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ABSTRACT
We show that the issues of uniqueness and noise sensitivity
in the problem of matrix joint diagonalization are closely re-
lated. We address other factors important in noise sensitivity.
We distinguish between orthogonal and non-orthogonal joint
diagonalization and argue that the latter can be more diffi-
cult than the former. Our analysis is based on the perturba-
tion analysis of the stationary points of certain flows for joint
diagonalization. Numerical experiments support the derived
results.

Index Terms— Joint Diagonalization, Sensitivity Analy-
sis, Tensor Decomposition, Blind Signal Processing, Indepen-
dent Component Analysis

1. INTRODUCTION

Matrix Joint Diagonalization (also known as Simultaneous
Matrix Diagonalization) has found applications in many blind
signal processing algorithms (for example [1, 2, 3, 4]), as well
as in tensor decomposition methods as in [5]. In these prob-
lems, based on a model, we believe that for a set of symmetric
n× n matrices {Ci}N

i=1 we have:

Ci = AΛiA
T , 1 ≤ i ≤ N (1)

where A is a non-singular n × n matrix and Λi is a diagonal
matrix. Here AT is the transpose of matrix A. Also denote
[Λi]jj by λij . The goal is to find the matrix A by observing
just the set {Ci}N

i=1. Note that without knowing Λi’s we can
not distinguish between A and ADΠ for any permutation Π
and non-singular diagonal D (the scaling factor). In order
to find A one might think of the problem of finding a non-
singular matrix B such that BCiB

T ’s all are diagonal and
hence find A (up to scale and permutation) as B−1. We call
this problem the Exact Joint Diagonalization (EJD) problem.
Obviously, if B is an exact joint diagonalizer, then ΠDB, is
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also another one. So any solution to the EJD problem can be
unique only up to a permutation and a scaling factor. If the
scale and permutation are the only ambiguities in the solution
we say that the EJD problem has a unique solution. If the EJD
problem has a unique solution then the problem of finding A
and EJD are equivalent.

In practice, due to noise or estimation errors or because
our underlying model is not accurate we only can have:

Ci ≈ AΛiA
T , 1 ≤ i ≤ N (2)

Again, in this case, one might think of the problem of finding
a non-singular matrix B such that all BCiB

T ’s are “as diag-
onal as possible” and hope that B−1 is close to A (up to the
expected ambiguities). We call this problem the Joint Diag-
onalization (JD) problem. If the set {Ci}N

i=1 is such that the
solution that we find for the JD problem is very far from A−1

even for small values of noise or error in our model then we
can say that JD for that set is a difficult problem.

In this paper we consider the factors that can make the JD
problem difficult. In Section 2 we introduce a cost function
for Orthogonal Joint Diagonalization (OJD) and show how
it can also be used for Non-Orthogonal Joint Diagonaliza-
tion (NOJD). In Section 3 we elaborate on the uniqueness
properties of the EJD problem in both orthogonal and non-
orthogonal cases. In Section 4 we present the actual sensitiv-
ity results and in Section 5 we provide some numerical exper-
iments in support of the derived results.

2. ORTHOGONAL AND NON-ORTHOGONAL JD

If we assume that B is an orthogonal matrix then we call the
JD problem as Orthogonal Joint Diagonalization (OJD) and
if we assume that B is not orthogonal we call the problem as
Non-Orthogonal Joint Diagonalization (NOJD). As one might
expect these two problems have very different properties. The
OJD problem together with a simple and efficient algorithm
for it was introduced first in [1]. This algorithm which is a
part of the JADE algorithm minimizes the cost function:

J1(B) =
n∑

i=1

∥∥BCiB
T − diag(BCiB

T )
∥∥2

F
(3)



where B is orthogonal, diag(X) is the diagonal part of the
matrix X and ‖.‖F is the Frobenius norm. It can be shown
that the stationary points of J1(B) satisfy [6]:

N∑

i=1

[BCiB
T , diag(BCiB

T )] = 0 (4)

where [X, Y ] = XY − Y X is the matrix Lie bracket. Note
that the OJD problem is permutation invariant but not scale in-
variant, i.e. if B is an orthogonal joint diagonalizer then DB
can not be an orthogonal joint diagonalizer unless D has all
diagonal elements of +1 or −1. Another observation is that
given C1, if its eigen values are distinct we can find its eigen
matrix and that would be an approximation for A. But we
hope that by inclusion of more matrices in the OJD process
we can improve this approximation. On the other hand, it is
not difficult to see that the minimum number of matrices to
give enough equations to solve for a unique non-orthogonal
joint diagonalizer is N = 2. So the NOJD problem gener-
ically is a two-matrix problem. For a given set of matrices
{Ci}N

i=1 NOJD gives a better approximation for the unknown
non-orthogonal matrix A than OJD by introducing more de-
grees of freedom in the search. Exactly for the same reason
NOJD can be harder as we show later.

