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ABSTRACT  
This paper presents and reports on a VLIW code compression 
technique based on vector Hamming distances [19].  It 
investigates the appropriate selection of dictionary vectors such 
that all program vectors are at most a specified maximum 
Hamming distance from a dictionary vector.  Bit toggling 
information is used to restore the original vector. 

A dictionary vector selection method which considered both 
vector frequency as well as maximum coverage achieved better 
results than just considering vector frequency or vector coverage 
independently. This method was found to outperform standard 
dictionary compression on TI TMS320C6x program code by an 
average of 8%, giving compression ratios of 72.1% to 80.3% 
when applied to the smallest compiler builds. The most favorable 
results were achieved with a Hamming distance upper limit of 3.   

An investigation into parallel compression showed that dividing 
the program into 32-bit parallel streams returned an average 
compression ratio of 79.4% for files larger than 200kb. This 
approach enables parallel decompression of instruction streams 
within a VLIW instruction word. Suggestions for further work 
include compiler/compression integration, more sophisticated 
dictionary selection methods and better codeword allocation. 

Categories and Subject Descriptors 
E.4 [Coding and Information Theory] 

General Terms 
Algorithms, Performance. 

Keywords 
Code Compression, VLIW, Hamming distance. 

1. INTRODUCTION 
Code size management is a significant issue for embedded system 
design.  As consumers require more functionality, applications for 

embedded devices become more and more complex.  Furthermore, 
abstract programming languages are being chosen for the 
development of embedded applications such that the development 
can be steered away from the hardware level and more towards a 
platform-independent design philosophy.  As a result of both of 
these considerations, embedded application code sizes are 
increasing and this can pose a problem for designers. 

Several methods for compressing or compacting code size have 
been presented in the literature to date, though most algorithms 
have focused mainly on RISC processors.  Lately, however, 
VLIW (Very Long Instruction Word) processors have begun to be 
considered as prime candidates for code compression, given not 
only their inherent large instruction words but also their appeal to 
the embedded DSP market. 

One example of where code compression has reached the VLIW 
industry is in Atmel’s Diopsis Dual Core DSP implementing a 
mAgic DSP VLIW core which uses a method of built-in dynamic 
program decompression [3, 18].  Compressed program code is fed 
to dynamic program decompression devices (dyprodes) which 
produce the uncompressed code and this is seamlessly executed.  
Another advantage of using code compression is that program bus 
size can be reduced as a result of the smaller instruction word 
size.  This is used to the Diopsis’ advantage. 

Code compression efficiency is widely defined [4, 12, 15, 19] as 
the ratio between the compressed program size and the original 
program size.  That is, the smaller the compression ratio, the 
better the compression.  Compression ratio can depend on the size 
of the original compiler output.  Our previous work has found that 
the smallest overall sizes after compression are obtained when the 
smallest possible compiler build is used, even though other builds 
give better compression ratios [20]. 

In this paper, we present a new compression scheme and 
investigate its performance.  We have taken selected benchmarks 
from the Spec2000 [2] and the Mediabench [1] benchmark suites, 
and built them for the Texas Instruments TMS320c6x [21] and 
the Intel Itanium [9] as representatives of the VLIW/EPIC 
processor range. 

The remainder of this paper is organized as follows.  Section 2 
presents background and related work in this field.  Section 3 
describes the compression scheme used and Section 4 outlines 
results from applying the compression scheme.  Section 5 includes 
a discussion and comparison of results and Section 6 contains 
conclusions and further work. 
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2. RELATED WORK 
The area of text or data compression is a mature one, but code 
compression dates from 1992, when Wolfe and Channin first 
published a paper on a Compressed Code RISC Processor 
(CCRP) [22].  VLIW code compression is an even more recent 
field with papers published in only the last few years.  Code 
compression is a separate field of study given that many data 
compression based schemes are inapplicable to program code, 
where branch targets and function entry points need to be 
decompressed on demand. 

2.1 Code Compression on RISC processors 
The paper by Wolfe and Channin [22] suggested a CCRP to 
compress code and used a ‘code-expanding instruction cache’, 
such that the decompression could be transparent to the processor.  
By using a compression technique that did not give consideration 
to branch targets and function beginnings, extra hardware was 
required to fetch addresses.  Their design used a Line Address 
Table (LAT) to map original addresses into compressed code 
addresses. 

