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Abstract
Memory dependence prediction establishes a read after
write dependence between a store and a load instruction. If
the processor accurately predicts the data dependence be-
tween a store and a subsequent load, we can completely by-
passmemory and forward the data directly from the store’s
producer to the load’s consumer. Our simulation studies
show that even in the case of processors with oracle depen-
dence predictors, memory bypassing only provides a 2.3%
IPC improvement over dependence prediction alone. Given
the small potential gains in the ideal case and the hardware
complexity required to implement memory bypassing, we
argue that computer microarchitects should focus on mem-
ory dependence prediction and ignore memory bypassing.

1. Introduction

A memorydependencetypically presentsanobstacleto
greaterperformance.A load instructionmustwait for the
most recent,earlierstoreto the sameaddressbeforeissu-
ing. At the sametime, we want unrelatedloadsto issue
assoonastheir argumentsareready. Memory dependence
prediction attemptsto determinewhethera loadinstruction
shouldissueimmediatelyafter its argumentsareready, or
whetherthe load instructionshouldwait due to an earlier
storeto the sameaddress.Issuingthe load too early leads
to memoryorderingviolations,andforcing theloadto wait
maycausefalsememorydependences.

Researchershave studied how to accurately predict
memory dependencesto enablemore aggressive out-of-
orderissueof memoryinstructions.ChrysosandEmerpro-
posedusingStore Sets to predictmemorydependences[3].
They show that an out-of-orderprocessorusingstoresets
achievesperformancelevels thatarevery closeto an ideal
processorthatis capableof perfectdependenceprediction.
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Datathatflow throughmemorytypically gothroughfour
basicsteps.First, anoperateinstruction(suchasanADD)
producesthedatavalue.Next, astoreinstructionplacesthe
datavalueinto a memorylocation. The reasonfor storing
thevaluemaybefor passingargumentsto a subroutine,or
it maybea spill dueto high registerpressure.Later, before
the datavalueis neededagain,a load instructionretrieves
thevaluefrom memoryandplacesit in a register. Finally,
someconsumerinstructionusesthe value (perhapsas an
operandto anotherarithmeticinstruction).

Thequestionwe askedis if theprocessorcanaccurately
predicta memorydependencebetweena load anda store,
why botherwith sendingthedatavaluesto thememorysub-
systemandback?By playingsometricks with registerre-
namings,we could potentiallymake all consumersof the
datareadthe valuedirectly from the original producerin-
struction.To theextentthatthememorydependencepredic-
tor canaccuratelydeterminethedependencesfrom storesto
loads,this bypassing of memorycanpotentiallysave many
cycles.

In this paper, we explorethe ideaof bypassingmemory
dependencesin load-store(RISC)architectures.We evalu-
atea storesetsbasedversionof this bypassingtechnique,
anddiscover that the performancegainsareunimpressive.
We alsoexploretheperformancelimits of memorybypass-
ing by simulatingdifferent typesof ideal processors.Our
overallconclusionis thatthiskind of memorybypassingre-
sultsin relativelysmallperformancegains(andwouldprob-
ablybequitecomplex to implementin hardwareaswell).

The rest of this paper is organizedas follows. In
Section2, we briefly review how storesetswork andex-
plain how to extendthis to enablememorybypassing.In
Section3, we presentthe resultsof our performancestud-
ies to quantify the benefitof memorybypassing.We ex-
plain in Section4 why memorybypassingdoesnot provide
any substantialperformancegain. In Section5, we attempt
to improveperformanceby increasingtheopportunitiesfor
bypassingmemorydependences.We briefly review some
relatedwork in Section6, andwe concludethepaperwith
somefinal remarksin Section7.



2. The Idea

Storesetsareaneffective techniquefor memorydepen-
denceprediction.Usingstoresets,aprocessordynamically
identifiesmemorydependencesbetweenstoreandload in-
structions.In this section,we explainhow to usethis infor-
mationto completelyshortcutor bypass memory.

