
Chapter 2

AN INTRODUCTION TO THE OWL WEB

ONTOLOGY LANGUAGE

Jeff Heflin
Lehigh University

Abstract:

Key words:

1. INTRODUCTION

The OWL Web Ontology Language is an international standard for

encoding and exchanging ontologies and is designed to support the Semantic

Web. The concept of the Semantic Web is that information should be given

explicit meaning, so that machines can process it more intelligently. Instead

of just creating standard terms for concepts as is done in XML, the Semantic

Web also allows users to provide formal definitions for the standard terms

they create. Machines can then use inference algorithms to reason about the

terms. For example, a semantic web search engine may conclude that a

particular CD-read/write drive matches a query for “Storage Devices under

$100.” Furthermore, if two different sets of terms are in turn defined using a

third set of common terms, then it is possible to automatically perform

(partial) translations between them. It is envisioned that the Semantic Web

will enable more intelligent search, electronic personal assistants, more

efficient e-commerce, and coordination of heterogeneous embedded systems.

A crucial component to the Semantic Web is the definition and use of

ontologies. For over a decade, artificial intelligence researchers have studied

the use of ontologies for sharing and reusing knowledge (Gruber 1993,

Guarino 1998, Noy and Hafner 1997). Although there is some disagreement

2 Chapter 2

as to what comprises an ontology, most ontologies include a taxonomy of

terms (e.g., stating that a Car is a Vehicle), and many ontology languages

allow additional definitions using some type of logic. Guarino (1998) has

defined an ontology as “a logical theory that accounts for the intended

meaning of a formal vocabulary.” A common feature in ontology languages

is the ability to extend preexisting ontologies. Thus, users can customize

ontologies to include domain specific information while retaining the

interoperability benefits of sharing terminology where possible.

OWL is an ontology language for the Web. It became a World Wide Web

Consortium (W3C) Recommendation1 in February 2004. As such, it was

designed to be compatible with the eXtensible Markup Language (XML) as

well as other W3C standards. In particular, OWL extends the Resource

Description Framework (RDF) and RDF Schema, two early Semantic Web

standards endorsed by the W3C. Syntactically, an OWL ontology is a valid

RDF document and as such also a well-formed XML document. This allows

OWL to be processed by the wide range of XML and RDF tools already

available.

Semantically, OWL is based on description logics (Baader et al. 2002).

Generally, description logics are a family of logics that are decidable

fragments of first-order predicate logic. These logics focus on describing

classes and roles, and have a set-theoretic semantics. Different description

logics include different subsets of logical operators. Two of OWL’s

sublanguages closely correspond to known description logics: OWL Lite

corresponds to the description logic SHIF(D) and OWL DL corresponds to

the description logic SHOIN(D) (Horrocks and Patel-Schneider 2003). For a

brief discussion of the differences between the different OWL sublanguages,

see Section 3.4.

In this chapter, I will provide an introduction to OWL. Due to limited

space, this will not be a full tutorial on the use of the language. My aim is to

describe OWL at a sufficient level of detail so that the reader can see the

potential of the language and know enough to start using it without being

dangerous. The reader is urged to look at the OWL specifications for any

details not mentioned here. In particular, the OWL Guide (Smith et al. 2004)

is a very good, comprehensive tutorial. The book A Semantic Web Primer

(Antoniou and van Harmelen 2004) also provides a readable introduction to

XML, RDF and OWL in one volume.

The rest of this chapter is organized as follows. The second section

discusses enough RDF and RDF Schema to provide context for

understanding OWL. Section 3 discusses the basics of OWL with respect to

classes, properties, and instances. Section 4 introduces more advanced OWL

1 Recommendation is the highest level of endorsement by the W3C. Other W3C

Recommendations include HTML 4.0 and XML.

2. An Introduction to the OWL Web Ontology Language 3

concepts such as boolean combinations of classes and property restrictions.

Section 5 focuses on the interrelationship of OWL documents, particularly

with respect to importing and versioning. Section 6 provides a gentle

warning about how OWL’s semantics can sometimes be unintuitive. Section

7 concludes.

2. RDF AND RDF SCHEMA

RDF is closely related to semantic networks. Like semantic networks, it

is a graph-based data model with labeled nodes and directed, labeled edges.

This is a very flexible model for representing data. The fundamental unit of

RDF is the statement, which corresponds to an edge in the graph.

