A Hamming Distance Based VLIW/EPIC
Code Compression Technique

Montserrat Ros, Peter Sutton
School of Information Technology and Electrical Engineering
The University of Queensland
Brisbane Australia 4072
{ros, p.sutton}@itee.uqg.edu.au

ABSTRACT embedded devices become more and more complex. Furthermore,
This paper presents and reports on a VLIW code compression@PStract programming languages are being chosen for the
technique based on vector Hamming distances [19]. |t development of embedded applications such that the development

investigates the appropriate selection of dictionary vectors such®@n be steered away from the hardware level and more towards a
that all program vectors are at most a specified maximum platform-independent design philosophy. As a result of both of
Hamming distance from a dictionary vector. Bit toggling these considerations, embedded application code sizes are
information is used to restore the original vector. increasing and this can pose a problem for designers.

A dictionary vector selection method which considered both S€veral methods for compressing or compacting code size have
vector frequency as well as maximum coverage achieved betteP€€N presented in the literature to date, though most algorithms
results than just considering vector frequency or vector coverage'@ve focused mainly on RISC processors. Lately, however,

independently. This method was found to outperform standard VLW (Very Long Instruction Word) processors have begun to be

dictionary compression on TI TMS320C6x program code by an con5|dere_d as prime car_ldldate§ for code compression, given not
average of 8%, giving compression ratios of 72.1% to 80.3% only their inherent large instruction words but also their appeal to

when applied to the smallest compiler builds. The most favorable e émbedded DSP market.

results were achieved with a Hamming distance upper limit of 3. One example of where code compression has reached the VLIW

An investigation into parallel compression showed that dividing "dustry is in Atmel's Diopsis Dual Core DSP implementing a
the program into 32-bit parallel streams returned an averageMAdic DSP VLIW core which uses a method of built-in dynamic
compression ratio of 79.4% for files larger than 200kb. This Program decompression [3, 18]. Compressed program code is fed
approach enables parallel decompression of instruction streamd® dynamic program decompression devices (dyprodes) which
within a VLIW instruction word. Suggestions for further work ~Produce the uncompressed code and this is seamlessly executed.
include compiler/compression integration, more sophisticated Another advantage of using code compression is that program bus

dictionary selection methods and better codeword allocation. size can be reduced as a result of the smaller instruction word
size. This is used to the Diopsis’ advantage.

Categories and Subject Descriptors Code compression efficiency is widely defined [4, 12, 15, 19] as

E.4 [Coding and Information Theory] the ratio between the compressed program size and the original

program size. That is, the smaller the compression ratio, the
better the compression. Compression ratio can depend on the size

General Terms of the original compiler output. Our previous work has found that

Algorithms, Performance. the smallest overall sizes after compression are obtained when the
smallest possible compiler build is used, even though other builds
Keywords give better compression ratios [20].

Code Compression, VLIW, Hamming distance. In this paper, we present a new compression scheme and

investigate its performance. We have taken selected benchmarks
1. INTRODUCTION from the Spec2000 [2] and the Mediabench [1] benchmark suites,
Code size management is a significant issue for embedded systerand built them for the Texas Instruments TMS320c6x [21] and
design. As consumers require more functionality, applications for the Intel Itanium [9] as representatives of the VLIW/EPIC
processor range.

Permission to make digital or hard copies of all or part of this work for The remainder of this paper is organized as follows. Section 2
personal or classroom use is granted without fee provided that copiespresents background and related work in this field. Section 3
are not made or distributed for profit or commercial advantage and that describes the compression scheme used and Section 4 outlines
copies bear this notice and the full citation on the first page. To copy results from applying the compression scheme. Section 5 includes
Other\Nise, or republish, to pOSt on servers or to redistribute to |iStS, a discussion and Comparison of results and Section 6 contains

requires prior specific permission and/or a fee. conclusions and further work.
CASES 04, September 2225, 2004, Washington, DC, USA.

Copyright 2004 ACM 1-58113-890-3/04/0009...$5.00.

132



2. RELATED WORK

The area of text or data compression is a matueg but code
compression dates from 1992, when Wolfe and Chafirsh

published a paper on a Compressed Code RISC Poocess

(CCRP) [22]. VLIW code compression is an even m@eent
field with papers published in only the last fewase Code
compression is a separate field of study given thahy data
compression based schemes are inapplicable to ggnogode,
where branch targets and function entry points needbe
decompressed on demand.