Lefurgy et al presented dictionary compression in [13] where all 
unique instructions are recorded in an ‘instruction table’ and each 
instruction is replaced by an index into the table.  They also 
present a selective version in [14].  Liao et al offered  a dictionary 
compression scheme based on set-covering in [16] which looks at 
substrings that occur frequently.  Lekatsas presented a semi-
adaptive dictionary compression scheme in [15] which generated 
new opcodes for instructions appearing frequently. Some 
software/compiler methods have also been presented in [5, 6, 14]. 

2.2 Code Compression on VLIW processors 
Code compression techniques have also been applied to VLIW 
processors.  Nam et al [17] achieved average compression ratios 
of 63%-71% using a dictionary compression method and 
compared the difference in performance of "identical" (whole 
instructions words) and "isomorphic" (split into opcode/operand 
fields) instruction word encoding schemes.  Ishiura and 
Yamaguchi [10] investigated code compression based on 
Automatic Field Partitioning, achieving compression ratios of 46-
60%.  They reduced the problem of compressing code to the 
problem of finding the field partitioning that yields the smallest 
compression ratio.  Larin and Conte [11] compared code 
compression methods and a tailored encoding of the Instruction 
Set Architecture.  The tailored ISA method produced new code at 
64% of the original code size, though at a much smaller cost to 
decoding hardware than standard compression. 

Xie et al. [23, 25] used a reduced-precision arithmetic coding 
technique combined with a Markov model and applied it to 
similar systems with different sized sub-blocks.  The 16-byte sub-
block scheme yields the best compression rates at 67.3% – 69.7%.  
Xie et al. also present a Tunstall-based memory-less variable-to-
fixed encoding scheme and an improved Markov variable-to-fixed 
algorithm in [24].  The use of variable-to-fixed encoding means 
that codewords are arbitrarily assigned and this assignment can be 
used to an advantage to reduce the number of bit toggles on the 
instruction bus. 

Prakash et al [19] present a dictionary based encoding scheme that 
divides instructions into two 16-bit halves. For each half, a 
dictionary is constructed that contains a choice set of vectors such 

that a majority of the vectors used throughout the program in that 
half of the instruction differ from one of the dictionary vectors by 
a Hamming distance of at most 1 (the Hamming distance between 
two vectors is the number of bits that are different).  Each 
compressed instruction is then replaced by two codewords 
representing each half-instruction.  These codewords are a 
combination of the indexes into the relevant dictionaries as well 
as information about which bits are toggled. 

This method means that two vectors that differ by only one bit 
will not require both vectors to be stored in the dictionary.  One of 
the two vectors is stored and the other merely references the 
stored vector and points out which bit needs to be toggled.  
Average compression ratios of 78.6% including Line Addressing 
Table are reported.  Although some attempt is made to investigate 
32-bit vectors, the dictionary selection method they used did not 
appear to give compression ratios as good as the 16-bit scheme.  
Their scheme also uses different dictionaries for each sub-block of 
2048 bytes as opposed to using one dictionary for the whole 
program. 

2.3 Previous Implementations of Code 
Compression 
One successful encoding scheme, commercially used in the 
PowerPC 405, is the CodePack scheme [7].  The CodePack 
encoding scheme follows an algorithm analogous to a piece-wise 
Huffman scheme [8] where the most frequent symbols are 
assigned smaller codewords.  Here, the 16-bit half-words are 
assigned a two or three bit tag which denotes which ‘class’ they 
belong to, differentiated by the tag and then how long the 
codeword is.  CodePack has a reported performance of an overall 
program size “reduction” of 35-40% [7] (i.e. a compression ratio 
of 60-65%).  CodePack uses variable-length encoding and 
requires the use of a mapping table to calculate the new address of 
a given instruction.  Lefurgy et al provide further optimisation and 
enhancement suggestions for a machine with CodePack in [12]. 