2.1. Store Sets

A static load instruction’s store set is the set of all
storeinstructionsthattheloadhaseverbeendependenton.
Knowing a load’sstoresetenablesaccuratememoryorder-
ing by preventing the load from issuingwhen any earlier
storesbelongingto the load’s storesetarepending.A pro-
cessorcan dynamically learn the storesetsfor eachload
instructionby initially allowing all loadsto speculatively
issueassoonasthe load’s argumentsareready. Whenthe
processordetectsa memoryorderingviolation, the corre-
spondingstoreis addedto theload’sstoreset.

Thestoresetimplementationpresentedin [3] usesapair
of tablesto predict memorydependences.The first table
learns the actual store sets. The secondtable, the Last
Fetched Store Table (LFST) tracksthemostrecentstorein-
structionscurrentlyin the instructionwindow thatalsobe-
longto astoreset.EachloadinstructioncheckstheLFSTto
determineif a storeinstructioncurrentlyin the instruction
window is in its storeset.If suchastoreexists,thenthepro-
cessorcreatesa dependencebetweenthe two instructions,
forcing the load to wait for the store. For the purposesof
this paper, it is sufficient to think of thestoresetsmemory
dependencepredictorasa black box that takesa load in-
structionasaninput,andreturnsahardwareidentifierof an
earlierstorethattheloaddependson,or returnsanull value
if theloadmayissueassoonasits argumentsareready.

2.2. Memory Bypassing

Data valuesthat are storedto and loadedfrom mem-
ory typically follow a produce-store-load-consume depen-
dencechain.Memorybypassingconvertsthis four instruc-
tion chaininto a shorterproducer-consumerrelation.

An exampleof the produce-store-load-consume depen-
dencechainis illustratedin Figure1a.An ADD instruction� createsa new datavalue and storesthe result in regis-
ter R7, which hasbeenrenamedto physicalregisterP18.
At somelaterpoint in the instructionstream,the compiler
decidesthatregisterR7 shouldbeusedfor someotherpur-
pose,andusesa storeinstruction � to placethe result of
the ADD into memory. Somenumberof cycles later, the
programneedstheresultof theADD again,andusesa load
instruction

�
to placethe datafrom memoryinto register

R3, which is mappedto physicalregisterP23. Finally, an-
otherinstruction� usesthevalueasaninputoperand.

The pair of storeand load instructionsto temporarily
storea datavalueto memorymaytake severalcycles.Fur-
thermore,either the load or the storemay be delayedfor
someadditionalcyclesdueto the fact that their addresses
may not be immediatelyknown. On the otherhand,if we
have anaccuratepredictionthat the load

�
dependson the

store � , we know that thevalueloadedinto registerP23is
identicalto thevalueproducedby theoriginalADD instruc-
tion � . Whetherinstruction � readsits operandfrom phys-
ical registerP23or P18, the final resultwill be the same.
Readingtheresultdirectly from P18avoidsthelong trip to
andfrom memory.

Thebypassedproduce-consumedependencechainis re-
ally a dependencegraphwith a side branchto verify the
dependenceprediction,asshown in Figure1b. As soonas
thecorrespondingdatadependencesareready, instructions� and � mayissue.Sometimelater, theloadandstoremust
both issueandverify that they wereindeedreferencingthe
sameaddressand that no other storeto the sameaddress
occurredbetween� and

�
. If thememoryreferenceswere

to differentlocationsin memory, thenthebypassingwould
have forwardedthe wrong value to instruction � . At this
point,somesortof recovery is necessaryto squashor reex-
ecuteinstruction� , andits dependentinstructions.Further-
more,somerepairmechanismis neededsinceinstruction�
really shouldbereadingits argumentfrom P23,not P18.

Intuitively, it wouldseemthatbypassingmemoryshould
provide large performancegains. Bypassingremoves the
latency of going to the storeforwardingbuffer and back.
Furthermore,memorybypassingremovesthe computation
of addressesfrom the critical path. To the extent that de-
pendencepredictionsareaccurate,addresscalculationsare
relegatedto non-criticaladdressverifications.Althoughwe
think that a hardwaremechanismfor efficient recovery is
possible,we will omit detailsof an implementationsince
bypassingultimatelydoesnot gainmuchin performance.