2.1 Code Compression on RISC processors
The paper by Wolfe and Channin [22] suggested a @R
compress code and used a ‘code-expanding instrucidche’,
such that the decompression could be transparé¢hétprocessor.
By using a compression technique that did not givesideration
to branch targets and function beginnings, extradware was
required to fetch addresses. Their design useéthe Address
Table (LAT) to map original addresses into compdssode
addresses.

Lefurgy et al presented dictionary compressionli8] [where all
unique instructions are recorded in an ‘instructiaple’ and each
instruction is replaced by an index into the tabl&hey also
present a selective version in [14]. Liao et &fd a dictionary
compression scheme based on set-covering in [1&}wboks at
substrings that occur frequently. Lekatsas preskrat semi-
adaptive dictionary compression scheme in [15] Wigenerated
new opcodes for instructions appearing frequentBome
software/compiler methods have also been presém{éd 6, 14].

2.2 Code Compression on VLIW processors
Code compression techniques have also been appli®&dlIW
processors. Nam et al [17] achieved average cawiore ratios

of 63%-71% using a dictionary compression methodl an

compared the difference in performance of "idetiti¢ahole

instructions words) and "isomorphic" (split into amgle/operand
fields) instruction word encoding schemes. Ishiuaad

Yamaguchi [10] investigated code compression based
Automatic Field Partitioning, achieving compressiatios of 46-
60%. They reduced the problem of compressing dodéhe

problem of finding the field partitioning that yild the smallest
compression ratio. Larin and Conte [11] comparestec
compression methods and a tailored encoding ofrtsteuction

Set Architecture. The tailored ISA method produned code at
64% of the original code size, though at a muchllemaost to

decoding hardware than standard compression.

Xie et al. [23, 25] used a reduced-precision arétiencoding
technique combined with a Markov model and appliedo
similar systems with different sized sub-blockheTL6-byte sub-
block scheme yields the best compression rate®.3%6— 69.7%.
Xie et al. also present a Tunstall-based memoiy-lasiable-to-
fixed encoding scheme and an improved Markov véeitdfixed
algorithm in [24]. The use of variable-to-fixedcewling means
that codewords are arbitrarily assigned and trégyament can be
used to an advantage to reduce the number of gifes on the
instruction bus.

Prakash et al [19] present a dictionary based engatheme that
divides instructions into two 16-bit halves. Forcleahalf, a
dictionary is constructed that contains a choi¢eggectors such

133

that a majority of the vectors used throughoutgtegram in that
half of the instruction differ from one of the damary vectors by
a Hamming distance of at most 1 (the Hamming distdretween
two vectors is the number of bits that are différen Each
compressed instruction is then replaced by two wodds
representing each half-instruction. These codesvoatle a
combination of the indexes into the relevant diwdibes as well
as information about which bits are toggled.

This method means that two vectors that differ bjy ®ne bit
will not require both vectors to be stored in thetidnary. One of
the two vectors is stored and the other merelyreefses the
stored vector and points out which bit needs totdggled.
Average compression ratios of 78.6% including Liuddressing
Table are reported. Although some attempt is ntadevestigate
32-bit vectors, the dictionary selection methodytheed did not
appear to give compression ratios as good as tHst Keheme.
Their scheme also uses different dictionaries &mhesub-block of
2048 bytes as opposed to using one dictionary Her whole
program.

2.3 Previous Implementations of Code

Compression

One successful encoding scheme, commercially usedhé
PowerPC 405, is the CodePack scheme [7]. The GutteP
encoding scheme follows an algorithm analogous pieee-wise
Huffman scheme [8] where the most frequent symbaie
assigned smaller codewords. Here, the 16-bit \haifis are
assigned a two or three bit tag which denotes whilelss’ they
belong to, differentiated by the tag and then hamgl the
codeword is. CodePack has a reported performainae overall
program size “reduction” of 35-40% [7] (i.e. a comgsion ratio
of 60-65%). CodePack uses variable-length encoding
requires the use of a mapping table to calculaendw address of
a given instruction. Lefurgy et al provide furtlmatimisation and
enhancement suggestions for a machine with CodeR4tR].

A second example of the implementation of code aesyon is
the Atmel Diopsis example mentioned earlier [3,. 18his VLIW
code compression architecture claims a 2X to 3Xpression of
code (33 to 50% compression ratio) whereby 128dsitruction
words are compressed to an average of 50 bitsnsrction
word.  This shows the advantage of an integratede co
compression and instruction set architecture ifgiesl together
from the start.