A second example of the implementation of code compression is 
the Atmel Diopsis example mentioned earlier [3, 18].  This VLIW 
code compression architecture claims a 2X to 3X compression of 
code (33 to 50% compression ratio) whereby 128-bit instruction 
words are compressed to an average of 50 bits per instruction 
word.  This shows the advantage of an integrated code 
compression and instruction set architecture if designed together 
from the start. 

In most cases, designing a totally new processor complete with 
integrated code compression and instruction set architecture is 
beyond the scope (not to mention budget!) of many embedded 
applications.  Instead, research has tended to concentrate on code 
compression systems that are software-based or where hardware 
need only be altered slightly in order to achieve a saving of 
program size (moderate, but a saving nonetheless).  An example 
of where a slight alteration of hardware is possible would be the 
inclusion of a decompression engine next to a processor core in an 
ASIC embedded design.  In this case, the program to be run on 
the processor of choice can be compiled and compressed before 
loading. 
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3. ENCODING SCHEME 
The encoding scheme presented in this paper is based on the 
appropriate selection of dictionary vectors such that all program 
vectors are at most a specified Hamming distance from a 
dictionary vector.  Bit toggling information is used to accurately 
restore original code.  This scheme is similar to the 16-bit version 
from [19] where only vectors differing by one bit were 
considered.  Instead, our scheme considers 32-bit vectors and was 
trialed with Hamming distance upper limits from 1 to 8.  
Furthermore, we consider multiple dictionary selection methods 
and offer a stream-based compression method for parallel 
decompression. 

The algorithm is divided into the four steps described in the 
following subsections.  A decoder is required in the hardware to 
decode the uncompressed instructions and is outlined in Section 
3.5. 

3.1 File Input and Dictionary Construction 
(First Input Pass) 
The first pass in the encoding scheme is equivalent to most 
dictionary compression schemes.  The benchmark to be 
compressed is read in, one 32-bit vector at a time, and a frequency 
distribution of all the used vector space is constructed.  This 
histogram-like structure (containing elements from the dictionary) 
is used in the subsequent compression steps. 

3.2 Reduced Dictionary Selection (First 
Dictionary Pass) 
The purpose of this pass is to select from the dictionary, a subset 
of vectors (called the reduced dictionary) such that all original 
dictionary vectors are at most a set Hamming distance from any 
one of the reduced dictionary vectors.  The purpose of this 
dictionary-subset selection is to allow for a smaller dictionary, and 
include information for bit-toggles where the vectors differ in the 
replacement codewords. 

The benchmark programs were profiled for 32-bit vector space 
usage and three reduced dictionary selection methods were 
applied – they are described below.  They were tested for up to set 
Hamming distance upper limits ranging from 1 to 7. 

3.2.1 Frequency Selection Method 
This method of selecting vectors for inclusion in the reduced 
dictionary chooses vectors based on their frequencies and 
continually adds the most frequent vectors until all the vectors in 
the original dictionary are ‘covered’ by being at most a set 
maximum Hamming distance from any of the reduced dictionary 
vectors.  The aim of this method is to include vectors into the 
reduced dictionary that are very frequent in the original program, 
thus incorporating a higher number of “zero Hamming distance” 
entries.  This means that fewer bit toggle location fields will be 
required during compression (see Section 3.4). 

3.2.2 Maximum Span Selection Method 
This method finds, for each vector in the dictionary, the total 
number of other dictionary vectors that are up to a set maximum 
Hamming distance from it.  The vector that spans the most other 
vectors is chosen and placed in the reduced dictionary.  Then, this 
method discards all vectors in the dictionary that are the set 

Hamming distance or less from the chosen vector.  Of the un-
discarded vectors in the dictionary, the vector that spans the most 
of the remaining vectors is chosen and the process repeats again 
until all vectors are discarded from the original dictionary.  The 
aim of this method is to reduce the number of vectors needed in 
the reduced dictionary. 

3.2.3 Combination of Frequency and Spanning 
Method 
This dictionary selection method attempts to combine the best 
from both of the previous algorithms.  It chooses the most 
frequent vector in the dictionary and places it in the reduced 
dictionary.  Then, it discards all vectors in the dictionary that are 
the set Hamming distance or less from the chosen vector.  Once 
again, the most frequent vector from the remaining vectors is 
chosen and the process repeats until all dictionary vectors are 
covered by the given set Hamming distance. 

