing off-thee§Datalog evaluation en-
gines [48, 38] makes it readily usable in practice. Datakatiractive for the formal
model of the security analysis described in this dissemakiecause it gives us a clear
specification of the semantics of network components suopasating systems and net-

worked filesystems.

4.2 Modeling the Windows Access Control algorithm

We now show to model the semantics of Windows access conile.adopt Datalog
for the model. We use certain constructs that are not in pw&lDg, As we show in
section 4.4, the usage of these constructs does not advefésdt the running time of

our program.

49

4.2.1 Object protection

An access control entryis encoded as the primitive predicaiee(aceType(Type),
aceRights(RightsList), Sid) that specifies that an access control entry of type
Type (one of ACCESSALLOWEDACETYPEor ACCESSDENIED ACETYPE grants

or denies to the entities represented by the ident8idr the rights specified in the list

RightsList . An example usage is:

ace(aceType(ACCESS_ALLOWED_ACE_TYPE)),
aceRights(FILE_WRITE_DATA’),
sid('S-1-5-21-854245398-1637723038-725345543-1003")).

The predicatelacl(AclList) encodes discretionary access control list (DACL)
whereAclList is alist of access control entry predicates, storing theesiin the same
order as they appear in the security descriptor. In caselifezibdoes not have any pro-
tection (“null DACL”), we encode this adacl(null) . If the object has an DACL of
length zero, then the DACL is encodeddecl([]) . All other DACLs are encoded
asdacl([HeadAce | ACLTail]) whereHeadAce is a predicate that describes
the first access control entry a®d@CLTail is a list of predicates for subsequent access

control entries. A sample DACL predicate is:

dacl([
ace(aceType('ACCESS_ALLOWED_ACE_TYPE)),
aceRights([FILE_ WRITE_DATA’),
sid('S-1-5-21-854245398-1637723038-725345543-1003’))
|
[ace(aceType(ACCESS ALLOWED ACE_TYPE),
aceRights([FILE_READ_DATAY),

50

sid('S-1-5-21-854245398-1637723038-725345543-1003’))

D

A security descriptor is encoded as the predicate
securityDescriptor(Owner, Dacl)

whereOwner represents the security identifier of the owner &t is a predicate that
encodes the discretionary access control list.

When a kernel makes an access control decision, the deediaequire the ability
to decide what a single access control entry means. ThegatedheckACE(Result,
AceEntry, RequestedAccess, SidsList) is the predicate that models the de-
cision making at a granularity of a single access contrale®esult is one ofallowed
or denied , AceEntry is an access control entry predicaiRequestedAccess
is the access requested a8aisList is a list of security identifiers of the groups
in the process token. The predicatieeckACE(Result, AceEntry, Access,

SidsList) means that an elementary access control decision, usiragtiess control
entry AceEntry , for a requesiAccess by a principal whose list of security identi-
fiers of the groups in the process tokerSiglsList , is Result (one ofallowed ,

denied).

checkACE(allowed,
ace(aceType(ACCESS_ALLOWED_ACFE’), AceRights, Sid),
Access, SidsList) :-
accessIinAceMask(Access, AceRights),

sidinGroup(Sid, SidsList).

51

checkACE(denied,
ace(aceType('ACCESS_DENIED_ACE), AceRights, Sid),
Access, SidsList) :-
accessIinAceMask(Access, AceRights),

sidinGroup(Sid, SidsList).

The predicatsidinGroup(Sid, SidList) recursively searches ti&dList

to see ifSid is present:

sidinGroup(Sid, [Sid | _).
sidInGroup(Sid, [_ | Tail]) :-
sidinGroup(Sid, Tail).

The predicate checkAccessList(Result, RequestedAccess, Acl,
SidsList) models the algorithm the kernel uses to decide whether agsaaontrol
list Acl allows or deniefRequestedAccess to a principal withSidsList as the
list of security identifiers of the groups in the process toKEehis predicate examines the
Acl from first to last and unifies thResult variable toallowed ordenied accord-
ingly. If there is no access control on the object, then tiggiest is granted. If the end of

the list is reached, then access is denied. Formally, wethis as:

checkAccesslList(allowed, Access, dacl(null), SidsList)

checkAccessList(Result, Access,

dacl(acl([AclHeadEntry| AclTail])), SidsList) :-

(
checkACE(Result, AclHeadEntry, Access, SidsList);

52

checkAccessList(Result, Access,

dacl(acl(AclTail)), SidsList)

% An empty access control list denies access
checkAccessList(denied, Access,

dacl(acl([])), SidsList)

In the formalism of Prolog, an identifier starting witlflike _RequestedAccess)
is an anonymous variable, and it can bind to any value. Sbgiabove rule the predicate
checkAccessList(allowed, _RequestedAccess, dacl(null), _SidsList)
means that it does not matter what the requested accessvugan&IDs are a part of the

process token of the calling process.

4.2.2 Process credentials

When a principal access an object, the kernel looks up theegsotoken of the process
making the request to determine its credentials: the ulerptivileges, the groups the
user belongs to and the restricted groups the user belongs e predicate
processToken(UserSid, Privileges, Groups, RestrictedGr oups)
encodes the credentials of the process requesting thesatte=Sid is the user iden-
tity on behalf of whom the process runBrivileges is the set of privileges (like
SeTakeOwnershipPrivilege , SeSystemtimePrivilege) the process holds,
Groups is the set of groups the user belongs to &sstrictedGroups is the set of

restricted groups the user belongs to. A sample process toké&s like:

processToken('S-1-5-21-1214440339-507921405-1060284 298-500',

53

privileges([
'SeBackupPrivilege’,
'SeChangeNotifyPrivilege’,
'SeSystemtimePrivilege’
D.
groups(['S-1-1-0’, 'S-1-2-0’,
'S-1-5-11", 'S-1-5-32-5447)),

restrictedGroups([])

4.2.3 Modeling access check

The predicatevindowsAccessCheck(Result, ObjectProtection,

RequestedAccess, RequestingToken) models the algorithm the kernel uses
in determining whether to permit @&equestedAccess access to an object with pro-
tectionObjectProtection by a process with tokeRequestingToken . The vari-
ableResult is instantiated t@allowed ordenied accordingly. In section 3.2.6, we
described the algorithm the kernel uses to make an acceswlcdacision. We now

formally describe the algorithm.

No ACL implies no protection. If a file does not have an Access Control List (“Null

DACL"), then any access is permitted on the file. The formé rs:

windowsAccessCheck(allowed,
securityDescriptor(Owner, dacl(null)),
RequestedAccess,

RequestingProcessToken).

54

SeTakeOwnershipPrivilege privilege gives write-owner agess. The privilege Se-
TakeOwnershipPrivilege in the caller's token gives WRIDEVNER access to any re-
source. With WRITEOWNER permission, one can change the owner SID of a resource
to one of the SIDs in the caller’s process token. (Technictile SID in the process token
will have to be marked as having the potential for being anewn

After obtaining the ownership of a resource, the adversatlybe able to get full
control of the resource by launching further attacks, asmiesd below. Similarly, as we
discussed in section 3.2.2, any super privilege will give dldversary complete control
over all the resources of the host. In our model, we encodeethmulti-step attacks as a

single step as follows:

windowsAccessCheck(allowed, SecDescriptor, RequestedA ccess,
processToken(Owner, PrivList, GroupSids,
TokenRestrictedSids)
) -
hasSuperPrivilege(true, PrivList).

%Check if token has a “ super” privileges

Owner always gets access. The owner of a resource always gets WRIDAC access.
The owner can use the WRITBAC permission to reset the ACL to give an arbitrary
entity arbitrary access. Thus the owner of a resource algayfill access to the resource.

This is expressed as:

windowsAccessCheck(allowed,
securityDescriptor(Owner, Dacl),
RequestedAccess,

processToken(Owner, PrivList, GroupSids,

55

TokenRestrictedSids).

Consult the Access Control List. We now need to evaluate the access control list from
first to last, trying to see if we come across an entry thatwalor denies the access.

Formally, we write this as:

windowsAccessCheck(allowed,
securityDescriptor(ObjectOwner, dacl(Acl)),
RequestedAccess,
processToken(ProcessOwner, PrivList, Groups,

TokenRestrictedSids)

checkAccessList(allowed, RequestedAccess, Acl, Groups) :
(processisNotRestricted(TokenRestrictedSids) ;
/= ; is the Prolog OR operand. */
processisRestricted(TokenRestrictedSids),
checkAccessList(allowed, RequestedAccess,

Acl, TokenRestrictedSids)

Everything else is denied. If none of the above rules match, then the access cannot be

allowed and hence access is denied. We model this as:

windowsAccessCheck(denied, SecurityDescriptor,
RequestedAccess, ProcessToken) :-
not windowsAccessCheck(allowed, SecurityDescriptor,

RequestedAccess, ProcessToken).

56

Atomic permissions The predicates that we discussed aboverdowsAccessCheck
checkAccessList andcheckACE —take as argument the access requested. In our
model, theRequestedAccess argumentis an atomic permission liklkE _READDATA
and FILE _READATTRIBUTES In practice, one requests more than one permission,
like FILE _READDATAandFILE WRITEDATA—to read and write a file. To check
for such nonatomic permissions, we will have to call the egponding access check
function on each atomic permission requested. This is aatiewi from the way the ker-
nel implements the algorithm. However, this deviation isdiionally equivalent when
used with atomic predicates. The kernel implementatiomndsvealling the function more
than once for nonatomic permission by doing some clever lihipulation. Since it

is not straightforward to do bit manipulation in Datalog, onr model access check
can only be called on an elementary permission HteE READDATA This makes
our reasoning rules easier to write and debug and thus isesethe assurance of our
system. However, Windows allows a principal to request ntba® one permissions—
like all of FILE _READDATA, FILE WRITEDATA, DELETE, READCONTROL,
WRITEDAG—simultaneously. To model the behavior of Windows in our elpdrhen

a principal requests botRILE WRITEDATAand WRITEDAG we invoke the predi-
catewindowsAccessCheck twice—the first time withFILE _WRITEDATAand the
second time wittWRITEDAC

4.3 Modeling privilege escalation

We use the predicatesource(Type, Name, Dacl) to identify various resources

on a host.Type indicates the type of the resource—it is onesefvice , registry

57

andfile . Nameidentifies the resource ardhcl is the protection on the resource. By
scanning the host, one could generate the list of all theuress on a machine.

The predicateuserToken(Principal, Token) identifies that the principal
Principal gets the tokermoken when he logs in. We generate this predicate for
each user on the machine.

canWrite(Principal, resource(Type, Name, Dacl)) is aderived pred-
icate that specifies that princip&rincipal can write the resource of typ€&€ype
(service ,registry ,file)identified byNameand with a security descript@acl .

If the adversary ha®/RITEDACor GENERICWRITEpermissions, he can write to

the resource. We write this formally as:

canWrite(Principal, resource(Type, Name, Dacl)) :-
userToken(Principal, ProcessToken),
windowsAccessCheck(allowed, Dacl,

'WRITE_DAC’, ProcessToken).

canWrite(Principal, resource(Type, Name, Dacl)) :-
userToken(Principal, ProcessToken),
windowsAccessCheck(allowed, Dacl,

'"GENERIC_WRITE’, ProcessToken)

If the adversary haBILE _WRITEDATApermission on a file, he could overwrite the

file. We write this as:

canWrite(Principal, resource(file, Name, Dacl)) :-

userToken(Principal, ProcessToken),

58

windowsAccessCheck(allowed, Dacl,

'FILE_WRITE_DATA’, ProcessToken).

If the adversary haKEY_SET_VALUEpermission on a registry key, he could over-

write the contents of the key. We write this as:

canWrite(Principal, resource(registry, Name, Dacl)) :-
userToken(Principal, ProcessToken),
windowsAccessCheck(allowed, Dacl,

'KEY_SET_VALUE’, ProcessToken).

If the adversary haSERVICE. CHANGECONFIGpermission on a service, he could

reconfigure the service. We write this as:

canWrite(Principal, resource(service, Name, Dacl)) :-
userToken(Principal, Token),
windowsAccessCheck(allowed, Dacl,

'SERVICE_CHANGE_CONFIG’, Token);

trusts(Principal, Resource) is a predicate that specifies thixincipal
trustsResource . If a principal executes code in a file, he trusts the file. Siacy one
who can configure a service can get administrative accessmachine indirectly, an

administrator should trust any service resource. We whieds:
trusts(Administrator, resource(service, Name, Dacl)).

If a principal Target trusts aresource(Type, Name, Dacl) and if a prin-
cipal Attacker can write to this resource, then the adversaitacker can launch a

privilege escalation tdarget . This is formally encoded as:

59

execCode(Attacker, Target) :-
canWrite(Attacker, Resource),

trusts(Target, Resource).

4.4 Discussion

In the formal description of Windows, we used two constriicéd are not allowed in pure
Datalog: negation and lists. But the use of negation in tregi@am has a well-founded
semantics [21]. The complexity of a Datalog program with IMf@inded negation is
polynomial in the size of input [17]. Similarly, when we usst$, we are not constructing
new data structures from them. In fact, each time a list isatied to make a decision, the
size of the list is decreased. In the absence of lists, thgrano terminates in polynomial
time. Since our usage of lists is well-founded, our programminates in polynomial
time.

