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Abstract

There is a need for highly redundant manipulators to work
in complex, cluttered environments. We explore kinemat-
ics and path planning for highly redundant manipulators
by means of a continuous manipulator model, which cap-
tures the macroscopic shape of highly redundant manipu-
lators.

A path for the continuous manipulator model can be
found by finding a smooth path for its end-effector under
a maximum curvature/torsion constraint. Free space de-
composition into primary convex regious is suited to find-
ing such smooth paths.

Oun top of the free space representation, we have de-
veloped an algorithm to find a continuous curvature path
in 2-D with a maximum curvature constraint. We report
on an experiment conducted to measure the efficiency of
the algorithm. The 2-D path planning algorithm could be
used for path planning in 3-D space by restricting the ma-
nipulator movement. Alternatively, 3-D free space can be
decomposed into primary convex regions.

The path planning problem has been shown to be
PSPACE-complete in terms of DOF of the manipula-
tor. However, DOF of the manipulator is a resource to
be utilized in our approach, because the error bound on
the mapping improves with the number of DOF of the
manipulator.

1 Introduction

1.1 Highly Redundant Manipulators

Redundant manipulators have more degrees of freedom
(DOF) than necessary to specify a tip position and ori-
entation in the workspace (3 in 2-D, 6 in 3-D). Additional
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degrees of freedom may be necessary for a manipulator
whose task includes avoiding obstacles. There is a need
for highly redundant manipulators to work in complex,
cluttered environments. Their applications include pass-
ing trough restricted passages for the inspection or the
maintenance of a mechanical system such as a nuclear re-
actor and a spacecraft.

In the literature, highly redundant manipulators have
been given a variety of names including ORM (the Norwe-
gian word for snakes) [22], elastic manipulator [13], spine
robot [7, 27], tentacle manipulator [14], elephant’s trunk
like elastic manipulator [20], snake-like manipulator [6].
Some were actually built. While many of them are so
called continuous arms, highly articulated arms are also
studied [12].

Although much work has been done on the study of me-
chanical designs for highly redundant manipulators, little
attention has been paid to kinematics and path planning
for such manipulators.

1.2 Continuous Manipulator Model

We have been exploring kinematics and path planning for
highly redundant manipulators by means of a continuous
manipulator model [11, 8, 10]. The shape of continuous
arms along their center line can be directly expressed by
the continuous model. Even for jointed arms, their macro-
scopic shape can be expressed. The continuous manip-
ulator model is essentially a smooth curve with a fixed
length. It is controlled by continuously-changing curva-
ture s(s) and torsion 7(s), intrinsic properties of smooth
curves, along the length s of the manipulator.

The continuous model in 2-D is controlled by its curva-
ture. A segment is the basic unit of representation for the
continuous model. For each segment, its curvature func-
tion x(s) is discretized using five points in the curvature
graph. To change the shape of the segment, curvature
operators are defined to move the points. See Fig. 1.

The continuous model in 3-D is controlled by both cur-
vature and torsion. For each segment, its torsion function
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Figure 1: Curvature Segment Representation and its Operators. The
following curvature operators are used to change curvature (and configu-
ration). a. Increase/decrease k4, Ky, Ke, Kd, OT k.. b. Increase/decrease
Sp, Se, OF sq. ¢. Rotate the base.

7(s) is also discretized using five points (s4, 74), (sp, 75),
(SesTe)s (Sds 7a), and (se, 7). Operators now include those
to move (s4, 7, ) through (s., 7.). We use the Frenet equa-
tions (1) to obtain a configuration from curvature and tor-
sion (see [26]).

1.3 Path Planning utilizing Redundancy

The path planning problem is the problem of finding a col-
lision free trajectory for a manipulator between an initial
state and a goal state, when its environment is known.
Path planning is an important component of task level
programming [18].

