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Abstract

Memory dependence prediction establishes a read after
write dependence between a store and a load instruction. If
the processor accurately predicts the data dependence be-
tween a store and a subsequent load, we can completely by-
passmemory and forward the data directly fromthe store's
producer to the load’s consumer. Our simulation studies
show that even in the case of processors with oracle depen-
dence predictors, memory bypassing only provides a 2.3%
IPC improvement over dependence prediction alone. Given
the small potential gainsin theideal case and the hardware
complexity required to implement memory bypassing, we
argue that computer microarchitects should focus on mem-
ory dependence prediction and ignore memory bypassing.

1. Introduction

A memorydependencéypically presentsan obstacleto
greaterperformance.A load instructionmustwait for the
mostrecent,earlier storeto the sameaddresdeforeissu-
ing. At the sametime, we want unrelatedloadsto issue
assoonastheir agumentsareready Memory dependence
prediction attemptgto determinewhetheraloadinstruction
shouldissueimmediatelyafter its agumentsare ready or
whetherthe load instructionshouldwait dueto an earlier
storeto the sameaddress.Issuingthe load too early leads
to memoryorderingviolations,andforcing theloadto wait
may causealsememorydependences.

Researchershave studied how to accurately predict
memory dependence$o enable more aggressie out-of-
orderissueof memoryinstructions.ChrysosandEmerpro-
posedusing Sore Setsto predictmemorydependence8].
They shaw that an out-of-orderprocessotusing storesets
achievesperformancdevelsthatarevery closeto anideal
processothatis capableof perfectdependencprediction.
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Datathatflow throughmemorytypically gothroughfour
basicsteps.First, an operatenstruction(suchasan ADD)
produceghedatavalue.Next, a storeinstructionplacesthe
datavalueinto a memorylocation. The reasorfor storing
the valuemay befor passingargumentso a subroutine pr
it maybea spill dueto highregisterpressureLater, before
the datavalueis neededagain,a load instructionretrieves
the valuefrom memoryandplacesit in aregister Finally,
someconsumerinstructionusesthe value (perhapsas an
operando anotherarithmeticinstruction).

The questiorwe aslkedis if theprocessocanaccurately
predicta memorydependencéetweena load anda store,
why botherwith sendinghedatavaluesto thememorysub-
systemandback? By playing sometricks with registerre-
namings,we could potentially make all consumerof the
datareadthe value directly from the original producerin-
struction.To theextentthatthe memorydependencpredic-
tor canaccuratelydeterminghedependencesom storego
loads,this bypassing of memorycanpotentiallysavze mary
cycles.

In this paper we explore the ideaof bypassingnemory
dependenceis load-storg(RISC) architecturesWe evalu-
ate a storesetsbasedversionof this bypassingechnique,
anddiscover that the performancegainsare unimpressre.
We alsoexplorethe performancdimits of memorybypass-
ing by simulatingdifferenttypesof ideal processors.Our
overallconclusions thatthiskind of memorybypassinge-
sultsin relatively smallperformanceyains(andwould prob-
ably be quite complex to implementin hardwareaswell).

The rest of this paperis organizedas follows. In
Section2, we briefly review how storesetswork and ex-
plain how to extendthis to enablememorybypassing.In
Section3, we presenthe resultsof our performancestud-
ies to quantify the benefitof memorybypassing. We ex-
plainin Sectiord why memorybypassingloesnot provide
ary substantiaperformancegain. In Section5, we attempt
to improve performancey increasinghe opportunitiesfor
bypassingnemorydependencesWe briefly review some
relatedwork in Section6, andwe concludethe paperwith
somefinal remarksn Section?.



