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Abstract

In this paper we explore query execution and storage management issues for Mariposa, a distributed data

base system under construction at Berkeley. Because of the extreme complexity of both issues, we have

adopted an underlying economic paradigm for both problems. Hence, queries receive a budget which

they spend to obtain their answers, and each processing site attempts to maximize income by buying and

selling storage objects and processing queries for locally stored objects. This paper presents the protocols

which underlie this economic system.

1. INTRODUCTION

In [STON94] we presented the design of a new distributed database and storage system, called

Mariposa. This system combines the best features of traditional distributed database systems, object-

oriented DBMSs, tertiary memory file systems and distributed file systems. Moreover, in certain areas it

alleviates common disadvantages of previous distributed storage systems.

The goals of Mariposa are eight-fold:

(1) Support a very large number of sites.Mariposa must be capable of dealing with several hundred

sites (logical hosts) in a co-operating environment. For example, the Sequoia 2000 project [STON91,

DOZI92] has around 200 sites with varying data storage needs and capabilities, mostly on the desktops of

participating scientists. Other distributed databases may be substantially larger. For example, a group of

cooperating retailers might want to share sales data. In the design of Mariposa, we consider the possibil-

ity of distributed databases with as many as 10,000 sites. The problems of data location, information dis-

covery and naming issues must be dealt with in a scalable manner.
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(2) Support data mobility. Previous distributed database systems (e.g., [WILL81, BERN81, LITW82,

STON86]) and distributed storage managers (e.g., [HOWA88]) have all assumed that each storage object

had a fixedhome to which it is returned upon system quiescence. Changing the home of an an object is a

heavyweight operation that entails, for example, destroying and recreating all the indexes for that object.

In Mariposa, we expect data objects, which we callfragments, to move freely between sites in a

computer network in order to optimize the location of an object with respect to current access require-

ments. Fragments are collections of records that belong to a common DBMS class, using the object

model of the POSTGRES DBMS [STON91].

(3) No differentiation between distributed storage and deep storage.It is clear that storage hierar-

chies will be used to manage very large databases in the future. Hence, a storage manager must move

data objects from tertiary memory to disk to main memory. In Mariposa, we insist that such movement be

conceptually the same as moving objects between sites in a computer network. This will greatly simplify

system software, but it will result in one Mariposalogical site per storage device, thereby increasing the

number of sites which Mariposa must manage.

Also, since fragments are the object which moves between sites, it must be possible to adjust the

size of a fragment bysplitting it if it is too large or bycoalescingit with another fragment of the same

class if it is too small. The desirable fragment size will generally be storage device specific. For exam-

ple, fragments which typically live on disk will be much smaller than fragments which typically reside on

tertiary memory.

(4) No global synchronization. It must be possible for a site to create or delete an object or for two sites

to agree to move anobject from one to the other without notifying anybody. In addition, a site may

decide to split or coalesce fragments without external notification. Therefore, any information about

(e.g.) the location of an object may be out of date. As a result, Mariposa must base optimization decisions

on perhapsstaledata and the query executor must recover from inaccurate location information.

(5) Support for moving the query to the data or the data to the query.Traditional distributed

database systems operate by moving the query from a client site to the site where the object resides, and

then moving the result of the query back to the client [EPST78, LOHM86]. (Temporary copies of an

object may be created and moved during query processing, but only the database administrator can

change where an object resides.) This implements a “move the query to the data” processing scenario.

Alternately, distributed file systems and object-oriented database systems move the data a storage block at

a time from a server to a client. As such, they implement a “move the data to the query” processing sce-

nario. If there is high locality of reference (as in [CATT92]) then the latter policy is appropriate because

the movement cost can be amortized over sev eral subsequent interactions. On the other hand, sending the

query to the data is appropriate when low locality is observed. In Mariposa, we insist on supporting both

tactics, and believe that the choice should be made at the discretion of the query optimizer.

(6) Flexible support for copy management.When an object-oriented database system moves data from

a server to a client, it makes a redundantcopy of the affected storage object. This copy liv es in the client

2



cache until it is no longer worthy, and then any updates to the object are reflected back to the server. As a

result, the caching of objects in client memory yieldstransient copies of storage objects. Alternately, tra-

ditional distributed database systems implemented (or at least specified) support for permanent copies of

database relations [WILL81, BERN83, ELAB85]. Our goal in Mariposa is to support both transient and

permanent copies of storage fragments within a single framework.

(7) Support autonomous site decisions.In a very large network, it is unreasonable to assume that any

central entity has control over policy decisions at the local sites. Hence, sites must belocally

autonomousand able to implement any local policies they please. This will include, for example, the

possibility that a site will refuse to process a query on behalf of another site and will refuse to accept an

object which a remote site wishes to evict from its storage. This policy is also the only appropriate one in

heterogeneousdistributed DBMSs, where foreign software may be running on each of the local sites. In

this case, no assumptions can be made about its behavior.

(8) Mariposa policy decisions must be easily changeable.One Mariposa environment might want to

implement an LRU storage management policy for deciding which fragments to push from disk out to ter-

tiary memory. A second site might want a totally different policy. It must be possible in Mariposa to eas-

ily accommodate such diversity. We expect policies to vary according to local conditions and our own

experimental purposes.

To support this degree of flexibility, the Mariposa storage manager isrule-driven , i.e., it accepts

rules of the form:on ev entdo action. Events are predicates in a high performance, high level language

we are developing, while actions are statements in the same language. Using this rule engine, we plan to

encode solutions to the following issues:

• when to move a fragment between sites

• when to make a copy of a fragment at a site

• when to split a fragment

• when to coalesce two fragments

• where to process any node of a query plan

• where to find fragments in the network

1.1. Resource Management with Microeconomic Rules

To deal with the extreme complexity of these issues, the Mariposa team has elected to reformulate

all issues relating to shared resources (query optimization and processing, storage management and nam-

ing services) into a microeconomic framework. There are several advantages to this approach over tradi-

tional solutions to resource management. First, there is no need for a central coordinator, because in an

economy, every agent makes individual decisions, selfishly trying to maximize its utility. In other words,

the decision process is inherently decentralized, which is a prerequisite for achieving scalability and

avoiding a single point of failure. Second, prices in a market system fluctuate in accordance with the

demand and supply of resources, allowing the system to dynamically adapt to resource contention. Third,
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ev erything can be traded in a computer economy, including CPU cycles, disk capacity and I/O bandwidth,

making it possible to integrate queries, storage managers and name servers into a single market-based

economy. The uniform treatment of these subsystems will simplify resource management algorithms. In

addition, this will result in an efficient allocation of every available resource.