To plan a path for the continuous manipulator model, it
is natural to restrict its motion to follow-the-leader type
(snake-like) motion, in which its tip trajectory is traced
by its succeeding parts. Even for manipulators with finite
number of joints, which cannot precisely trace its end-
effector trajectory, it is possible to trace the trajectory
within some error bound. We have found the error hound
(A) can be expressed as a function of the maximum cur-
vature (Kmaqe) of the end-effector trajectory in 2-D space
for a class of smooth curves (see Section 4).

Hence, the path planning proceeds as follows:

e (5) 0 +5(s) 0 Vi (5) 1. Guess a value of K,,4.-

Va(s) | = | —k(s) 0 +7(s) va(s) (1) ) : ~

. 2. Grow obstacles by A(x .

Sa(s) 0 —r(s) 0 va(s) Grow obstacles by A(Kmax)

] 3. Attempt to find a smooth, collision-free trajectory
vi(s), V2(s), vs(s) are the tangent, normal, and binor- from start to goal for a point robot (i.e. end-effector)
mal vectors. After we obtain vy (s) by integrating (1) nu- within maximum curvature &,,q,.
merically, the configuration P(s) = (z(s), y(s), 2(s)) is ob- ’
tained using 4. If this fails, revise K,qz-
s 5. If this succeeds, Map the solution to a jointed arm.

vi(o)do

P(s) = P(s0) +/

El

The number of segments is controlled by a decomposi-
tion technique to dynamically change the degree of redun-
dancy. For a decomposition to be meaningful, we have the
following decomposition rules;

¢ The total length of segments generated must be the
same as that of the original segment.

e Curvature/torsion and orientation must be continu-
ous at a decomposition point.

Because of the continuity of our model, we have great flex-
ibility in decompositions. In particular, we can choose any
point as a decomposition point, and we can move a decom-
position point smoothly along the length of the continuous
model to make one segment longer while making the other
shorter.

[5] presents an approach similar to ours. While we use
5 point interpolation to discretize curvature and torsion,
they use a modal decomposition. However, in their paper,
obstacle avoidance was accomplished by manual decom-
position and selection of curvature functions. Also, the
problem of bounding the error in the mapping from the
continuous model to the jointed arm is not addressed.

We demonstrate that the path planning problem for a
highly redundant manipulator can be reduced to the prob-
lem of planning a smooth path for a point robot within the
same environment (i.e., not the configuration space), while
satisfying a maximum error bound and a maximum cur-
vature constraint.

We have developed an algorithm to find a continuous
curvature path within a maximum curvature constraint,
based on a decomposition of free space into primary convex
regions [24, 25]. The algorithm is efficient in practice.
We report on an experiment conducted to measure the
performance of the algorithm.

There are two feasible approaches for extending this 2-D
path planning approach to 3-D space. [3] proposed decom-
posing free space into generalized cones in order to find a
path for mobile robots. The same free space representation
was then used to plan a collision free path for manipula-
tors by restricting the hand movement [2]. Free space in
3-D is represented by its horizontal 2-D slices. With this
2%—D approach, most of the method we have developed for
2-D can be used without modification.

Alternatively, we decompose 3-D free space into primary
convex regions [9]. Smooth 3-D curves with curvature and
torsion will be used to make turns from one such region to
another.



1.4 Organization of the paper

The rest of the paper proceeds as follows. Section 2 ex-
plains the algorithm to find a curvature continuous path
under a maximum curvature constraint, using primary
convex regions. Section 3 discusses the complexity and
the actual performance of the algorithm. Mapping back
to a jointed arm and its mapping error are discussed in
Section 4.

2 Planning a Smooth path for a
Point Robot

In this section, we present an algorithm to find a smooth
path (i.e. a continuous curvature path) under a maximum
curvature constraint for a point robot.