2. Theldea

Storesetsarean effective techniquefor memorydepen-
denceprediction.Usingstoresets,a processodynamically
identifiesmemorydependencelsetweenstoreandloadin-
structions.In this sectionwe explain how to usethisinfor-
mationto completelyshortcutor bypass memory

2.1. Store Sets

A static load instruction’s store set is the set of all
storeinstructionsthatthe load hasever beendependentn.
Knowing aload’s storesetenablesaccuratenemoryorder
ing by preventingthe load from issuingwhen ary earlier
storesbelongingto the load’s storesetarepending.A pro-
cessorcan dynamicallylearn the store setsfor eachload
instruction by initially allowing all loadsto speculatiely
issueassoonastheload’s agumentsareready Whenthe
processoidetectsa memoryorderingviolation, the corre-
spondingstoreis addedo theload’s storeset.

Thestoresetimplementatiorpresentedh [3] usesa pair
of tablesto predictmemorydependencesThe first table
learnsthe actual store sets. The secondtable, the Last
Fetched Store Table (LFST) tracksthe mostrecentstorein-
structionscurrentlyin theinstructionwindow thatalsobe-
longto astoreset. Eachloadinstructioncheckshe LFSTto
determineif a storeinstructioncurrentlyin the instruction
window isin its storeset. If suchastoreexists,thenthepro-
cessorcreatesa dependenceetweenthe two instructions,
forcing the load to wait for the store. For the purposesf
this paper it is sufficient to think of the storesetsmemory
dependenceredictoras a black box that takes a load in-
structionasaninput, andreturnsa hardwareidentifierof an
earlierstorethattheloaddepend®n, or returnsanull value
if theload mayissueassoonasits agumentsareready

2.2. Memory Bypassing

Data valuesthat are storedto and loadedfrom mem-
ory typically follow a produce-store-load-conswdepen-
dencechain. Memory bypassingcorvertsthis four instruc-
tion chaininto a shortemproducerconsumerelation.

An exampleof the produce-store-load-conswdepen-
dencechainis illustratedin Figurela. An ADD instruction
« createsa new datavalue and storesthe resultin regis-
ter R7, which hasbeenrenamedto physicalregister P18.
At somelater point in the instructionstream the compiler
decideghatregisterR7 shouldbe usedfor someotherpur-
pose,and usesa storeinstructiono to placethe result of
the ADD into memory Somenumberof cycleslater, the
programneedsheresultof the ADD again,andusesaload
instruction \ to placethe datafrom memoryinto register

R3, which is mappedo physicalregisterP23. Finally, an-
otherinstructiong useshevalueasaninputoperand.

The pair of storeand load instructionsto temporarily
storea datavalueto memorymaytake severalcycles. Fur-
thermore,eitherthe load or the storemay be delayedfor
someadditionalcyclesdueto the fact that their addresses
may not be immediatelyknown. On the otherhand,if we
have an accuratepredictionthatthe load A dependsn the
storeo, we know thatthe valueloadedinto registerP23is
identicalto thevalueproducedy theoriginal ADD instruc-
tion a. Whetherinstructiong readsits operandrom phys-
ical register P23 or P18, the final resultwill be the same.
Readingthe resultdirectly from P18avoidsthelong trip to
andfrom memory

Thebypassegroduce-consuméependencehainis re-
ally a dependencgraphwith a side branchto verify the
dependencerediction,asshavn in Figurelb. As soonas
the correspondinglatadependenceareready instructions
a andg mayissue.Sometime later, theloadandstoremust
bothissueandverify thatthey wereindeedreferencinghe
sameaddressand that no other storeto the sameaddress
occurredbetweers and\. If the memoryreferencesvere
to differentlocationsin memory thenthe bypassingvould
have forwardedthe wrong valueto instruction . At this
point, somesortof recoveryis necessaryo squashor reex-
ecuteinstructiong, andits dependeninstructions.Further
more,somerepairmechanisms neededsinceinstructions
really shouldbereadingits argumentfrom P23,not P18.

Intuitively, it would seenthatbypassingnemoryshould
provide large performancegains. Bypassingremovesthe
latengy of going to the store forwarding buffer and back.
Furthermorememorybypassingemovesthe computation
of addressefrom the critical path. To the extentthat de-
pendenceredictionsareaccurateaddressalculationsare
relegatedto non-criticaladdreserifications.Althoughwe
think that a hardware mechanisnfor efficient recovery is
possible,we will omit detailsof animplementatiorsince
bypassingiltimately doesnot gainmuchin performance.