3. Experiments

We experimentallyquantify theperformancebenefitsof
memorybypassing. In this section,we explain our sim-
ulation methodology, our simulatedprocessormodel, and
presenttheresultsof ourexperiments.

3.1. Methodology

Our processorsimulator is basedon the SimpleScalar
toolset,version3.0for theAlpha instructionset[1]. Specif-
ically, our simulatoris derivedfrom sim-outorder, a cycle-
accurateout-of-orderprocessorsimulatorbasedon thereg-
ister updateunit (RUU) [15] which usesa unified reorder



� : ADD R7 = R8 + R10

� : ADD R11= R3+ R2

� : ADD R11= R3 + R2 � : ST R7 � 0[R12]

�
: LD R3= 16[R9]

�
: LD R3 = 16[R9]

� : STR7 � 0[R12]

� : ADD R7 = R8 + R10

(verify dependence)

(a) (b)
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Figure 1. (a) A typical dependence chain from a producer instruction, through memory, to the con-
sumer. (b) The dependence chain when memory is bypassed.

DecodeWidth 8
IssueWidth 8
CommitWidth 8
IFQ Size 32
RUU Size 128
LSQ Size 64
IL1 cache 8-way256KB
DL1 cache 4-way64KB
IL1 hit 1 cycle
DL1 hit 3 cycles
StoreForwarding 1 cycle
Unified L2 4-way256KB
L2 hit 16 cycles
MemoryLatency 60 cycles
Int/FPALU 8
Int Mult 4

Table 1. Parameters for the simulated proces-
sor.

buffer and issuequeue. We addedsupportfor simulating
loadspeculation,storesetsmemorydependenceprediction,
andmemorybypassing.

We usedan aggressive processormodel that is compa-
rable to the configurationusedin the original store sets
study[3] andthe8-wideconfigurationfrom theStackValue
File study[7]. The processorparametersare listed in Ta-
ble 1. We usea McFarling style hybrid branchpredictor
(gshare/PAs) to predictconditionalbranches[9].

Thesimulatedbenchmarkscomefrom theSPEC2000in-

teger codes[16]. We usea mix of input setsfrom the test
datasetandthereducedrun-lengthinputsfrom theUniver-
sity of Minnesota[6]. We skippedthe initial start-upsec-
tions for eachbenchmark,andthensimulated200 million
instructions.Thedatasetsandnumberof skippedinstruc-
tionsareincludedin Table2. Themean IPCsreportedare
alwaystheharmonicmeanacrossall benchmarks.

3.2. Bypassing With Store Sets

In general,a memorydependencepredictorneedonly
predictwhen a load may safely issue. The storesetspre-
dictoralsopredictstheactualdependence;thatis, astorein
thewindow is explicitly predictedastheparentof the load
instruction. By tracking this dependenceinformation,we
canupdatetheregisteraliastablesoall instructionsthatare
datadependentontheloadnow readtheirargumentdirectly
from thestore’sparent.

We illustrateanexamplein Figure2 usingthesamein-
structionsasshown in Figure1. In step(a),theprocessorre-
namestheoriginal dataproducinginstruction � to write its
resultinto physicalregisterP18.Step(b) showsthestorein-
struction� thatwrites � ’s resultto memory. In step(c), the
storesetsmechanismpredictsa memorydependencefrom
� to the load instruction

�
. The registeraliastable(RAT)

is thenupdatedsoall consumersof theload’sresult(logical
registerR3)will readthevaluedirectly from thedestination
register of the original producer � . In step(d), the pro-
cessorrenamesaconsumerinstruction� ’sargumentsusing
themappingsin theRAT. Instruction � cannow receive its
argumentdirectly from instruction � , therebycompletely
bypassingthememoryreferencesof � and

�
. Most of this



processis standardin out-of-ordersuperscalarprocessors.
To performbypassing,theprocessoronly needsto perform
the additionalwork of updatingthe RAT whenthe depen-
denceis predicted.