In most cases, designing a totally new processomptate with

integrated code compression and instruction setitaature is

beyond the scope (not to mention budget!) of mampexided
applications. Instead, research has tended toeotrate on code
compression systems that are software-based orewredware
need only be altered slightly in order to achievesaaing of

program size (moderate, but a saving nonetheleAr) example

of where a slight alteration of hardware is possivbuld be the
inclusion of a decompression engine next to a @smrecore in an
ASIC embedded design. In this case, the prograiwetoun on

the processor of choice can be compiled and comgpdebefore
loading.



3. ENCODING SCHEME

The encoding scheme presented in this paper isdbasethe
appropriate selection of dictionary vectors sucit @il program
vectors are at most a specified Hamming distancen fra

dictionary vector. Bit toggling information is ubkéo accurately
restore original code. This scheme is similath® 16-bit version
from [19] where only vectors differing by one bitere

considered. Instead, our scheme considers 32:bibks and was
trialed with Hamming distance upper limits from 8.

Furthermore, we consider multiple dictionary seétettmethods
and offer a stream-based compression method foallglar
decompression.

The algorithm is divided into the four steps ddsedi in the
following subsections. A decoder is required ia trardware to
decode the uncompressed instructions and is odtiimeSection
3.5.

3.1 File Input and Dictionary Construction

(First Input Pass)

The first pass in the encoding scheme is equivatenmost
dictionary compression schemes. The benchmark ¢o
compressed is read in, one 32-bit vector at a timd,a frequency
distribution of all the used vector space is carded. This
histogram-like structure (containing elements fritn@ dictionary)
is used in the subsequent compression steps.

3.2 Reduced Dictionary Selection (First

Dictionary Pass)

The purpose of this pass is to select from thdadiety, a subset
of vectors (called the reduced dictionary) sucht & original

dictionary vectors are at most a set Hamming digtdrom any
one of the reduced dictionary vectors. The purpokehis

dictionary-subset selection is to allow for a sewatlictionary, and
include information for bit-toggles where the vestdiffer in the

replacement codewords.

The benchmark programs were profiled for 32-bitteespace
usage and three reduced dictionary selection msthodre
applied — they are described below. They weredefstr up to set
Hamming distance upper limits ranging from 1 to 7.

3.2.1 Frequency Selection Method

This method of selecting vectors for inclusion he treduced
dictionary chooses vectors based on their freqesnand
continually adds the most frequent vectors untitta vectors in
the original dictionary are ‘covered’ by being absh a set
maximum Hamming distance from any of the reducediatiary
vectors. The aim of this method is to include gextinto the
reduced dictionary that are very frequent in thigioal program,
thus incorporating a higher number of “zero Hammiligtance”
entries. This means that fewer bit toggle locafieids will be
required during compression (see Section 3.4).

3.2.2 Maximum Span Selection Method

This method finds, for each vector in the dictignahe total
number of other dictionary vectors that are up geamaximum
Hamming distance from it. The vector that spamsriost other
vectors is chosen and placed in the reduced datyonThen, this
method discards all vectors in the dictionary the¢ the set

134

b

Hamming distance or less from the chosen vectof.th® un-
discarded vectors in the dictionary, the vectot #pans the most
of the remaining vectors is chosen and the promgssats again
until all vectors are discarded from the originatidnary. The
aim of this method is to reduce the number of wacteeded in
the reduced dictionary.

3.2.3 Combination of Frequency and Spanning

Method

This dictionary selection method attempts to comabihe best
from both of the previous algorithms. It choosé®& tmost
frequent vector in the dictionary and places ittlie reduced
dictionary. Then, it discards all vectors in thetidnary that are
the set Hamming distance or less from the chosetore Once
again, the most frequent vector from the remainegtors is
chosen and the process repeats until all dictiovagtors are
covered by the given set Hamming distance.

3.3 Reduced Dictionary Fill and Codeword

Assignment (Second Dictionary Pass)

The reduced dictionary is analyzed and filled wittther vectors
such that the bits required for the indexing of treeluced
dictionary is unchanged. Essentially, this fitlsvith vectors from
the original dictionary that did not already existthe reduced
dictionary, up to the next power of 2 so that thisr@o wasted
indexing space. In all three dictionary selectimethods, the
extra filling stage takes the most frequent vectiyat are not
already in the reduced dictionary, as this methddreduced the
number of toggle locations more. The indices itite reduced
dictionary serve as codewords for the compresgEm s

3.4 Compression Application (Final Input

Pass)