3. Experiments

We experimentallyquantify the performanceenefitsof
memory bypassing. In this section,we explain our sim-
ulation methodology our simulatedprocessomodel, and
presentheresultsof our experiments.

3.1. Methodology

Our processorsimulatoris basedon the SimpleScalar
toolset,version3.0for the Alphainstructionset[1]. Specif-
ically, our simulatoris derived from sim-outorder, a cycle-
accurateout-of-orderprocessosimulatorbasecbn thereg-
ister updateunit (RUU) [15] which usesa unified reorder
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Figure 1. (a) A typical dependence chain from a producer instruction, through memory, to the con-
sumer. (b) The dependence chain when memory is bypassed.

Decodewidth 8

IssueWidth 8
CommitWidth 8

IFQ Size 32

RUU Size 128

LSQ Size 64

IL1 cache 8-way 256KB
DL1 cache 4-way 64KB
IL1 hit 1lcycle

DL1 hit 3cycles
StoreForwarding | 1 cycle
Unified L2 4-way 256KB
L2 hit 16 cycles
MemoryLatengy | 60cycles
Int/FPALU 8

Int Mult 4

Table 1. Parameters for the simulated proces-

buffer and issuequeue. We addedsupportfor simulating
load speculationstoresetsmemorydependencprediction,
andmemorybypassing.

We usedan aggressie processomodelthatis compa-
rable to the configurationusedin the original store sets
study[3] andthe8-wideconfigurationfrom the Stackvalue
File study[7]. The processoparametersrelistedin Ta-
ble 1. We usea McFarling style hybrid branchpredictor
(gshare/Rs) to predictconditionalbrancheg9].

Thesimulatedoenchmarksomefrom the SPEC2000n-

teger codes[16]. We usea mix of input setsfrom the test
datasetandthereducedun-lengthinputsfrom the Univer-

sity of Minnesota[6]. We skippedtheinitial start-upsec-
tions for eachbenchmarkandthen simulated200 million

instructions. The datasetsandnumberof skippedinstruc-
tionsareincludedin Table2. The mean IPCsreportedare
alwaysthe harmonicmeanacrossall benchmarks.

3.2. Bypassing With Store Sets

In general,a memorydependenceredictorneedonly
predictwhen a load may safelyissue. The storesetspre-
dictoralsopredictstheactualdependencehatis, a storein
thewindow is explicitly predictedasthe parentof theload
instruction. By tracking this dependenc@nformation, we
canupdatetheregisteraliastablesoall instructionsthatare
datadependenvntheloadnow readtheirargumentdirectly
from the stores parent.

We illustratean examplein Figure2 usingthe samein-
structionsasshovnin Figurel. In step(a), theprocessore-
nameghe original dataproducinginstructiona to write its
resultinto physicalregisterP18. Step(b) shavsthestorein-
structione thatwritesa’s resultto memory In step(c), the
storesetsmechanisnpredictsa memorydependencé&om
o to theloadinstruction\. Theregisteraliastable (RAT)
is thenupdatedsoall consumersf theload’sresult(logical
registerR3) will readthevaluedirectly from thedestination
register of the original producera. In step(d), the pro-
cessorenames consumeinstructions’s agumentausing
the mappingdn the RAT. Instructions cannow receve its
argumentdirectly from instructiona, therebycompletely
bypassinghe memaoryreference®f ¢ andA. Most of this



processs standardn out-of-ordersuperscalaprocessors.
To performbypassingthe processoonly needgo perform

the additionalwork of updatingthe RAT whenthe depen-
denceis predicted.