An RDF statement has three components: a subject, a predicate, and an

object. The subject is the source of the edge and must be a resource. In

RDF, a resource can be anything that is uniquely identifiable via a Uniform

Resource Identifier (URI). More often than not, this identifier is a Uniform

Resource Locator (URL), which is a special case of URI. However, URIs are

more general than URLs. In particular, there is no requirement that a URI

can be used to locate a document on the Internet. The object of a statement

is the target of the edge. Like the subject, it can be a resource identified by a

URI, but it can alternatively be a literal value like a string or a number. The

predicate of a statement determines what kind of relationship holds between

the subject and the object. It too is identified by a URI.

Figure 2-1. An example RDF graph.

Figure 2-1 shows an example graph with three statements. One statement

has subject http://example.org/~jdoe#jane, predicate p:knows and object

Jane Doe

http://example.org/~jdoe#jane

http://example.org/~jsmith#john

http://example.org/pers-schema#Person

rdf:type

p:knows p:name

4 Chapter 2

http://example.org/~jsmith#john. In other words, this statement represents

that “Jane knows John.” The statement with predicate p:name is an example

of a statement that has a literal value (i.e., “Jane Doe”) as its object. This

statement indicates that Jane’s name is “Jane Doe.” Note, p:knows and

p:name are examples of qualified names, which will be explained in the next

subsection. The third statement declares Jane to be a Person.

2.1 XML Serialization Syntax for RDF

In order to exchange RDF graphs, the W3C recommendation defines an

XML syntax for them. Before we can discuss the syntax, it is important to

introduce some basic XML terminology. XML is a markup language, and as

such uses tags to provide additional information about text. Tags are

indicated by angle brackets, such as the <p>, and <a> tags in the

HyperText Markup Language (HTML). The main syntactic unit in XML is

the element, which typically consists of a start tag (such as <p>), an end tag

(such as </p>) and some content enclosed between the tags. The content may

be either text or more elements. If it contains other elements then these are

called subelements. Every well-formed XML document has exactly one

outermost element which is called the root element. Some elements may

have no content; such empty elements can be written with a single tag that

has a slash before the closing angle bracket (e.g. <hr />). Elements can have

attributes which are name-value pairs. The attributes are listed inside of the

element’s start tag.

The XML shown in Figure 2-2 is a serialization of the RDF graph in

Figure 2-1. The first thing to notice is that the root element is rdf:RDF; all

RDF documents usually have such a root element. The use of a colon in an

element or attribute name indicates that it is a qualified name. Qualified

names are used with XML namespaces to provide shorthand references for

URIs. The xmlns:rdf attribute on the second line of the figure specifies that

the “rdf” prefix is used as an abbreviation for the namespace

“http://www.w3.org/1999/02/22-rdf-syntax-ns#”. The xmlns:p attribute

defines p as another prefix that can be used to form qualified names.

Qualified names have the form prefix:local_name. To construct the full URI

for a qualified name, simply append the local name part to the namespace

that corresponds to the prefix.

2. An Introduction to the OWL Web Ontology Language 5

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:p="http://example.org/pers-schema#">

 <rdf:Description rdf:about="http://example.org/~jdoe#jane">

 <p:knows rdf:resource="http://example.org/~jsmith#john" />

 <p:name>Jane Doe</p:name>

 <rdf:type

 rdf:resource=”http://example.org/pers-schema#Person”/>

 </rdf:Description>

</rdf:RDF>

Figure 2-2. RDF/XML syntax for the RDF graph in Figure 2-1

The rdf:RDF element contains an rdf:Description subelement that is used

to identify a resource and to describe some of its properties. Every

rdf:Description element encodes one or more RDF statements. In the figure,

the subject of each of the statements is the resource given by the “rdf:about”

attribute, which has the URI “http://example.org/~jdoe#jane” as its value.

This rdf:Description element has three property subelements, and thus

encodes three statements. The first subelement is an empty element with the

qualified name p:knows; based on the namespace declaration at the

beginning of the document, this refers to the resource

“http://example.org/pers-schema#knows”. This is the predicate of the

statement. Any resource that is used as a predicate is called a property. The

rdf:resource attribute is used to specify that

“http://example.org/~jsmith#john” is the object of the statement. In this case

the object is a full URI, but it could also be a relative URI.

As we said earlier, it is also possible for statements to have literals as

objects. The second subelement of the rdf:Description encodes such a

statement. Note that this element has textual content. The corresponding

statement has predicate “http://example.org/pers-schema#name” and object

“Jane Doe.” By wrapping this text in <p:name> start and end tags, we

indicate that it is a literal.