Using the economic paradigm, a query receives abudget in an artificial currency. The goal of the

query processing system is tosolvethe query within the budget allotted, bycontracting with various pro-

cessing sites to perform portions of the query. Lastly, each processing site makes storage decisions to buy

and sell fragments and copies of fragments, based on optimizing the revenue it collects. Our model is

similar to [FERG93, WALD92, MALO88] which take similar economic approaches to other computer

resource allocation problems.

In the next section, we describe the three kinds of entities in our economic system. Section 3 devel-

ops the bidding process by which a broker contracts for service with processing sites, the mechanisms to

make the bidding system efficient, and demonstrates how our economic model applies to storage manage-

ment. Section 4 details the pricing effect on fragmentation. Section 5 describes how naming and name

service work in Mariposa. Previous work on using the economic model in computing is examined in Sec-

tion 6.

2. DISTRIBUTED ENTITIES

In the Mariposa economic system, there are three kinds of entities:clients, brokers and servers.

The entities, as shown in Figure 1, can reside at the same site or may be distributed across multiple sites.

This section defines the roles that each entity plays in the Mariposa economy. In the process of defining

each entity, we also give an overview of how query processing works in an economic framework. The

next section will explain this framework in more detail.

Clients. Queries are submitted by user applications at aclient site. Each query starts with a budget,

B(t), which pays for executing the query; query budgets form the basis for the Mariposa economy. Once

a budget has been assigned (through administrative means not discussed here), the client software hands

the query to a broker.

Brokers. Thebroker ’s job is to get the query performed on the behalf of the client. A central goal of

this paper is to describe how the broker expends the client’s budget in a way that balances resource usage

with query response time.

As shown in Figure 1, the broker consists of aquery preparationmodule and abid managermodule

that operate under the control of arule engine. The query preparation module parses the incoming query,

performing any necessary checking of names or authorization, and then prepares alocation insensitive

query processing plan. The bid manager coordinates the distributed execution of the query plan.

In order to parse the query, the query preparation module first requestsmetadata for each class ref-

erenced in the query from a set ofname servers. This metadata contains the information usually required
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Figure 1. Mariposa entities.

for query optimization, such as the name and type of each attribute in the class and any relevant statistics.

It also contains the location of each fragment in the class. We do not guarantee that this information, par-

ticularly fragment location, will be up-to-date. Metadata is itself part of the economy and has a price; the

parser’s choice of name server is determined by the desired quality of metadata, the prices offered by the

name servers, the available budget, and any local rules defined to prioritize these factors.

After successful parsing, the broker prepares a query execution plan. This is a two-step process.

First, a conventional query optimizer along the lines of [SELI79] generates asingle sitequery execution

plan by assuming that all the fragments are merged together and reside at a single server site. Second, a

plan fragmentation module uses the metadata to decompose the single site plan into afragmented query

plan, in which each restriction node of a single site plan is decomposed intoK subqueries, one per frag-

ment in the referenced class. This parallelizes the single site plan produced from the first step. The

details of this fragmentation process are described in [STON94].

Finally, the broker’s bid manager attempts to solve the resulting collection of subqueries,

Q1, . . . ,QK , by finding a processing site for each one such that the summation of the subquery costs ofC

and a total delay ofT fit the budget for the entire query. If sites cannot be found to solve the query within

the specified budget, it will be aborted. Locally defined rules may affect how the subqueries are assigned

to sites.

Decomposing query plans in the manner just described greatly reduces optimizer complexity. Signs

that the resulting plans may not be significantly suboptimal appear in [HONG91], where a similar decom-

position is studied. Decomposing the plan before distributing it also makes it easier to assign portions of

the budget to subqueries.

5



Servers. Server sitesprovide a processor with varying amounts of persistent storage. Individual server

sitesbid on individual subqueries in a fashion to be described in Section 3. Each server responds to

queries issued by a broker for data or metadata. Server sites can join the economy, by advertising their

presence, bidding on queries and buying objects. They can also leave the economy by selling all their

data and ceasing to bid.

Storage management, the second focus of the Mariposa economic model, is directed by each server

site in response to events spawned by executing client’s queries and by interaction with other servers.

3. THE BIDDING PROCESS

Mariposa uses an economic bidding process to regulate the storage management as well as the

execution of queries. Using a single model for computation and storage simplifies the construction of dis-

tributed systems. In this section we describe how to select the bid price and how to find servers that are

likely bidders.

Each query,Q, has abudget, B(t), which can be used to solve the query. The budget is a decreasing

function of time, which represents the value that the user gives to the answer to his query at a particular

time, t. Hence, a constant function represents a willingness to pay the same amount of money for a slow

answer as for a quick one, i.e., the user does not value quick response. A steeply declining function indi-

cates the contrary. Cumulative user budgets are controlled by administrative means that are beyond the

scope of this paper.

The broker handling a query,Q, receives a query plan containing a collection of subqueries,

Q1, . . . ,Qn, and B(t) which specifies the most amount of money the client is willing to pay for a given

service time. Each subquery is a one-variable restriction on a fragment,F , of a class, or a join between

two fragments of two classes. The broker tries to solve each subquery,Qi , using either anexpensivepro-

tocol or acheapprotocol. In the remainder of this section we discuss these two protocols and the condi-

tions under which each is used.

3.1. The Expensive Bidding Protocol

Using the expensive protocol, the broker conducts a bidding process for each subquery by sending

the subquery (or a data structure representing it) to a collection ofpossible bidders.These bidders can be

identified in several different ways, as we will discuss in the next section. Once the broker has received

bids from the possible servers, it must choose a winning collection of bids.