In a processothatperformsmemorybypassingthe pre-
dicteddependenstoreandload instructionsstill mustexe-
cute. Thestoreinstructionmustwrite its valueto memoryto
enforcethe properprogramsemanticsTheloadinstruction
mustat leastperformits addressomputatiorto verify that
the dependenceredictionwasactuallycorrect.In the case
of a misspeculationthe recovery procedurecan be quite
involved. The simplestapproachis to flush the pipeline,
rollback the register alias table, and restartfetching from
the mispredictedoad instruction. This approactsquashes
mary unrelatednstructionsthatarenot data-dependerdn
thefaultingload. Selectve reissueonly squasheandreis-
suesthoseinstructionsthat are actually data-dependerdn
themisspeculatetbad[12]. Thisresultsin higheramounts
of instruction-level parallelism but maybe complex to im-
plementin hardware.

3.3. Experimental Results

We conductedsimulation-basedxperimentsto assess
the performancegainsderivable from memorybypassing.
The baselineexperimentis a processotthat performsno
memory speculation;loads may only issuewhen all ear
lier storeaddressebave beenresolhed. We thensimulated
a processotthat speculateon load instructionsusing the
store setsmemorydependenc@redictorand anotherpro-
cessothatusesstoresetshasednemorybypassingln both
caseswe alsousethe setmeiging optimizationdescribed
in [3], whichwefoundto improveperformanceslightly. We
simulatecconfigurationsisingbothsquashiecoreryandse-
lective reissue.With squaskrecovery, all instructionsafter
amisspeculatetbad mustreexecute althoughthey arekept
in the window. With selectve reissueonly the dependent
instructionsareforcedto reissue.

The perbenchmarlandharmonicmeanlPCsareshavn
in Figure 3. Regardlessof the misspeculatiorrecovery
model,allowing loadsto speculatiely issuewhenthe store
sets mechanismdoes not predict a memory dependence
shaws significant performancegains. Under the squash
recovery model, the processoraugmentedvith store sets
shavs a 31.0%increasein the meanIPC. Adding mem-
ory bypassingto this processotyields a total meanIPC
increaseof 31.7%over the non-speculatingonfiguration.
Adding the hardware compleity of memory bypassing
hardly seemsto be worth the effort. Even consideringa
selectve reissuepolicy, the gainsof bypassingwith store
sets(39.4%)comparedo storesetsalone(36.6%)are not
veryimpressve.

One possibleexplanationfor the poor performanceof
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Figure 2. Using store sets to bypass mem-
ory: (a) the original value producing instruc-
tion, (b) the o stores a’s result to memory, (c)
store sets predicts a dependence from o to A
and we update the RAT so the load’s children
read their operand directly from the store’s
source, (d) theinstruction g is adependent of
the bypassed load ), but has been renamed
to receive its value directly from «’s destina-
tion register P18.
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Figure 3. IPC for each benchmark and the har-
monic mean IPC.

our storesetsmemaorybypassings thatit is possiblethatthe

dependenceredictiondoesa goodjob at preventingmem-

ory orderviolations,but doesnt necessarilypredictthetrue

dependenceketweenstoresandloads. A load may be de-

pendenibon thefirst of two earlierstoreinstructions.If the

storesetsmechanisnpredictedthe loadto bedependentn

the secondstore,thentheloadis forcedto wait for the sec-
ondstoreto issuebeforeit canproceedlf the secondstore
alwaysissuesafterthe first, thenthe load will never cause
amemoryorderingviolation. Onthe otherhand,bypassing
datafrom thewrongstorewill alwaysresultin a misspecu-
lation.

To boundhow well memorybypassingcould possibly
perform,we simulateda processomwith anoraclememory
dependenceredictor Theseresultsarealsoshownn in Fig-
ure 3. Evenwith perfectinformationaboutmemorydepen-
dencesmemorybypassingnly improvesthe meanlPC by
2.3%over perfectdependenceredictionalone. It is inter-
estingto note that the store setsbasedmemorybypassing
(with selectve reissueachievzesan IPC thatis within 1.4%
of perfectbypassing.This providesevidencethatthe store
setsare accuratelypredicting dependenstoresand loads.
This is highly discouragingsincethe 2.3%improvements
a bestcasescenario.Sowhy doesmemorybypassingro-
vide suchmeageiperformanceyains?