Defining a cost function for NOJD has been a challenge.
One idea is to extend J1 from the group of orthogonal ma-
trices O(n) to the group of non-singular matrices GL(n) and
try to reduce J1 (say by gradient method) along directions
orthogonal to the directions that correspond to reduction by
scaling by diagonal matrices. Note that the directions that
correspond to reduction by scaling are those directions along
which the non-orthogonal joint diagonalizer is invariant. Some
algorithms that use this idea are introduced in [7, 6, 4]. It is
possible to make this approach rigorous via the language of
Lie groups and Riemannian geometry. For brevity and short-
age of space we avoid further details and refer the reader to
[6]. Briefly, the overall scheme is that after equipping GL(n)
with a Natural Riemannian metric one can define ∇J1(B)
the gradient of J1. Then we restrict −∇J1 to the directions
mentioned above and obtain a non-holonomic flow for NOJD
based on J1. Based on the stationary points of this flow, we
can define B the non-orthogonal joint diagonalizer of {Ci}N

i=1

via the equation:

N∑

i=1

(
(BCiB

T )◦BCiB
T
)◦ = 0 (5)

where X◦ = X − diag(X), provided such a B exists. We
mention that there are other possible formulations for the NOJD
problem, as in [3] for example.

3. UNIQUENESS FOR EJD AND MODULUS OF
UNIQUENESS

It is not difficult to show that [8]:

Theorem 1 Let Ci’s satisfy (1) with A orthogonal. The nec-
essary and sufficient condition to have a unique orthogonal
joint diagonalizer is that for every pair of indices 1 ≤ k <
l ≤ n we have some 1 ≤ i ≤ N such that λik 6= λil.

In order to have a similar result for non-orthogonal EJD,
it is convenient to define:

Defenition 1 For the set of diagonal matrices {Λi}N
i=1 let:

ρkl =
∑N

i=1 λikλil

(
∑N

i=1 λ2
il)

1
2 (

∑N
i=1 λ2

ik)
1
2

, 1 ≤ k 6= l ≤ n (6)

with the convention that ρkl = 1 if λik = 0 for some k and all
i. Let ρ be equal to one of the ρkl’s that have the maximum
absolute value among all. The Modulus of Uniqueness(MU)
for this set is defined as |ρ|.
Obviously |ρ| ≤ 1. For N = 1, |ρ| = 1 and the exact joint
diagonalizer is not unique. MU captures the uniqueness in an
exact sense:

Theorem 2 Let Ci’s satisfy (1). The necessary and sufficient
condition to have a unique non-orthogonal joint diagonalizer
is that |ρ| < 1.

This means that in order to have unique solution the matrix
Λ whose rows are diagonals of Λi’s should have no co-linear
columns. This result has been known in the literature of tensor
decomposition, see for example [9] for references and more
general results. A proof is also given in [10].

We should mention again the dramatic difference between
uniqueness properties of OJD and NOJD. For a given {Λi}N

i=1

with β 6= 0 and |ρ| < 1 in order to make β = 0 we can change
the first diagonal elements of Λi’s and set λi1 = λi2 for all
1 ≤ i ≤ N . Whereas in order to make |ρ| = 1, we can
have λi1 = Kλi2 for all 1 ≤ i ≤ N and any number K. As a
result it is much easier to degrade the uniqueness in the NOJD
problem than in the OJD problem.