We used our tool to see how software from various vendorsngigared in the de-
fault installations. We found that unprivileged users on md@ws XP host can obtain
administrator privileges through misconfigurations. Wecdsss the detailed findings of
our automatic analysis tool in section 7.1. These miscordifpns can be classified as

follows:

e Files. Some vendors’ software is vulnerable to a traditional filstem-based
Trojan-horse vulnerability. The executable files in thetwafe distribution are
configured to allow an untrusted guest user to overwrite ths;fthus a guest user

can introduce malicious code into the executables.

e Registry. Each registry key has a security context attached to it otlimg access

to the key. Some registry keys store sensitive informatika the path to the exe-

60

cutable acting as an user’s shell, the library to be loadea pypgram, the identity
of an operating system objéattc. If an adversary can overwrite the contents of a
sensitive key with the path of his library or executable, beld cause his code to
be executed [47, 28]. The standard configuration of softvrara several vendors

allows an untrusted guest user to overwrite sensitive tigghgys.

e Services.Several vendors poorly apply the Windows access controlattodheir
services; a common mistake is to assign 8RVICECHANGECONFIG per-
mission indiscriminately to untrusted users. This periossllows a principal to
set both the executable and the account under which theceemuns. Using this
permission, an untrusted guest user could cause an evitgorotp run as an ad-

ministrator.

windows identifies certain operating system objects (‘s#a¥) by globally unique identities like
4D36E96B-E325-11CE-BFC1-08002BE10318

61

Chapter 5

Analyzing multi-stage attacks

Single-host privilege escalations are useful to the a@dwgrenly if he has access to a
host. Typically, adversaries adopt a sequence of attagls $tereach a final target. To
obtain access to sensitive resources, besides Windows, lzalstersaries have to attack
other components in the network such as Unix hosts, netwidiesystems, and database
systems. The number of components in a large network is leigmplexity of compo-
nent interaction is high, the semantics of components antrin@l, and sometimes the
components have known security bugs. Even profession&rayadministrators have
difficulty in managing the security of a small network with auple of hundred users.
How does administrator protect the network from mistakesdidd make? On a large
network, the problem quickly becomes intractable.

In chapters 3 and 4, we discussed the security model of theldWis operating
system. We described how one can automatically analyzegesiost to determine
if privilege escalations are possible because of bad comafigu. In this chapter we
show that the solution to the large network management proli$ a rule-based expert

system that integrates configuration scanning, vulnatalsitanning and automatically

62

determines the transitive closure of all security attaakshe network. After determin-
ing all possible accesses, the framework identifies acsdbs are not allowed by the
administrator—these are security attack paths. The toobuik is called Multihost,
Multistage Vulnerability Analyzer (MulVAL).

MulVAL reasoning rules specify semantics of different kenaf exploits, compromise
propagation, and multi-hop network access. The MulVAL sudee carefully designed so
that information about specific vulnerabilities is facti@ut from the data generated by
vulnerability scanners. The interaction rules charazgegeneral attack methodologies
(such as “Trojan Horse client program”), not specific vuiiglities. Thus the rules do
not need to be changed frequently, even if new vulneradsléire reported frequently. We

have predicates in our system that model each of the follpwroperties:

e Vulnerabilities

Exploit propagation

User and data binding

User behavior

Network behavior

Host configuration

Security policy

In the rest of this chapter, we describe in detail various gonents of our system.

63

5.1 The MulVAL interaction rules

5.1.1 Mulnerability rules
vulScannerOutput(Host, Vulld, ProgramPath) is a predicate speci-

fying that a vulnerability with identity/ulld has been found in the program located at
the pathProgramPath on hostHost .

vulProperty(Vulld, ExploitRange, ExploitConsequence) is a pred-
icate specifying whether the vulnerabilitfulld can be exploited locally or remotely
and what happens when the vulnerability is exploitexploitRange is one oflocal
or remote . ExploitConsequence is one of privilegeEscalation ,
denialOfService , confidentialityCompromised and integrity
compromised .

dependsOn(Host, ProgramPath, LibraryPath) is a predicate that spec-
ifies on the hosHost , the program at the pathrogramPath uses the library at path
LibraryPath

vulExists(Host, Program, ExploitRange, ExploitConseque nce)
is a derived predicate that specifies that a vulnerabilitgtexn a host along with infor-
mation about whether it is remotely exploitable and its egugences. We derive this

predicate as follows:

VulExists(Host, Program, ExploitRange, ExploitConseque nce) :-
vulProperty(Vulld, ExploitRange, ExploitConsequence),

vulScannerOutput(Host, Vulld, Program).

If there is a security bug in a library used by a program, thengrogram could be

vulnerable. We express this as:

vulScannerOutput(Host, Vulld, ProgramPath) :-

64

vulScannerOutput(Host, Vulld, LibraryPath),
dependsOn(Host, ProgramPath, LibraryPath).

We need to capture transitive dependencies—if libtabyaryl usesLibrary2
and libraryLibrary2 usesLibrary3 , thenLibraryl usesLibrary3 . We write

this formally as follows:

dependsOn(Host, Libraryl, Library3) :-
dependsOn(Host, Libraryl, Library2),
dependsOn(Host, Library2, Library3).

5.1.2 Exploit modeling rules

The details of exploiting each vulnerability are unique.r Egample, the specific de-
tails of exploiting a buffer overflow bug i8imple Mail Transfer Protocol (SMTRErver
would be different from a buffer overflow bug iHypertext Transfer Protocol (HTTP)
server. However, there are lots of common traits betweesetbegs. For example, both
these programs are network servers, where they listen beardétwork for incoming re-
guests. Thus, an adversary can attempt to exploit thesedwagshe network. Typically
a buffer overflow bug results in crashing the server programéxample ofienial-of-
serviceattack), or capturing the server program’s privilegei\ilege-escalatiorattack).
When answering the questiavhat happens after a successful attaitle details of the
specific attack become unimportant, and it is sufficient tovkrmvhether the server pro-
gram crashed or has been completely taken over to deteriéeverall effects of a
successful attack.

The mechanisms of attacking different client programs argrssingly similar. For

example, even thougWicrosoft Wordis very different fromAdobe Acroreagthe mech-

65

anism an adversary would use to attack vulnerabilities @sé¢hprograms is similar, like

sending a malicious file that triggers a buffer overrun buthwithe application to take

over the process running on behalf of the target. A similahtggque is employed in ex-

ploiting a vulnerability in a Web browser, an e-mail clieat,an instant messenger client.
To facilitate these exploits, the adversary will deliver alitious web page to a vulnera-
ble web browser or its components (such as Internet ExpbrdrJava Virtual Machine

plugin of Firefox browser), or a malicious e-mail to an e-h@dient (such as Pine, Multt,

Outlook Express) or send a malicious instant message tes#rauging a vulnerable client
(such as Skype, Yahoo! Messenger, and MSN Messenger).

When a vulnerability is reported on vulnerability repogimailing lists, typically the
advisory contains information like whether the vulnerdyils remotely exploitable or
locally exploitable and whether the vulnerability resutte denial of service or privilege
escalation. Such information is also readily available schine-readable databases on
the Internet [33]. We will show in this thesis that such miet@rmation is valuable in
conducting a transitive closure of all bugs on a network tdaratand how an adversary
can launch a multi-stage multi-host attack on the network.

In this section, we describe how we model different kinds)gfleits. We introduce
several predicates that are used in the exploit rules.

execCode(P, H, UserPriv) is a predicate specifying that princip@ican ex-
ecute arbitrary code with privilegdserPriv. on hostH.

netAccess(P, Src, Dest, Protocol, Port) is a derived predicate spec-
ifying that principalP can send packets from machi8ec to portPort on machine
Dest through protocoProtocol

networkService(Host, Program, Protocol, Port, Priv) is apred-

icate specifying that a service progrdPnogram is running on hosHost at privilege

66

levelPriv . This program is serving requests over the network by lisggon portPort
of protocolProtocol

setuidProgram(H, Program) is a predicate specifying th&rogram is a
setuid program on hogd. In a Unix system, when a setuid is executed, it runs at the

privilege of the owner of the program

Remote privilege escalation Suppose that an adversary is trying to attack a network
server program. He will be able to successfully attack tlegm only if the following

conditions are met:
¢ Avulnerable program is listening on the network.
e The vulnerability can be remotely exploited.

e The network configuration allows the adversary to send aaioals packet(s) to

the port the program is listening on.

If the bug is a privilege escalation bug, upon on successfatl, the adversary gets
hold of the network server’s process, thus getting hold efubkerid running the network

server process. We write this formally as:

%% Remote network server attack
execCode(Attacker, Host, ProgramUserld) :-
VulExists(Host, Program, remoteExploit,
privilegeEscalation),

networkService(Host, Program, Protocol,

1A common use of setuid programs is a situation wherein a jarags run by various users, but still has
to keep track of statistics or data over different runs. Eglminclude programs like GNOME Mahjongg
(the program has to maintain a list of highest scores acriffesaht users) anghasswd (a program to
change user passwords that are stored in a common file).

67

Port, ProgramUserld),
netAccess(Attacker, _AttackerSource,

Host, Protocol, Port).

In the formalism of Datalog, an identifier starting witlflike _AttackerSource)
is an anonymous variable, and it can bind to any value. Sbgiabove rule the predicate
netAccess(Attacker, _AttackerSource, Host, Protocol, Port) means

that it does not matter from which host tAtacker launches the attack.

Local privilege escalation In Unix, when a setuid program is executed, then the pro-
gram executes with the privileges of the user owning the ranog—typicallyroot . As

we discussed in chapter 3, certain programs in Windows ageut®d in a privileged
context. To attack these privileged programs, the advef#at obtains access to some
privilege level on the target host, and then exploits thengtdbility in the privileged

program. An adversary can attack a privileged program if:

e The privileged program is vulnerable.
e The vulnerability can be locally exploited.

e The adversary already has (shell) access to the host.

Upon successful attack, the adversary gets hold of thelgges of the privileged

program. We encode this formally as:

%% Local attack against a privileged program

execCode(Attacker, Host, ProgramUserld) :-
VulExists(Host, Program, localExploit, privilegeEscala tion),
privilegedProgram(Host, Program, ProgramUserld),

execCode(Attacker, Host, _SomeUser).

68

Kernel. On many occasions, programming flaws in the kernel of the aiprey sys-
tem resulted in both locally exploitable and remotely explole vulnerabilities [30, 45].
Hence, we model the operating system kernel as both a netserkce running as
root , and alocal privileged program. That is, the consequenegglbiting a privilege-
escalation bug in kernel (either local or remote) will résnila compromise of the admin-

istrative account of the machine and hence the whole system.

Remote-exploit-client An adversary can attack a client program if the following-con

ditions are met:
e TheProgram is vulnerable to a remote exploit.
e TheProgram is client software with privileg®riv .
e TheAttacker is some principal that originates from a part of the netwoheve
malicious users may exist.

The consequence of the exploit is that the attacker can exachitrary code with privi-

legePriv . We encode this formally as:

execCode(Attacker, Host, Priv) :-
vulExists(Host, VullD, Program),
vulProperty(VullD, remoteExploit, privEscalation),
clientProgram(Host, Program, Priv),

malicious(Attacker).

5.1.3 File access

After exploiting a client or server program, the adversagysghold of a certain privilege

level on a host. Among other things, one of the things the l@dwe could try is to tamper

69

with critical operating system files—like the password filernel program, and programs
in the system directory. Or the adversary could try to steafidential data from users’
directories. Thus we need to model file access semantics.

In traditional Unix, the permissions that can be placed oalgact areead write and
executeWhen a principal is granted a permission to a file objectpferating interprets

the permissions as follows:

e read Permission to read the file. For directories, this means @sion to list the

contents of the directory.

e write permission to write to (change) the file. For directoriess theans permis-

sion to create and remove files in the directory.

e executepermission to execute the file (run it as a program). For trges, this

means permission to access files in the directory.

There are three categories of users who may have differemipgions to perform any
of the above operations on a file object: the file’s owner, tleesfgroup and everyone
else.

localFileProtection(Host, User, Access, FilePath) is a predi-
cate specifying that thedser on machineHost can have specifieAccess to the file
FilePath

accessFile(Principal, Host, Access, Path) Is a predicate specify-
ing thatPrincipal can access the file specified Bath onHost . Access can be
one ofread , write andexecute .

If an attackerAttacker can execute code on machiHest as a uselser , then

he can access whatever fildser can access. We encode this formally as:

70

accessFile(Principal, Host, Access, Path) :-
execCode(Principal, Host, User),

localFileProtection(Host, User, Access, Path).

5.1.4 Trojan horse programs

A Trojan horse is a malicious program that is disguised asihegte software—one that
masquerades as a benign program. The program may look useifuleresting (or at
the very least harmless) to an unsuspecting user, but ialgcharmful when executed.
It could be an otherwise useful software that has been ctadulpy a cracker inserting
malicious code that executes while the program is used. ¥ample, it is very common
for intruders to break-in to a system and replaceSkeure Shekxecutable with a mali-
cious executable that provides the functionalitySafcure Shellbut in addition captures
the user’s passwords and uploads it to a global server. Aafrbprse program may also
even install a back-door program on the compromised systetrallows the adversary
to enter the host at a later time.

An adversary usually introduces a Trojan horse programlésie: he obtains certain
privileges on a host and then replaces legitimate prograititsanTrojan-horse version.
When a user executes such programs, the attacker obtaipsitiieges of the user. A
special case of Trojan-horse is where the adversary replacesxecutable file used in
operating system boot process. In that case, the adveraargain complete control of

the host. We model this as follows:

execCode(Attacker, Host, User) :-
accessFile(Attacker, Host, write, Path),

not privilegedProgram(Host, Path),

71

localFileProtection(Host, User, exec, Path).

execCode(Attacker, Host, Owner) :-
accessFile(Attacker, Host, write, Path),
privilegedProgram(Host, Path),

fileOwner(Host, Path, Owner).

Suppose that an adversary has the capability to overwrite.ald determine whether
overwriting this file is useful in a Trojan-horse attack, weed to determine a) if file is
an executable file and b) if the target does indeed execut@léheln determining the
answers to these questions, we make certain conservapvexamations.

We assume that any file (in the system directories) that iketeexecutable is indeed
an executable. There could be files that are marked exeeutald they are merely used
to store data (like statistics)—so overwriting these filesginot result in a Trojan-horse
attack. For example the filletc/ppp/options file in a Fedora Core 4 machine is
marked executable, but it is merely a configuration file anmbisdirectly executed. It is
very hard to automatically understand when a file is indeegkagutable and the strategy
of checking ifexecute permission is granted is a good heuristic. In practice, waéb
that very few data files are mistakenly marked as executdbke fThus, it is reasonable
to assume that any file (in the system directories) that ikethexecutable is indeed
executable.

If an adversary can tamper with or overwrite an executabte@m, a successful
Trojan-horse attack results only after the target actuatgcutes the program. It is really
hard to determine the circumstances under which an exdeuisbis indeed executed.
For example, it is hard to answer questions filtdo are using the grep programand

“when is the executable /usr/bin/zipinfo usedWe assume that a file that is marked

72

executable is executed by the owner of the file. If an exetaithle is owned by an
administrator, then we assume that all useis use the file. This is conservative yet

pragmatic given that our approach is to treat programs akHflexes.