4. Explanation of Small Gains

In this section,we analyzethe behaior of our bench-
marksto explain why memorybypassingloesnot perform
well. Basedon the smallperformancencreasen theideal
caseof perfectmemorybypassingthe naturalhypotheses

are(1) thattherearerelatively few opportunitiefor bypass-
ing, and(2) the bypasseanemoryreferencesrenotonthe
critical path.

Subroutinecalls presenbnepossiblesituationthat may
provide opportunitiesfor bypassing.Passingargumentso
a function may requirethe caller to storethe function ar-
gumentgo thestack,andthensubsequentlthe calleemust
loadthesevalueshackinto theregisters.Typical registerus-
agecorventionsallocateafew registersfor passingunction
argumentswhich avoidsthe backandforth trip to memory
(underDigital Unix corventions,up to six agumentsmay
be passedn R16 throughR21[14]). Most functionsonly
take afew arguments.

Due to the fixed numberof architecturallyvisible reg-
isters,the compilermay be forcedto spill valuesto mem-
ory whenthereareno moreavailableregisters. Thesespills
may represenimore opportunitiesfor memorybypassing.
The spill is implementedby writing the contentsof the
spilledregisterto memorywith astoreinstruction.At alater
pointin the programwhenthe original valueis onceagain
neededthe valueis loadedbackinto a (possiblydifferent)
register If bothinstructionsof this store-loadpair arein-
flight in the processoat the sametime, thenthis presenta
memorybypassingpportunity However, assuminga rea-
sonableaegisterallocator the spilledregisteris notlikely to
beusedagainvery soon.

We wouldlik e to quantifyhow mary possibleopportuni-
tiesexist for bypassingnemory To measureghis, we sim-
ulateda processoconfigurationthat performsnaive specu-
lation. Thatis, aloadissuesassoonasits addres$iasbeen
computed subjectto the availability of issueslots. Every
time the processodetectsa memoryorderingviolation, a
storeandaloadto the samememoryaddresxistin thein-
structionwindow which presentsan opportunityfor mem-
ory bypassing.Theresultsaresummarizedn Table2. We
reportthe total numberof load instructions the total num-
ber of loadsthatresultedin a misspeculationandthe mis-
speculationsas a percentagef the total numberof loads.
Thesemisspeculationsepresensituationswherethe load
is readyto issue butit is beingheldup becauséhe conflict-
ing storeis waiting for its dataoperandor the storehasnot
yet computedts addresslf the storeis waiting for its data
operand,then bypassingactsas a store value forwarding
mechanismlf the storehasnot computedts addressthen
bypassingnaysave severalcyclessincetheconsumenf the
load instructiondoesnot have to wait for the addrescom-
putation. The benchmarlgap shaved someof the largest
IPCimprovementsandour misspeculatiortountingshowvs
thatgap alsohasthelargestnumberof bypassingpportu-
nities. On the otherhand,thesestatisticssuggesthatmost
of thebenchmarkslo not have very mary opportunitiedor
memorybypassing.

Part of the reasonthat there are so few bypassingop-



Benchmark Input Instructions| Number Numberof Misspeculations
Set Skipped of Loads | Misspeculationy (as% of all loads)
bzip2 test 200M 45,119,328 812,444 1.80
crafty test 10M 62,433,982 454,349 0.73
eon test(kajiya) 10M 60,081,228 3,588,252 5.97
gap test 70M 62,961,510 7,292,950 11.58
gcc test 200M 67,887,442 1,141,085 1.68
gzip.graphic UMN 10M 48,086,571 2,529,345 5.26
gzip.source UMN 10M 49,299,863 2,490,490 5.06
mcf UMN 100M 58,855,822 275,950 0.47
parser UMN 270M 57,772,158 652,342 1.13
vortex test 10M 55,654,141 2,208,333 3.97
vpr.place test 10M 56,082,583 2,136,052 3.81
vpr.route test 54M 66,425,671 1,970,147 2.97