The final subelement of the rdf:Description is rdf:type. Using the

namespace declaration at the beginning of the document, we can determine

that this refers to the predicate http://www.w3.org/1999/02/22-rdf-syntax-

ns#type. This is a property defined in RDF that allows one to categorize

resources. The rdf:resource attribute is used to specify the category; in this

case “http://example.org/pers-schema#Person”. In RDF, types are optional

and there is no limit to the number of types that a resource may have.

In Figure 2-2, we used a full URI as the value for the rdf:about attribute

in the rdf:Description element. Alternatively, we could have specified a

relative URI such as “#jane”. Such a reference would be resolved to a full

URI by prepending the base URI for the document, which by default is the

6 Chapter 2

URL used to retrieve it. Thus, if this document was retrieved from

“http://example.org/~jdoe”, then rdf:about=“http://example.org/~jdoe#jane”

and rdf:about=“#jane” would be equivalent. However, many web servers

may allow you to retrieve the same document using different URLs: for

example, “http://example.org/~jdoe” and “http://example.org/home/jdoe”

may both resolve to the document in the figure. If this is the case, then the

relative URI will resolve to a different full URI depending on how the

document was accessed! In order to prevent this, use an xml:base attribute in

the rdf:RDF tag. The value of this tag will be used as the base URI for

resolving all relative references, regardless of where the document was

retrieved from.

RDF also supports an alternative syntax for identifying individuals.

Instead of rdf:about, you may use rdf:ID. The intention is that rdf:ID is used

in the primary description of the object, while rdf:about is used for

references to the object. As such, the value of rdf:ID is always a URI

fragment, as opposed to a full URI. The full URI can be constructed by

appending the base URI, the symbol “#” and the fragment specified by the

rdf:ID attribute. From the point of view of determining what statements are

encoded by RDF XML, rdf:ID=”jane” and rdf:about=”#jane” are equivalent.

However, the rdf:ID attribute places the additional constraint that the same

fragment cannot be used in another rdf:ID within the document.

Given that the type of a resource is one of the most frequently used

properties, RDF provides an abbreviated syntax. The syntax shown in Figure

2-3 is equivalent to that in Figure 2-2 above. The key difference is that the

rdf:Description element is replaced with a p:Person element and that the

rdf:type element is missing. Generally, using any element other than

rdf:Description when describing an individual implicitly states that the

individual is of the type that corresponds to that element’s name. Note, in

this figure we also demonstrate the use of xml:base and relative rdf:about

references.

<rdf:RDF xml:base="http://example.org/~jdoe"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:p="http://example.org/pers-schema#">

 <p:Person rdf:about="#jane">

 <p:knows rdf:resource="http://example.org/~jsmith#john" />

 <p:name>Jane Doe</p:name>

 </p:Person>

</rdf:RDF>

Figure 2-3. An abbreviated syntax for rdf:type statements

When literal values are used in RDF, it is possible to assign them

datatypes. This can be done by simply adding an rdf:datatype attribute to the

2. An Introduction to the OWL Web Ontology Language 7

property element that contains the literal value. In Figure 2-4, we state that

Jane’s age is 30. Furthermore, we indicate that the value 30 should be

interpreted as an “&xsd;integer”. The occurrence of “&xsd;” in this value is

an XML entity reference, and is shorthand for a complete URI. In this case,

it corresponds to the text "http://www.w3.org/2001/XMLSchema#”. This

can be determined by looking at the second line of the example. Generally,

entities can be defined using “!ENTITY”, a name for the entity, and a string

that is the content of the entity. All entities must be defined in the internal

subset of the document type declaration using the “<!DOCTYPE>” syntax.

When the entity is referenced using the “&entityname;” syntax, the textual

content is substituted. Thus the rdf:datatype attribute of the p:age element

has a value of "http://www.w3.org/2001/XMLSchema#integer”. This states

that the value of the property is an integer as defined by XML Schema

(Biron and Malhotra 2004). It is common practice for RDF and OWL

documents to refer to XML Schema datatypes in this way.

<!DOCTYPE rdf:RDF [

 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>

<rdf:RDF xml:base="http://example.org/~jdoe"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:p="http://example.org/pers-schema#">

 <p:Person rdf:about="#jane">

 <p:age rdf:datatype="&xsd;integer">30</p:age>

 </p:Person>

</rdf:RDF>

Figure 2-4. Typed literals in RDF

The alert reader may wonder what the difference between entities and

namespace prefixes are. Namespace prefixes can be used to create qualified

names that abbreviate the names of elements and attributes. However,

qualified names cannot be used in attribute values. Thus, one has to resort to

the XML trick of entities in order to abbreviate these.