5.1.5 Networked File Systems

A networked file system allows sharing a file system betweenyncamputers, so that
one could easily access files from all of them. In cluster mmments where there a
large number of identical machines, it is a hassle for theiadtnator to maintain each
machine. The solution adopted is that the administratontaads a single host and then
lets the changes propagate to other hosts automaticailg ngtworked file systems.

After getting certain access on a host, one way an adversarpmpagate the attack
to other hosts is to use the networked file systems. The aalyersrrupts the file on the
client share, and the file system copies the changes backtba server share. From the
server share, the corrupted file can automatically prosigedther clients mounting the
share. There a large number of networked file systems Aik@rew File System (AFS)
Network File System (NF&phdServer Message Block (SMB, Samb@yf these, we show
here how to model thBletwork File System (NFS)e hypothesize that modeling other
networked file systems should be similar.

NFS protocol is based dRemote Procedure Call (RPQYFS is assigned an RPC pro-
tocol number of 100005 fsExportinfo(Server, Path, Access, Client)
nfsMounted(Server, ServerPath, Access, Client, ClientPa th) are
predicates that are generated by looking at the NFS configarile on the client side.
However, if an administrative account is compromised orctieat side, then the attacker

can mount any files. We encode this as:

73

nfsMounted(Anything) :-

execCode(P, Client, root).

If files are mounted on the client side using the NFS protaad, if the adversary can
access files on the client side, then the adversary can aiteefiles on the server side.

We encode this as:

accessFile(P, Server, Access, SrvPath) :-
nfsExportinfo(Server, Path, Access, Client),
nfsMounted(Server, SrvPath, Access, Client, CintPath),
netAccess(P, Client, Server, rpc, 100003).

accessFile(P, Client, Access, CintPath).

5.2 Modeling the network

An attacker can propagate a multi-stage multi-host by seniehialicious packets over the
network to compromise vulnerable server programs. Thetglaif the attacker to send
malicious packets depends on how the network infrastradgsiconfigured. It is very
common to usaetwork firewallsto allow or block certain network packets, depending
on various characteristics. Thus, the system administcato achieve certain goals like
block all Internet access from this class of hebtsck all programs that use UDP traffic
do not allow any traffic on port 23 in TCP protocol

Packet flow is controlled by switches, routers and firewallkadeling the elements
of the network infrastructure is important in determinimg toptions an adversary has in
attacking a network. The problem of modeling network infinasture to determine what
kind of activities are allowed is well studied [6, 4]. We ruetwork analysis tools which

produce host to host reachability information. We abstthig information as a set of

74

host access control lists (hachVe feed the hacl into our analysis. A host access control
list specifies all accesses between hosts that are allow#dtehyetwork. It consists of a

collection of entries of the following form:
hacl(Source, Destination, Protocol, DestPort).

One can use these abstracted entries to determine the Reteamss an adversary has

as follows:

netAccess(P, H2, Protocol, Port) :-
execCode(P, H1, Priv),
hacl(H1, H2, Protocol, Port).

If a principalP has access to machif under some privilege and the network allows
H1 to accesdH2 throughProtocol andPort , then the principal can access hét
through the protocol and port. This allows for reasoninguboulti-host attacks, where
an attacker first gains access on one machine inside a neamorkaunches an attack

from there.

5.3 Policy specification

The analysis we described earlier can be used to computéhwisier can access what
resource and which user can obtain what privileges. An agtn&tor can access all the
resources of his domain and can obtain the privileges as®ocwith his any user in his
domain. This is normal behavior. On the other hand, a stnatihere a untrusted user
can access confidential files or can obtain unwanted predleg a real problem. We
need a mechanism to specify which accesses are allowedr fraowework, the system

administrator specifies allowed behavior through a secpoticy.

75

5.3.1 Policy specification

The security policy specifies which principal can accesstwlasga. Each principal and
data is given a symbolic name, which is mapped to a concrdtgy dry the binding
information discussed in section 5.3.2. Each policy statans of the form
allow(Principal, Access, Data)
The arguments can be either constants or variables (vasatdrt with a capital letter

and can match any constant). Following is an example policy:

allow(Everyone, read, webPages).
allow(user, Access, projectPlan).

allow(sysAdmin, Access, Data).

The policy says anybody can reagbPages, user can have arbitrary access to
projectPlan . And sysAdmin can have arbitrary access to arbitrary data. Anything
not explicitly allowed is prohibited.

The policy language presented in this section is quite ®rapd easy to make right.
However, the MuUlVAL reasoning system can handle more cormptdicies as well (see

section 5.6).

5.3.2 Binding information

Principal binding maps a principal symbol to its user acdéswn network hosts. For

example:

hasAccount(user, projectPC, userAccount).

hasAccount(sysAdmin, webServer, root).

Data binding maps a data symbol to a path on a machine. Forp&am

76

dataBind(projectPlan, workstation, '/home’).

dataBind(webPages, webServer, 'www’).

The binding information is provided manually.

5.4 Analysis Algorithm

The analysis algorithm is divided into two phasattack simulatiorandpolicy checking
In the attack simulation phase, all possible data accebaesdn result from multistage,

multi-host attacks are derived. This is achieved by thefwihg Datalog program.

access(P, Access, Data) :-
dataBind(Data, H, Path),

accessFile(P, H, Access, Path).

That is, ifData is stored on machind under pattPath , and principaP can access
files under the path, theR can acces®ata . The attack simulation happens in the
derivation ofaccessFile , which involves the Datalog interaction rules and datagupl
inputs from various components of MulVAL. For a Datalog piag, there are at most
a polynomial number of facts that can be derived. We executeDatalog programs
in off-the-shelf Datalog engine XSB [38]. The engine guéeas (through its tabling
mechanism) that each fact is computed only once. Henceftdekaimulation phase is
polynomial.

In the policy checking phase, the data access tuples outputthe attack simulation
phase are compared with the given security policy. If an ss¢g not allowed by the

policy, a violation is detected. The following Prolog pragr performs policy checking.

77

policyViolation(P, Access, Data) :-
access(P, Access, Data),

not allow(P, Access, Data).

This is not a pure Datalog program because it uses negatiarthB use of negation
in this program has a well-founded semantics [21]. The cexip of a Datalog program
with well-founded negation is polynomial in the size of infpli7]. In practice the policy

checking algorithm runs very efficiently in the XSB enviroant (see section 7.5).

5.5 Hypothetical analysis

One important usage of vulnerability reasoning tools isdaduct “what if” analysis.
For example, the administrator would like to a$Kill my network still be secure if two
CERT advisories arrive tomorrow?” After all, an important purpose of using firewalls
is to guard againgtotentialthreats. Even there is no known vulnerability in the network
today, one might be discovered tomorrow. Analysis that eeal weaknesses in the
network under hypothetical circumstances is useful in maprg security. Performing
this kind of hypothetical analysis is easy in our framewoWe introduce a predicate
bugHyp to represent hypothetical software vulnerabilities. Faraple, following is a

hypothetical bug in the web service progrémtpd on hostwebServer .

bugHyp(webServer, httpd,

remoteExploit, privEscalation).
The fake bugs are then introduced into the reasoning process

vulExists(Host, VullD, Prog) :-

78

bugHyp(Host, Prog, Range, Consequence).

vulProperty(VullD, Range, Consequence) :-

bugHyp(Host, Prog, Range, Consequence).

The following Prolog program will determine whether a pgligolation will happen

with two arbitrary hypothetical bugs.

checktwo(P, Acc, Data, Progl, Prog2) :-
program(Progl),
program(Prog2),
Progl @< Prog2,
cleanState,
assert(bugHyp(H1, Progl, Rangel, Conseql)),
assert(bugHyp(H2, Prog2, Range2, Conseq2)),
policyViolation(P, Acc, Data).

The twoassert statements introduce dynamic clauses about hypothetics im
two programs (Prolog backtracking will cycle through allsgible combination of two
programs.). The policy check is conducted with the existasfche dynamic clauses. If
no policy violation is found, the execution will back trackcaanother two hypothetical
bugs (in two different programs) will be tried@<is the term comparison operator in
Prolog. It ensures a combination of two programs is triedyamice. If there exist two
programs whose hypothetical bugs will break the securitjcpmf the network, the
violation will be reported bychecktwo . Otherwise the network can withstand two

hypothetical bugs.

79

5.6 Discussion

Coverage. We model privilege escalation attacks and denial-of-seraittacks. We do
not model vulnerabilities whose exploit consequence ididentiality loss or integrity

loss. The ICAT database does not provide precise informasto what confidential
information may be leaked to an attacker and what infornmatio the system may be
modified by an attacker. ICAT statistics show that 84% of euhbilities are labeled
with only privilege escalation or denial of service, the tlods of exploits modeled in
MulVAL. It seems in reality privilege-escalation bugs aletmost common target for

exploit in a multistage attack.

More complex policies. The two-phase separation in the MulVAL algorithm allows us
to use richer policy languages than Datalog without affecthe complexity of the attack
simulation phase. The MulVAL reasoning system supportegdrProlog as the policy
language. Should one need even richer policy specificati@attack simulation can
still be performed efficiently and the resulting data acdeptes can be sent to a policy

resolver, which can handle the richer policy specificatifficiently.

No policy? Because the attack simulatiomistguided by or dependent on the security
policy, it is possible to use MulVAL without a security poficthe system administrator
may find useful the raw report of who can access what. Howévempolicy is useful in

filtering undesirable accesses from harmless accesses.

Hypothetical analysis. Is it really possible that a real network can survive two gahe
hypothetical bugs? Networks are large and complex. A lawgaber of security bugs

are reported in software and hence in any large network systministrators have to

80

manage a large number of software bugs. For example, as welzkes section 7.2.1,
a standard vulnerability scanner found several bugs in Eepstonally managed network
used by hundreds of users. The system administrators explaéihat they were aware of
the security bugs, but hypothesized that exploiting theibwalifficult and that the vulner-
able program is accessible only from a couple of trustedshostthe internal network.
Hence, fixing these security bugs was not the most importmotei they had to attend
to. Sometimes, removing a security bug network from a ndtwesults in disruption
of business processes and the immediate risk of explaitéitow. In these scenarios,
an administrator may decide that the cost of fixing the sécbrig is not worth the cost
and may instead of deploy a intrusion detection system toitaotine vulnerable soft-
ware. Administrators also follow a “defense in depth” stmat where they prepare for
circumstances where a particular software may be compeaimis such situations, it is
very useful for the administrator to have a tool that can arsyuestions such as “what

happens if a particular host is compromised”.

81

Chapter 6

Vulnerability scanning

In this chapter | describe the state of the art in vulnergbgcanning and how improve-
ments can be made. In section 6.1, | describe the evolutiomlokrability scanning

technology. In section 6.2, | describe a state-of-therarhEwork developed by the Mitre
Corporation to concisely specify the properties of a bugsTiamework can be used to
quickly identify the existence of a bug on a network. In satb.3, | show how one spec-
ifies a vulnerability in the framework. In section 6.4, | ond the drawbacks of current
vulnerability scanners, even state-of-the-art ones. &b slection, | outline the design of

a next generation scanner to addresses these shortcomings.

6.1 Evolution of vulnerability scanning technology

An important component of a network’s security managenetat understand the current
known vulnerabilities in software installed on the netwarld determine whether any of
the hosts in the administrator’s domain are vulnerable. Gt@ia information about the

existence and exploit details of current known vulnerébsi, an administrator subscribes

82

to vulnerability discussion and information disseminatioailing lists such as BugTragq,
US-CERT's Cyber Security Bulletins, and Full Disclosureilmg list. In figure 6.1, we
show an advisory in Ethereal software that was discussedamy iscussion lists on 24
April 2003. This advisory details information such as thieetied versions of the pro-
gram, the affected versions of the operating system digtah that deliver the vulnerable
software, how the adversary can exploit the vulnerabifityd how the administrator can
get the updated versions of the software that fix this vulniéta

The advisory mentions the details of the vulnerability itumal-language format and
not in a format with formal semantics. The main drawback o t#pproach is that the
process of determining if a vulnerability exists on a givestrequires manual interven-
tion, which is a slow and error-prone process. On large neksyahe process of manual
discovery of vulnerabilities is infeasible because of thgé number of machines and
limited number of system administrators. There is a needtwsalidate management
of vulnerabilities, from discovery to real-time reportibtgmanaged security monitoring

reports. This consolidation can be classified into the failhg stages:

e Manual: This is the most primitive phase, where an administratodsdae vul-
nerability advisory and manually checks information sushtfze version of the
program and the operating system, the configuration opfamihe program (like
whether modulenod.perl of Apache web server is enabled). Examples include
opening the vulnerable program and clicking the “About” talthe case of ap-
plications with graphical interfaces, checking the valogsegistry keys through
Regedit , and usingvinver command in Windows to open a graphical session

listing various operating system parameters.

83

Red Hat Security Advisory

Synopsis: Updated ethereal packages fix security vulnerab
Advisory ID: RHSA-2003:076-01

Issue date: 2003-04-23

Updated on: 2003-04-23

Product: Red Hat Linux

Keywords:

Cross references:

Obsoletes: RHSA-2002:290

CVE Names: CAN-2003-0081 CAN-2003-0159

1. Topic:

Updated ethereal packages are now available which fix a form
string bug and a heap-based buffer overflow.

2. Relevant releases/architectures:

Red Hat Linux 7.2 - i386, ia64
Red Hat Linux 7.3 - 1386

Red Hat Linux 8.0 - 1386

Red Hat Linux 9 - i386

3. Problem description:

Ethereal is a package designed for monitoring network traff
your system. Ethereal 0.9.9 and earlier allows remote attac
to cause a denial of service (crash) and possibly execute
arbitrary code via carefully crafted SOCKS packets. Additi

ilities

at

ic on
kers

onally,

a heap-based buffer overflow in the NTLMSSP code for Etherea I

0.9.9 and earlier allows remote attackers to cause a denial o
service and possibly execute arbitrary code. Users of Ether
should update to the erratum packages containing Ethereal v
0.9.11 which are not vulnerable to these issues.

4. Solution:

Before applying this update, make sure all previously relea
errata relevant to your system have been applied.