3.3 Reduced Dictionary Fill and Codeword 
Assignment (Second Dictionary Pass) 
The reduced dictionary is analyzed and filled with further vectors 
such that the bits required for the indexing of the reduced 
dictionary is unchanged.  Essentially, this fills it with vectors from 
the original dictionary that did not already exist in the reduced 
dictionary, up to the next power of 2 so that there is no wasted 
indexing space.  In all three dictionary selection methods, the 
extra filling stage takes the most frequent vectors that are not 
already in the reduced dictionary, as this method will reduced the 
number of toggle locations more.  The indices into the reduced 
dictionary serve as codewords for the compression step. 

3.4 Compression Application (Final Input 
Pass) 
The compression scheme is applied by converting each 32-bit 
vector into compressed code.  The compressed code comprises a 
codeword (determined in the last step), a set number of bits to 
denote the number of toggles and up to 7 sets of 5-bit toggle 
locations.  An example of this is shown in Figure 1. 

codeword
Number

 of bit

toggles
location location...location

Up to 7 locations of toggle bits

(5 bits each)  

Figure 1 - Format of Compressed Program Code 

Compressed program code is inserted serially in place of the 
original code with one exception.  To make decoding easier, 
possible branch targets are aligned at byte boundaries and as a 
result, some padding is needed at the end of any byte preceding a 
target location.  This padding and the Line Address Table (LAT) – 
described in Section 3.5 – are part of the overhead associated with 
this encoding scheme. 

3.5 Decompression Engine Design 
A decompression unit is required to decompress the instructions 
‘on the fly’ and feed them to the CPU.  The standard dictionary 
scheme uses a dictionary as a lookup table, where the compressed 
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instruction acts as an index into the lookup table and the output of 
the table is the uncompressed instruction. 

Our scheme works in a similar fashion, with the codeword from 
the compressed instruction acting as an index into the reduced 
dictionary lookup table, and the extra bits in the compressed 
instruction determining which bits (if any) to toggle from the 
lookup table output.  A block diagram of the dictionary and the bit 
toggling hardware required for a code compression scheme with a 
Hamming distance upper limit of 3 is given in Figure 2. 

Reduced

Dictionary

First toggle location

XOR

XOR

32-bit 

toggle 

mask

Second toggle location

Third toggle location

control number of toggles

Compressed 

Instruction

Uncompressed

Instruction

Dictionary 

entry

 

Figure 2 - Block Diagram of the Decompression Unit 

Because our scheme is a variable length one, we must consider the 
need for a referencing table of some sort such that instruction 
locations (such as branch targets) can be retrieved.  For this, we 
have used a LAT similar to [19], however only branch targets are 
included in the table.  The block diagram of this LAT hardware is 
given in Figure 3.  Furthermore, to ensure the branch targets were 
byte aligned, padding was required at the end of the previous 
instruction of every target. 

Line

Address

Table

(LAT)

Base address of Program

Address of

compressed 

Instruction

Address of

decompressed 

Instruction

Offset into 

original

program

Offset into 

compressed 

program  

Figure 3 - Block Diagram of Line Address Table 

3.6 Stream Encoding 
The main problem with the serial decompression of variable-
length codes is that performance is affected.  In particular, one 
fetch packet (which consisted of four and eight 32-bit vectors in 
the processors investigated) can consist of many vectors which are 
normally fetched simultaneously.  If 8 such 32-bit vectors are to 
be serially decompressed, then the latency associated with 8 sets 
of dictionary retrievals and bit togglings could be detrimental to 
performance. 

In a bid to parallelize the decompression of the compressed code 
and avoid the serial decompression latency, the option of 
compressing the information into streams is trialed.  This 
implementation divides the instruction fetch packet into 32-bit 

streams and decompression is applied to the program code in a 
given stream rather than the whole program code.  Smaller, 
individual tables and separate decompressors are required for each 
stream. 