In aprocessorthatperformsmemorybypassing,thepre-
dicteddependentstoreandloadinstructionsstill mustexe-
cute.Thestoreinstructionmustwrite its valueto memoryto
enforcetheproperprogramsemantics.Theloadinstruction
mustat leastperformits addresscomputationto verify that
thedependencepredictionwasactuallycorrect.In thecase
of a misspeculation,the recovery procedurecan be quite
involved. The simplestapproachis to flush the pipeline,
rollback the register alias table, and restartfetching from
the mispredictedload instruction. This approachsquashes
many unrelatedinstructionsthatarenot data-dependenton
the faulting load. Selective reissueonly squashesandreis-
suesthoseinstructionsthat areactuallydata-dependenton
themisspeculatedload[12]. This resultsin higheramounts
of instruction-level parallelism,but maybecomplex to im-
plementin hardware.

3.3. Experimental Results

We conductedsimulation-basedexperimentsto assess
the performancegainsderivablefrom memorybypassing.
The baselineexperimentis a processorthat performsno
memoryspeculation;loadsmay only issuewhen all ear-
lier storeaddresseshave beenresolved. We thensimulated
a processorthat speculateson load instructionsusing the
storesetsmemorydependencepredictorandanotherpro-
cessorthatusesstoresetsbasedmemorybypassing.In both
cases,we alsousethe setmerging optimizationdescribed
in [3], whichwefoundto improveperformanceslightly. We
simulatedconfigurationsusingbothsquashrecoveryandse-
lective reissue.With squashrecovery, all instructionsafter
amisspeculatedloadmustreexecute,althoughthey arekept
in the window. With selective reissue,only the dependent
instructionsareforcedto reissue.

Theper-benchmarkandharmonicmeanIPCsareshown
in Figure 3. Regardlessof the misspeculationrecovery
model,allowing loadsto speculatively issuewhenthestore
sets mechanismdoesnot predict a memory dependence
shows significant performancegains. Under the squash
recovery model, the processoraugmentedwith storesets
shows a 31.0% increasein the meanIPC. Adding mem-
ory bypassingto this processoryields a total meanIPC
increaseof 31.7%over the non-speculatingconfiguration.
Adding the hardware complexity of memory bypassing
hardly seemsto be worth the effort. Even consideringa
selective reissuepolicy, the gainsof bypassingwith store
sets(39.4%)comparedto storesetsalone(36.6%)arenot
very impressive.

One possibleexplanationfor the poor performanceof

(a)

RAT

� : ADD R7= R8+ R10

R7 � P18

� P18= R8 + R10

(b)

RAT

	 : ST R7 � 0[R12]
� P18 � 0[R12]

R7 � P18

(c)

RAT


R7 � P18

R3 � P18



: LD R3= 16[R9]
� P23= 16[R9]

(d)

RAT

R3 � P18

R7 � P18

�
: ADD R11= R3+ R2
� P6= P18 + R2

R11 � P6

�
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Figure 2. Using store sets to bypass mem-
ory: (a) the original value producing instruc-
tion, (b) the � stores � ’s result to memory, (c)
store sets predicts a dependence from � to

�
and we update the RAT so the load’s children
read their operand directly from the store’s
source, (d) the instruction � is a dependent of
the bypassed load

�
, but has been renamed

to receive its value directly from � ’s destina-
tion register P18.
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ourstoresetsmemorybypassingis thatit is possiblethatthe
dependencepredictiondoesa goodjob at preventingmem-
ory orderviolations,but doesn’t necessarilypredictthetrue
dependencesbetweenstoresandloads.A loadmaybede-
pendenton thefirst of two earlierstoreinstructions.If the
storesetsmechanismpredictedtheloadto bedependenton
thesecondstore,thentheloadis forcedto wait for thesec-
ondstoreto issuebeforeit canproceed.If thesecondstore
alwaysissuesafter the first, thenthe load will never cause
a memoryorderingviolation. On theotherhand,bypassing
datafrom thewrongstorewill alwaysresultin a misspecu-
lation.

To boundhow well memorybypassingcould possibly
perform,we simulateda processorwith anoraclememory
dependencepredictor. Theseresultsarealsoshown in Fig-
ure3. Evenwith perfectinformationaboutmemorydepen-
dences,memorybypassingonly improvesthemeanIPC by
2.3%over perfectdependencepredictionalone. It is inter-
estingto notethat the storesetsbasedmemorybypassing
(with selective reissue)achievesanIPC thatis within 1.4%
of perfectbypassing.This providesevidencethat thestore
setsare accuratelypredictingdependentstoresand loads.
This is highly discouragingsincethe2.3%improvementis
a bestcasescenario.Sowhy doesmemorybypassingpro-
vide suchmeagerperformancegains?