84

f
eal
ersion

sed

Figure 6.1: Sample vulnerability advisory on the Full Dastire mailing list.

e Scripting Some of the repetitive tasks are scripted. Small scriptsvaiteen to test
for the existence of specific bugs. These scripts can be nametically with little
human interference. To detect a new bug, one has to changeafeam that tests

for the vulnerability.

e Data-driven vulnerability scanning: The main drawback of the previous stage
is that any time a new vulnerability definition is out, the gram that recognizes
the bug has to be changed. This ad hoc programming can imteo€wors. A
better solution is to define a schema to describe bugs andudeea program that
understands the schema to automatically recognize bugs.aditiantage of this
approach is that when a new vulnerability is reported, oisé meeds to write the
specification for the vulnerability. It is much easier to ¢e¢ specification right

than to correctly write a script to identify the existencelof vulnerability.

Currently, the Open Vulnerability Assessment LanguageXO\Vepresents the most
advanced stage of this evolution process. The schema haslbeeloped by the Mitre
Corporation and Mitre also released a reference implemientaother vendors have
also released OVAL-compatible scanners. OVAL compatihinerability definitions
are available for download at the webdhigp://oval.mitre.org and from other
vendors. We discuss in detail the OVAL schema and its ret@@nplementation because
it represents the state of the art in vulnerability scannivg then discuss the limitations

of current systems and how we designed better scanners.

6.2 Open Vulnerability Assessment Language

In section 2.4.1 of this thesis, we briefly introduced theaidé formal representation

of security advisories and automatic recognition of segwulnerabilities. The OVAL

85

schema is a standard schema that one can use the specifguhig/sailnerabilities [49].
An OVAL vulnerability test is defined as a boolean combinaixd one or more elemen-
tary tests. An elementary test is used to query propertiels as the existence of a file,
the permissions on a file, the operating system version, ih@epses running on a host,
the ports that are bound to network server programs and tisgoveinformation of soft-
ware installed on the host. An example OVAL vulnerabilityfidgion, when written in

pseudo-code would read:

This host is vulnerable if

The host runs Red Hat Linux 6.2 operating system

and
-- Apache 1.3.4 is installed on the host
and
-- Apache program listening on port 80
and
-- Config file /etc/apache.conf is world-writeable.
or

-- Config file /etc/httpd.conf is world-writeable.

6.2.1 Linux tests

The current definitions for the vulnerabilities and defmntintrepreters on the Linux plat-
form use the following testdile test permission testuname testprocess testnetwork
server testrpminfo testand therpmversion testWe now briefly describe the functional-

ity of each of these tests.

86

Red Hat Package Manager An important problem system administrators face in sys-
tems management is conflict management between severaisefproducts. Before
installing a new software, an administrator will have to (mally) check that its prerequi-
site software is already installed. Installation of newtsafe might replace a library file
used by another software, which might render some of thadyrexisting software un-
usable. In the worst case, the machine might be renderedotatile. Operating system
vendors provide mechanisms to automatically track the oiégecies between various
software and check for conflicts before software is insthllEheRed Hat Package Man-
ageris an open source application package management system tis&d to maintain
package specific information (such as version informatieguired libraries, installation
scripts and files used by the package) and a database of kHgeinstalled on a host,
a list of files on the host and the programs that use the files Widely used by various
distribution vendors for their Linux distributions. Eacppication package is supplied
to the Red Hat Package Manager as a Red Hat Package Manad#4) (g€kage. To
determine properties of an application installed on a hastlf as version information,

files required), one needs to just consult the RPM database.

Filetest. Afile testis used to test the existence of a file. After detamng the existence
of the file, this test can be used to retrieve properties ofitasuch as owner, group, last
time the file was accessed or accessed, the time the file watedrand a checksum.

OVAL schema usedt as the prefix to identify a file test.

Permission test. A permission test is used to test the permission bits of adilee can
test whether afile is readable, writeable, or executabldthgiethe owner or the group or

the world. One can also test whether the setuid or setgisdbbédie are turned on—these

87

bits imply that upon execution the program in the file runs ehdif of the owner of the

file. OVAL schema useret as the prefix to identify this test.

Uname test. A uname test is used to obtain properties such as the machmevare
name (like i686), the host name, the operating system nakesl{inux), the operating
system build version (like “#1 Wed Aug 25 13:34:40 UTC 2004He operating system
version (like 2.6.11-1.1369C4) and the processor type (like i686). OVAL schema uses

rut as the prefix to identify this test.

Process test. A process test is used to obtain properties such as the cochorgiro-
gram name to check, the amount of CPU time the process hasroeds the process ID
of the process, the parent process’s process ID, the sehggtuiority of the process (ad-
justed using th@ice command), the scheduling class, the start time of the psoties
terminal (tty) on which the process was started and the usamg the process. OVAL

schema usest as the prefix to identify this test.

Network server test. This test is used to check if a program is listening on the net-
work, either for a new connection or as part of an ongoing eation. One can retrieve
the name of the communication program, the internet prétaadress of the network in-
terface on which the program listens, the local port, theatenmternet protocol address,
the remote port, the transport layer protocol, the processtity of the process and the
user account which owns the network server process. OVAkemehusesit as the

prefix to identify this test.

Rpminfo test. This test checks the RPM header for a given RPM package. $eid to

retrieve the architecture the package was packaged foepgbeh number for the RPM,

88

the release number for the RPM, and the version number fosdiftevare built in the

RPM. OVAL schema usest as the prefix to identify this test.

Rpmversion test. This test checks the installed RPM against a given epocisjorer
and release number to determine if the installed RPM is dreear later version com-

pared to the affected version. A majority of the tests in tMADvulnerability database

maintained by the Mitre Corporation use this test to deteentihe version of a program.
One supplies the information for the first RPM that does netlihe given security flaw
and the interpreter checks if the software installed is gtdble. OVAL schema usesgt

as the prefix to identify this test.

The above tests are supported by the standard referencenmaptation. In addi-
tion to these tests, there are other tests that are suppaytdee schema, but not by the
standard reference implementation. These tests are usdatdm information such as
the network interfaces on the host, information regardimguser’s password, password

aging and lockout.

6.2.2 Windows tests

The current definitions for the vulnerabilities and defmrtintrepreters on the Windows
platform use the following testgegistry test file testand themetabase testWe now

briefly describe the functionality of each of these tests.

Registry test. The Windows registry test specifies a particular registny (c keys) to
test. One can testif the value stored in a registry key matahregular expression. OVAL

schema usesrt as the prefix to identify this test.

89

File test. This test is used to test the file metadata information. Omeretieve the
owner, the time of access, the creation time, time of lastifivadion, the checksum of
the file, type of the file (one of directory, standard file, armdned pipe), The meta data
associated with a file also contains the “version” of the filme can use the file test to

retrieve the version of the file. OVAL schema usds as the prefix to identify this test.

Metabase test. The Windows metabase is a database that is very similar toethe
istry. A metabase is used to store information for theernet Information
Services program. One can use this test to retrieve information starehe spec-
iflied metabase keys. OVAL schema ugest as the prefix to identify this test.

The standard reference implementation supports the absts in addition, the Win-
dows schema supports a large number of other tests that anaplemented in the ref-
erence implementation. These tests are used to obtaimaf@n such as the account
privileges of an account, the configuration settings atglainder active directory, the
audit policy of the system (such as writing to the security\when a user logs on or off,
when a user changes password and when a user executes délaydit policy on a
given file or registry key (such as writing to the security lelgen a particular user opens
a file for a read operation), the security descriptor thaeheines which principals can
access a file or registry key, the group memberships of a gjveup, the network inter-
faces of the system, the account lockout policy, the passwolicy, the network ports
open on a host, the properties of processes on the systentheamdormation regarding

the file system.

90

6.3 Example of formal vulnerability specification

We now show how to formally encode the vulnerability we dssed above. The vulner-
ability advisory released by the vendor is shown in figure @he vulnerability affects
Ethereal 0.9.9 and earlier on operating systems Red HatxLir2 through 9 on386
architecture and Red Hat Linux 7.2 on ia64 architecture.siMae need to write an OVAL

test that tests the operating system, architecture anagrogersion.

Testing for Operating System. The procedure to test the version of an operating sys-
tem in a Red Hat Linux system is to check the version oé@hat-release RPM
package. We show how to test for Red Hat Linux 9 system; tg$tinother versions is

similar. The testis:

<rpminfo_test id="rrt-201" comment="Red Hat 9 is installe d">
<name operator="equals">redhat-release</name>
<version datatype="int" operator="equals">9</version>

</rpminfo_test>

Testing for architecture. We show how to test foi386 architecture. The test for

iab4 is similar.

<uname_test id="rut-201" comment="ix86 architecture">
<machine_class operator="pattern match">". * 86
</machine_class>

</uname_test>

Testing program version The test to check for Ethereal versions 0.9.9 and earlier is:

91

<rpmversioncompare_test id="rvt-206">

<name operator="equals">ethereal</name>

<tested_version operator="equals">
0.9.11

</tested_version>

<installed_version operator="equals">
earlier

</installed_version>

</rpmversioncompare_test>

Complete vulnerability definition. In figure 6.2, we show a complete vulnerability
definition that uses the above tests as elementary tests. dfinition is listed in the
OVAL vulnerability database maintained by the Mitre Comoon, with the reference
identifier beingOVAL54. Besides the criteria needed to recognize a vulnerabihty,
complete definitions also incorporates other useful infron such as the definition au-

thor, the dates, description.

6.4 Next generation scanners

The current state-of-the-art scanner suffers from two weakes: insufficient function-
ality and large trusted base. We now explain why these isstgeproblems and how we

designed a better scanner.

92

<definition id="OVAL54" class="vulnerability">
<affected family="redhat">
<redhat:platform>Red Hat Linux 9</redhat:platform>
<product>Ethereal</product>
</affected>
<contributors>
<submitter organization="The MITRE Corporation">
Jay Beale
</submitter>
</contributors>
<cveid status="CAN">2003-0081</cveid>
<dates>
<created date="2003-08-17"/>
<modified date="2004-05-05">
Corrected syntax errors in the sql
verion of the definition.
</modified>
<status_change date="2004-03-25">INTERIM
</status_change>
<status_change date="2004-05-25">ACCEPTED
</status_change>
</dates>
<description>
Format string vulnerability in packet-socks.c
of the SOCKS dissector for Ethereal 0.8.7 through 0.9.9
allows remote attackers to execute arbitrary code via
SOCKS packets containing format string specifiers
</description>
<status>ACCEPTED«</status>
<version>1</version>
<criteria>
<software operation="AND">
<criterion test_ref="rrt-201"
comment="Red Hat 9 is installed" />
<criterion test_ref="rut-201"
comment="ix86 architecture" />
<criterion test_ref="rvt-206"
comment="ethereal version
0.9.9 and earlier/>
</software>
</criteria>
</definition>

93
Figure 6.2: Sample Vulnerability Definition in OVAL datal@a@VAL54).

6.4.1 Drawbacks of current vulnerability scanning technobgies

Insufficient functionality. We show in chapter 7 how our tool found serious vulnera-
bilities in the configuration of software from major venddos the Windows platform.
These vulnerabilities were in the security configuratioceftain Windows services and
registry keys installed by various vendors. The currennetdbility scanners do not
support scanning the security configuration of service abje Windows. An OVAL
scanner is meant to recognize already existing vulnetasiliOne has to supply the vul-
nerability definition to recognize the existence of a vudtility. Thus an OVAL scanner
can never recognize the existence of an unknown bug. We \arstphisticated scanner
to query the configuration of services and other operatirsgesy objects. We then used

the tool to find previously unknown vulnerabilities.

Scanners are too heavy. Another drawback of current scanners is that the colleation
configuration data from the host is not separated from théysiseof the configuration

data. The collection phase of the vulnerability scannedsde collect certain privi-

leged information and hence needs to run from an adminiggratcount. The analysis
phase involves understanding the vulnerability definitioonsulting the configuration
data from the collection phase and determining if the vidhiity does indeed exist on
the host. Because collection of data is not separated froriigeoation analysis, both the
collection and analysis phases need to run with adminigtrativileges. The net result
it that the trusted computing base of the vulnerability seans much larger than it needs

to be; it is well understood that this is a bad idea.

94

6.4.2 Next generation scanner

We built a new scanner that extends the functionality of a\lDg¥canner to scan the
configuration settings of Windows services and registrysksgcurity context. Our scan-
ner scans the entire registry and identifies registry keyssghdata contain the name
or path of an executable file or library. It is very common inndbws to use a reg-
istry key to store the file or library to invoke upon certainnddions being met. For
example, when a user logs onto a host, the system shouldrdetevhat is the first
program that runs on behalf of the user. The path to this progs stored in the key
HKLM SOFTWAR®icrosoft \WindowsNT\Current Version \Winlogon \
Userinit . If a sensitive key can be overwritten by the adversary, thesesary can
make the key point to his executable content. The adversany Wwaits for the system
to execute his content. Our tool identifies sensitive registys and for each sensitive
registry key, our tool investigates the security descripposee if the key’s contents can
be overwritten by the adversary. Our tool enumerates thacges on a Windows host and
investigates the security descriptor on each service isteice presents the adversary
with an opportunity to attack the system.

We modified the OVAL (Linux) scanner so that it works in two pha. The first phase
needs administrative privileges and collects all the caméigon data into a database. The
second phase does the analysis of the configuration datdandlinerability definition
and determines if the vulnerability specified by the defamtexists on the host. In this
design, only the first phase needs administrative privBetiee second phase can run un-
der a nonadministrative account. In figure 6.4.2, we show th@better scanner reduces
the trusted computing base and the size of the configuratiapshot.

Another advantage of separating the configuration cobactrom analysis is that

configuration collection can be run before information atuulnerability is available.

95

Tests Lines of code| Size of configuration snapshot
File and file permission test 250 20 MB
Process test 150 1 MB
Network server test 1 1 KB
Uname test 50 1KB
RPM tests 2000 10 MB
Total 2451 31MB

Figure 6.3: We designed a two-phase scanner that sepamatéguration information
collection from analysis. In contrast, the OVAL scanner &dsisted computing base of
17354 lines of code.