Smoothness of path is critical for autonomous vehicle
navigation and there are algorithms to find a path which
cousists of straight line and tangent circular arc segments
[29, 28, 15, 1]. However, curvature discontinuity exists at
every tangent point in these paths, because circular arcs
have constant curvature equal to the inverse of their radius
and straight lines have zero curvature. [16] have proposed
to use cubic spiral curves in order to make a smooth (i.e.
continuous curvature) move from one position and orien-
tation to another. Cubic spirals can be constructed to
have zero curvature at tangent points. But they did not
address the path planning problem.

We find a smooth path which consists of straight lines
and cubic spirals with a bound on the maximum curva-
ture of cubic spirals. Our algorithm is based on decom-
posing free space into primary convex regions. We natu-
rally extend previous algorithms which find straight line
paths. Overlapping regions of the primary convex regions
are used to make smooth turns from one region to another.
Because of the convex nature of free regions, we can adjust
the places of turns easily while keeping a path within free
space. We find the shortest smooth path using standard
graph search techniques for the connectivity graph which
is built on top of the representation.

2.1 Free Space Decomposition into Pri-
mary Convex Regions

We assume obstacles are given as a set of polygons. We
first decompose free space into convex regions.

We need to select a primitive for free space decomposi-
tion best suited to our task: finding smooth paths. One of
the earliest papers on free space decomposition is [3]. In
his algorithm, free space is decomposed into generalized
cones which are considered to be free ways. But the robot
1s supposed to pass along the spines of generalized cones,

Figure 2: Wall Segments and Primary Convex Regions. Obstacle walls
are shown as line segments. Each region is shrunken for visibility.

which will leave less room for our path optimization to
make smooth turns.

[17] decompose free space into disjoint polygons: pas-
sage regions and channel regions. Passage regions are sup-
posed to correspond to open space (rooms, squares,.. ), and
channel regions to paths connecting open space. Passage
regions may be good candidates for smooth turns. How-
ever, large open space does not necessarily become a pas-
sage region, because passage regions and channel regions
are determined only from the topology of obstacle lay-
out without considering the size of areas. Moreover, since
they decompose free space into disjoint convex regions,
they miss straight line path segments if they exist, and
the path obtained will have more line segments (and more
turns) than other methods.

[24] propose the notion of primary convex regions. A
primary convex region (PCR) is an unobstructed convex
region with each boundary edge covering some portion of
an obstacle wall (See Fig. 2). Since each edge of a primary
convex region covers some portion of an obstacle wall, the
region seems to be natural. In addition, PCR can be seen
as an extension of the passage region in [17]. In fact, for
any passage region, there exists some primary convex re-
gion which contains the passage region. PCRs are suitable
representation for our task, because of the following rea-
sons.

e The convexity of PCRs makes the path optimization
easier. To move from one PCR to another for a polyg-
onal path, we can make a turn anywhere in their over-
lap, while staying within the free space.

¢ PCRs are maximal (in area) convex regions sur-
rounded by obstacle edges. It is easier to find a long
straight line path segment, and hence is easier to ob-
tain paths which have less turns.

We have implemented the algorithm in [24] to find PCRs
given obstacles. PCRs are found by a directed search for
a set of fundamental circuits in an abstract graphical rep-
resentation of the environment geometry.



<PCR

PCR center of gravity

Figure 3: sC1C and MCTC in a OVR

2.2 Candidate Turning Corners

Let us call an overlap of two PCRs an OVR (overlapping
region). Finding a polygonal path is easy, once PCRs are
obtained. To move from one PCR to another PCR, a turn
can be made anywhere within their OVR. However, to
make a smooth turn from one PCR to another PCR while
satisfying the maximum curvature constraint, and to find a
shorter path to reach a goal, we may need to locate turning
corners appropriately in their OVR. Turning corners are
corners of a collision-free polygonal path, which will be
made smooth by inserting cubic spiral curves.