4. Explanation of Small Gains

In this section,we analyzethe behavior of our bench-
marksto explain why memorybypassingdoesnot perform
well. Basedon thesmallperformanceincreasein the ideal
caseof perfectmemorybypassing,the naturalhypotheses

are(1) thattherearerelatively few opportunitiesfor bypass-
ing, and(2) thebypassedmemoryreferencesarenot on the
critical path.

Subroutinecallspresentonepossiblesituationthatmay
provide opportunitiesfor bypassing.Passingargumentsto
a function may requirethe caller to storethe function ar-
gumentsto thestack,andthensubsequentlythecalleemust
loadthesevaluesbackinto theregisters.Typicalregisterus-
ageconventionsallocateafew registersfor passingfunction
arguments,which avoidsthebackandforth trip to memory
(underDigital Unix conventions,up to six argumentsmay
be passedin R16 throughR21 [14]). Most functionsonly
takea few arguments.

Due to the fixed numberof architecturallyvisible reg-
isters,the compilermay be forcedto spill valuesto mem-
ory whentherearenomoreavailableregisters.Thesespills
may representmore opportunitiesfor memorybypassing.
The spill is implementedby writing the contentsof the
spilledregisterto memorywith astoreinstruction.At alater
point in theprogramwhentheoriginal valueis onceagain
needed,thevalueis loadedbackinto a (possiblydifferent)
register. If both instructionsof this store-loadpair are in-
flight in theprocessorat thesametime, thenthis presentsa
memorybypassingopportunity. However, assuminga rea-
sonableregisterallocator, thespilledregisteris not likely to
beusedagainverysoon.

Wewouldliketo quantifyhow many possibleopportuni-
tiesexist for bypassingmemory. To measurethis, we sim-
ulateda processorconfigurationthatperformsnaivespecu-
lation. That is, a loadissuesassoonasits addresshasbeen
computed,subjectto the availability of issueslots. Every
time the processordetectsa memoryorderingviolation, a
storeanda loadto thesamememoryaddressexist in thein-
structionwindow which presentsan opportunityfor mem-
ory bypassing.Theresultsaresummarizedin Table2. We
reportthe total numberof load instructions,the total num-
berof loadsthat resultedin a misspeculation,andthemis-
speculationsasa percentageof the total numberof loads.
Thesemisspeculationsrepresentsituationswherethe load
is readyto issue,but it is beingheldupbecausetheconflict-
ing storeis waiting for its dataoperandor thestorehasnot
yet computedits address.If thestoreis waiting for its data
operand,then bypassingactsas a storevalue forwarding
mechanism.If thestorehasnot computedits address,then
bypassingmaysaveseveralcyclessincetheconsumerof the
loadinstructiondoesnot have to wait for theaddresscom-
putation.Thebenchmarkgap showedsomeof the largest
IPC improvements,andourmisspeculationcountingshows
thatgap alsohasthelargestnumberof bypassingopportu-
nities. On theotherhand,thesestatisticssuggestthatmost
of thebenchmarksdo not haveverymany opportunitiesfor
memorybypassing.

Part of the reasonthat thereare so few bypassingop-



Benchmark Input Instructions Number Numberof Misspeculations
Set Skipped of Loads Misspeculations (as% of all loads)

bzip2 test 200M 45,119,328 812,444 1.80
crafty test 10M 62,433,982 454,349 0.73
eon test(kajiya) 10M 60,081,228 3,588,252 5.97
gap test 70M 62,961,510 7,292,950 11.58
gcc test 200M 67,887,442 1,141,085 1.68

gzip.graphic UMN 10M 48,086,571 2,529,345 5.26
gzip.source UMN 10M 49,299,863 2,490,490 5.06

mcf UMN 100M 58,855,822 275,950 0.47
parser UMN 270M 57,772,158 652,342 1.13
vortex test 10M 55,654,141 2,208,333 3.97

vpr.place test 10M 56,082,583 2,136,052 3.81
vpr.route test 54M 66,425,671 1,970,147 2.97