If configuration collection is run after a vulnerability isiplicly known, there is the pos-
sibility that the adversary has already compromised thehmac If the adversary has
already compromised the host, then he may be able to hijac®WAL scanner, tricking
the scanner to believe that the vulnerability does not et suggest that the configura-
tion collector be run periodically or each time a change islen@ the host configuration
and that the results be stored in a centralized server. Whernarability advisory is
released, one check if the host is vulnerable by running tfadyaer on the centralized
server—thus not relying on the information provided by tlstafter a vulnerability is
publicly known.

If one maintains configuration information on a centralizedl trust-worthy server,
then it is easy to maintain a historical database of the cordtepn of the host. When
it is suspected that a host has been compromised, a histdatabase of host configu-
ration can be used to perform an analysis of what the adwecsarld have done after

compromising a host.

96

Chapter 7

Practical experience

In this chapter, we describe our experience with deployimgtool. Our tool found two
classes of security attacks on real networks: attacks uin§iguration vulnerabilities
and attacks leveraging interaction of multiple vulnengies$. We first describe how our

tool found previously unknown vulnerabilities in the conifigtion of a single host.

7.1 Single host configuration vulnerabilities

Our tool to analyze a Windows host comprises two phases: gumation collection and
analysis. The configuration collector queries the seculdsgcriptors of all files, registry
keys and services in the host. There are a large number oftslijeat are owned by
the Administrator’'s account and whose security descrippoifiguration prevents anyone
other than an Administrator from modifying it. Such objeeatsuld not aid the adversary
in a privilege escalation attack and can be safely ignorethabour analysis phase is
efficient. Our configuration collector filters such objectglgasses the configuration of

the rest of the objects for closer analysis. The configunatiollector can run without

97

the administrative privileges. The data from the configoraphase is fed to the analysis
engine, which could potentially run on a different host. &halysis phase uses the formal
model of the operating system encoded in Datalog to reasout #ifte configuration data.
The analysis phase identifies privilege escalation attaglsst the host as described in
chapter 4.

We used our tool to see how software from various vendorsifgared in the default
installation. Figure 7.2 shows how unprivileged users oniad®vs XP host can obtain
administrator privileges through several paths. Figuieshows how software from sev-
eral vendors is configured in hosts in a professionally madagetwork. These results
indicate that unprivileged users can gain administratosilpges through several paths.
We hypothesize that even professional software develapetgrofessional system ad-
ministrators have a limited understanding of the semaimtithke operating system. We
suggest that developers and administrators use tools liketo examine how software
is configured. We found three classes of bugs: file systemaniggurations, registry

misconfigurations and service misconfigurations.

7.1.1 Service misconfigurations

Several vendors poorly apply the Windows access controlaitodheir services; a com-
mon mistake is to assign tI8ERVICE.CHANGE_CONFIG permission indiscriminately to
services. The Windows XP documentation states, “...bectus grants the caller the
right to change the executable file that the system runspitlshbe granted only to ad-
ministrators” [13]. But that warning fails to explain cl&athat permission to configure a
service allows both setting the executaaiel selecting the account under which the ser-

vice runs, e.g., change the “run-as” accountécal System [12, 28]. FromLocal

98

Any Adobe User

N

%icrosoft(Many),

Macromedia

NetworkService

Figure 7.1: Privilege escalations in a single host of a natwwanaged by full-time pro-

fessionals. LimitedUser is an unprivileged user, Netwerk&e and LocalService are
low-privileged accounts used to run some operating systegrams. Everyone, SrvOp,
AuthUser and PowerUsers are groups. The arcs labeled grpMiw that the user is a
member of the group. All other arcs show privilege escatetioThere are about thirty

escalation paths from PowerUsers to System. It can beenfsmarthe graph that soft-

ware running on even professionally managed hosts hasusgpi@blems in using the
operating system’s access control model resulting in gerwivilege-escalation vulner-

abilities.

99

AlM(registry)

NetworkService

Figure 7.2: Privilege escalations found in a default corAgan of WindowsXP, prior to
Service Pack 2. LimitedUser is an unprivileged user, Nek8ervice and LocalService
are low-privileged accounts used to run some operatingesygirograms. Everyone,
SrvOp, AuthUser, NetCfgOp, and PowerUsers are groups. fidsdabeled grpMbr show
that the user is a member of the group. All other arcs showilpge escalations. There
are about thirty escalation paths from PowerUsers to Systieéman be seen from the
graph that the Microsoft Windows’ security model is comated that even professional
software developers at Microsoft have a difficult time inngsthe model correctly. In
addition, we show vulnerabilities in AOL messenger sofevar

System , all things are possible (including installing passworifers to launch further
attacks in the guise of any ordinary user).

We now describe specific bugs we discovered; each examplarisashwith a bullet
e and corresponds to one or more labeled arcs in the graphgaharboldface

e In the default configurations of Windows XP, t&&DP Discovery Servig€SDP
in the graph) and th&niversal Plug and Play Device Host servige’nP in the graph)
granted “permission to configure the service” to thethenticated Users group.
A normal unprivileged user is a part of theithenticated Users group and hence
a normal user can configure the executable and the accouat wich these services
run. Then, the adversary needs to make the service reloadetheconfiguration. He

needs to wait for the service to be restarted (he could, famgte, force the system

100

1pnphost

~30 exploits

member

service(TmPfw)

)

e

service(tmproxy)

service(Tmntsrv)

service(Tmfilter)

e

service(tmproxy)

s\Trend Micro)

SQLDebugger

service(NICCONFIGSVC)

Yé

Executive

Administrator

Anonymous Login

bundle(C:\\WINDOWS\system32)

Figure 7.3: Privilege escalations found in a machine rugrust Lotus Notes, PC-
Cillin antivirus, and VMWare. The vulnerable software istus Notes and PC-Cillin
antivirus. The circles in the extreme left column represamtous users installed by the
operating system or other software. The dark nodes aregeptéhe administrative ac-
counts. As one can see the privilege-escalation graph sedéhe escalations from the
LimitedUser account are the most serious among the many shown on the. graph
the limited space available on this page, it is a significdatlenge to make the figure
show complete details and yet be readable. Sometimes,ifficitt to determine which

software installed a particular a registry key or file or sesv

101

administrator to reboot the machine by consuming too masgures so that the sys-
tem is too slow to respond). We also noticed that usually wdgmincipal is granted
the SERVICE.CHANGE_CONFIG permission, he is also grantsg¢RVICE_ STOPandSER-
VICE_START permissions. One could use the Service ControBergxe) to trivially

reload the service in the new configuration as follows:

$sc config weakService binPath=c:\attack.exe obj=".\Loc alSystem" \

password=

$sc stop weakService
$sc start weakService

Via the samesERVICE_.CHANGE_CONFIG mechanism, the following (Windows XP
Professional) access-control decisions give paths ftocal Service , Network
Service , Network Configuration Operators , andServer Operators
toLocal System : e ThelLocal Service account has permission to configure the
Universal Plug and Plagervice (iIPnP), Smart Card Servicg$SCardSvr) and theSmart
Card Helper ServicdSCardDrv). e The Network Service account has permis-
sion to configure thicrosoft Distributed Transaction Coordinatservice MSDTC).
e The Server Operators group has permission to configu®nP, Simple Service
Discovery Protoco(SSDB, NetBios over TCP/IRNetBT), and Smart Card Services
(SCardSvr). The Network Configuration Operators group has permission
to configure thebynamic Host Configuration Protoc@DHCP), NetBT, andDnscache
services. This defeats the principle of least privilege Whas the motivation for creating
Local Service andServer Operators . If the adversary were to find a buffer
overflow bug in a program running d®ocal Service |, this escalation path enables
the adversary to take complete control of the host.

Finally, although Microsoft describeBower Users as “includes many, but not

all, privileges of the Administrators group,” [5, page 3iis well known thate there are

102

many privilege-escalation paths frofower Users to Local System ; we have
found more than 20 with our tool.

Other vendors’ software also has access-control configuréugs in their services:
e The Everyone group was granted the permission to configure Mecromedia Li-

censing Serviganstalled byMacromedia’s Dreamweaver program.

SERVICE_USER DEFINED _CONTROL weakness. Windows allows each service
to specify a custom control code to be sent to a service. Tiraipsion
SERVICEUSERDEFINED_.CONTROL is used to control the set of users who can send
control codes to the services. Control codes represent ggmeral operations such as
start, continue, pause, and stop. One way to create a nelgeser¥Vindows is to use the
sc.exe utility. Unfortunately, when an administrator creates evige using this utility,
theAuthenticated Users groups is granted this permission by default. This places
the burden of setting the service’s security context on #reice creator. Developers do
not understand the security implications well enough tohgoright thing. This is a poor
design decision made by tise.exe utility of the operating system; it could lead to
vulnerabilities. | do not know of services that use user @eficontrol codes, but this is a

weak point in the system.

7.1.2 Registry misconfigurations

Registry The Windows Registry is a global, hierarchical databasesrevkentries are
accessed blgeys Each registry key has a security context attached to itrobimyg access
to the key. Some registry keys store sensitive informatike the path to the executable

acting as a user’'s shell, the library to be loaded by a progimd the identity of an

103

operating system objélct If an adversary can overwrite the contents of a sensitiye ke
with the path of his library or executable, he could causebde to be executed [47, 28].
e The standard configuration 8OL includes a registry entry binding the name of a DLL
file to be loaded and executed (in some circumstances) by@iesaftware. The access
permissions permit any user to write this entry; the attacika substitute the name of
his own DLL and wait for some other AOL user to executesitWe also found several
weaknesses (potential security holes) in several redistyg from several vendors where

an adversary could escalate his privileges.

7.1.3 File misconfigurations

In addition to Trojan horses via service configuration, sareedors’ software is vul-
nerable to a more traditional kind of file-system-based dmejorse vulnerabilitys The
Everyone group has been granted the permission to write to 170 exgleut&XE and
.DLL) files from Adobe. The adversary can write to these files and wait for a system
administrator or other user to execute the file$heEveryone group has been granted
the permission to write to 103 files from the Trend Micro Imetr Security 2006 virus
scanner fromTrend Micro . e TheEveryone group has been granted the permission to

write to 354 files in Lotus Notes program frolBM .

104

Program Name| Version Vendor Mechanism| #instances Remarks
Lotus Notes 6.5.4 IBM File 354 Everyone
VPN Client Cisco File 18 Interactive

PC-cillin 2006 | 14.10.23| Trend Micro File 103 Users

PC-cillin 2006 | 14.10.23| Trend Micro| Service 6 Authenticated

lllustrator Adobe File 170 Everyone
Anti-virus Symantec File 6 Everyone
AOL Messenger AOL Registry 2 Everyone
Dreamweaver Macromedia] Service 1 Everyone
Flash Macromedia File 1 Everyone

Windows XP Microsoft Service 2 Everyone

Windows XP Microsoft Service 3 Local Service

Windows XP Microsoft Service 1 Network Service

Windows XP Microsoft Registry 20 Local Service

Windows XP Microsoft Registry 20 Network Service

Windows XP Microsoft Service 1 NetCfgOp

Figure 7.4: A summary of vulnerabilities discovered by aalt Major software vendors
make mistakes in using the operating system access coltiguite possible that there
are a large number of open vulnerabilities in software thehave not tested. We suggest
that developers use tools like the one we describe in thisighe test their software.
The column instances reflects the number of objects thatteadprivilege-escalation
vulnerability. For example, Lotus Notes has 354 files thatwriteable by any member
of theEveryone group.

105

7.1.4 Summary of findings

7.1.5 Misconfigurations in System Restore.

It is common that when an administrator installs a prograendiscovers that the instal-
lation has undesirable (sometimes disastrous) consegselds useful to be able to roll
back the effects of software installation. Windows progitleesystem restoréacility to
provide a way to easily revert the system to a previously km@yood) state. System Re-
store in Windows enables the administrator takes multipégpshots of the system state
and revert the these snapshots when required. If a softwatallation were to corrupt
the system state, system restore can be used to go back ta@ugig known good state.
By design only the administrators group is allowed to runsistem restore utility.

System Restore stores its files in e\ System Volume Information direc-
tory. This directory’s ACL is set so that only theocal System can access the con-
tents of this directory. This directory has a subdirectorthwmame similar to
restore {34DA1123-3456-76ED-EDAB-1234567890AA }2. On this directory,
any member of th&veryone group has complete access. For each restore point, the
system creates a directory lilkgP10 and stores the data for each restore point into the
snapshot subdirectory. We found that the following files in thenapshot directory
have weak access control, enabling any member oEtlegyone group have complete

access:

lwindows identifies certain operating system objects (‘s#8%) by globally unique identities like
4D36E96B-E325-11CE-BFC1-08002BE10318

2We conjecture that the hexadecimal number in the directargenis generated by an equivalent of the
guidgen.exe program. This program generates a globally unique 128 biattecimal number. Win-
dows uses globally unique identifiers (GUIDs) to identifyjestts such as ActiveX classes and interfaces.
However, it is not clear if this identifier is cryptographilyesstrong. When an adversary gets limited access
to a host, he may be able to leverage other attacks to prédsatiaimber.

3Windows XP. Version 5.1 (build 2600.xpclafe.010827-1803)

106

_REGISTRY_MACHINE_SAM
_REGISTRY_MACHINE_SECURITY
_REGISTRY_MACHINE_SOFTWARE
_REGISTRY_MACHINE_SYSTEM
_REGISTRY_USER_.DEFAULT
_REGISTRY_USER_NTUSER_S-1-5-18
_REGISTRY_USER_NTUSER_S-1-5-19
_REGISTRY_USER_NTUSER_S-1-5-20
_REGISTRY_USER_NTUSER_<usersid>

Usually all users are granteédeChangeNotifyPrivilege privilege, thus the
adversary can skip the restrictive access checks on paireataties. The adversary’s
ability to access these files is only controlled by the accessrol settings on the files.
The access control settings on the files allow any memberedEtieryone group to
write to the files. Thus an adversary who gains limited acte$ise host can corrupt the
files. From the name of the files, we conjecture that thesehardiles backing up the
registry for the machine and thus the adversary can corhgpéntire registry backup. If
an administrator were to try to usgstem restoreo restore to a previous checkpoint, the
machine’s registry can be compromised and hence the hostadversary will be able

to corrupt these files only if:

e He knows the complete path to the file. The adversary doesmuediately know
the complete path of the corrupted file because he cannotheacbntents of the
C:\System Volume Information directory. The adversary cannot read the
contents of theC: \ System Volume Information and hence cannot know
the name of the restore directory. The restore directory hasame similar to

_restore {34DA1123-3456-76ED-EDAB-1234567890AA }, generated by

107

usingguidgen.exe . If the adversary can leverage other attacks to guess the

name of the restore directory, he could guess the complétetpéhe file.