2.2 RDF Schema

By itself, RDF is just a data model; it does not have any significant

semantics. RDF Schema is used to define a vocabulary for use in RDF

models. In particular, it allows you to define the classes used to type

resources and to define the properties that resources can have. An important

point is that an RDF Schema document is simply a set of RDF statements.

However, RDF Schema provides a vocabulary for defining classes and

properties. In particular, it includes rdfs:Class, rdf:Property (from the RDF

namespace), rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, and

8 Chapter 2

rdfs:range. It also include properties for documentation, including rdfs:label

and rdfs:comment. One problem with RDF Schema is that it has very weak

semantic primitives. This is one of the reasons for the development of OWL.

Each of the important RDF Schema terms are either included directly in

OWL or are superceded by new OWL terms. As such, we will not discuss

RDF Schema in detail here, but instead will discuss the relevant constructors

in their appropriate context in OWL.

3. OWL BASICS

As an ontology language, OWL is primarily concerned with defining

terminology that can be used in RDF documents, i.e., classes and properties.

Most ontology languages have some mechanism for specifying a taxonomy

of the classes. In OWL, you can specify taxonomies for both classes and

properties.

2. An Introduction to the OWL Web Ontology Language 9

<!DOCTYPE rdf:RDF [

 <!ENTITY owl "http://www.w3.org/2002/07/owl#">]>

<rdf:RDF xmlns:owl ="http://www.w3.org/2002/07/owl#"

 xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<owl:Ontology rdf:about="">

 <rdfs:label>My Ontology</rdfs:label>

 <rdfs:comment>An example ontology</rdfs:comment>

</owl:Ontology>

<owl:Class rdf:ID=”Person” />

<owl:Class rdf:ID=”Man”>

 <rdfs:subClassOf rdf:resource=”#Person” />

</owl:Class>

<owl:ObjectProperty rdf:ID=”hasChild” />

<owl:ObjectProperty rdf:ID=”hasDaughter”>

 <rdfs:subPropertyOf rdf:resource=”#hasChild” />

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID=”age” />

<owl:ObjectProperty rdf:ID=”isParentOf”>

 <owl:inverseOf rdf:resource=”#isChildOf” />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=”isTallerThan”>

 <rdf:type rdf:resource=”&owl;TransitiveProperty” />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=”isFriendOf”>

 <rdf:type rdf:resource=”&owl;SymmetricProperty” />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=”hasSSN”>

 <rdf:type rdf:resource=”&owl;FunctionalProperty” />

 <rdf:type rdf:resource=”&owl;InverseFunctionalProperty” />

</owl:ObjectProperty>

</rdf:RDF>

Figure 2-5. A simple OWL ontology

As shown in Figure 2-5, the root of an OWL document is an rdf:RDF

element. This is because all OWL documents are RDF documents, providing

some degree of compatibility between the two standards. Typically, the start

tag for the rdf:RDF element will contain attributes for each of the namespace

prefixes used in the document; most ontologies will declare at least the owl,

rdf, and rdfs namespaces. The owl:Ontology element serves two purposes:

first it identifies the current document as an ontology and second it serves as

a container for metadata about the ontology. By using the empty string as the

value for the rdf:about attribute, we indicate that the base URL of the

document should be used as its URI. In this way, we effectively say that the

document is an ontology. In this example, the ontology has an rdfs:label and

an rdfs:comment, both of which are defined in RDF Schema. The rdfs:label

property provides a human-readable name for the ontology, while the

10 Chapter 2

rdfs:comment property provides a textual description of the ontology. Both

of these might be used to describe the ontology in an ontology library.

3.1 Classes

In RDF, an object of an rdf:type statement is implicitly a class, that is it

represents a set of resources. In OWL, we can explicitly declare this resource

to be a class by stating that it is of rdf:type owl:Class. Syntactically, this

amounts to using an owl:Class element. In Figure 2-5, the ontology describes

two classes: Person and Man. Note, it is standard RDF and OWL convention

to name classes with singular nouns. It is also standard for the names to start

with a capital letter and to use mixed capitals (camel case) for multi-word

names.