Eachbid consists of a triple: (Ci , Di , Ei ) which is a proposal to solve the subquery,Qi , for a cost,

Ci , within a delay,Di , after receipt of the subquery, noting the fact that the bid is only valid until a speci-

fied expiration date,Ei . The way that a site arrives at a bid will be discussed in a later section.

In order to bid on a subquery,Qi , a site must possess the fragment(s) referenced by the subquery or

a copy of them. If the site does not have each referenced fragment, then it must be willing tobuy the

missing ones. Buying a fragment entails contacting the currentowner of the fragment, and either:
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(1) buying the fragment from the owner, in which case there continues to be a single copy of the frag-

ment, or

(2) purchasing acopy of the fragment, in which case the owner remains the same, but there is an

additional copy.

Setting the price of fragments and copies is the subject of a later section.

The broker receives a collection of zero or more bids for each subquery. If there is no bid for some

query, then the broker must either contact additional possible bidders, agree to perform the subquery

itself, or notify the user that the query cannot be run. If there is one or more bids for each subquery, then

the broker must ascertain if the entire query can be processed within the budget allocated, and if so, must

choose the winning bids.

The broker must choose a collection of bids with aggregate costC and aggregate delayD such that

the aggregate cost is less than or equal to the cost requirementB(D). It is possible that several collections

of bids may meet the minimum price/performance requirements, so the broker must choose the best col-

lection of bids. In order to compare the bid collections, we define a difference function on the collection

of bids: difference= B(D) − C. Note that this can have a neg ative value, if the cost is above the bid

curve.

The goal of the broker is to choose the collection of bids which solves the query with a maximum

value of difference. Howev er, the broker’s job is complicated by the parallelism possible in the query

plan. A given subquery can be run for each fragment of a class in parallel. Also, a given join can be run

in parallel for each of the pairs of fragments, one from each class. Lastly, certain nodes in the query plan

can bepipelined into subsequent nodes, and hence, there is no need tosynchronizebetween the nodes.

In other cases, a subsequent node cannot be started until the last of the parallel subqueries has finished

from the previous step. In this case the delay is determined by the slowest of the parallel tasks, and lower-

ing the delay of any other task will not affect the total response time.

To model this possible parallelism, we assume that the query can be decomposed into disjoint pro-

cessing steps. All the subqueries in each processing step are processed in parallel, and a processing step

cannot begin until the previous one has been completed. Rather than consider bids for individual sub-

queries, we consider collections of bids for each processing step.

Given such a collection, the estimated delay to process the entire collection is equal to the highest

bid time in the collection. The number of different delay values can be no more than the total number of

bids on subqueries in the collection. For each delay value, there is an optimal collection of bids: the one

with the cheapest cost. This is formed by choosing the least expensive bid for each subquery that can be

processed within the given delay. By “coalescing” parallel bid collections and considering them as a sin-

gle (aggregate) bid, the broker may reduce the bid acceptance problem to a simpler problem of choosing

one bid (from among a set of aggregated bids) for each sequential step.

It is obviously feasible to perform an exhaustive search and consider all possible viable collections

of bids. For example, if there are 10 processing stages and 3 viable collections for each one, then the
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broker can evaluate each of the 310 bid possibilities, and choose the one with the maximum difference.

For all but the simplest queries referencing classes with a minimal number of fragments, this strategy will

be combinatorially prohibitive.

The crux of the problem is in determining the relative amounts of the time and cost resources that

should be allocated to each subquery. We offer two algorithms that determine how to do this. Although

they cannot be shown to be optimal, we believe in practice they will demonstrate good results. A detailed

evaluation and comparison against more complex algorithms is planned to test this hypothesis.

The first algorithm is agreedyone. It produces a trial solution in which the total delay is the small-

est possible, and then makes the greediest substitution until there are no more profitable ones to make.

Thus a series of solutions are proposed with steadily increasing delay values for each processing step. On

any iteration of the algorithm, the proposed solution contains a collection of bids with a certain delay for

each processing step. For every collection of bids with greater delay acost gradient is computed. This

cost gradient is the cost decrease that would result for the processing step by replacing the collection in

the solution by the collection being considered, divided by the time increase that would result from the

substitution.

Begin by considering the bid collection with the smallest delay for each processing step. Compute

the cost gradient for each unused collection. A trial solution with total costC and total costD is gener-

ated. Now, consider the processing step with the unused collection with the maximum cost gradient. If

this collection replaces the current one used in the processing step, then cost will becomeC′ and delayD′.
If the resultingdifferenceis greater atD′ than atD, then make the bid substitution. Recalculate all the

cost gradients for the processing step involved in the substitution, and continue making substitutions until

there are none which increase thedifference.

The second algorithm takes the budget of the entire query and the structure of the query plan to pro-

duce asubbudget for each subquery. The subbudget for a subqueryq is a scaled down version of the

budget function for the entire query:Bq(t) = Cq × B(t/Dq) whereCq andDq represent the fraction of the

cost and time resources allocated to the subquery.

After bids have been received, a set of viable collections of bids is produced for each processing

stage as described above. The various processing stages are then considered independently from each

other. For every collection of bids, we compute thedifferenceof each bid from the subbudget function

for its subquery, and then add these values together to obtain adifferencevalue for the collection. The

collection with the greatestdifferencevalue is chosen for each processing stage, even if it happens to be

negative. It is possible that the entire query can be solved within budget even if a certain processing stage

cannot.

The values ofCq andDq are produced as follows. Each subquery comes from the optimizer anno-

tated with an estimate of total resourceR needed to compute that subquery. All subqueries in a process-

ing stage are allocated the same fraction of the total time, proportion to the maximum value ofR for that

stage. Every subquery is initially allocated a fraction of the total cost in proportion with its value ofR.
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However, since some subqueries are allocated more time than they need (because they run in parallel with

slower subqueries), the fraction of the cost allotted to them can be scaled down accordingly.

The budgeting algorithms select a set of bids with total costC * and total delayD *. If the resulting

solution is feasible, i.e.,C * < B(D*) then the broker accepts the winning bids, and they becomecon-

tracts, which the bidder must honor. If (C*, D*) is not feasible, then the broker has failed to find an

acceptable solution, and a message should be sent to the user rejecting the query.