When a user accesses a file, the permissions along the dyrgiztth need to be
checked to ensure that the user is allowed access to the fiis.cduld lead to se-
vere run-time performance penalties for deeply nested filas Windows solution
to these penalties is to copy the security descriptors franem directories to the
child nodes of the filesystem, and have the kewmionally skip access checks
along on the directory path. TtgeChangeNotifyPrivilege privilege in the
process token controls this behavior. This privilege isdgfly enabled for all users
because most applications in Windows break when this pgeilis disabled. Thus
the adversary can skip the restrictive permissions on thenpalirectories in the
system restore directory. In effect, the only protectiontlom system restore reg-
istry snapshots is the security descriptors on the filesdtuaie the settings, which

are too weak.

Though this attack is more difficult to launch than other@a this attack exposes

the weaknesses of using Windows in high-assurance systems.

Determining the name of the restore directory. We conjecture that one can guess the

restore directory name by trying to open the directory

C:\System Volume Information \

restore {34DAXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXpand measure the time

taken to get a failure. Applications break if the privilégeChangeNotifyPrivilege

is not granted to a user; hence this privilege is granted lguiteto all users. With this

privilege turned on, when the kernel receives a call to opgle ar directory, the kernel

does not perform access checks along the directories indthe put only performs the

108

access check on theaf node Thus, when any principal tries to open a file, the system
will have to look up whether the file or directory exists—agpoped to getting an access-
denied error on one of the parent directories. In this paldiccase, since the parent
directoryC: \System Volume Information always exists, this boils down to de-
termining if the file restore {34DAXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
exists. In case the file does not exist, we would get an err@piening the file. It is
intuitive that the more the characters that match the fileaahe more the time taken
to get the error. Given that modern kernels are highly oedifor speed, it is unlikely
that the kernel deliberately slows down when a file name didhmaich. By measuring
the time taken to get an error, it should be feasible to datexrthe number of charac-
ters in the current guess that are correct. One could therckaan incremental attack.
We conjecture that the hierarchy (including the names ofitee and directories) of the
whole file system can be determined by any user of the Windggtes—a potentially
big problem. Previously, Andrew Giriffiths has shown thatam Unix systems due to
implementation of various system callspen in particular), it becomes possible to test

whether or not a file exists in a directory that is unreada®®. |

7.2 Network security analysis

7.2.1 A small real-world example

We ran our tool on a small network used by seven hundred ugéesanalyzed a subset

of the network that contains only machines managed by thesyadministratoré.Our

#In this benchmark we did not model hundreds of user machikids.recommend that these should
be modeled as we did “internet,” as one machine. In this aaskke “internet, ” the host would have
non-malicious users, but would be assumed to have many naldities. In our future work we plan to
experiment with such models; at present we recommend onrefrnaork for networks of managed, not
unmanaged, hosts.

109

fw

=

webServer

fw2

@ A0

webPages E @ .
@ E J=—_ projectPlan
i

workStation

=

binaries fileServer

Figure 7.5: Network topology for the network discussed ictiesm 7.2.1

tool found a violation of policy because of a vulnerabiliffhe system administrators

subsequently patched the bug.

Network topology. The topology of the network is very similar to the one in Figt5.
There are three zonesfernet , dmz andinternal) separated by two firewalls
(fwl andfw2). The administrators manage thebserver , theworkStation and
the fileserver . The users have access to the public sewerkStation which

they use for their computing needs. The host access corgrédf this network is:

hacl(internet, webServer, tcp, 80).
hacl(webServer, fileServer, rpc, 100003).
hacl(webServer, fileServer, rpc, 100005).
hacl(fleServer, AnyHost, AnyProtocol, AnyPort).
hacl(workStation, AnyHost, AnyProtocol, AnyPort).
hacl(H, H, AnyProtocol, AnyPort).

110

Machine configuration The following Datalog tuples describe the configuratiominf

mation of the three machines.

networkService(webServer , httpd, tcp , 80 , apache).

nfsMount(webServer, 'lwww’, fileServer, ’/export/iwww’)

networkService(fileServer, nfsd, rpc, 100003, root).
networkService(fileServer, mountd, rpc, 100005, root).
nfsExport(fileServer, 'fexport/share’, read, workStati on).

nfsExport(fileServer, 'fexport/www’, read, webServer).

nfsMount(workStation, ’/usr/local/share’, fileServer,

'lexport/share’).

ThefileServer serves files for thevebServer and theworkStation through
the NFS protocol. There are actually many machines reptegdyy workStation
They are managed by the administrators and run the sameageftwonfiguration. To
avoid the hassle of installing each application on each efrlachines separately, the
administrators maintain a collection of application biearunderexport/share on
fileServer so that any change like recompilation of an application pogneeds to
be done only once. These binaries are exported through Nff@werkStation . The

directory/export/www is exported tavebServer .

Data binding.

dataBind(projectplan, workStation, '’home’).

dataBind(webPages, webServer, 'www’).

111

Principals. The principalsysAdmin manages the machines with user namet .
Since all the users are treated equally, we model one of tlsepmiacipaluser . user
uses theworkStation with user nameauserAccount . For this organization, the
primary worry is a remote attacker launching an attack frartsmle the network. The at-
tackers are modeled by a single principthcker who uses the machineternet

and has complete control of it. The Datalog tuples for ppatbindings are:

hasAccount(user, workStation, userAccount).
hasAccount(sysAdmin, workStation, root).

hasAccount(sysAdmin, webServer, root).

hasAccount(sysAdmin, fileServer, root).

hasAccount(attacker, internet, root).

malicious(attacker).

Security policy The administrators need to ensure that the confidentiahitythe in-

tegrity of users’ files will not be compromised by an attackérus the policy is

allow(Anyone, read, webPages).
allow(user, AnyAccess, projectPlan).

allow(sysAdmin, AnyAccess, Data).

Results We ran the MulVAL scanner on each of the machines. The integepart of

the output was thatorkStation had the following vulnerabilities:

vulExists(workStation, 'CAN-2004-0427’, kernel).

112

vulExists(workStation, 'CAN-2004-0554’, kernel).
vulExists(workStation, 'CAN-2004-0495’, kernel).
vulExists(workStation, 'CVE-2002-1363’, libpng).

The MulVAL reasoning engine then analyzed this output in boration with the
other inputs described above. The tool did indeed find a peiiglation because of the
bugCVE-2002-1363 —a remotely exploitable bug in tHdpng library. The adver-
sary creates a malicious image file that exploits the bug, tipdoads this image to a pop-
ular website and waits for the user to download the pictwefthe site. When the user
loads the image, the adversary obtains control of the uaecsunt orworkStation
machine by launching the exploit. A reasoning rule in ounfeavork for remote exploit
derives that thevorkStation =~ machine can be compromised. After obtaining control
of the user’'s account on the host, it is trivial for the adegyso accesprojectPlan
files because the user already has access to them. The reasola for file access in
our framework derives that the adversary can acqgesgectPlan files. Thus the
projectPlan data can be accessed by the attacker, violating the poligy.s@stem
administrators subsequently patched the vulnerigiypeg library.

One might be curious that there was only one vulnerabiligt dontributed to the
policy violation though the hostorkStation actually had four vulnerabilities. The
other three bugs on theorkStation are locally exploitable vulnerabilities in the ker-
nel. Since only trusted users access these hosts, afténipatbelibpng bug our tool
indicates the policy is no longer violated. These machire& luptimes in the order of
months and upgrading the kernel would require a reboot. iHaddhese vulnerabilities
would result in a loss of availability, which is best avoid€lr tool showed the adminis-

trators that they can meet the security goals without patrtiie kernel and rebooting the

113

workStation . We expect our tool to be useful in mission-critical systdiike com-

mercial mail servers serving millions of users and servensiing long computations.

7.2.2 An example multistage attack

We now illustrate how our framework works in the case of na#tge attacks. Let us
consider a simulated attack on the network discussed inréhequs example. Suppose

the following two vulnerabilities are reported by the scann

vulExists(webServer, 'CVE-2002-0392’, httpd).
vulExists(fileServer, 'CAN-2003-0252’, mountd).

Both vulnerabilities are remotely exploitable and can lesuprivilege escalation.

The corresponding Datalog clauses from ICAT database are:

vulProperty(CVE-2002-0392’, remoteExploit, privEscal ation).
vulProperty(CAN-2003-0252’, remoteExploit, privEscal ation).

The machine and network configuration, principal and dataibg, and the security

policy are the same as in the previous example.

Results The MulVAL reasoning engine analyzed the input DatalogespiThe Prolog

session transcript is as follows:

| ?- policyViolation(Adversary, Access, Resource).

Adversary = attacker
Access = read

Resource = projectPlan;

114

Adversary = attacker
Access = write

Resource = webPages;

Adversary = attacker
Access = write

Resource = projectPlan;

We show the trace of the first violation in figure 7.6. Here wplai how the attack
can lead to the policy violation. An attacker can first conmpige webServer by re-
motely exploiting vulnerabilityCVE-2002-0392 to get control ofwvebServer . Since
webServer is allowed to accesBleServer |, the adversary he can then compro-
misefileServer by exploiting vulnerabilityCAN-2003-0252 and becomeoot
on the server. Next he can modify arbitrary filesfdeServer . Since the executable
binaries onworkStation are mounted ofileServer , their integrity will be com-
promised by the attacker. Eventually an innocent user wiceite the compromised
client program; this will give the attacker accesswarkStation . Thus the files stored
on it would also be compromised.

One way to fix this violation is movingvebPages to webServer and blocking
inbound access frordmz zone tointernal zone. After incorporating these counter
measures, we ran MulVAL reasoning engine on the new inpudvanfied that the secu-

rity policy is satisfied.

115

|-- policyViolation(attacker,read,projectPlan)
|-- dataBind(projectPlan,workStn,/home)
|-- accessFile(attacker,workStn,read,’/home’)
Rule: execCode implies file access
|-- execCode(attacker,workStn,root)
Rule: Trojan horse installation
|-- malicious(attacker)
|-- accessFile(attacker,workStn,write,’/sharedBinary)
Rule: NFS semantics
[-- nfsMounted(workStn,’/sharedBinary’ fileSrv, /exp ort’,read)
|-- accessFile(attacker,fileSrv,write,’ /export’)
Rule: execCode implies file access
|-- execCode(attacker,fileSrv,root)
Rule: remote exploit of a server program
|-- malicious(attacker)
|-- vulExists(fileSrv,CAN-0252,mountd,remote,privEsc)
|-- networkServicelnfo(fileSrv,mountd,rpc,100005,roo t)
|-- netAccess(attacker,fileSrv,rpc,100005)
Rule: multi-hop access
|-- execCode(attacker,webSrv,apache)
Rule: remote exploit of a server program
|-- malicious(attacker)
[-- vulExists(webSrv,CAN-0392,httpd,remote,prvEsc)
|-- networkServicelnfo(webSrv,httpd,tcp,80,apache)
|-- netAccess(attacker,webSrv,tcp,80)
Rule: direct network access
|-- located(attacker,internet)
|-- hacl(internet,webSrv,tcp,80)
|-- hacl(webSrv, fileSrv,rpc,100005)
|-- localFileProtection(fileSrv,root,write,/export)
|-- localFileProtection(workStn,root,read,/home)
|-- not allow(attacker,read,projectPlan)

Figure 7.6: A sample attack tree showing a multi-stage kttacthe network shown

in figure 7.5. This trace provides a detailed chain of reaspithat explains why the

security policy of the network is violated. Alternativelhe trace shows the detailed
steps an adversary needs to perform to launch the attack. hienarchy in the trace

shows the dependencies between various steps of the afthekrace is useful for the
administrator to decide where to break the attack chainitatfe attack.

116

7.3 Attack graph or attack trace?

In figure 7.6, we represented the attack as an attack tra@¥evelach step in the attack is
shown sequentially. In contrast, in figures 7.1 and 7.2 wevsdibthe attacks possible as
a graph. This raises the question as to how one can efficiseghgsent all the privilege
escalations possible in a network. What is the best way toiefifily represent all the
privilege escalations possible in a network? Should onsgmethe results as a list of all
attack traces? Or should one present the results in a grdpreveach edge represents
an attack step from one location state to another. We noteoti& can compute one
representation from the other. By interviewing the admmt®rs who used our tool,
we found that representing the graph as an edge makes it @atem to visualize the
attacks. More importantly, it efficiently represents thaeks.

Let us consider the escalations friumnited Users toAuthenticated Users ,
Network Service to Authenticated Users , and then td_ocal System as
shown in figure 7.1. These escalations have been repredgntestihg four arcs: one each
fromLimited Users toAuthenticated Users and fromNetwork Service
to Authenticated Users showing the group memberships and two from
Authenticated Users toLocal System showingthesSDPanduPnP services.

If we were to show these escalations as attack traces, thesexgation would look like:

Limited User-->Authenticated User---(SSDP)--->Local Sy stem
NetworkService-->Authenticated User--(SSDP)-->Local S ystem
Limited User-->Authenticated User---(uPnP)--->Local Sy stem
NetworkService-->Authenticated User--(uPnP)-->Local S ystem

117

If there is another escalation froAuthenticated Users toLocal System ,then
the graph representation has only one extra arc, while thelatrace representation has
two extra traces.

If there a large number of escalations possible, then we ffjete@t representation
with attack graphs as against with attack traces. An attadetis essentially a walk on
the attack graph. It is well known that in a dense graph, thaber of unique walks is
super-exponential. Thus number of attack traces will beesegponential if there are
a large number of escalations possible. On the other haad;aimplexity of the graph
is bounded by the number of atomic escalations possible. t@lrcomputes the total
escalations possible and runs in quadratic time. Thus,dta¢ number of escalations
possible is a quadratic function. Hence, representing thpub as an attack graph has
guadratic complexity. Therefore, one should represenbtiiput of our tool attack as an

attack graph as opposed a list of escalation traces.