4. RESULTS 
Benchmarks were taken from both the Spec2000 [2] and the 
Mediabench [1] benchmark suites.  These were built for two 
targets, the Texas Instruments TMS320c6x [21] using the TI Code 
Composer compiler and the Intel Itanium [9] using gcc.   

Benchmarks taken from the Mediabench suite included adpcm 
(rawc- and rawd-audio), g721 (g721enc and g721dec), epic (and 
unepic), mpeg (mpeg2enc and mpeg2dec) and jpeg (cjpeg and 
djpeg).  Benchmarks taken from the Spec2000 suite included mcf, 
art , equake, parser, ammp, twolf  and mesa. 

In both processor cases, the benchmarks were built with every 
optimization level, and the smallest possible build was used.  In 
most cases, this corresponded with the -ms3 and -o3 flags for the 
TI compiler, and the -Os flag for all gcc builds. 

Compression ratio is an accurate measurement to compare the 
different versions of this compression scheme, because they are all 
applied to the same original files (hence starting size will be the 
same for any benchmark). 

The first issue investigated was that of the dictionary selection 
methods.  Compression ratio was found to be very dependent on 
the selection method thus results are presented for each selection 
technique in comparison to a standard dictionary compression.  
The standard scheme places all unique vectors found in the 
program code in the dictionary and an index is used instead of the 
original vector.  An example of its application is given in [13].  In 
essence, the ‘normal’ dictionary compression method is a method 
that tolerates no bit toggles (and as a result requires no extra 
information) and can be likened to our method with a Hamming 
distance upper limit of 0 where the ‘reduced’ dictionary is 
identical to the original dictionary. 

Compression ratios in the following sections include the 
compressed code, dictionary and LAT sizes.  Dictionary sizes are 
taken from the number of reduced unique entries required to cover 
the entire code, and the LAT sizes are derived from the number of 
branch target locations.  Average compression ratios across all 
benchmarks tested are reported. 

4.1 Frequency Selection Results 
The Frequency Selection method returned compression ratios 
worse than the standard dictionary compression (left column in 
Figure 4) for Hamming distance limits of 7 and under, although 
compression ratios were improving as the Hamming distance limit 
was raised.  This prompted the investigation of larger Hamming 
distance upper limits and upper limits of up to 16 were 
investigated.  In fact, the results suggested that a Hamming 
distance upper limit of 10 would give best results.   

The results at this Hamming distance returned average 
compression ratios of 73.1%.  This compression scheme uses the 
fact that although Hamming distances of up to 10 may be allowed, 
a large portion of the program code is a small Hamming distance 

135



from a dictionary vector, because more frequent vectors are added 
first. 

To examine the relative frequencies of different Hamming 
distances, an example benchmark is profiled.  Here, the djpeg 
benchmark, built for the TI TMS320c6700, has been broken down 
into how many instructions are a given Hamming distance from a 
dictionary entry, with the upper limit set to 10.  The reason 
compression is achieved is due to just over half of the program’s 
vectors being found in the dictionary even though the number of 
dictionary entries is low.  This is because this algorithm greedily 
includes the most frequent vectors first. 

Table 1 – Hamming Distance Frequencies for Frequency 
Method Example 

Hamming Distance 
Number of Program 
Instructions (%) 

0 15772 (54.7%) 
1 2909 (10.1%) 
2 3166 (11.0%) 
3 2548 (8.8%) 
4 1787 (6.2%) 
5 1184 (4.1%) 
6 796 (2.8%) 
7 470 (1.6%) 
8 179 (0.6%) 
9 30 (0.1%) 

10 15 (0.1%) 
Total Instructions: 28856  

Unique Instructions: 11805  
Dictionary Entries: 2048  

 
The main issue arising from this frequency-based scheme is that 
the length of the compressed instruction could escalate out of 
hand.  In the example case, the codeword length was ( )2048log2 = 

11 bits.  For a Hamming distance upper limit of 10, 4 ‘bit-toggle’ 
bits would be required (see Figure 1) and furthermore, up to 10 
sets of 5-bit locations toggle locations could be required (as in the 
case of the 15 instructions shown to be a Hamming distance of 10 
from a dictionary entry in Table 1).  This means the “compressed” 
representation would actually be an expansion and would be 65 
bits long.  The codeword length would only increase with larger 
programs.  Such a large “compressed” instruction (instead of the 

32-bit vector without compression) could add significant changes 
to the instruction fetching, retrieving and decoding hardware. 