It is essential to realize that because the example uses rdf:ID to identify

classes, that their names are expanded to a full URI using the ontology’s

base URI. If other documents wish to refer to the same class, they must use

either the full URI or a qualified name with an appropriate namespace

declaration. The use of URIs to name classes (and properties) is an important

aspect of the Semantic Web. Human languages frequently have polysemous

terms, that is, words that have multiple meanings. For example, “bank”

could mean a financial institution, the side of a river or an aerial maneuver.

Assuming these different usages were defined in different ontologies, then

they would each have a different URI: finance:Bank, geo:Bank, air:Bank.

Thus, each of the meaning of a term would have a unique symbol. However,

this solution compounds the problem of synonymy, where in general

different symbols may be used with the same meaning. If the same class

name is used to mean the same thing in different ontologies, then technically

these classes will have different full URIs. For example, in OWL we cannot

assume that your:Person and my:Person refer to the same class. However,

once discovered, such problems can be easily resolved, since we can use

OWL axioms to explicitly relate such classes.

If we wish to specify additional information describing the class, then we

include properties from the RDFS and/or OWL vocabularies (represented by

subelements in the XML syntax). The rdfs:subClassOf property can be used

to relate a class to more general classes. For example, in the figure above, we

state that Man is a subclass of Person. A class can also be said to have

exactly the same members as another class using the owl:equivalentClass

property. This is often used for synonymous classes, particularly when the

classes originate in different ontologies, as discussed in the previous

paragraph.

2. An Introduction to the OWL Web Ontology Language 11

3.2 Properties

OWL can also define two types of properties: object properties and

datatype properties. Object properties specify relationships between pairs of

resources. Datatype properties, on the other hand, specify a relation between

a resource and a data type value; they are equivalent to the notion of

attributes in some formalisms. There are a number OWL and RDF terms that

are used to describe properties. In Figure 2-5, we declare hasChild and

hasDaughter as object properties, and we declare age as a datatype property.

While classes in RDF and OWL are typically named using an initial capital

letter, properties typically have an initial lower case letter. However, like

class names, property names use mixed capitals in complex names.

As with classes, we describe properties by including subelements. A

statement using an rdfs:subPropertyOf predicate states that every

subject/object pair using the subject property is also a valid subject/object

pair using the object property. In this way taxonomies of properties can be

established. For example, Figure 2-5 states that the hasDaughter property is a

rdfs:subPropertyOf the hasChild property. Thus we can infer that if Jack

hasDaughter Sydney then Jack hasChild Sydney is also true. The

owl:equivalentProperty states that the property extensions of the two

properties are the same. That is, every subject/object pair for one property is

a valid subject/object pair for the other. This is the property analog of

owl:equivalentClass, and is frequently used to describe synonymous

properties.

The rdfs:domain and rdfs:range properties are used to specify the domain

and range of a property. The rdfs:domain of a property specifies that the

subject of any statement using the property is a member of the class it

specifies. Similarly, the rdfs:range of a property specifies that the object of

any statement using the property is a member of the class or datatype it

specifies. Although these properties may seem straightforward, they can lead

to a number of misunderstandings and should be used carefully. See Section

6 for a discussion of some of these issues.

OWL also defines a number of constructors that specify the semantics for

properties. It defines another relationship between properties using

owl:inverseOf. For example, this can be used to say that the isParentOf

property is the owl:inverseOf of the isChildOf property. Thus, if A is the

parent of B, then B is necessarily the child of A. OWL also defines a number

of property characteristics, such as owl:TransitiveProperty,

owl:SymmetricProperty, owl:FunctionalProperty, and

owl:InverseFunctionalProperty. Note, unlike the constructors we have seen

so far, which are all properties, these are classes. That is because these four

characteristics are used by making them the rdf:type of the property (note, a

12 Chapter 2

property, like any resource, can have multiple types in RDF and OWL). The

owl:TransitiveProperty and owl:SymmetricProperty constructors specify that

the property is a transitive relation and a symmetric relation respectively.

The former can be used to describe the isTallerThan property, while the

latter can be used to describe the isFriendOf property. The

owl:FunctionalProperty constructor states that each resource uniquely

identifies its value for the property. That is, no resource can have more than

one value for the property. On the other hand, the

owl:InverseFunctionalProperty constructor states that each property value

uniquely identifies the subject of the property. For those familiar with

databases, the owl:InverseFunctionalProperty specifies a property that can be

used as a primary key for the class of object that is the domain of the

property. In Figure 2-5, hasSSN is both an owl:FunctionalProperty (because

each person has at most one Social Security Number) and an

owl:InverseFunctionalProperty (because a Social Security Number can be

used to uniquely identify U.S. citizens). Note, the figure also shows the

typical idiom for use of the properties described above: the property is

declared as an object (or datatype) property, and then rdf:type is used to

indicate additional characteristics of the property. Frequently, an XML entity

reference is used, where the entity “owl” corresponds to the text

“http://www.w3.org/2002/07/owl#”.