7.4 Quantitative bug analysis

System administrators require the ability to measure thleaf current network posture.
A measurement of risk is valuable to determine the amounts&freduction achieved
by counter measures. Network administrators have an sttereneasuring the security
risk of running an operating system. When an administrastinates the security risk,
he adopts multiple measures. One measure is the number sfthaigare found in the
operating system in a unit time. This measure is readilyialka by visiting vulnerability

databases maintained by organizations like CERT and SAN&nan administrator
reads a vulnerability advisory, he is interested in detamg whether the bug can be

remotely exploited. This information is usually readilya#iable in the bug advisory. A

118

more important question on the administrator is the consecges of the bug—does it
result in an administrative account compromise?

Unfortunately, for a typical system administrator, it isyw&ard to determine whether
the bug results in an administrative account compromiseletermine if a bug can result
in an administrative account compromise, the administraith have to determine the
program or library affected by the bug. This task is usuadlgye because its mentioned in
the vulnerability advisory. The administrator will therMegto determine all the programs
that are dependent on this library. If there is a bug in a filwgry or program), then any
program using the file is vulnerable. Similarly, we define theegistry key is vulnerable
if the key contains the path to a vulnerable executable. Tokvation is that some other
program uses this registry key to determine which progratodd.

In today’s dynamic networks, the software environmentesslquickly and it is hard
to determine what programs use what programs or librariesgstry keys. A bug results
in a system-wide compromise if the program gets used duhagperating system boot
or while an administrator logs on to a host. We need to detegmihen a program gets
used. Unfortunately, it is difficult to determine the comalits under which a program gets
used. To determine when a program gets used, we adoptedrikergative approach of
tracing to determine when a file or registry key gets used.

In Windows, there are two important resources—files andstegkeys. We want to
monitor registry and file usage. One approach would be to fndke kernel by adding
a tracing driver. The advantage of this approach is that waatanodify much state
(reqgistry keys, audit log settings, file and registry acaesdrol lists that control auditing)
on the system. In a prior system, we were modifying state entélhget machine and
sometimes bugs in our code resulted in catastrophic fajusere sometimes | had to

reinstall the operating system. Thus, as opposed to maodifstate on the host, we would

119

prefer to introduce a tracing driver in the kernel. Howewveg, were advised against it by
an experienced kernel hacker [31]. We were advised thaegrgpuld easily consume
two full-time developers a year and one very easily wouldinio bugs in the kernel. The
fact we do not have access to Windows source code will onlyenitadifficult to pursue
this path.

Instead, we took the approach of using already existingtggand file tracing tools.
Thus, we decided on using usermode tracing tools to moretpstry and file usage. We
used theregmonutility to trace the registry usage. Regmon has the abibtynonitor
registry accesses in the boot processes, before any uséogian We tried to use the
filemonutility to monitor the file system accesses, but unfortulyatdemon does not
have the ability to monitor the boot processes. It can be nip after a user has logged
on. We decided to use the Windows auditing facility to seetwisar runs what program.
We turned on the auditing of process execution—wheneverex@/program is executed,
the system writes an entry to the audit log mentioning thé pathe program executed
and the privilege level of the process. This means that waatarace the usage of other
types of executable content in Windows like the file typesnd, .drv, .msc,

.mof, .ocx, .sys, .tsp, .bat, .dos, .cpl . Another problem we face
is that there is no easy way to turn on auditing of uses of allagyically-linked library

(DLL) files. To audit DLL file accesses, we would have to locatehe DLL files in the

file system and turn on auditing on each of the files. Sinceithmslves changning the
state of the file system on a large number of files, we ignoredagproach for now. If
our program modified the state on the target system, a bugriprogram may leave the
operating system in an inconsistent state. We decided rodde the DLL usage at run
time. Instead, we relied on static tools lidependsvritten by Steve Miller to tell us what

file uses what DLL.

120

From the output of theegmon filemonand the system log, we determine who is using
the file or registry key. By determining the users of a vulidgaesource, we identify the
ultimate privilege level the adversary obtains by levengg vulnerability. We performed
this experiment on a Microsoft Windows XP machine that isaqoryhpletely patched. We

got the following results:

Vulnerable file path Exploit level
C:\Program Files§Common File§Microsoft SharefTextConwmswrd632.wpc, User-level
C:\Program FilesWindows Media Playewmplayer.exe User-level
C:\Program FilesWindows NT\Accessorieswordpad.exe User-level
C:\WINDOWS\ system32crypt32.dll System
C:\WINDOWS\ system32hlink.dll System
C:\WINDOWS\system32inetcomm.dll System
C:\WINDOWS\ System32Ntoskrnl.exe System
C:\WINDOWS\system32rpcrt4.dll System
C:\WINDOWS\ system32shell32.dll System

While the number data points is small, we conjecture that @mtyaof bugs in Win-

dows would result in a system-wide compromise.

7.5 Performance and Scalability

We measured the performance of our Linux scanner on a Red iHak 19 host (kernel
version 2.4.20-8). The CPU is a 730 MHz Pentium Il procesgith 128MB RAM.

We measured the performance of our Windows scanner on a W@ host. The
CPU is a 2.2GHz Pentium IV processor with 512MB RAM. The as@lgngine runs on
a Windows PC with 2.8GHz Pentium 4 processor with 512MB RAMe ¥énstructed

121

examples with configurations similar to the network in sattv.2, but with different
numbers of web servers, file servers and workstations.

To analyze a network in the MulVAL reasoning engine, one sd¢edun the MulVAL
scanner on each host and transfer the results to the hoshgutie analysis engine. The
scanners can execute in parallel on multiple machines. malysis engine then operates
on the data collected from all hosts. Since the functionifiipe scanner is the same on
various hosts, we measured the scanner running time on @teWe measured the run-
ning time for the analysis engine for real and synthetic bemerks. The running times

(in seconds) are as:

MulVAL Linux scanner | 236 s
MulVAL Windows scanner 386 s

§7.2.1| 0.08

MulVAL 1 host 0.08

reasoning 200 hosts| 0.22

engine 400 hosts| 0.75

1000 hosts 3.85

2000 hosts 15.8

MulVAL scanneis the time to run the scanner on one (typically configureaukihost;

in principle, the scanner can run on all hosts in parallele Denchmarlk7.2.1 is the
real-world 3-host network described in section 7.2.1. Haehchmark labeledi' hosts”
consists ofn similar Linux hosts, (approximately one third web serveme-third file
servers, and one-third workstations), with host accesssr(le., firewalls) similar to
§7.2.1. Our reasoning engine can handle networks with thalssaef hosts in less than a

minute.

122

Execution time for hypothetical analysis
1000 ~

Legend.: | (#Host, #Prog)
273
100 (1000, 20)
@
g 10 A 12 (100, 20) 92
fb 4.5
I T
& 059 (028 2
0z 0.29
01 1 ' (50, 10)
0.01 - Number of hypothetical bugs

Figure 7.7: Hypothetical analysis. For a network of 1000te@anning 20 kinds of
installed software, analyzing security assuming the erist of any 1 unreported vulner-
ability takes 12 seconds.

A typical network might have a dozen kinds of hosts: many watveys, many file
servers, many compute servers, many user machines. Degeodinetwork topology
and installed software (e.g., are all the web servers in #meesplace with respect to
firewalls, and are they all running the same software?) it beygossible that each group
of hosts can be treated as one host for vulnerability arglgsi that: = 12 rather than
n = 12,000. It would be useful to formally characterize the conditiamsler which such
grouping is sound.

To test the speed of our hypothetical analysis discussestiios 5.5, we constructed
synthesized networks with different numbers of hosts affdréint numbers of programs.
Each program runs on multiple machines. Since the hypathlethalysis goes through all
combination of programs to inject bugs, the running timesigehdent on both the number
of programs and the number of hypothetical bugs. Figureows the performance with
regard to different number of hosts, number of programs amdlrer of injected bugs.

The running time increases with the number of hypotheticgish because the analysis

123

engine will need to go througff}) combinations of programs, whereis the number of
different kinds of programs anvdis the number of injected bugs.= 0 is the case where
no hypothetical bug is injected. The performance degraggufantly with the increase
of k. But it still only takes 273 seconds fér= 2 on a network with1000 hosts and0
different kinds of programs. Since hypothetical analysis be performed offline before
the existence of a bug is known, it is not important to have raal-time response time.
The degraded performance is acceptable. Figure 7.7 shavwsystem can perform this
analysis in a reasonable time frame for a big network.

The input size (measured by the number of lines) to the Mulvédsoning engine is:

Data Source hosts=200 =2000

Data Binding sys admin 26 3004 lines
Policy sys admin 3 3
Principal Binding sys admin 10 10
HACL Smart Firewall 342 3342

Scanner Output OVAL/ICAT 1222 12022

Coverage Our system can reason about privilege escalation vulnérabiand denial
of service vulnerabilities. We cannot currently reasonuhbmnfidentiality loss or in-
tegrity loss vulnerabilities. Overall, we could reason @t84% of the Red Hat Linux

bugs reported in OVAL. The detailed statistics are (as otildan31, 2005):

OVAL definitions for Red Hat 202
Those with PrivEsc or only DoS 169

Coverage 84%

5The indicated “Source” shows what person or tool would pilethe information in a real installation;
for this benchmark measurement, we constructed the dathetjcally.

124

Size of our code base To implement our framework on Red Hat platform, we adapted
the OVAL scanner and wrote the interaction rules. The sizaunfcode base is:

Module Original New

OVAL scanner 13484 668 lines

Interaction rules 393

The modularity and simplicity of our design allowed us teeefively leverage the existing
tools and databases by writing about a thousand lines of évdaote that the small size
and declarative style of our interaction rules makes thesy ¢a understand and debug.
The interaction rules model Unix-style security semantidse rules are independent of

the vulnerability definitions.

7.5.1 Scanning a distributed network

We measured the performance of running the MulVAL scannegrarallel on multiple
hosts. We used PlanetLab, a worldwide testbed of over 500xLinosts connected via
the Internet [36]. We selected 47 hosts in such a way as toamirgphical diversity
(U.S., Canada, Switzerland, Germany, Spain, Israel, Jidang Kong, Korea, Japan).
We were able to log into 39 of these hosts; of these, we suitdigssastalled the scanner
on 33 host$. We ran a script that, in parallel on 33 hosts, opened an SSstosesnd ran
the MulVAL scanner. We assume that many hosts were carryimgraal workload, as
we made no attempt to reserve them for this use. The first keponded with data in
1.18 minutes; the first 25 hosts responded within 10 mintlesfirst 29 hosts responded

within 15 minutes; at this point we terminated the experitnen

6Normally one needs root privileges to install the scanneEmeLab gives its users fake “root” privi-
leges in a chroot environment; for production use of MulVAQot privileges are advisable.

125

For a local area network, we expect fast and uniform resptingg But for dis-
tributed networks, we recommend that scanning be done hsymausly. Each machine,
either when its configuration is known to have changed ormpially, should scan and
report configuration information. Then, whenever newlyrsead data arrives or when-
ever new vulnerability data is obtained from OVAL or ICATgtheasoning engine can be

run within seconds.

126

Chapter 8

Conclusion

Despite the fact that business processes are criticallgragnt on smooth functioning
of networks, today’s networks are surprisingly fragile.nBgation testers, security ex-
perts and expert system administrators have been using@dhathods to analyze the
security of a single host and, more generally, a large n&twdihis thesis establishes
that configuration errors are an important problem, andudises techniques to formal-
ize network security analysis. The thesis presents tedesi¢o formally describe and
reason about the (access control) semantics of operatsigrag. This thesis presents
techniques to perform automated security analysis of cordtgon and program vulner-
abilities of a large network. These techniques have fouratgelnumber of previously
unknown serious bugs. In section 8.1, we describe reasoggedple make mistakes
in configuration. In section 8.2, we describe the contritmsiof this thesis. We discuss

possible steps forward in section 8.3.

127

8.1 Reasons for configuration problems

We have shown that configuration bugs often cause securiterabilities. There are
many structural causes for the mistakes that people makeftwage configuration. A
large enterprise network is typically managed by multigietem administrators, wherein
each administrator is responsible for specific functidgaind where there is a limited
overlap between the operational domains of different adstrators. Interactions be-
tween administrators may be limited by various barriershsa different business pro-
cesses, different administrative domains, different apeg systems and technologies.
The result is that each administrator configures his systel@gendently. The global se-
curity behavior may in fact be dependent on the configuratafmultiple hosts, as well
as the dependencies between these hosts.

Operation of a network depends on the interactions of cordtgans across multiple
boundaries, but network operators typically do not haveessdo configurations across
boundaries. There is no way to guarantee that policies amafajin his network will not
conflict with rest of the network. Worse, the inconsisteagraay result in security holes.
It is hard to debug these configuration problems.

Professional system administrators and software devedape guided in their tasks
by the behavior of software system as documented by the veHdwever, as we demon-
strated in this thesis, often the vendors’ documentatiavbscure and sometimes even
wrong. Software developers often don’t understand opggediystem security semantics
and often can't predict how these will interact with custesheecurity configurations.
To ensure that their programs always work, they tend to astofomany privileges [8].

System administrators are forced to permit too much aceessérs because applica-

128

tions do not work otherwise. With this leakage of privilegéss inevitable that there are
security bugs.

Until now, there have been no tools or techniques developdeklp administrators
reason about the configuration of the netwasgka whole It is very hard for an adminis-
trator, security expert, or penetration tester to deteentie global effects of a potential
configuration change. It is not surprising that configuraigsues present the adversary

with a very useful avenue to attack enterprise networks.

8.2 Contributions

This thesis explains new techniques to reason about theatnass of configurations.
These techniques were incorporated into an automatedaddiolt serious weaknesses in
configuration of the Windows operating system and programsing on the operating
system. The tool found sevenadwattacks against a standard Windows host. Thus, the
dissertation work establishes that configuration vulnditeds are an important avenue of
attacks against common software systems.