4. SENSITIVITY RESULTS

In order to understand the sensitivity of the JD problem we
add noise to the model (1) as:

Ci(t) = AΛiA
T + tNi, t ∈ [−δ, δ], δ > 0 (7)

where {Ni}N
i=1 are symmetric error or noise matrices and t

shows the noise contribution. With t = 0 the set {Ci(0)}N
i=1

has an exact joint diagonalizer which is A−1. As t varies and
provided that δ is small enough, B(t) the joint diagonalizer
which satisfies (4) (in the orthogonal case) or (5) (in the non-
orthogonal case) can be written as:

B(t) = (I + t∆)A−1 + o(t), t ∈ [−δ, δ] (8)

where I is the n×n identity matrix, ∆ ∈ Rn×n with diag(∆) =
0 and ‖o(t)‖

t → 0 as t → 0. Again we emphasize that the



above equality should be understood up to scale and permuta-
tion. For the OJD problem (where B(t) is orthogonal), ∆ is a
skew-symmetric matrix. ‖∆‖ measures the sensitivity of the
joint diagonalization problem to noise. The larger the ‖∆‖,
the more sensitive the problem is. Note that if the correspond-
ing EJD (i.e. when t = 0) does not have a unique solution we
expect the sensitivity to be infinity and that is what we will
show. Our main tool will be to apply perturbation analysis to
find ∆.

4.1. Sensitivity of the OJD Problem

Based on what preceded one can have (see [8] also):

Theorem 3 Let Ci = AΛiA
T + tNi, 1 ≤ i ≤ N (t ∈

[−δ, δ]), where A ∈ O(n), Λi’s are diagonal and Ni’s are
symmetric matrices. For small enough δ we have that B(t)
the minimizer of J1(B) on O(n) (i.e. the orthogonal joint
diagonalizer of Ci’s) satisfies: B(t) = (I + t∆)AT + o(t)
where ∆ is a skew-symmetric matrix whose (k, l) entry is:

∆kl =
Skl∑N

i=1(λik − λil)2
(9)

and

S = −
N∑

i=1

[(AT NiA)◦, Λi] (10)

with [X, Y ] = XY − Y X being the matrix Lie bracket.

The S in (10) manifests the effect of noise in ∆. Note that
since A is orthogonal we will not have noise amplification
in S , which is in contrast to the case of NOJD, as we shall
see. Also one can show that if mink 6=l

∑N
i=1(λik − λil)2 = β

then:
‖∆‖F ≤ 1

β
‖S‖F (11)

4.2. Sensitivity of the NOJD Problem

For sensitivity analysis of the NOJD problem we provide the
following result. Its derivation is straightforward which for
lack of space we omit. The full derivations are given in [10].

Theorem 4 Let Ci = AΛiA
T + tNi, 1 ≤ i ≤ N (t ∈

[−δ, δ]). Let us define B(t) the non-orthogonal joint diag-
onalizer for {Ci}N

i=1 as (5). Then for small enough δ the joint
diagonalizer can be written as: B(t) = (I + t∆)A−1 + o(t)
where ∆ (with diag(∆) = 0) satisfies

Mkl

[
∆kl

∆lk

]
=

[ Tkl

Tlk

]
, 1 ≤ k < l ≤ n (12)

with

T = −
N∑

i=1

(A−1Ni(A−1)T )◦Λi (13)

and

Mkl = γkl

[ 1
ηkl

ρkl

ρkl ηkl

]
1 ≤ k 6= l ≤ N (14)

and

γkl = (
N∑

i=1

λ2
ik)

1
2 (

N∑

i=1

λ2
il)

1
2 , ηkl =

(
∑N

i=1 λ2
ik)

1
2

(
∑N

i=1 λ2
il)

1
2

(15)

.

Here also T manifests the noise contribution in the sen-
sitivity. In contrast to the OJD case, if A is bad-conditioned,
norm of A−1 can be large and hence ‖T ‖ can be large and we
can have noise amplification. Also one can show that

‖∆‖F <
α

(1− ρ2)
‖T ‖F (16)

where α = maxk 6=l

ηkl+
1

ηkl

γkl
and |ρ| is the modulus of unique-

ness for the set {Λi}N
i=1 as defined before. From (16) or from

(12) together with (14) it is evident that if |ρ| ≈ 1 then ‖∆‖
can be large and we can not expect an accurate solution.