Every contract has apenalty clause,which the contractor must abide by in case, he does not deliver

the result of the subquery within the time allotted. The exact form of this penalty is not important in the

model.

3.2. The Cheap Bidding Protocol

The expensive bidding process is fundamentally a two-phase protocol. In the first phase, the broker

sends out a request for bids, to which processing sites respond. During the second phase, the broker noti-

fies processing sites whether they won or lost the bid. This protocol therefore requires many (expensive)

messages. Most queries will not be computationally demanding enough to justify this level of overhead.

Hence, there is a need for a cheaper alternative, which should be used the vast majority of the time.

Thecheapbidding protocol simply sends each subquery to one processing site. This site would be

the one thought most likely to win the bidding process, assuming there were one. This site simply

receives the query and processes it, returning the answer with abill for services. If the site refuses the

subquery, it can either return it to the broker or pass it on to a third processing site. Using the cheap pro-

tocol, there is some danger of failing to solve the query within the allotted budget. As will be seen in the

next section, the broker does not always know the cost and delay that the chosen processing site will bill

him for. Howev er, this is the risk which must be taken to get a cheaper protocol.

In the next section we turn to policy mechanisms that will help to make either of the two protocols

as efficient as possible.

3.3. Finding Likely Bidders

Using either the expensive or the cheap protocol from the previous section, a broker must be able to

effectively identify one (or more) sites who are likely to want to process a subquery. In this section we

indicate several mechanisms whereby a broker can obtain the needed information. Our mechanisms can

use several popular information dissemination algorithms, including:yellow pages, posted prices, adver-

tisements, coupons, andbulk purchase contracts. The increasing levels of restriction for the algorithms

is shown in Table 1.

The first mechanism is similar to the concept of the phone companyyellow pages. Specifically, a

server can advertise that it offers a specific service using this mechanism. The yellow pages can be imple-

mented as a broadcast facility by which a server alerts all brokers of the capability or it can be a single
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Describe Specifies Has an Limits

Service Price Expiration Quantity or Use

yellow pages X

posted prices X X

advertisements X X X

coupons & bulk X X X  X

Table 1. Likely Bidder Dissemination Algorithms.

data base that is queried by brokers as needed. Using this mechanism, a server advertises the fact that it

desires transactions which reference a specific fragment. The date of the advertisement helps a broker

decide how timely the yellow pages entry is, and therefore how much faith to put in the resulting informa-

tion. The server specific field(s) allows a server to add any other items of information it deems appropri-

ate. We will see a use for this field in the name service discussion in the next section. A server can issue

a new yellow pages advertisement at any time without explicitly revoking a previous one. In keeping with

the characteristics of current yellow page advertisements, no prices are allowed. A server advertises in

the yellow pages style by promulgating the following data structure:

(class-name, server-identifier, date, server-specific field(s))

We now turn to a second facility, which supports postingcurrent prices. Here, a server is allowed

to post the prices on specific kinds of transactions. This is analogous to a supermarket which posts the

prices of specific goods in its window. This construct requires the notion of aquery template, which is a

query with parameters left unspecified, for example:

SELECT param-1

FROM EMP

WHERE NAME = param-2

A server can post the current price by specifying the data structure:

(query-template, server-identifier, price, delay, server-specific-field(s))

This alerts brokers that the indicated server currently processes queries which fits the template for the

indicated price with the specified delay. Of course, the server does not need to guarantee that these terms

will be in effect when a broker later tries to make use of the server. In effect, these are current prices and

can be changed with no advance notice.
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A third mechanism is anadvertisement,which is the following data structure:

(query-template, server-identifier, price, delay, expiration-date, server-specific-field(s))

An advertisement is the same construct as a current price, differing only by the fact that the server must

guarantee the terms until a specified expiration-date. Hence, the server is specifying the current prices

and additionally guaranteeing not to raise them until a specified time. Obviously, a server takes some risk

when it places an advertisement because substantial demand may be forthcoming as a result of the adver-

tisement, which the server will be unable to meet. If so, it will be overwhelmed and be forced to pay

heavy penalties. There is no way to lower demand by raising prices until the expiration-date of the adver-

tisement has passed.

A fourth notion is a somewhat safer alternative and makes use ofcoupons. These are advertise-

ments to process a query matching a template for a specific price until an expiration date. However, they

have two characteristics not shared by advertisements. First, the coupon can place a limit on the number

of queries that can be accommodated at the given price and delay. This is analogous to a grocery store

coupon which says “limit one per customer.” The second characteristic is that coupons can limit the bro-

kers to which they apply. This is analogous to the coupons issued by the Nevada gambling establish-

ments, which require the client to be over 21 and possess a valid California driver’s license. Conse-

quently, a coupon is an advertisement with the extra fields:

(quantity, broker-list)

The quantity field indicates the number of queries that can be run prior to the expiration-date by a cus-

tomer before the coupon becomes invalid. The broker-list field indicates who can make use of the coupon.

Coupons can be used to advertise an attractive price without subjecting a processing site to the danger of

being swamped. However, coupons also have the property that they expire at a specific expiration-date,

and therefore cannot be used as the basis for a long term relationship between a broker and a processing

site.

A variation of coupons is a mechanism which supports long term relationships is the notion ofbulk

purchase contracts.These can be considered as special coupons where the processing site sets up a con-

tract with a broker to provide a specific quantity of queries to be processed within a specific interval of

time. At contract expiration, the broker receives another coupon for the same quantity of queries good for

an interval of time of the same length. Theseperiodic coupons continue until a specified termination

date. In this way, the broker can process a specific sized workload during each time interval. This is anal-

ogous to a travel agent which books 10 seats on each sailing of a cruise ship. The broker presumably

receives a good price, in exchange for using the server in bulk. We allow bulk purchases to optionally be

guaranteed, in which case the broker must pay for the specified queries whether it uses them or not.