The compression scheme is applied by convertindy &:bit
vector into compressed code. The compressed amuprises a
codeword (determined in the last step), a set nurobéits to
denote the number of toggles and up to 7 sets lnf $oggle
locations. An example of this is shown in Figure 1

Number
of bit
toggles

codeword location location

‘ location

J

Up to 7 locations of toggle bits
(5 bits each)

Figure 1 - Format of Compressed Program Code

Compressed program code is inserted serially iceplef the
original code with one exception. To make decodessier,
possible branch targets are aligned at byte boiesland as a
result, some padding is needed at the end of ateygrgceding a
target location. This padding and the Line AddrEaile (LAT) —
described in Section 3.5 — are part of the overlasadciated with
this encoding scheme.

3.5 Decompression Engine Design

A decompression unit is required to decompressrtsiguctions
‘on the fly’ and feed them to the CPU. The stadddictionary
scheme uses a dictionary as a lookup table, wheredmpressed



instruction acts as an index into the lookup taind the output of
the table is the uncompressed instruction.

Our scheme works in a similar fashion, with theexadrd from
the compressed instruction acting as an index tihéoreduced
dictionary lookup table, and the extra bits in ttempressed
instruction determining which bits (if any) to tdggfrom the
lookup table output. A block diagram of the diotioy and the bit
toggling hardware required for a code compressihresie with a
Hamming distance upper limit of 3 is given in Fig.

Compressed
Instruction
-

Dictionary
entry

Uncompressed
Instruction

Reduced
Dictionary

#} First toggle location
L. 3

=} Second toggle location

>} Third toggle location

control number of toggles

Figure 2 - Block Diagram of the Decompression Unit

Because our scheme is a variable length one, weguasider the
need for a referencing table of some sort such itistuction

locations (such as branch targets) can be retrieveat this, we
have used a LAT similar to [19], however only branargets are
included in the table. The block diagram of thisTLhardware is
given in Figure 3. Furthermore, to ensure the thaargets were
byte aligned, padding was required at the end ef ghevious
instruction of every target.

| Base address of Program |

Address of Address of
decompressed y Line compressed
Instruction Address Instruction
B Table
/ (LAT) \
Offset into Offset into
original compressed

program program

Figure 3 - Block Diagram of Line Address Table

3.6 Stream Encoding

The main problem with the serial decompression arfiable-
length codes is that performance is affected. drtiqular, one
fetch packet (which consisted of four and eightb&2vectors in
the processors investigated) can consist of maapkewhich are
normally fetched simultaneously. If 8 such 321@ttors are to
be serially decompressed, then the latency assdciaith 8 sets
of dictionary retrievals and bit togglings could detrimental to
performance.

In a bid to parallelize the decompression of thepessed code
and avoid the serial decompression latency, theompbf
compressing the information into streams is trialedThis
implementation divides the instruction fetch packeb 32-bit

135

streams and decompression is applied to the progmata in a
given stream rather than the whole program codemallgr,
individual tables and separate decompressors quéireel for each
stream.

4. RESULTS

Benchmarks were taken from both the Spec2000 [2] the
Mediabench [1] benchmark suites. These were Bailttwo
targets, the Texas Instruments TMS320c6x [21] udiedgll Code
Composer compiler and the Intel Itanium [9] usilg.g

Benchmarks taken from the Mediabench suite includdgdcm
(rawc- andrawd-audio), g721 §721encandg721deg, epic (and
unepic), mpeg peg2encand mpeg2ded and jpeg ¢jpeg and
djpeg). Benchmarks taken from the Spec2000 suite ireclnatf,
art, equake parser, ammp, twolf andmesa

In both processor cases, the benchmarks were Witiit every
optimization level, and the smallest possible bwitas used. In
most cases, this corresponded with the -ms3 andag8 for the
TI compiler, and the -Os flag for all gcc builds.

Compression ratio is an accurate measurement tgpaenthe
different versions of this compression scheme, leeghey are all
applied to the same original files (hence starsimp will be the
same for any benchmark).

The first issue investigated was that of the diciiy selection
methods. Compression ratio was found to be veped@ent on
the selection method thus results are presentedaftn selection
technique in comparison to a standard dictionamnpression.
The standard scheme places all unique vectors fdaonthe

program code in the dictionary and an index is usstkad of the
original vector. An example of its applicationgisen in [13]. In

essence, the ‘normal’ dictionary compression metsa method
that tolerates no bit toggles (and as a resultiregjino extra
information) and can be likened to our method veitilamming
distance upper limit of 0 where the ‘reduced’ diogry is

identical to the original dictionary.