4.3. Effect of the Number of Matrices

A very interesting question related to the JD problem is about
the effect of the number of matrices on accuracy of the so-
lution. As mentioned before generically N = 1 matrix for
OJD and N = 2 matrices for NOJD are enough to give an
answer. However, to combat noise, we may want to include
more matrices. Inclusion of more matrices can have two ef-
fects: one on how T for NOJD (or S for OJD) changes and
the other one on how α and especially ρ for NOJD (or β for
OJD) may change. This, of course, depends on how Ni’s
and Λi’s are statistically distributed. For example, consider
the case of NOJD and assume that the elements of Ni’s as
well as the elements of Λi’s are i.i.d with zero mean and all
matrices are independent from each other. Also assume that
each diagonal element of Λi has variance σ2. Then, by the
strong law of large numbers, we have that ‖ TN ‖ → 0, ρ → 0,
Nα → 2/σ2 < ∞ as N → ∞ with probability one. Hence,
‖∆‖ → 0 as N →∞ with probability one. However, if Ni’s
and Λi’s were of positive-definite mean then we could not
reach at this conclusion. This case could be relevant when
we are jointly diagonalizaing a set of correlation matrices, for
example. On the other hand for small values of N such as
N = 2, 3 or 4, and especially when n is large, |ρ| can be
fairly large. Moreover the cancelation or averaging that we
expect to happen for large N in T is not likely to happen for
small N .

5. NUMERICAL EXPERIMENTS

Here we perform some experiments to test our theoretical re-
sults. We generate our matrices as in (7). We draw the ele-



Table 1. (Top): Sensitivity of Index(BA) with respect to
noise level t as N and hence ρ changes for NOJD. (Bottom):
Sensitivity of Index(BA) with respect to noise level t as N
changes for OJD.

Index(BA) t = 0 t = 10−4

N = 2, ρ = 0.999 .06 1.19
N = 10, ρ = 0.946 2× 10−13 .17

Index(BA) t = 0 t = 10−4

N = 2 6× 10−14 .036
N = 10 2× 10−14 0.011

ments of Ni’s from standard normal distribution and the di-
agonal elements of Λi’s from uniform distribution between
0 and 1. We choose n = 10 and vary N and t. We use
N = 2, 10 and t = 0, 10−4. Also we test with A orthog-
onal and a non-orthogonal A with condition number of 25
and ‖A‖F =

√
10. The reason for choosing this value for

‖A‖F is that this is the norm of an orthogonal 10× 10 matrix
and this makes comparisons more sensible. As it was evident
from our calculations the sensitivity depends on the norms of
the matrices involved. So we try to be fair and not change
the norms in different experiments. This means that we use
the same A and set of Λi’s and noise matrices for different
experiments. For OJD (i.e. orthogonal A) we use the algo-
rithm introduced in [1] and for NOJD (i.e. non-orthogonal A)
we use the algorithm QRJ2D introduced in [7]. The output of
each run is a matrix B that should be close to A (up to scale
and permutation factors) and we use this index to measure the
closeness:

Index(P ) =
n∑

i=1

(
n∑

j=1

|pij |
maxk |pik|−1)+

n∑

j=1

(
n∑

i=1

|pij |
maxk |pkj |−1)

(17)
with P = BA. Index(BA) ≥ 0 and equality happens only
when B is a column permuted and scaled version of A−1.
Table (1) shows the resulted Index(BA) for different tests.
We should mention that the actual Index value depends on the
specific algorithm used, but this table should give a sense of
a trend that in general introducing more matrices improves
the accuracy of JD. Also note that for NOJD with N = 2,
ρ = .999 which makes the problem very sensitive as shown
in the table. Again we remind that how ρ behaves in terms
of N in general depends on the statistical distribution of the
elements of Λi’s. Also note that Index(BA) is lower for OJD
than NOJD which corroborates the expectation that NOJD is
more difficult than OJD.

6. CONCLUSIONS

We considered the sensitivity of the OJD and NOJD problems
to noise. Our main result is that uniqueness of the underlying
EJD problem and the condition number of the joint diagonal-
izer affect the level of the difficulty of the JD problem. The

NOJD problem can be very sensitive when the matrices are
large and the number of them is small. Inclusion of more ma-
trices in the NOJD process can improve the accuracy of the
solution via improving the modulus of uniqueness and aver-
aging out the noise. Also we gave some intuition and experi-
mental evidence that why NOJD is more difficult than OJD.
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