Table 2. Each load-store memory ordering violation is an opportunity for memory bypassing.
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Figure 4. The cumulative frequency of the distance between a dependent store and load for each
benchmark. The average instruction window occupancy is included below the benchmark name.



portunitiesmay be due to the fact that the effective win-
dow size is too small. Storesetsonly considerstoresand
loadsthat areboth in the instructionwindow at the same
time. Although our instructionwindow hasa capacityof
128 instructions,fetch stalls or burstsof high parallelism
maycausetheactualnumberof instructionsin thewindow
to be lessthan the maximum. To get a betterideaof the
characteristicsof dependentstoresandloads,we measured
thedistancesbetweenstoresandloads.For every load,we
countthenumberof instructionsto themostrecentstoreto
thesameaddress.Figure4 shows theresultsof this exper-
iment. The x-axis is the numberof instructionsthat sepa-
ratea loadfrom themostrecentstoreto thesameaddress.
The y-axis shows the cumulative frequency. For example,
approximately20%of all loadsin gcc occurwithin 80 in-
structionsof the previous storeto the sameaddress.The
vertical line markstheaverageinstructionwindow sizefor
our processorconfigurationwhenno memoryspeculation
is performed(not including instructionsfollowing a mis-
predictedbranch).

The curvesin our store-to-loadfrequency plots vary by
benchmark.For somebenchmarks,suchasmcf, thereare
very few sameaddressload-storepairswithin theeffective
instructionwindow. Evenextendingto hundredsof instruc-
tions beyond the instructionwindow doesnot greatly in-
creasethe numberof sameaddressload-storepairs. The
benchmarkcrafty doesnot exhibit very many samead-
dressload-storepairswithin the effective instructionwin-
dow, but the numberof such pairs continuesto increase
aswe considermoreinstructions.Someotherbenchmarks
suchasparser andvortex have moreload-storepairs
within the instructionwindow thanthe otherbenchmarks,
but even for thesebenchmarksthe bypassableloadscom-
priselessthan25%of all load instructions.Thebenefitof
bypassingtheseloadsalsodependson whethertheseloads
are on the critical path. Effective hardware or software
prefetchingcanpotentiallyremove someof the loadsfrom
thecritical path.

5. Enlarging the Effective Window

In theprevioussection,we observedthat therearerela-
tively few dependentstore-loadpairswithin theinstruction
window. For someof the benchmarks,the numberof de-
pendentpairs increasesif we considera larger window of
instructions.Perhapsif weenlargetheeffectivewindow for
detectingdependentstoresand loads,we may be able to
increasethe numberof bypassingopportunitiesandboost
overallperformance.

Oneproblemwith usingstoresetsis thatthedependence
betweena storeand load is broken when the storeretires
from the instructionwindow. Normally, the LFST entry
correspondingto the storeis replacedwith a null valueto
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Figure 5. Relative performance of perfect by-
passing augmented with a buffer of the last �
retired store instructions.

indicatethatnostoreinstructionin thatstoresetis currently
in the window. An alternative approachwould be to store
thevalue written by thatstoreinto theLFST entry. A sub-
sequentload instructionthat accessesthis LFST entry can
thendirectly usethis savedvalued.This canbe thoughtof
asasimpleform of loadvalueprediction.

We usedanotheridealizedprocessormodelto determine
the potentialbenefitof suchan approach.We simulateda
processorwith perfectmemorybypassingasbefore. Fur-
thermore,we augmentthis processorwith a FIFO buffer
that tracksthe last � storesto retire. If a dependentstore-
loadpairexist in thewindow, thentheprocessorusesmem-
ory bypassingas describedin Section3.2. If the store
hadalreadyretiredbeforea load to the sameaddresswas
fetched,thenthe processorforwardsthe valueof the store
from theFIFOstorebuffer to theload.Again,theprocessor
hasoracleknowledgeof theload’saddress.