We provide two options for locating turning corners. For

each OVR,

1. Use its center of gravity as a single candidate turning
corner (SCTC option, in short).

2. Put multiple candidate turning corners (MCTC op-
tion, in short). In addition to the center of gravity,
candidate turning coruners are put between the center
of gravity and the vertices of the OVR.

See Fig. 3. Thanks to the convexity of PCRs, the line
segments before and after the turn are guaranteed to be
within the PCRs.

2.3 Making Smooth Turns using Cubic
Spiral Curves

We use cubic spirals to provide a continuous curvature
path, since they can be constructed to have zero curva-
ture at tangent points. A cubic spiral is a curve whose
orientation (integration of the curvature) is described by
a cubic function of path distance s.

[16] have developed a method to make a smooth move
from one position and orientation to another, using cubic
spiral curves.

Proposition 1 (Kanayama and Hartman) If the size
d and the deflection a of a cubic spiral is given (Fig. 4),
its length 1, curvature k are

(2)

cubic spiral
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Figure 4: (a) Smooth Turn using a Cubic Spiral

dlit,
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K(s) = T((i) —57) (3)
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Their result is directly applicable to making a smooth
turn. For each candidate corner, we check whether we can
make a turn as follows.

1. Find d,,;,, the minimum d consistent with the maxi-
mum curvature constraint.

2. Find d/7¢¢, the maximum d for which the curve lies

entirely within free space.

3. Find d{it

I oo the maximum d for a cubic spiral to fit
along both tangent line segments.

/ . ) 71 ree it o .
4. Check dpin < min(dfrec dfit ). This guarantees
that we can make a collision free turn within the max-

lmum curvature.

In order to find d,,in, note that x(s) in (3) has its max-
imum at the midpoint:

1.5aD(«
Rmazr = "”(0) = L(O) (4)
d
Therefore,
1.5aD(«
d > dmin = L(O) (5)
KW",(I,[(?

To find df7¢¢ is not easy, because cubic spirals are ex-
pressed via curvature. However, cubic spirals are always
contained in the area outlined by its tangent lines and
the circular arc which is tangent at the same points. To
find a tangent arc which is both collision free and has
the largest radius r,,q,, we use the condition that the arc
passes through one of the corners of the OVR (Fig. 4).
And we get

d < dlree = 2,0, sin(a)2)

rax

(6)



It is possible to find whether we can fit smooth turns
by using d,,;, and d,fn’gj obtained, given a whole candi-
date polygonal path. However, this leads to an exhaus-
tive search, because each turn interferes with its preced-
ing and following turns. To avoid an exhaustive search,
we use a local fit method. When making a turn, we limit
its starting/ending point within the distance of I, =
min(ly /2,13/2) from the turning corner, where {; (l) is
the length of a incoming (outgoing) line segment (Fig. 4).
To make a turn within 1,,,;,

d<dlit

Jre = 2lmincos(af2) (7)

2.4 Graph Search for a Smooth Path

We then build a connectivity graph and search for a path
which satisfies the maximum curvature counstraint. Nodes
in the connectivity graph represent the straight line seg-
ments within PCRs. An end point of such a line segment
is either a candidate corner inside an OVR with another
PCR or the initial or goal position of a point robot. An
edge from a node N; to NN; exists if and only if the cor-
responding line segments L; and L; share an end point
and there is a smooth turn from L; to L; as explained in
Section 2.3. The cost (length) of the edge is the length of
the partial path (a cubic spiral or a line segment)

1. from the start point of L; to the midpoint of L;, if
the start point of L; is the initial position,

2. from the mid point of L; to the end point of L;, if the
end point of L; is the goal position,

3. from the midpoint of L; to the midpoint of L;, else-
where.

We use the A* algorithm (see [21]) to find a path in
the connectivity graph As a heuristic function, we use Eu-
clidean distance from a current node (midpoint of its line
segment) to a goal position.

Fig. 5 shows the steps involved in the path planning.