4.2 Maximum Span Selection Results 
In order to keep the Hamming distance upper limit to a more 
manageable level, the maximum spanning method was trialed.  
The aim in this method was to include in the reduced dictionary, 
vectors that covered more of the rest of the vectors in the program 
code, so that with the same number of dictionary vectors, a larger 
set of program vectors were covered.  The best results were 
obtained at a Hamming distance upper limit of 3 as shown in 
Figure 5.  This was due to fully utilizing the toggle bit number bit-
space 

Unfortunately, this method did not take into account any 
information about how frequent the chosen vectors were, and as a 
result, none of the Hamming distance upper limits investigated 
achieved compression ratios better than standard dictionary 
compression.  Compression ratios  for this method were around 
82%. 

4.3 Combined Frequency and Spanning 
Results 
The combined frequency and spanning selection method was 
investigated in order to combine the higher frequencies of smaller 
compressed instructions from the first selection method and the 
larger set of program vectors covered by vectors in the reduced 
dictionary from the second selection method. 

The results in Figures 6 and 7 showed that, similar to the 
maximum span method, selecting the Hamming distance upper 
limit of 3 yielded the best results in this combined dictionary 
selection method.  In the compression for the TI TMS320C6x 
program code,  the compression scheme using the Hamming 
distance upper limit of 3 outperformed the normal dictionary 
compression method by an average of 8%, though for some 
benchmarks, this was as high as 13%.  Compression ratios ranged 
from 72.1% to 80.3%. 

The main contributing factor found in experiments concerning the 
Hamming distance upper limit of 3, was that the reduced 
dictionary needed was about one eighth the size of the original 
dictionary.  This meant on average, 3 bits were saved from each 
and every instruction, with only some of the instructions requiring 
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extra bit-toggling information.  Furthermore, as the dictionary 
itself was much reduced, this contributed to an overall reduction. 

Experimental results for the Intel Itanium program code were not 
as successful.  The Hamming distance limit of 3 was once again 
the best compression ratio obtained, however this was on average 
only less than 1% better than standard dictionary decompression.  
In some cases, the compression ratio was worse.  Possible reasons 
for this are discussed below. 

Once again, the number of vectors that were lower Hamming 
distances from a dictionary entry determined how good the 
compression would be.  The same example benchmark from 
Section 4.1 (djpeg) was profiled under the combined dictionary 
selection method, with the results in Table 2.  Although the 
number of instructions found in the dictionary was less than in the 
Frequency method (54.7% - 35.6% = 19.1% less), the Hamming 
distance upper limit ensured that not as many toggle fields were 
needed. 

Table 2 – Hamming Distance Frequencies for Combined 
Method Example 

Hamming Distance 
Number of Program 
Instructions (%) 

0 10278 (35.6 %) 
1 6992 (24.2 %) 
2 9109 (31.6 %) 
3 2477 (8.6 %) 

Total Instructions: 28856  
Unique Instructions: 11805  

Dictionary Entries: 4096  
 
Figure 8 shows a subset of benchmarks with their original size 
(white), normal dictionary compressed size (light grey) and 
reduced dictionary compressed size (dark).  For each benchmark, 
the first group of three bars corresponds to the TI TMS320C6x 
program code, and the second 3 bars (with diagonal hatching) 
correspond to the Intel Itanium program code. 

4.4 Stream Encoding Results 
The idea of stream encoding was trialed in order to decompress 
multiple streams of program code at once, limiting the added 
delay attributed to the decompression unit.  Our study focused on 

the TI TMS320C6x program code, as results from the previous 
section showed that Intel Itanium program code did not seem to 
compress well under 32-bit vectors. 