Bulk purchases are especially advantageous in transaction processing environments, where the workload

is predictable, and a broker requires a way to solve large numbers of quite similar queries.
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Another variation on the coupon-based bulk purchase contracts is load-based bulk contracts. A bro-

ker buys the right to have a specific number of queries outstanding at any one time for a given interval of

time. The notion is that transaction processing environments tend to have a steady load, so a broker can

purchase the right to keep a given load on a server.

A broker will decide potential bidders by using some or all of the above mechanisms. In addition,

we also expect a broker to remember sites who have bid successfully for previous queries. Presumably

the broker will include such sites in the bidding process, thereby generating a system which learns over

time what processing sites are appropriate to which queries. Lastly, the broker also knows the likely loca-

tion of each fragment, which was returned previously to the query preparation module by the name server.

The site most likely to have the data is automatically a likely bidder.

3.4. Storage Management

Each site manages a certain amount of storage, which it can fill with fragments or copies of frag-

ments. The basic objective of a site is to allocate its CPU, I/O and storage resource so as to maximize its

revenue income per unit time.

In order for sites to trade fragments, they hav e to have some means of calculating the (expected)

value of the fragment for each site. Consequently, some access history is kept with each fragment so sites

may evaluate the past activity of the fragment, and use this information to predict future fragment activity.

The access history is useful to foreign sites if and only if the units quantifying past activity are common

across all machines in the system.

For each fragment which the site stores, it maintains thesizeof the fragment plus itsre venue his-

tory:

(query, qualifying-records, time-since-last-query, revenue, delay, I/O-used, CPU-used)

Here, the first field is the actual query which was processed, while the second is the number of records

which qualified. Field three is the relative time since the previous query in the revenue history and the

fourth field encodes the revenue collected. Actual response time is captured in the fifth field while the

sixth and seventh are normalized versions of the CPU and I/O resources used, expressed in site-

independent units.

To estimate the revenue that a site would receive if it owned a particular fragment, the site must

assume that accesses are stable and that the revenue history is therefore a good predictor of future rev-

enue. Moreover, it must convert site-independent resource usage numbers into ones specific to its site

through a weighting function, as in [LOHM86]. In addition, it must assume that it would have success-

fully bid on the same set of queries as appeared in the revenue history. Since it will be faster or slower

than the site from which the revenue history was collected, it must adjust the revenue collected for each

query. This calculation requires the site to assume a shape for the average bid curve. Lastly, it must con-

vert the adjusted revenue stream into a cash value, by computing the net present value of the stream.
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If a site wants to bid on a subquery, then it mustbuy any fragment(s) referenced by the subquery.

To purchase a fragment, a buyer locates the owner of the fragment and requests the revenue history of the

fragment, and then places a value on the fragment. Moreover, if it buys the fragment, then it will have to

evict a collection of fragments to free up space, adding to the size of the fragment to be purchased. To the

extent that storage is not full, then lesser (or no) evictions will be required. In any case, this collection is

called the alternate fragments in the formula below.

Hence, the buyer will be willing to bid the following price for the fragment:

offer price= value of fragment− value of alternate fragments+ price received

In this calculation, the buyer will obtain the value of the new fragment but lose the value of the fragments

which it must evict. Moreover, it willsell the evicted fragments, and receive some price for them.

The first two items are easy to compute, while the third one is problematic. A plausible assumption

is that the buying site can sell the alternate fragments for a price equal to their value to the selling site. If

so, the price to bid will be:

offer price= value of fragment

However, it is not always prudent to make this assumption, and a more conservative assumption would be

to assume that the price obtained for the alternate fragments is zero. In this case, the offer price would be:

offer price= value of fragment− value of alternate fragments

Notice that the offer price need not be positive.

The potential seller of the fragment performs the following calculation. If it sells the fragment for

the offer price, then it receives this value. In addition, it will avoid having to evict a collection of alternate

fragments summing in size to the indicated fragment. Hence, it will be willing to sell if:

offer price> value of fragment− value of alternate fragments+ price received

Again, price received is problematic, and subject to the same plausible assumptions noted above.

In any case, if the inequality is true, then the seller will transfer the fragment to the buyer, who

assumes ownership of the fragment. If the inequality is not true, then the buyer might be willing to make

acopyof the fragment, with ownership remaining with the seller.

If a copy is made, then several economic considerations must take place. First, the buyer only has

access to the revenue stream for the owner of the fragment. This will have all the write transactions, but

only a fraction of the read operations. If there areN − 1 secondary copies, then each of them will have

processed some share of the read operations, and this revenue history is only accessible to the buyer if it

finds all N − 1 secondary copies and obtains their revenue history, an expensive operation indeed. In any

case, if the buyer is contemplating adding theNth secondary copy, then it could plausibly assume that the

owner currently has1
N

th of the read operations. If it makes a copy, it could plausibly assume it will get
1

N + 1
of each of the revenue streams. Based on these two factors the buyer will compute a
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copy offer price.

Second, all update transactions must be directed to the owner of the fragment. Hence, the secondary

copies will have to perform updates to their copies but will receive no rev enue for their effort. This will

impact the price the buyer is willing to pay for a copy because every update will consume extra network

overhead. If copies are kept transactionally consistent, then a two-phase commit is required and extra

messages are incurred. Even if the copy is kept up to date on a “best effort” basis, then extra messages

are required to propagate the changes. Hence, the network manager must be compensated.

Lastly, the buyer must pay a “tax” to the owner to compensate him for the extra trouble of propagat-

ing updates onward. Hence, the seller will allow the buyer to make a copy if:

copy offer price> update tax+ network tax

If this inequality is true, then the buyer will make a copy of the seller’s fragment, thereby increasing the

number of secondary copies fromN − 1 to N. The selling site can calculate the update tax by examining

the revenue history. Moreover, the selling site can estimate the network tax by knowing the revenue his-

tory and the copy consistency algorithm.

A buyer can undertake the above methodology for a fragment at any time. it need not have a query

in hand which requires the fragment. Hence, the buyer can “prefetch” fragments which it expects will be

profitable in the future.