Compression ratios in the following sections in€udhe

compressed code, dictionary and LAT sizes. Dictigrsizes are
taken from the number of reduced unique entriesired to cover
the entire code, and the LAT sizes are derived filoemnumber of
branch target locations. Average compression gaticross all
benchmarks tested are reported.

4.1 Frequency Selection Results

The Frequency Selection method returned compressitins
worse than the standard dictionary compression ¢efumn in
Figure 4) for Hamming distance limits of 7 and undsdthough
compression ratios were improving as the Hammistadie limit
was raised. This prompted the investigation ofdarHamming
distance upper limits and upper limits of up to W&re
investigated. In fact, the results suggested thatlamming
distance upper limit of 10 would give best results.

The results at this Hamming distance returned aeera
compression ratios of 73.1%. This compressionraeheses the
fact that although Hamming distances of up to 19 beallowed,
a large portion of the program code is a small Hargndistance



100%

95%

90%

Compression Ratio

50%
normall 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Hamming Distance Upper Limit

100%

95%

90%
85%

80% -
75%
70%

Compression Ratio

65% -
60% -
55% -

50% -

normal 1 2 3 4 5 6 7
Hamming Distance Upper Limit

Figure 4 - Average Compression Ratios for Frequency
Selection

from a dictionary vector, because more frequentorsare added
first.

To examine the relative frequencies of differentnidang

distances, an example benchmark is profiled. Héredjpeg

benchmark, built for the TI TMS320c6700, has beerkén down
into how many instructions are a given Hammingatise from a
dictionary entry, with the upper limit set to 10The reason
compression is achieved is due to just over hathefprogram’s
vectors being found in the dictionary even though number of
dictionary entries is low. This is because thigoathm greedily
includes the most frequent vectors first.

Table 1 — Hamming Distance Frequencies for Frequewgc
Method Example

Number of Program
Hamming Distance | Instructions (%)
0 15772 | (54.7%)
1 2909 | (10.1%)
2 3166 | (11.0%)
3 2548 | (8.8%)
4 1787 | (6.2%)
5 1184 | (4.1%)
6 796 | (2.8%)
7 470 | (1.6%)
8 179 | (0.6%)
9 30 | (0.1%)
10 15 | (0.1%)
Total Instructions: 28856
Unigue Instructions: 11805
Dictionary Entries: 2048

The main issue arising from this frequency-basdwise is that
the length of the compressed instruction could letzeout of
hand. In the example case, the codeword lengthleg$2048 =

11 bits. For a Hamming distance upper limit of 10hitrtoggle’

bits would be required (see Figure 1) and furthermopeto 10
sets of 5-bit locations toggle locations could be nemli(as in the
case of the 15 instructions shown to be a Hammingristaf 10
from a dictionary entry in Table 1). This means‘t@npressed”
representation would actually be an expansion anddivoe 65
bits long. The codeword length would only increastn larger
programs. Such a large “compressed” instruction (idstéahe

136

Figure 5 — Average Compression Ratios for Maximum [gan
Selection

32-bit vector without compression) could add significehanges
to the instruction fetching, retrieving and decodiagdware.

4.2 Maximum Span Selection Results

In order to keep the Hamming distance upper limitatonore
manageable level, the maximum spanning method wakedri
The aim in this method was to include in the redudietdonary,
vectors that covered more of the rest of the vectotee program
code, so that with the same number of dictionaryorsct larger
set of program vectors were covered. The best resuwdte w
obtained at a Hamming distance upper limit of 3 asvshin
Figure 5. This was due to fully utilizing the togdlié number bit-
space

Unfortunately, this method did not take into accouanty
information about how frequent the chosen vectorewand as a
result, none of the Hamming distance upper limits stigated
achieved compression ratios better than standard mwmictio
compression. Compression ratios for this method wexendr
82%.

4.3 Combined Frequency and Spanning

Results

The combined frequency and spanning selection methasl
investigated in order to combine the higher freqiesnof smaller
compressed instructions from the first selection methut! the
larger set of program vectors covered by vectors énréduced
dictionary from the second selection method.

The results in Figures 6 and 7 showed that, similarh@® t
maximum span method, selecting the Hamming distangerup
limit of 3 yielded the best results in this combinedtidhary
selection method. In the compression for the TI TME3XX
program code,
distance upper limit of 3 outperformed the normattidnary
compression method by an average of 8%, though foresom
benchmarks, this was as high as 13%. Compression ratigsda
from 72.1% to 80.3%.