Table 2. Each load-store memory ordering violation is an opportunity for memory bypassing.
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Figure 4. The cumulative frequency of the distance between a dependent store and load for each
benchmark. The average instruction window occupancy is included below the benchmark name.



portunitiesmay be due to the fact that the effective win-
dow sizeis too small. Storesetsonly considerstoresand
loadsthat are both in the instructionwindow at the same
time. Although our instructionwindow hasa capacityof
128 instructions,fetch stalls or burstsof high parallelism
may causethe actualnumberof instructionsin thewindow
to be lessthanthe maximum. To get a betteridea of the
characteristicef dependenstoresandloads,we measured
the distancedetweenstoresandloads. For every load, we
countthe numberof instructionsto the mostrecentstoreto
the sameaddressFigure4 shaws the resultsof this exper
iment. The x-axisis the numberof instructionsthat sepa-
ratea load from the mostrecentstoreto the sameaddress.
The y-axis showvs the cumulative frequeny. For example,
approximately20% of all loadsin gcc occurwithin 80in-
structionsof the previous storeto the sameaddress. The
vertical line marksthe averageinstructionwindow sizefor
our processorconfigurationwhen no memory speculation
is performed(not including instructionsfollowing a mis-
predictedbranch).

The curvesin our store-to-loadrequeng plots vary by
benchmark.For somebenchmarkssuchasncf , thereare
very few sameaddresdoad-storepairswithin the effective
instructionwindow. Evenextendingto hundredf instruc-
tions beyond the instructionwindow doesnot greatly in-
creasethe numberof sameaddresdoad-storepairs. The
benchmarkcr af t y doesnot exhibit very mary samead-
dressload-storepairs within the effective instructionwin-
dow, but the numberof such pairs continuesto increase
aswe considermmoreinstructions.Someotherbenchmarks
suchaspar ser andvort ex have moreload-storepairs
within the instructionwindow thanthe otherbenchmarks,
but evenfor thesebenchmarkghe bypassabldoadscom-
priselessthan25% of all load instructions.The benefitof
bypassingheseloadsalsodepend®n whethertheseloads
are on the critical path. Effective hardware or software
prefetchingcan potentiallyremove someof the loadsfrom
thecritical path.

5. Enlarging the Effective Window

In the previous section,we obseredthattherearerela-
tively few dependenstore-loadpairswithin theinstruction
window. For someof the benchmarksthe numberof de-
pendentpairsincreasesf we considera larger window of
instructions.Perhapsf we enlagetheeffective window for
detectingdependenstoresand loads, we may be able to
increasethe numberof bypassingopportunitiesand boost
overall performance.

Oneproblemwith usingstoresetsis thatthedependence
betweena storeandload is broken whenthe storeretires
from the instructionwindow. Normally, the LFST entry
correspondingo the storeis replacedwith a null valueto
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Figure 5. Relative performance of perfect by-
passing augmented with a buffer of the last &
retired store instructions.

indicatethatno storeinstructionin thatstoresetis currently
in thewindow. An alternatve approachwould beto store
the value written by that storeinto the LFST entry. A sub-
sequentoad instructionthataccessethis LFST entry can
thendirectly usethis saved valued. This canbe thoughtof
asasimpleform of loadvalueprediction.

We usedanothelidealizedprocessomodelto determine
the potentialbenefitof suchan approach.We simulateda
processomwith perfectmemorybypassingasbefore. Fur
thermore,we augmentthis processomwith a FIFO buffer
thattracksthe last k storesto retire. If a dependenstore-
load pair exist in thewindow, thenthe processousesmem-
ory bypassingas describedin Section3.2. If the store
had alreadyretired beforea load to the sameaddressvas
fetched,thenthe processoforwardsthe value of the store
from the FIFO storebuffer to theload. Again,theprocessor
hasoracleknowledgeof theload's address.