We simulatedthis processormodel for varioussizesof
theFIFO storebuffer. TheharmonicmeanIPCsareshown
in Figure5. All IPC valuesarenormalizedwith respectto
thecaseof perfectspeculationwith no memorybypassing.
Evenin this idealizedsituation,theprocessormusttrackthe
lasttwo thousandstoreinstructionsfor thebypassinggains
to achieve an additional5% performanceincrease.Given
thata2K entryfully-associativebuffer is probablytoo large
to implement,andthat theseresultsrely on perfectmem-
ory dependenceprediction,we concludethat any practical
implementationof memorybypassingis notworththehard-
ware,thecomplexity, andtheeffort.

Anotherpossibilitythatwe consideredwasthat thepro-
cessorfront-endwasthebottleneck.If thefetchbandwidth
wasincreased,perhapstherewould be moreopportunities



for memorybypassing.We do not believe this is the case
becausetheresultsin Figure5 effectively modela largerin-
structionwindow with respectto increasingthenumberof
bypassingopportunities.We alsosimulatedan unrealistic
processorwith a 1024-entryinstructionwindow and very
largebranchpredictors.This greatlyincreasedtheaverage
numberof instructionsin the instructionwindow, but the
overall impactof memorybypassingover perfectspecula-
tion wasonly a3.1%increasein theharmonicmeanIPC.

Out of all of thebenchmarksfor the1024-entrywindow
simulations,vpr.route (we will referto this benchmark
asjust vpr for the restof this section)exhibited the high-
est rateof bypassingloads: approximatelyonequarterof
all loadswere bypassed.Still, the IPC increasefor vpr
was only 3.2%. We profiled vpr to find out what func-
tionscomprisedmostof thedynamicinstructions,andthen
we plottedthe store-loaddependencegraphswith VCG, a
graphvisualizationtool [13]. Thegraphfor aninvocationof
thenode to heap functionis shown in Figure6. We use
rectanglesfor loadinstructions,diamondshapesfor stores,
andbypassedloadsareindicatedby a dependencearcfrom
theparentstore.

Thesectionof thegraphannotatedwith codeis actually
from thefunctionadd to heap, whichthecompilerchose
to inline into node to heap. Calls to node to heap
comprise28.6% of the dynamic instructionsin our sam-
ple window. The main loop of the function is from the
add to heap function, which insertsa new item into a
heapdatastructure.Therearevery few bypassingopportu-
nitiesin themainloop becauseof how a heapinsertworks.
A new node 
 is insertedat the bottomof a binary tree,
andthen“floats” upwardsolongastheparentnode’skey is
greaterthanthenew node’skey. Whennodesareswapped,

 is written into the positionof the parentnode. On the
following cycle, 
 is readoutof theheapto compareto the
new parentnode.Thisreadis thedependentload,shown by
the onecycle bypassarcsin Figure6 in the sectionof the
graphfor add to heap. Evenif theprocessorcanbypass
all of theseloads,theprocessoris still heldup by theloads
of thevariousparentnodes.

Instructionsfrom the function get heap head com-
prise39.9%of all dynamicinstructionsin vpr for oursam-
plewindow. Figure7 showsasectionof theprogramwhere
thefunctiontry route (lightly shadednodes)repeatedly
callsget heap head (darknodes)1. Fromthegraph,we
canseethatsomeof thebypasspathsspantenor morecy-
cles. Unfortunately, therearealsoa largenumberof loads
thatwecannotbypass.Thissuggeststhatevenif wedoby-
passa load, thenthecritical pathshifts to oneof themany

1The reasonget heap head requiresso many instructionsis that
nodesin the heapmay be invalid, andsoget heap head actuallyhas
to find thenodewith thesmallestkey that is alsovalid, ratherthansimply
returningtheroot node.

while ((ito ��� 1)
&& (heap[ifrom]� cost � heap[ito]� cost)) �

tempptr = head[ito];
heap[ito]= heap[ifrom];
heap[ifrom]= tempptr;
ifrom = ito;
ito = ifrom/2;�

/* nodeto heap*/

/* add to heapmainloop */

Figure 6. The bypass dependence graph of
node to heap. Rectangles correspond to
loads, diamonds correspond to stores, and
the edges go from a store to a bypassed load.