The main contributing factor found in experimenta@erning the
Hamming distance upper limit of 3, was that the reduc
dictionary needed was about one eighth the size eofotiginal
dictionary. This meant on average, 3 bits were s#&wed each
and every instruction, with only some of the instroies requiring

the compression scheme using the Hamming



100% 100%
95% 95%
90% 90%
S 8% S 8%
; g
T 80% | T 80% A
2 o
@ 75% - o 75%
[ (]
S 70% A s 70% A
€ £
§ 65% § 65%
60% - 60% -
55% - 55% -
50% - 50% -
normal 1 2 3 4 5 6 7 normal 1 2 3 4 5 6 7
Hamming Distance Upper Limit Hamming Distance Upper Limit
Figure 6 - Average Compression Ratios for Combined Figure 7 - Average Compression Ratios for Combined
Selection for the TI TMS320C6x Selection for the Intel Itanium
extra bit-toggling information. Furthermore, as ttietionary the TI TMS320C6x program code, as results from theipus
itself was much reduced, this contributed to an olezduction. section showed that Intel Itanium program code ditiseem to

. . compress well under 32-bit vectors.
Experimental results for the Intel Itanium prograndeavere not P

as successful. The Hamming distance limit of 3 was agen The results obtained in this investigation suggested that
the best compression ratio obtained, however this was/erage compression in streams suited the larger benchmarks. hés t
only less than 1% better than standard dictionary mpoession. program code was divided into 8 smaller streams eaelteighth

In some cases, the compression ratio was worse. Possibtsge  the size of the original code, the sizes of these stéansome of

for this are discussed below. the smaller benchmarks were too small to give goodpcession

results. However, the larger benchmarks respondet] with

. I . benchmarks larger than 200kb only adding on avertieon the
distances from a dictionary entry determined how gdbe reduced dictionary results to give compression ratiasurat

compression .WOUld be. The same example 'bench'mgrk from79.4%. Figure 9 shows the selected benchmarks with the
Section 4.1 djpeg) was profiled under the combined dictionary original code size, reduced dictionary compressed ai the

selection method, with the results in Table 2. Altgjouhe same compression algorithm applied to streams. In tiadlesm

number of instructions found in the dictionary wassléhan in the : ;

= benchmarks, the overhead in the streamed version atragated
F_requency meth_od_ (54.7% - 35.6% =19.1% Iess)_, tharhing the compression, however the larger files still retdrgood
distance upper limit ensured that not as many tofiglds were compression results

Once again, the number of vectors that were lowemriag

needed.
Table 2 — Hamming Distance Frequencies for Combined 5. DISCUSSION
Method Example For the Hamming-distance based reduced-dictionaryoession
Number of Program scheme presented in this paper, the compression ratitoden
Hamming Distance | Instructions (%) found to be very dependent on the dictionary seleatiethod. A
0 10278 | (35.6 %) vector selection method which considers both the &rgy of
1 6992 | (24.2 %) vectors and the codeword-space coverage of vectoperbortmed
2 9109 | (31.6 %) either method considered independently. This combined
3 2477 | (8.6 %) dictionary selection method achieved its best resultdh i
Total Instructions: 28856 Hamming distance upper limit of 3 — it outperformstdndard
Unique Instructions: 11805 dictionary compression on TI TMS320C6x program cbglean
Dictionary Entries: 24096 average of 8% to give an average compression ratiag&.a@%
when applied to the smallest compiler builds. Like cade-
Figure 8 shows a subset of benchmarks with their ofiigiize compr_essions schemes, this comes at the cost of additional
(white), normal dictionary compressed size (light yrend decoding hardware.
redu<_:ed dictionary compressed size (dark). For eanbhmark, When applied to the Intel Itanium program code, seireme only
the first group of three bars corresponds to the Tl IRE6x resulted in a negligible change, and in some casew ladvorse
program code, and the second 3 bars (with diagortahing) compression ratio than normal dictionary compressidris Ts
correspond to the Intel Itanium program code. likely to be because our approach considered fixes-sizde
vectors of 32 bits. TI TMS320C6x program code is magef 32
4.4 Stream Encoding Results bit instructions — which corresponded to the code orsct

The idea of stream encoding was trialed in orderecothpress ~ considered; however, the 128-bit Itanium code bundientain
mu|t|p|e streams Of program Code at once, ||m|t|ng ﬂ'dded three 41-bit instructions which did not align wellthvithe 32-bit
delay attributed to the decompression unit. Our sfadysed on ~ Vectors. It is suggested that other vector lengths cdaed