A possible improvement is to lease copies instead of selling them to the sites, as outlined in

[FERG93]. The initial lease price is established along the same lines as a fixed offer price. The difference

is that the lease is only valid for a particular period of time, the lease period, after which the lease contract

has to be renewed. The primary site charges a lease renewal price to all sites holding copies; this renewal

price can take, among other things, current system and network load into account. If, for instance, the load

at the primary site suddenly increases, the renewal price will also increase, making it unprofitable for

some sites to hold a copy. Thus, a fragment lease strategy allows a better dynamic adaptation of the

degree of replication to the execution environment.

A site can also unilaterally decide to sell a fragment at any time. An extreme case occurs when the

site wishes to “go out of business” and get rid of all its fragments. A site can decide that its storage is

over-full according to its local rules that define policy and it needs room for importing other fragments at

a later time. In this case, the site tries toevict the lowest value fragment. If the fragment is a copy of

another fragment, then it simply deletes the fragment. Otherwise, it must try tosell it to another site.

To sell a fragment, the site conducts a bidding process, essentially identical to the one used for sub-

queries above. Specifically, it sends the revenue history to a collection ofpotential bidders and asks

them what they will offer for the fragment.

Each site examines the revenue history and decides how much to bid. Moreover, bids may be neg-

ative. The seller considers the highest bid and willacceptthe bid if:
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offered price> value of fragment− value of alternate fragments+ received price

Here, the site will receive the offered price and will lose the value of the fragment which is being evicted.

However, if the fragment is not evicted, then a collection of alternate fragments summing in size to the

indicated fragment must be evicted. In this case, the site will lose the value of these (more desirable)

fragments, but will receive the expected received price. If the above inequality is true, then the seller will

proceed with the sale to the buyer.

If no bid is acceptable, then the seller must try to evict another (higher value) fragment until one is

found that can be sold. If no fragments are sellable, then the site must lower the value of its fragments

until a sale can be made. In fact, if a site wishes to go out of business, then it must find a site to accept its

fragments, and must lower their internal value until a buyer can be found for all of them.

3.5. Setting The Bid Price For Subqueries

When a site receives a subquery and is asked to bid, it must respond with a triple (C, D, E) as noted

in an earlier section. Each site maintains abilling rate for each fragment, which is the revenue per unit of

resources expended which it expects to charge to perform a query. To quote a price for a query, the site

simply multiplies its billing rate by the expected resources which will be required to perform the query.

However, this bid must be adjusted for two factors, which we now consider.

Each site also maintains for each fragment the revenue collected per unit time. We will call this the

collection rate for the fragment. Furthermore, it maintains a history of the collection rate, and can calcu-

late thederivative of the collection rate. If the derivative is positive then the site should raise its billing

rate, while if the derivative is neg ative it should lower its rate. Specifically, it should perform the follow-

ing calculation:

new billing rate= old billing rate× (1 + W2 × derivative)

Here,W2 is a weighting factor which indicates how heavily to weight the change in recent business.

The second consideration is the current load at the site. If the site is over-busy, then it should raise

prices; it is is underutilized it should drop its prices. Hence, it should adjust its billing rate for its current

load in the following way. Assume that the site keeps track of its current load in some units which it

understands and then normalizes the data item so that it ranges between 0 and 1, with 0 indicating idle-

ness and 1 indicating full utilization. Denote this quantity as the current siteload. The site should adjust

its bidding rate as follows:

actual billing rate= billing rate × (W3 × load)

Again,W3 is a weighting factor indicating how seriously to take current load in the current bid.

With these adjustments, the site can bid on any query, referencing data it possesses. If the site does

not possess all referenced fragments, then it must buy missing ones, and should only bid if it wishes to

acquire the missing fragments using the process of the previous section.
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To calculate the delay it will promise that it can make an estimate for the resources required to pro-

cess the query. Under zero load, it can then estimate the elapsed time to perform the query. After adjust-

ing for the current load, it can estimate an expected delay. The numberD included in the bid can either

be this expected delay or it can be the expected delay times a safety factor.

The expiration date on a bid should be assigned by a site after considering how much risk it is will-

ing to take. An expiration date a long way in the future can be chosen, but the processing site incurs the

risk that prices will rise in the interim, and it will be stuck honoring out of date prices. On the other hand,

a too early expiration date runs the risk that the broker will not be able to use the bid because of inherent

delays in the processing engine.

Since a site keeps its fragments in value order, it should consider declining to bid on queries refer-

encing low value fragments. In this case, the query will have to be processed elsewhere, and another site

will have to copy or buy the indicated fragment in order to solve the user query. Hence, this tactic will

hasten the sale of low value fragments to somebody else.

Lastly, the site can refuse to process queries for a fragment and can refuse to sell the fragment. In

this case, unless a second site is willing to make a copy of the fragment, then “livelock” will result for the

fragment. In a system with total local autonomy, there is no way to prevent such an occurrence.

3.6. Spheres of Influence

So far, we hav e assumed that all sites are in the same “administrative moat,” i.e., that each site par-

ticipating in the economy uses the same currency. Most distributed systems do not obey this homogeneity

assumption, and we must extend our economic model to deal with this reality.

As a result, we assume that each site has a collection of other sites,S, which form itssphere of

influence. A sphere of influence exists for each site, and these sets of sites may be overlapping. We

assume that each site executes the calculations in the above sections and considers the queries from sites

in its sphere of influence at face value and applies a discount rate to queries from all other sites. This dis-

count rate can range from 0, in which case all queries are considered equally, to 1, in which case the site

considers that it receives no value for performing queries from other sites. The discount rate acts as atar-

iff on trades between different spheres. We allow non-symmetric tariffs to be defined. Depending on the

discount rate, queries are accepted based on their calculated bid price as described earlier.

4. SPLITTING AND COALESCING FRAGMENTS

Mariposa sites must decide when to split and coalesce fragments. Clearly, if there are too few frag-

ments in a class, then parallel execution of Mariposa queries will be hindered. On the other hand, if there

are too many fragments, then the overhead of dealing with all the fragments will increase and response

time will suffer, as noted in [COPE88]. The algorithms for splitting and coalescing fragments must strike

the correct balance between these two effects.
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One strategy is to simply let market economics determine the sizes of fragments. Consider a frag-

ment,F , which has high revenue. A second site would naturally want to make a copy ofF and thereby

divert some of the revenue. Facing this revenue loss, the first site might preemptively split the fragment

into two pieces, selling one to another site In this way, the remaining smaller fragment becomes less

attractive for copying.