otherloads.In sucha situation,bypassingmaygainoneor
two cycles,but not the ten or morethat correspondto the
lengthof thebypasspath.Anotherimportantcharacteristic
of thebypassdependencearcsis that therearemany stores
thathavea high fan-out.Thatis, asinglestoreis theparent
of multiple bypassedloads.For vpr, we foundthaton av-
erage,astorefans-outto 4.55bypassedloads.To gainmore
thanjust a few cyclesfrom bypassing,the processormust
correctlybypassall theseloads,and then the overall gain
maystill only bea smallnumberof cyclesdueto all of the
unbypassableloadspreviouslydiscussed.

We also consideredprocessorconfigurations where
store-forwarding(not bypassing)requiresmultiple cycles.
Our default configurationhasa store-forwardinglatency of
a single cycle, but in a processorwith a longer forward-
ing latency, the numberof cyclessaved by bypassingmay
increase.We simulatedoneprocessorwith perfectspecula-
tion andonewith perfectbypassing,andincreasedthestore-
forwardinglatency to two cycles.Therelativeperformance
increaseof perfectbypassingover perfectdependencepre-
diction is only 2.4%. We further increasedthe forwarding
latency to four cyclesandincreasedthe L1 datacachela-
tency to five cycles, and the relative IPC improvementis
still only a meager3.8%.

6. Related Work

There are two main bodiesof researchrelatedto our
study. The first is in the prediction of memory depen-
dences,and the secondis in various forms of memory
bypassing. Moshovos et al identified the importanceof
memorydependencepredictionandproposedandevaluated
techniquesto implementdependenceprediction in hard-
ware[10]. ChrysosandEmerproposedstoresetsfor mem-
ory dependencepredictionwhich we usedin this study[3].
TheAlpha21264speculatively issuesloads,but usesasim-
pletableto trackloadsthatcausemisspeculationsto prevent
themfrom speculatively issuingin thefuture[5].

Severalstudieshave usedmemorydependenceto speed
up loadsfrom memory. TysonandAustin introducedmem-
ory renaming[17], which hassimilarities to memoryby-
passing.Memoryrenamingforwardsdatato thedependents
of aloadbycombiningmemorydependencepredictionwith
load value prediction [8]. Jourdanet al explore several
renaming-basedtechniquesfor move elimination,memory
disambiguationandmemorybypassing[4]. Moshovosand
Sohi proposememory cloaking and bypassingto reduce
the latency of memoryinstructions[11]. CalderandRein-
manncompareavarietyof aggressiveloadspeculationtech-
niquesandexaminethe effectsof combiningdifferentap-
proaches[2]. They show that memory dependencepre-
diction and value predictiontogetherprovide the greatest
performancebenefit,but furtheraugmentingtheirprocessor

Figure 7. The bypass dependence graph
of store and loads for the get heap head
function (dark nodes), which is called by
try route (light nodes).



with memoryrenamingdoesnotprovideany significantad-
ditionalbenefit.Leeetal’sStackValueFile (SVF)[7] com-
putestheaddressesof stackreferencesearly in thepipeline
andredirectsthestacktraffic to aseparatestoragestructure.
Using register renaming,the SVF achieveseffectssimilar
to memorybypassingfor stackreferences.

7. Conclusion

At facevalue,theideaof memorybypassingsoundslike
an excellenthardwareoptimizationto remove long store-
to-loaddependencechainsfrom thecritical path.Themain
resultof thisstudyis thataccuratememorydependencepre-
dictioncandramaticallyimproveperformance,but incorpo-
ratingmemorybypassingprovideslittle additionalbenefit.
Our analysisof memorydependencestatisticssuggeststhat
this is becausethereare few opportunitiesfor bypassing,
andmany of theseopportunitiesareoverlapping.

Our resultsarebasedon theAlpha instructionsetarchi-
tecture.However, anarchitecturewith fewer logical regis-
ters,suchasthe x86 ISA, mayyield differentresults.The
limited numberof registersleadsto morefrequentspilling
andthereforepotentiallymorebypassingopportunities.
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