137



O TMS320C6x original code size
O Itanium original code size

O TMS320C6x normal dictionary
@ Itanium normal dictionary

m TMS320C6x reduced dictionary
W Itanium reduced dictionary

1000

900
800

700
600

500

400
300

200

Program Size - Kilobytes

100
04

epic mcf art

equake

Benchmarks

mpeg2enc twolf

cjpeg

ammp

Figure 8 - Relative Sizes of Program code before drafter compression

examined for the Itanium program code to deternifiniis type
of compression scheme could be applicable under éliffarector
lengths.

An investigation into parallel compression showed thaiding
the program into 32-bit parallel streams returned azerage
compression ratio of 79.4% for programs larger tha®kBOThis
approach enables parallel decompression of instructitrams
within a VLIW instruction word with only a small ovegad in
compression performance. For small programs, howelvere tis
little advantage to this approach.

6. CONCLUSIONS AND FURTHER WORK

This paper has presented a VLIW code compression teghniq

based on vector Hamming distances. Dictionary vectoes

a

selected such that all program vectors are at most cifispe
maximum Hamming distance from a dictionary vectoBit
toggling information is used to restore the originattor.

A dictionary vector selection method which considetsath
vector frequency as well as maximum coverage achidetter
results than just considering vector frequency or veoboerage
independently. This method, with a Hamming distanppew
limt of 3, was found to outperform standard dictipha
compression on Tl TMS320C6x program code by an aeecdg
8%, giving compression ratios of 72.1% to 80.3% whgpliad to
the smallest compiler builds.

An investigation into parallel compression showed thigiding
the program into 32-bit parallel streams returned azerage
compression ratio of 79.4% for files larger than 200kb

‘EI Original Program Size m Reduced Dictionary Compressed Size 0 Reduced Streams Compressed Size ‘

600

500

-

400

-

300

200

Program Size - Kilobytes

100

Nill nl

epic

mcf art

equake

benchmarks

mpeg2enc cjpeg ammp twolf

Figure 9 - Relative Sizes of Program code before drafter stream compression

138



Further work is suggested in a number of areas. Fiostpier
techniques such as register renaming could be used dot sel
registers whose binary representations are small
distances from one another. If the compiler was awdrthe
Hamming distance upper limit of the subsequent
compression applied, it would be possible to outpuganm code
such that the 32-bit instructions used as vectors caiigrbuped
more efficiently and separated by Hamming distancéiimvihe
compression scheme’s upper limit.

Second, it is proposed to consider other dictionargctieh

methods that are not greedy (all methods presentéusirpaper
selected reduced dictionary entries based on the maxicurrent
gain only). Other options could be investigated, sasthe use
of dictionary vectors that are not limited to thectegs found in
the program.

Third, the selection of codewords associated with eadiced
dictionary entry could be investigated. In this papthe
codewords used were a fixed length, with a variabrgth tail
appended to denote how many and which bits to toggle
variable scheme could also be applied to the codefieicisuch
that codewords would be smaller for more frequentgeased
dictionary entries and longer for infrequent vectorsis could be
achieved by applying either a Huffman [8]-like cod&Pack [7]-
like scheme.

7. REFERENCES

[1] Mediabench Benchmark$997, accessed 2003,
http://cares.icsl.ucla.edu/MediaBench/

[2] SPEC CPU2000 BenchmarkX000, accessed 2003,

3]

http://www.specbench.org/cpu2000/
Atmel-CorporationAT572D740 Summary (Datasheet)
2004, accessed 2004,
http://www.atmel.com/dyn/resources/prod_documents/3001
pdf
P. Centoducatte, G. Araujo, and R. Pannain tigeessed
code execution on DSP architectures,Pioceedings 12th
International Symposium on System Synthesis.: 188%
Comput. Soc, Los Alamitos, CA, USA, 1999, pp. 56-61.
K. D. Cooper and N. MclIntosh, "Enhanced code prgasion
for embedded RISC processors,'SIGPLAN Notices. May
1999; 34(5) ACM, 1999, pp. 139-49.
J. Ernst, W. Evans, C. W. Fraser, S. Lucco, andl.T.
Proebsting, "Code compression,"SiIGPLAN Notices. May
1997; 32(5) ACM, 1997, pp. 358-65.
M. B. Game, A, "CodePack: Code Compression fov&®C
processors (version 1.0owerPC Embedded Processor
Solutions, IBMNorth Carolina 2000.
D. A. Huffman, "A method for the constuction minimum
redundancy codesProceedings of the IREol. 4D, pp.
1098-1101, 1952.
Intel, Intel Itanium Architecture Software Developer's
Manual Revision 2.1, 2002, accessed 2004,
http://www.intel.com/design/itanium/manuals/iiasdmdriva
m
[10] N. Ishiura and M. Yamaguchi, "Instruction Code
Compression for Application Specific VLIW Processors
BAsed on utomatic Field Partitioning," 1997.
[11] S. Y. Larin and T. M. Conte, "Compiler-driveached code
compression schemes for embedded ILP processors," in