2.5 Finding a Path for Manipulator

We assume there is enough open space around the base to
fold the manipulator. To achieve a position, the continu-
ous manipulator is retracted, rotated, and then extended
along a path. To find the path, the algorithm for a point
robot is extended as follows. First, locate the folded ma-
nipulator. The primary convex region which contains the
folded manipulator is called the base PCR. When we fold
the manipulator as a circular arc, we can extend the ma-
nipulator from anywhere on the circle by rotating around
the base. Hence, as initial states of the graph search, we
use tangent lines to the circle from all candidate turn-
ing corners in the OVRs with the base PCR. These initial
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Figure 5: Steps Involved in Path Planning. (1) Initial and goal po-
sition is given. (2) Identify PCRs. (only those on the solution path
are shown.) (3) Put candidate turning points in OVRs. (4) Find least
cost path in connectivity graph, consistent with maximum curvature con-
straint. (5) Create smooth path by inserting cubic spirals. (6) ldentify
subgoals as start/end points of turns of the path.
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Figure 6: Extending the manipulator along a path

states naturally correspond to partial paths through which
we can extend the manipulator. After defining the initial
states, graph search proceeds exactly in the same manner
to generate the path in Fig. 6.

3 Experimental Results

3.1 Complexity

A loose upper bound on the complexity of the algorithm
in Section 2 is obtained as follows. An upper bound on
the algorithm to find PCRs is O(n*) time in the number
of obstacle edges [24] (factor 1). If we treat the number
of candidate turning corners as a constant, the number of
nodes for A* search is bounded by O(n'?). This is because
a node in the graph is determined by a sequence of 3 PCRs
(factor 2) and there cannot be more than O(n*) PCRs. By
using the algorithm in [19] which improves the exponential
worst case running time of A* and runs in the square of
the number of nodes (factor 2), we obtain O(n**) as an
upper bound.



example | obstacle | PCRs candidate nodes path search time
edges corners in graph length (sec)

T 12 10 SCTC 244 701 T
MCTC 5236 630 12

2 26 24 SCTC 1604 705 4
MCTC 15044 667 28

3 43 41 SC 6302 924 111
) 80876 875 641

4 101 96 SC 31674 963 1044
MCTC 295672 875 23210

Table 1: Secarch Time and Path Length with SCTC and MCTC. Search
time was measured on a Sun Spark Station 2.

3.2 Experiment

Although the upper bound obtained is a high order poly-
nomial, the algorithm is efficient in practice. We have
conducted an experiment to measure the performance of
the algorithm. Fig. 7 are the paths found for the search in
four layouts of obstacles. For each of the obstacle layouts,
two different conditions for the search are given, on the
basis of the number of candidate turning corners in the
OVRs: SCTC or MCTC, as explained in Section 2.2. By
selecting MCTC option, we can find shorter paths at the
cost of longer search time. Table 1 shows the times taken
to find the paths in Fig. 7.
We observe the followings from the experiment.

e About factor I: The total number of PCRs is propor-
tional to the number of obstacle edges (see Table 1).
This is in accordance with Rueb and Wong’s simula-
tion result. They have reported an O(n) performance
result for their experiment as opposed to the O(n')
upper bound. This immediately makes our algorithm
run in O(n®) time instead of O(n?*).

e About factor 2: This cubic factor is obtained by as-
suming that each PCR overlaps (i.e. intersects) with
all other PCRs. This seems to be too pessimistic.
The actual factor is quadratic rather than cubic (see
Fig. 8).

The actual search time as a function of the number of ob-
stacle edges, n, is O(n*) ~ O(n”) in the experiment (see
Fig. 9), which may be explained from the above observa-
tions on factors 1 and 2.