On the other hand, if a fragment is too small, then the overhead of processing queries will be high,

and economies of scale would result by coalescing it with another fragment in the same class. Hence,

there are market pressures in Mariposa which will tend to correct for inappropriate fragment sizes.

If a more direct intervention is required, then Mariposa might resort to the following tactic. Con-

sider the execution of queries referencing only a single class. The broker can make use of the metadata

returned from the name server to note the current number of fragments in the class,NUMC. Moreover, if

the broker assumes that all fragments are of equal size, then it can guess the expected delay,ED, which

will result from the solution of theNUMC subqueries which will be run. Furthermore, the broker can use

the budget function to compute the amount of the expected feasible bid per site, which is:

expected feasible site bid=
B(ED)

NUMC

In other words, if the query is feasible, then this is the amount of revenue which can realistically be given

to each site. Now the broker can repeat the above collection of calculations for the class being decom-

posed into any particular number,NUM, of fragments. Lastly, it can calculate the number of fragments,

NUM *, which maximizes the expected revenue per site.

This value,NUM *, can be published by the broker along with its request for bids. If a site has a

fragment which is too large (or too small), then in steady state it will be able to obtain a larger revenue per

query if it splits (coalesces) the fragment. Hence, if a site keeps track of the average value ofNUM * for

each class for which it stores a fragment, then it can decide whether its fragments should be split or coa-

lesced.

Of course, a site must honor any outstanding contracts that it has previously made. If it discards or

splits a fragment for which there is an outstanding contract, then the site must endure the consequences of

its actions. This entails either subcontracting to some other site a portion of the previously committed

work or buying back the missing data. In either case, there are revenue consequences, and a site should

take its outstanding contracts into account when it make fragment allocation decisions. Moreover, a site

should carefully consider the desirable expiration time for contracts. Shorter times will allow the site

greater flexibility in allocation decisions.

5. NAMES AND NAME SERVICE

Naming is an important component of distributed database and file systems. Current distributed sys-

tems use a rigid naming approach, assume that all changes are globally synchronized, and often have a

structure that limits the scalability of the system. Mariposa goals of mobile fragments and avoidance of
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global synchronization require that a more flexible naming service be used. We dev elop a decentralized

naming facility that does not depend on a centralized authority for name registration or binding.

5.1. Names

Three types of names are used in Mariposa. First,internal names are the location-dependent

names that are used to physically locate the fragment. Because these are low-level names that are defined

by the implementation, no more description will be given in this section. Next,full names are the com-

pletely specified names that uniquely identify an object. A full name can be tied to any object regardless

of location. Full names are not user specific and are location transparent so that when a fragment moves,

the name does not have to converted. A full name can be used equally well from anywhere; this allows a

query to move to a different site but still request the same object.

In contrast,common namesare names that are sensible to a user. Using them avoids the tedium of

using a full name. Simple rules permit the translation of common names into full names by supplying the

missing name components. The binding operation gathers the missing parts from either parameters

directly supplied by the user or from something in the user’s environment. There exists an ambiguity in

common names because different users can refer to different objects using the same name. Because com-

mon names are context dependent, they may even refer to different objects at different times.

Onename spaceexists for all sites in a system. It is a single rooted tree of names. All full names

are globally unique within the name space however the policy for selecting names is locally defined. So

as not to constrain the later growth of the name space from the amalgamation of other name spaces, a

non-fixed-root name space as suggested in [LAMP86] can be used to support upwards growth beyond the

current root.

Finally, a name contextis a set of names that are affiliated. This grouping is of names that are

expected to share some feature such as they are often used together in an application (i.e., directory) or the

names construct a more complex object (i.e., class definition). A programmer can define a name context

for global use that everyone can access or a private context that is visible only to a single application. The

advantage of a name context is that names do not have to be globally registered nor are the names tied to a

physical resources to make them unique such as birth site as in [WILL81].

Like other objects, a name context can also be named. In addition, like data fragments, it can be

migrated between name servers and there can be multiple copies residing on different servers for better

load balancing and availability.

This scheme differs from another proposed decentralized name service [CHER89] that avoided a

centralized name authority by relying upon each type of server to manage their own names without rely-

ing on a dedicated name service.
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5.2. Name Resolution

A name must be resolved to discover which object is bound to the name. Every client and server

has a name cache at the site to support the local translation of common names to full names and of full

names to internal names. When a broker wants to resolve a name, it first looks in the local name cache to

see if a translation exists. If the cache does not yield a match, the broker uses a rule driven search to

locate the name among other sites. If a broker fails to resolve a name using its local cache, it must ask

one or more name servers.

In addition to the case of untranslatable names, there is a possibility of ambiguous resolutions when

resolving a common name. For example, a common name of “EMP” may in multiple name contexts that

a program is using such as “RESEARCH.EMP” and “DEVELOPMENT.EMP”. When the broker discov-

ers that there are multiple matches to the same common name, it tries to pick one according to the policy

specified in the rules. Some possible policies are “first match,” as exemplified by theUNIX shell com-

mand search (path), or a policy of “best match” that seeks to choose more intelligently. Considerable

information may exist that the broker can apply to choose the best match, such as data types, ownership,

and protection permissions.

5.3. Name Discovery

In Mariposa, a name service responds to metadata queries in the same way as data servers execute

regular queries. Consequently, the name service process uses the bidding protocol of Section 3 to interact

with a collection of potential bidders. Mariposa expects there to be some number of name servers, and

this collection may be dynamic as name servers are added to and subtracted from a Mariposa environ-

ment. The broker decides which name server to use based on economic considerations of cost and quality

of service. A name server translates a common name into a full name by using a list of possible name

contexts that the client passes. The context list can be like aUNIX path or the name server can use any

default name contexts as defined with the rule system. These name servers are expected to use the adver-

tising capabilities to find clients for their services.

Each name server must make arrangements to read the local system catalogs at each site periodically

and build a composite set of metadata. Since there is no requirement for a processing site to notify a

name server when fragments move sites or are split or coalesced, the name server metadata may be sub-

stantially out of date.