This thesis demonstrates that end-to-end, automaticiegifinetwork security anal-
ysis is feasible for large real networks. We developed nahrigues to perform multi-
stage attacks on a network where an adversary leveragepi@ulieaknesses to incre-
mentally increase the potency of attack. Our work identifed the modularity of infor-
mation flow between the security expert, bug expert and sysidministrator is crucial
for a security analysis tool to be useful in practice. Our kvestablishes that the se-
mantics of common operating systems, network environmamiscommon failures for
software can be modeled declaratively. Declarative spatifin allows us clean specifi-

cation, yet efficient evaluation. In fact, we demonstrated teal network configurations

129

can be analyzed in polynomial time. Previous work had sigaifi scalability problems
making the systems unusable for more than a handful of hoBt& specification of
semantics in previous work was obscure. By adopting a singpleesentation for specifi-
cation, we showed how one can design a system whose cosedae be easily verified.
Previous work could not conduct analysis over a heterogemneetwork with multiple
operating systems. The ability to conduct analysis overtarbgeneous network—as
described in this thesis—is a significant advancement. Bbsmecification for typical
operating systems is an important contribution of thisithes

Quantitative analysis to determine the risk of current rmekwposture is increasingly
in demand. Formal specification is the first step in quamntgit analyzing the risk of
current network posture. Using a formal specification ofdperating system, this thesis
(in section 7.4) presented techniques that use historatal b quantify the probability
that a security bug results in a system-wide compromisehérfuture, these techniques
could be improved to determine the risk posture oféhére network.

A concern that an administrator worries about is how mucmomkn threats the net-
work can withstand. It is difficult to forsee a situation irethear future where no more
software holes are found in commonly used software. It isitable that more bugs
will be found in software in the future; however the admirasbr cannot predict which
software will have what bug in the future and when. In additithere may be bugs that
exist in a piece of software that are not reported publichghsbugs are called zero-day
bugs. Or a user account may be compromised with neither greangdministrator be-
ing aware of it. A concern administrators use in configuringts is how vulnerable the
network is to unknown threats. That would enable an adnmatst to plan for potential
emergencies. In this thesis, we describe techniques toougty understand what are the

consequences of potential emergencies that can emerge fatthre. Previously, there

130

is no formal analysis of potential attack scenarios. In,fdw techniques we describe in

this thesis are efficient (see section 7.5 for further de}ail

8.3 Moving forward from lessons learned

We have a system that already does enterprise-scale anafysetworks of Unix and
Windows hosts, and detailed configuration analysis of iddial Windows hosts. Based
on our experience in deploying these prototypes, we idedtdertain short-term research

that needs to be done and and longer-term research prolitainseed to be investigated.

Response strategies. We deployed MulVAL on a professionally managed network and
found several serious local privilege escalation vulngitads. In some cases, the admin-
istrators and developers were able to identify that changive security descriptors of
the vulnerable objects was sufficient to solve the secunbplem. For example, as we
discussed in chapter 7, many security problems resultealseanembers @&veryone
group were assigned the permission to “change configuration
(SERVICE.CHANGECONFIQ for certain services, the permission to write to a file or
a registry key. In these cases, it was straightforward t@ianm our tool to change the
security descriptor to disallow untrusted users from myadd the resource or its prop-
erties. In general, administrators found it difficult to idiéy an appropriate remediation
strategy. In a more complex environment, it is feasible thatadministrator will have to
choose between various alternatives such as disablingreesedisabling a user, patch-
ing a program, and adding a firewall rule. Itis hard for the adstrator to identify the
best remedy. We plan on extending our framework to automlaticdentify least-cost

remedies.

131

Quantitative risk estimation. The community has been working on quantifying vari-
ous aspects affecting security such as user’s skill lageh{s user likely to open email
attachments)? the perceived attacker’s skill level, the importancenaf program affected
by the bug [26]. However, the risk estimations do not haveran& model for the soft-
ware environment and the adversarial behavior. As a reselestimations tend to be ad
hoc and error prone. For example, when a bug is reported birari file, the vulnerabil-
ity scoring systems ignore the surrounding software cdrnilexwhat programs are using
this library and the privilege level of the programs using fibrary. We have done pre-
liminary work on formal vulnerability risk analysis yieldg results like60% of security
bugs found on the Windows platform result in system-widgpommise We plan on us-
ing the MulVAL framework to do rigorous quantitative risktesation and vulnerability

scoring system

Simple models for complex systems In this thesis work, we demonstrated that simple
models can go a long way to reason about complex problemsdikerity. We hypothe-
size that simple models can be used to solve other problered tay system administra-
tors and developers. For example, sometimes a system adrator installs a program,
only to discover that the program is incompatible with theserg software . He cannot
easily undo the effects of an aborted installation. An efficiframework to describe the
program installation dependencies would enable one tif eegiven operation will result
in an inconsistent state before actually installing theveaife.

In the course of implementing this project, | encounteretbves instances where the
compiler/linker complained about missing libraries. Stimes, because of static linking,
some libraries that are common to different componentsh(siscstandard input/output

routines) are included in different components, resultmgonflicts during linking. A

132

framework to describe and reason about the program andniloi@endencies would

make it easier for developers to avoid these errors.

8.4 Conclusion

This dissertation has established that (1) configuratioorgerare an important source
of attacks against common software systems, (2) it is plessibconstruct tools to au-
tomatically analyze configurations, (3) efficient, endettd, automatic network security
analysis is feasible for large networks, (4) it is possiblethe administrator to rigorously
plan for potential attack paths using unknown exploits,it{t§ possible to quantify the

risk profile associated with a bug. The thesis has estaloligtet declarative specification
of component behavior is the key to building an efficient aratpcal framework to per-

form network security analysis. The techniques developettiis dissertation can help
resolve the tension between flexibility and complexity #ests in managing any large

network.

133

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

P. Ammann, D. Wijesekera, and S. Kaushik. Scalable,lgtzgesed network vulner-
ability analysis. InProceedings of 9th ACM Conference on Computer and Commu-

nications SecurityWashington, DC, November 2002.
M. J. Bach.The Design of the UNIX Operating Systetentice Hall, 1986.

R. Baldwin. Rule based analysis of computer securitychfiecal Report TR-401,
MIT LCS Lab, 1988.

Y. Bartal, A. J. Mayer, K. Nissim, and A. Wool. Firmato: Awel firewall manage-

ment toolkit. INIEEE Symposium on Security and Privapgges 17-31, 1999.

E. Bott and C. SiechertMicrosoft Windows Security Inside Out: for Windows XP
and Windows 20Q0Microsoft Press, 2003.

J. Burns, A. Cheng, P. Gurung, D. Matrtin, Jr., S. R. Rajsgdan, P. Rao, and A. V.
Surendran. Automatic management of network security policDARPA Informa-

tion Survivability Conference and Exposition (DISCEX 1ljQvolume 2, Anaheim,
California, June 2001.

CERT. CERT advisory CA-2002-08. http://www.cert.cagVisories/CA-2002-
08.html, Mar. 2002. web page fetched May 9, 2006.

134

[8] S. Chen, J. Dunagan, C. Verbowski, and Y.-M. Wang. A blhok tracing technique
to identify causes of least-privilege incompatibilitiesn Proceedings of Network

and Distributed System Security Symposium, 26@56. 2005.

[9] W. Clocksin and C. Mellish.Programming in Prolog Springer-Verlag Inc. New
York, 1987.

[10] M. Corporation. Access rights and access masks.
http://msdn.microsoft.com/library/default.asp?ulilrary/en-us/secauthz/security/

accesgights andaccessmasks.asp, Oct. 2005. web page fetched October 9, 2005.

[11] M. Corporation. ChangeServiceConfig. http://msdenmsoft.com/library/default.asp?url=/libra

us/secauthz/security/authorizatioanstants.asp, 2005.

[12] M. Corporation. ChangeServiceConfig. http://msdinesoft.com/library/
default.asp?url=/library/en-us/dllproc/base/chaegéaseconfig.asp, 2005.

[13] M. Corporation. Service security and access rights.
http://windowssdk.msdn.microsoft.com/library/deteagp?url=/library/en-us/
dllproc/base/servicsecurityand accessights.asp, Oct. 2005. web page fetched

October 9, 2005.

[14] T. M. Corporation. Introduction to CVE, the key to infoation sharing.
http://cve.mitre.org/docs/docs-05/8-9-06de intro_flyer.pdf, May 2006. Web page
fetched on May 28, 2006.

[15] F. Cuppens and A. Mige. Alert correlation in a coopemtintrusion detection
framework. InProceedings of the 2002 IEEE Symposium on Security anddriva

page 202. IEEE Computer Society, 2002.

135

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Corepity and expressive power
of logic programming. INEEE Conference on Computational Complexpggges

82-101, 1997.

E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Corapity and expressive power

of logic programming ACM Comput. Sury33(3):374-425, 2001.

J. DeTreville. Binder, a logic-based security langeiath Proceedings of the 2002

IEEE Symposium on Security and Privaggge 105. IEEE Computer Society, 2002.

P. Finigan. Many ways to become DBA.
http://www.insight.co.uk/files/presentations/Many %2y s%20to%20become
%20DBA%20(Pete%20Finnigan).pdf, Oct. 2005. web pagééztdiay 9, 2006.

W. L. Fithen, S. V. Hernan, P. F. O’'Rourke, and D. A. Skerdp Formal modeling
of vulnerabilities.Bell Labs technical journal8(4):173-186, 2004.

A. V. Gelder, K. Ross, and J. S. Schlipf. Unfounded satswell-founded semantics
for general logic programs. IRODS '88: Proceedings of the seventh ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database sysfmges 221-230,
New York, NY, USA, 1988. ACM Press.

A. Griffiths. Syscall implementation could lead to whet or not a file ex-
ists. http://archives.neohapsis.com/archives/futldisure/2003-q2/0052.html, Apr.
2003. web page fetched May 9, 2006.

J. D. Guttman. Filtering postures: Local enforcementdlobal policies. InProc.

IEEE Symp. on Security and Privapages 120-129, Oakland, CA, 1997.

136

[24] S. Hinrichs. Policy-based management: Bridging the ¢gal15th Annual Computer

Security Applications Conferend@hoenix, Arizona, Dec 1999.

[25] S.Jajodia, S. Noel, and B. O'Berry. Topological anays network attack vulnera-
bity. In V. Kumar, J. Srivastava, and A. Lazarevic, editdignaging Cyber Threats:

Issues, Approaches and Challangelsapter 5. Kluwer Academic Publisher, 2003.
[26] P. M. Jeannette. An attack surface metric.

[27] S. T.King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen. Eting intrusion alerts
through multi-host causality. Imhe 12th Annual Network and Distributed System
Security Symposium (NDSS 0bgb. 2005.

[28] J. Lambert, M. Thomlinson, and V. Kumar. Microsoft Corption, personal com-

munication, July 2005.

[29] N. Li, B. N. Grosof, and J. Feigenbaum. Delegation Lodidogic-based approach
to distributed authorizationACM Transaction on Information and System Security

(TISSEC)Feb. 2003.

[30] LinuxSecurity.com. SuSE: Kernel local root exploit.
http://www.linuxsecurity.com/content/view/105569211 Dec. 2003. web page
fetched May 9, 2006.

[31] J. Lorch, August 2005. Private communication.

[32] P. Ning, Y. Cui, and D. S. Reeves. Constructing attagnados through correla-
tion of intrusion alerts. INCCS '02: Proceedings of the 9th ACM conference on

Computer and communications securpages 245-254. ACM Press, 2002.

137

[33] N. I. of Standards and Technology. ICAT metabase. Hitat.nist.gov/icat.cfm,
Oct. 2004. web page fetched on October 28, 2004.

[34] X. Ou. A Logic Programming Approach to Network Security AnalyBisD thesis,

Princeton University, 2005.

[35] X. Ou, S. Govindavajhala, and A. W. Appel. Mulval: A lagbased network secu-
rity analyzer. In14th USENIX Security Symposiua905.

[36] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. Aephint for introducing
disruptive technology into the internet. Rroceedings of the 1st Workshop on Hot

Topics in Networks (HotNets;Ipct. 2002.

[37] C. R. Ramakrishnan and R. Sekar. Model-based analyssndiguration vulnera-

bilities. Journal of Computer Security0(1-2):189-209, 2002.

[38] P. Rao, K. F. Sagonas, T. Swift, D. S. Warren, and J. Eré{SB: A system for effi-
ciently computing well-founded semantics. Pnoceedings of the 4th International
Conference on Logic Programming and Non-Monotonic Reagp(llPNMR’97)
pages 2-17, Dagstuhl, Germany, July 1997. Springer Verlag.

[39] R. W. Ritchey and P. Ammann. Using model checking to yrehetwork vulnera-
bilities. In 2000 IEEE Symposium on Security and Privg@ges 156—-165, 2000.

[40] M. E. Russinovich and D. A. SplomorMicrosoft Windows Internals Microsoft

Press, 2003.

[41] SANS. Handler’s diary. http://isc.sans.org/diahp@date=2005-12-31, Jan. 2006.
web page fetched May 9, 2006.

138

[42] Secunia. Novell groupwise webaccess insecure defagbfiguration.
http://secunia.com/advisories/11119, Mar. 2004. webepégiched May 9,
2006.

[43] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. WAngpomated generation
and analysis of attack graphs. Rroceedings of the 2002 IEEE Symposium on
Security and Privacypages 254-265, 2002.

[44] W. R. StevensUNIX Network ProgrammingPrentice Hall, 1990.

[45] F. S. I. R. Team. Updated kernel packages fixes netfitterpsnat memory corrup-
tion. http://www.frsirt.com/english/reference/122%0ay 2005. web page fetched
May 9, 2006.

[46] S. J. Templeton and K. Levitt. A requires/provides midde computer attacks. In
Proceedings of the 2000 workshop on New security paradigages 31-38. ACM
Press, 2000.

[47] Y.-M. Wang, R. Roussev, C. Verbowski, A. Johnson, M.\, Y. Huang, and
S.-Y. Kuo. Gatekeeper: Monitoring auto-start extendippioints (ASEPS) for spy-
ware management. ldsenix LISA: 18th Large Installation System Administratio

ConferenceNov. 2004.

[48] J. Whaley and M. Lam. Cloning-based context-sensfiniater alias analyses using

binary decision diagrams, 2004.

[49] M. Wojcik, T. Bergeron, T. Wittbold, and R. Roberge. roduction to
OVAL: A new language to determine the presence of softwarmerabilities.
http://oval.mitre.org/documents/docs-03/intro/inkvionl, Nov. 2003. Web page
fetched on October 28, 2004.

139