[4]

[5]

[6]

[7]

(8]

[9]

139

Hamming

code

MICRO 32. Proceedings of the 32nd Annual ACM/IEEE
International Symposium on Microarchitecture. 1985EE
Comput. Soc, Los Alamitos, CA, USA, 1999, pp. 82-92.

[12] C. Lefurgy, P. Bird, I. C. Chen, and T. Muddkmproving
code density using compression techniquesProteedings.
Thirtieth Annual IEEE/ACM International Symposium o
Microarchitecture Cat. N0.97TB100184. 1992EE
Comput. Soc, Los Alamitos, CA, USA, 1997, pp. 194-203

[13] C. Lefurgy and T. Mudge, "Code Compression f&H)"'
presented at Compiler and Architecture Support for
Embedded Computing Systems, George Washington
University, Washington DC, 1998.

[14] C. Lefurgy, E. Piccininni, and T. Mudge, "Regilg code
size with run-time decompression,"fnoceedings Sixth
International Symposium on High Performance Compute
Architecture. HPCA 6 Cat. No.PR00550. 198EE
Comput. Soc, Los Alamitos, CA, USA, 1999, pp. 218-28.

[15] H. A. Lekatsas, "Code compression for embeddedregste
Princeton University, 2000, pp. 171.

[16] S. Liao, S. Devadas, and K. Keutzer, "A textapoession-
based method for code size minimization in embedded
systems,’ACM Transactions on Design Automation of
Electronic Systemsol. 4, pp. 12-38, 1999.

[17] S. J. Nam, In Cheol Park, and Chong Min Kyung,
"Improving dictionary-based code compression in VLIW
architectures,!EICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciengas
E82-A, pp. 2318-24, 1999.

[18] P. S. Paolucci, "Apparatus and Method for DyitaRrogram
Decompression." United States, Filed: 2002.

[19]J. Prakash, C. Sandeep, P. Shankar, and Y.ikar$r"A
Simple and Fast Scheme for Code Compression for VLIW
processors," iffroceedings DCC 2003. Data Compression
Conferenced. A. Storer and M. Cohn, Eds.: IEEE Comput.
Soc, Los Alamitos, CA, USA, 2003, pp. 444.

[20] M. Ros and P. Sutton, "Compiler optimizatiordardering
effects on VLIW code compression,"Rroceedings of the
international conference on Compilers, Architectiaad
Synthesis for embedded syste§en Jose: ACM Press, 2003,
pp. 95--103.

[21] Texas-Instrument§;MS320C6000 CPU and Instruction Set
Reference Guide000, accessed 2004,
http://focus.ti.com/lit/ug/sprul 89f/sprul89f.pdf

[22] A. Wolfe and A. Chanin, "Executing compressedgrams
on an embedded RISC architecture,SiGMICRO
Newsletter. Dec. 1992; 23(1,2)992, pp. 81-91.

[23] Y. Xie, H. Lekatsas, and W. Wolf, "Code compresdior
VLIW processors," irProceedings DCC 2001. Data
Compression Conference. 2QU1 A. Storer and M. Cohn,
Eds.: IEEE Comput. Soc, Los Alamitos, CA, USA, 2004, p
525.

[24] Y. Xie, W. Wolf, and H. Lekatsas, "Code compressior
VLIW processors using variable-to-fixed coding,"1ibth
International Symposium on System Synthesis IEEE Ca
No.02EX631. 2002ACM, New York, NY, USA, 2002, pp.
138-43.

[25] Y. Xie, W. Wolf, and H. Lekatsas, "A code decamgsion
architecture for VLIW processors," Proceedings 34th
ACM/IEEE International Symposium on Microarchiteetu
2001 IEEE Comput. Soc, Los Alamitos, CA, USA, 2001,
pp. 66-75.