As a result, name servers are differentiated on theirquality of service regarding their price and the

correctness of their information. For example, a name server which is less than one minute out of date

generally has better quality information than one which can be up to one day out of date. We propose that

name servers use theserver-specific-fieldin the various advertising mechanisms in the previous section to

indicate the quality of their answers to queries. Quality is best measured by the maximum staleness of the

answer to any name service query. Using this information a broker can make an appropriate tradeoff

between price, delay and quality of answer among the various name services, and select the one which it

wishes to deal with.
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Quality may be based on more than the name server’s polling rate. An estimate of the real quality of

the metadata may be based on the observed rate of update. From this we predict the chance that an invali-

dating update will occur for a time period after fetching a copy of the data into the local cache. The bene-

fit is that the calculation can be made without probing the actual metadata to see if it has changed. The

quality of service is then a measurement of the metadata’s rate of update rather than the name server’s rate

of update.

6. RELATED WORK

So far there are only a few systems documented in the literature which incorporate microeconomic

approaches to deal with resource sharing problems. [HUBE88] contains a collection of articles that cover

the underlying principles and explore the behavior of those systems.

[MILL88] uses the term “Agoric Systems” for software systems deploying market mechanisms for

resource allocation among independent objects. The data-type agents proposed in that article are compara-

ble to our brokers. They mediate between consumer and supplier objects, helping to find the currently best

price and supplier for a needed service. As an extension, agents have a “reputation” and their services are

brokered by an agent-selection agent. This is analogous to the notion of a quality-of-service of name

servers, that also offer their services to brokers.

[KURO89] present a solution to the file allocation problem that makes use of microeconomic princi-

ples, but is based on a cooperative, not competitive environment. The agents in this economy exchange

fragments in order to minimize the cumulative system-wide access costs for all incoming requests. This is

achieved by having the sites voluntarily cede fragments or portions thereof to other sites if it lowers

access costs. In this model, all sites cooperate to achieve a global optimum instead of competing for

resources to selfishly maximize their own utility.

[MALO88] describes the implementation of a process migration facility for a pool of workstations

connected through a LAN. In this system, a client broadcasts a request for bids that includes a task

description. The servers willing to process that task return an estimated completion time and the client

picks the best bid. The time estimate is computed on the basis of processor speed, current system load, a

normalized runtime of the task and the number and length of files to be loaded, the latter two parameters

supplied by the task description. No prices are charged for processing services and there is no provision

for a shortcut to the bidding process by mechanisms like posting server characteristics or advertisements

of servers.

Another distributed process scheduling system is presented in [WALD92]. Here, CPU time on

remote machines is auctioned off by the processing sites and applications hand in bids for time slices.

This is is contrast to our system, where processing sites make bids for servicing requests. There are differ-

ent types of auctions and computations are aborted if their funding is depleted. An application is struc-

tured into manager and worker modules. The worker modules perform the application processing and sev-

eral of them can execute in parallel. The managers are responsible for funding their workers and divide

the available funds between them in an application-specific way. To adjust the degree of parallelism to the
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availability of idle CPUs, the manager changes the funding of individual workers.

Wellman offers a simulation of multicommodity flow in [WELL93] that is quite close to our bidding

model, but with a bid resolution model that convergies with multiple rounds of messages. His clearing-

houses violate our constraint against single points of failure; hence, Mariposa name service can be though

of as clearinghouses with only a partial list of possible suppliers. His optimality results are clearly invali-

dated by the possible exclusion of optimal bidders, suggesting the importance of high-quality name ser-

vice, to ensure that the winning bidders are usually solicited for bids.

A model similar to ours is proposed in [FERG93], where fragments can be moved and replicated

between the nodes of a network of computers, although they are not allowed to be split or coalesced.

Transactions, consisting of simple read/write requests for fragments, are given a budget when entering the

system. Accesses to fragments are purchased from the sites offering them at the desired price/quality

ratio. Sites are trying to maximize their revenue and therefore lease fragments or their copies if the access

history for that fragment suggests that this will be profitable. Unlike our model, there is no bidding pro-

cess for either service purchase or fragment lease. The relevant prices are published at every site in cata-

logs that can be updated at any time to reflect current demand and system load. The network distance to

the site offering the fragment access service is included in the price quote to give a quality-of-service indi-

cation. A major difference to our model is that every site needs to have perfect information about the

prices of fragment accesses at every other site, requiring global updates of pricing information. Also, it is

assumed that a name service is available at every site that has perfect information about all the fragments

in the network, again requiring global synchronization. The name service is provided at no cost and hence

excluded from the economy. We expect that global updates of metadata will suffer from a scalability prob-

lem, sacrificing the advantages of the decentralized nature of microeconomic decisions.

7. CONCLUSIONS

We present a distributed microeconomic approach to deal with query execution and storage manage-

ment. The difficulty in scheduling distributed actions in a large system stems from the combinatorially

large number of possible choices for each action, expense of global synchronization, and requirement for

supporting heterogeneous systems. Complexity is further increased by the presence of a dynamically

changing environment, including time varying load levels for each site and the possibility of sites entering

and leaving the system.

The economic model is a well studied model that can reduce scheduling complexity of distributed

interactions by not seeking perfect globally optimal solutions. Instead, the forces of the market provide

an “invisible hand” to guiding reasonably equitable trading of resources.

Mariposa’s economic model differs from the strict assumptions of the classic Walras model, and

does so in ways that cannot guarantee pareto optimality (i.e., imperfect name service may exclude some

possible contenders from bidding on a plan). Instead of seeking such optimality, we are attempting to

model the Mariposa market to incent the selection of reasonably good solutions without incurring high
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overhead. In cases where our baseline model fails to incent the correct behavior, we are studying ways of

applying external economic pressures (i.e., “taxing” certain behaviors) to adjust this model as needed.

At the present time the query preparation module is nearly complete and the Mariposa rule engine is

beginning to work. We are now focused on implementing the low lev el support code, the complete broker

and the site manager, and expect to have a functioning initial system by the end of 1994.
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