We simulatedthis processomodelfor varioussizesof
the FIFO storebuffer. The harmonicmeanlPCsareshavn
in Figure5. All IPC valuesarenormalizedwith respecto
the caseof perfectspeculatiorwith no memorybypassing.
Evenin thisidealizedsituation theprocessomusttrackthe
lasttwo thousandstoreinstructionsfor the bypassingyains
to achieve an additional5% performancencrease. Given
thata 2K entryfully-associatve buffer is probablytoo large
to implement,andthat theseresultsrely on perfectmem-
ory dependencerediction,we concludethat any practical
implementatiorof memorybypassindgs notworththehard-
ware,the compleity, andthe effort.

Anotherpossibilitythatwe consideredvasthatthe pro-
cessoffront-endwasthe bottleneck.If thefetchbandwidth
wasincreasedperhapsherewould be more opportunities



for memorybypassing.We do not believe this is the case
becauseheresultsin Figure5 effectively modelalargerin-
structionwindow with respecto increasinghe numberof
bypassingopportunities. We also simulatedan unrealistic
processomwith a 1024-entryinstructionwindow and very
large branchpredictors.This greatlyincreasedhe average
numberof instructionsin the instructionwindow, but the
overall impactof memorybypassingover perfectspecula-
tion wasonly a 3.1%increasen theharmonicmeanlPC.

Out of all of thebenchmarkgor the 1024-entrywindow
simulationsypr . r out e (we will referto thisbenchmark
asjustvpr for therestof this section)exhibited the high-
estrate of bypassingoads: approximatelyone quarterof
all loadswere bypassed. Still, the IPC increasefor vpr
wasonly 3.2%. We profiled vpr to find out what func-
tionscomprisedmostof the dynamicinstructionsandthen
we plottedthe store-loaddependencgraphswith VCG, a
graphvisualizationtool [13]. Thegraphfor aninvocationof
thenode_t o_heap functionis shavn in Figure6. We use
rectangledor loadinstructions diamondshapedor stores,
andbypassedoadsareindicatedby a dependencarcfrom
the parentstore.

The sectionof the graphannotatedvith codeis actually
fromthefunctionadd_t o_heap, whichthecompilerchose
to inline into node_t o_heap. Callsto node_t o_heap
comprise28.6% of the dynamicinstructionsin our sam-
ple window. The main loop of the function is from the
add_t o_heap function, which insertsa new item into a
heapdatastructure.Therearevery few bypassingpportu-
nitiesin the mainloop becaus®f how a heapinsertworks.
A new node N is insertedat the bottom of a binary tree,
andthen“floats” upwardsolong astheparentodeskey is
greaterthanthe new nodes key. Whennodesareswapped,
N is written into the position of the parentnode. On the
following cycle, N is readout of the heapto comparedo the
new parentnode.Thisreadis thedependentibad,shavn by
the onecycle bypassarcsin Figure6 in the sectionof the
graphfor add_t o_heap. Evenif theprocessocanbypass
all of thesdoads,the processors still heldup by theloads
of thevariousparentnodes.

Instructionsfrom the function get _heap_head com-
prise39.9%o0f all dynamicinstructionsn vpr for oursam-
plewindow. Figure7 shavs asectionof the progranwhere
thefunctiont r y _r out e (lightly shadedhodesyepeatedly
callsget _heap_head (darknodes}. Fromthe graph,we
canseethat someof the bypasspathsspantenor morecy-
cles. Unfortunately thereare alsoa large numberof loads
thatwe cannotbypass.This suggestshatevenif we do by-
passa load, thenthe critical pathshiftsto oneof the mary

1The reasonget _heap_head requiresso mary instructionsis that
nodesin the heapmay be invalid, andso get _heap_head actuallyhas
to find the nodewith the smallestkey thatis alsovalid, ratherthansimply
returningtheroot node.
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[* addto_heapmainloop*/
while ((ito >=1)
&& (heap[ifrom}—cost< heaplito}-cost)){
tempptr = head]ito];
heaplito]= heap[ifrom];
heap[ifrom]=tempptr;
ifrom = ito;
ito = ifrom/2;

—

Figure 6. The bypass dependence graph of
node_t o_heap. Rectangles correspond to
loads, diamonds correspond to stores, and
the edges go from a storeto a bypassed load.