The results obtained in this investigation suggested that 
compression in streams suited the larger benchmarks.  As the 
program code was divided into 8 smaller streams each one eighth 
the size of the original code, the sizes of these streams for some of 
the smaller benchmarks were too small to give good compression 
results.  However, the larger benchmarks responded well, with 
benchmarks larger than 200kb only adding on average, 4% on the 
reduced dictionary results to give compression ratios around 
79.4%.  Figure 9 shows the selected benchmarks with their 
original code size, reduced dictionary compressed size and the 
same compression algorithm applied to streams.  In the smaller 
benchmarks, the overhead in the streamed version almost negated 
the compression, however the larger files still returned good 
compression results.  

5. DISCUSSION 
For the Hamming-distance based reduced-dictionary compression 
scheme presented in this paper, the compression ratio has been 
found to be very dependent on the dictionary selection method. A 
vector selection method which considers both the frequency of 
vectors and the codeword-space coverage of vectors outperformed 
either method considered independently. This combined 
dictionary selection method achieved its best results with a 
Hamming distance upper limit of 3 – it outperformed standard 
dictionary compression on TI TMS320C6x program code by an 
average of 8% to give an average compression ratios of 76.2% 
when applied to the smallest compiler builds.  Like all code-
compressions schemes, this comes at the cost of additional 
decoding hardware.   

When applied to the Intel Itanium program code, our scheme only 
resulted in a negligible change, and in some cases led to a worse 
compression ratio than normal dictionary compression. This is 
likely to be because our approach considered fixed-size code 
vectors of 32 bits. TI TMS320C6x program code is made up of 32 
bit instructions – which corresponded to the code vectors 
considered; however, the 128-bit Itanium code bundles contain 
three 41-bit instructions which did not align well with the 32-bit 
vectors. It is suggested that other vector lengths could be 
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examined for the Itanium program code to determine if this type 
of compression scheme could be applicable under different vector 
lengths. 

An investigation into parallel compression showed that dividing 
the program into 32-bit parallel streams returned an average 
compression ratio of 79.4% for programs larger than 200kb. This 
approach enables parallel decompression of instruction streams 
within a VLIW instruction word with only a small overhead in 
compression performance. For small programs, however, there is 
little advantage to this approach. 

6. CONCLUSIONS AND FURTHER WORK 
This paper has presented a VLIW code compression technique 
based on vector Hamming distances. Dictionary vectors are 

selected such that all program vectors are at most a specified 
maximum Hamming distance from a dictionary vector.  Bit 
toggling information is used to restore the original vector. 

A dictionary vector selection method which considered both 
vector frequency as well as maximum coverage achieved better 
results than just considering vector frequency or vector coverage 
independently. This method, with a Hamming distance upper-
limit of 3, was found to outperform standard dictionary 
compression on TI TMS320C6x program code by an average of 
8%, giving compression ratios of 72.1% to 80.3% when applied to 
the smallest compiler builds.  

An investigation into parallel compression showed that dividing 
the program into 32-bit parallel streams returned an average 
compression ratio of 79.4% for files larger than 200kb. 

Figure 9 - Relative Sizes of Program code before and after stream compression 

Figure 8 - Relative Sizes of Program code before and after compression 
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Further work is suggested in a number of areas. First, compiler 
techniques such as register renaming could be used to select 
registers whose binary representations are small Hamming 
distances from one another.  If the compiler was aware of the 
Hamming distance upper limit of the subsequent code 
compression applied, it would be possible to output program code 
such that the 32-bit instructions used as vectors could be grouped 
more efficiently and separated by Hamming distances within the 
compression scheme’s upper limit. 

Second, it is proposed to consider other dictionary selection 
methods that are not greedy (all methods presented in this paper 
selected reduced dictionary entries based on the maximum current 
gain only).  Other options could be investigated, such as the use 
of dictionary vectors that are not limited to the vectors found in 
the program. 

Third, the selection of codewords associated with each reduced 
dictionary entry could be investigated.  In this paper, the 
codewords used were a fixed length, with a variable length tail 
appended to denote how many and which bits to toggle.  A 
variable scheme could also be applied to the codeword field such 
that codewords would be smaller for more frequently accessed 
dictionary entries and longer for infrequent vectors.  This could be 
achieved by applying either a Huffman [8]-like or CodePack [7]-
like scheme. 
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