4 Mapping to a Jointed Arm

We provide a mapping from the continuous manipulator
model to a jointed arm which has an even number of links
of the same length. First, group links into pairs of consec-
utive links. Then, place odd numbered joints (1,3,...) on
the continuous solution in such a way that they are equi-
distant. The positions of even numbered joints (2,4,...)
are automatically determined in the process.

with SCTC option

with MCTC option
(1) (2) (3) (4)
Figure 7: Smooth paths found for 4 layouts of obstacles. Circles in

the right bottom show the minimum turning radius given for the search
(inner circles), and the one obtained for the path (outer circles).
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Figure 8: This graph plots, on a log-log scale, the number of nodes in
a connectivity graph (Y) as a function of the number of PCRs (X).
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Fig‘ure 9: This graph plots, on a log-log scale, the actual search time
(Y) as a function of the number of obstacle edges (X).

Fig‘ure 10: Jointed Arm Trajectory. Only mappings of Frames 2,4,6
of Fig. 6 are shown here.

Using this every-other-joint mapping, the trajectory for
the continuous manipulator in Fig. 6 is mapped to a tra-
jectory for an arm with 12 joints in Fig. 10.

The mapping error is evaluated as follows. Since the
every-other-joint mapping is a local mapping scheme, only
the mapping for two consecutive links has to be considered.
Furthermore, if we assume the following, only two cases,
a single arc case and a tangent arcs case, are left in terms
of errors (Fig. 11).

Each cubic spiral segment (including the straight
line segments at both ends, if they exist) is longer
than 2x[, where [ is the length of each link of the
jointed arm.

In order to evaluate the single arc case, we use a circular
arc whose curvature is equal to the maximum curvature
of the cubic spiral. This gives us an upper bound on the
error. In order to evaluate the tangent arcs case, we enu-
merate pairs of tangent cubic spiral arcs of various turning
angles to obtain the error bound. Fig. 12 shows a graph

TN

Figure 11: (Left) Single arc case: both ends of the link pair are on
the same cubic spiral.  (Right) Tangent arcs case: both ends are on
consecutive cubic spirals with opposite sign of curvature. Tangent arcs
with the same curvature sign is similar to the single arc case and is less
critical
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Figure 12: Relative Error for Tangent Arcs Case as Function of «o

for the errors obtained for the critical tangent arcs cases

as a function of «a, given the following three maximum
curvature constraints.
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The relative error is plotted. Each error function decreases
in a rage of a where the maximum curvature constraint be-
comes relevant to the error analysis. The maximum value
for the error functions increases with x,,,4,, the maximum
curvature constraint. As seen in the graph, the relative
error does not exceed 22% for K,,4r = ﬁ.

The tangent arcs case has larger errors than the single
arc case, and we summarize the results as follows.

Proposition 2 Letl be the length of each link. The error
of the every-other-joint mapping does not exceed 0.22 x 1,
if the following conditions are satisfied.

(1) Each cubic spiral segment is longer than 2 x .

(2) The mazimum curvature of cubic spiral segments is
below 1/1.

In fact, the path shown in Fig. 6 was obtained by first
growing the obstacles in Fig. 10 by 0.22 %! and then plan-
ning a path for the continuous manipulator with the above
two conditions. The proposition guarantees that the map-
ping back to a path for the jointed arm will yield a collision
free path.

5 Summary and Conclusions

Path planning for highly redundant manipulators has been
explored by means of the continuous manipulator model,
which captures the macroscopic shape of highly redun-
dant manipulators. A path for the continuous manipulator
model can be found by finding a smooth path for its end-
effector under a maximum curvature/torsion constraint.
We have showed that free space decomposition into pri-
mary convex regious is suited to finding such smooth
paths.

On top of the free space representation, we have devel-
oped an algorithm to find a continuous curvature path in



2-D with a maximum curvature constraint. An experiment
has heen conducted to show that the algorithm is efficient
in practice.

The path planning problem has been shown to be
PSPACE-complete in terms of DOF of the manipulator
[23, 4]. However, DOF of the manipulator is a resource
to be utilized in our approach, because the error bound
on the mapping improves with the number of DOF of the

manipulator.
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