otherloads.In suchasituation,bypassingnaygainoneor
two cycles, but not the ten or morethat correspondo the
lengthof the bypasgpath. Anotherimportantcharacteristic
of the bypasslependencarcsis thattherearemary stores
thathave a high fan-out.Thatis, asinglestoreis the parent
of multiple bypassedoads. For vpr , we foundthaton av-
erageastorefans-outo 4.55bypassedbads.To gainmore
thanjust a few cyclesfrom bypassingthe processomust
correctly bypassall theseloads,and thenthe overall gain
may still only be a smallnumberof cyclesdueto all of the
unbypassabladspreviously discussed.

We also considered processorconfigurations where
store-forvarding (not bypassingyequiresmultiple cycles.
Our default configurationhasa store-forvardinglateng of
a single cycle, but in a processomith a longer forward-
ing latengy, the numberof cyclessaved by bypassingnay
increaseWe simulatedoneprocessowith perfectspecula-
tion andonewith perfectbypassingandincreasedhestore-
forwardinglateng to two cycles. Therelative performance
increaseof perfectbypassingover perfectdependencere-
diction is only 2.4%. We further increasedhe forwarding
lateng to four cyclesandincreasedhe L1 datacachela-
teng to five cycles, and the relative IPC improvementis
still only ameage3.8%.

6. Related Work

There are two main bodiesof researchrelatedto our
study The first is in the prediction of memory depen-
dences,and the secondis in various forms of memory
bypassing. Moshovos et al identified the importanceof
memorydependencpredictionandproposedindevaluated
techniquesto implementdependenceredictionin hard-
ware[10]. ChrysosandEmerproposedstoresetsfor mem-
ory dependenceredictionwhich we usedin this study[3].
TheAlpha21264speculatiely issuedoads,but usesasim-
pletableto trackloadsthatcausemisspeculationto prevent
themfrom speculatrely issuingin thefuture[5].

Severalstudieshave usedmemorydependence speed
up loadsfrom memory TysonandAustinintroducedmem-
ory renaming[17], which hassimilaritiesto memory by-
passingMemoryrenamingorwardsdatato thedependents
of aloadby combiningmemorydependencpredictionwith
load value prediction [8]. Jourdanet al explore several
renaming-basetechniquegor move elimination,memory
disambiguatiorandmemorybypassind4]. Moshovosand
Sohi proposememory cloaking and bypassingto reduce
the lateng of memoryinstructiong[11]. CalderandRein-
manncompareavarietyof aggressieloadspeculatiortech-
niguesand examinethe effects of combiningdifferentap-
proacheq?2]. They shov that memory dependencere-
diction and value predictiontogetherprovide the greatest
performancédenefit but furtheraugmentingheir processor
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Figure 7. The bypass dependence graph
of store and loads for the get _heap_head
function (dark nodes), which is called by
try_route (light nodes).



with memoryrenamingdoesnot provide ary significantad-
ditional benefit.Leeetal's StackValueFile (SVF)[7] com-
putesthe addressesef stackreferencearlyin the pipeline
andredirectghestacktraffic to aseparatstoragestructure.
Using registerrenaming,the SVF achieves effects similar
to memorybypassindor stackreferences.

7. Conclusion

At facevalue,theideaof memorybypassingounddike
an excellent hardware optimizationto remove long store-
to-loaddependencehainsfrom thecritical path. Themain
resultof this studyis thataccuratenemorydependencpre-
diction candramaticallyimprove performancebutincorpo-
rating memorybypassingprovideslittle additionalbenefit.
Our analysisof memorydependencstatisticssuggestshat
this is becausehereare few opportunitiesfor bypassing,
andmary of theseopportunitiesareoverlapping.

Ourresultsarebasedn the Alpha instructionsetarchi-
tecture. However, an architecturewith fewer logical regis-
ters,suchasthe x86 ISA, mayyield differentresults. The
limited numberof registersleadsto morefrequentspilling
andthereforepotentiallymorebypassingpportunities.
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