3.3 Instances

In addition to expressing the semantics of classes and properties, OWL

can be used to relate instances. As shown in Figure 2-6, the owl:sameAs

property is used to state that two instances are identical. This is particularly

useful in distributed settings such as the Web, where different entities may

use different identifiers to refer to the same things. For example, multiple

URLs may refer to the same person. A person may have different URLs for

their personal and work web pages, or possibly even multiple work web

pages as they change jobs over time.

<p:Person rdf:about=”http://www.cse.lehigh.edu/~heflin/ ”>

 <owl:sameAs

 rdf:resource=”http://www.cs.umd.edu/~heflin/” />

</p:Person>

Figure 2-6. Example of owl:sameAs

It is also possible to say that two instances are different individuals. The

owl:differentFrom property is used to do this. It is often the case that we

2. An Introduction to the OWL Web Ontology Language 13

want to say that a set of individuals is pairwise distinct. Figure 2-7 shows

how the owl:AllDifferent constructor can be used to identify such a set. Note

that the rdf:parseType=”Collection” syntax will be explained in Section 4.1.

<owl:AllDifferent>

 <owl:distinctMembers rdf:parseType=”Collection”>

 <p:Person rdf:about=”#Bob” />

 <p:Person rdf:about=”#Sue” />

 <p:Person rdf:about=”#Mary” />

 …

 </owl:distinctMembers>

</owl:AllDifferent>

Figure 2-7. Example of owl:AllDifferentFrom

3.4 The Sublanguages of OWL

OWL actually consists of three languages with increasing expressivity:

OWL Lite, OWL DL and OWL Full. All three of these languages allow you

to describe classes, properties, and instances, but the weaker languages have

restrictions on what can be stated or how it may be stated. OWL Lite is

intended for users with simple modeling needs. It is missing or has

weakened versions of the constructs mentioned in the next section. OWL DL

has the closest correspondence to an expressive description logic and

includes all of the features described in this chapter. Both OWL DL and

OWL Lite require that every resource either be a class, object property,

datatype property or instance2. An important consequence of this is that a

resource cannot be treated as both a class and an instance. Furthermore, the

category of each resource must be explicit in all ontologies (i.e., each

resource must have an rdf:type statement). That is, in OWL Lite and OWL

DL we cannot use a resource as a class without also describing it as such

elsewhere in the document. OWL Full has the same features as OWL DL,

but loosens the restrictions. It is possible to treat a class as an instance, and

there is no need to explicitly declare the type of each resource.

Wang et al. (2006) analyzed a sample 1275 ontologies on the Web, and

found that 924 of them were in OWL Full. However, most of these

ontologies could be automatically converted (patched) to OWL Lite or OWL

DL by adding missing type statements. After such additions, only 61 OWL

Full ontologies remained. Given that most ontologies do not need the extra

expressivity of OWL Full, we will focus on OWL DL in the rest of this

chapter.

2 Technically, there are other categories of resources as well, but we shall ignore them here

for clarity of exposition.

14 Chapter 2

4. COMPLEX OWL CLASSES

In this section, we will discuss how to further describe OWL classes

using more powerful constructs. Classes can be described by means of

Boolean combinations, by describing restrictions on their properties, or by

enumerating their members. Additionally, classes can be disjoint with other

classes.

4.1 Boolean Combinations

Using the standard set operators intersection, union, and complement, it

is possible to define Boolean combinations of classes. Each of these is

defined in OWL using a property. Generally, the property relates a class to

another class or a collection of classes. The semantics are that the class that

is the subject of the property is equivalent to the corresponding set operator

applied to a set of classes specified by the property’s object.

In Figure 2-8 we show an example of using intersection to define the

concept Father. Father is exactly the intersection of the classes Parent and

Male. In other words, anyone who is a Father is both a Parent and a Male,

and anyone who is both a Parent and a Male is a Father. Intersection is

equivalent to conjunction in classical logic. As with the simple classes

shown in the previous section, the description of the class appears as its

subelement. In this case, the owl:intersectionOf element is used. The

subelements of this class are the classes which when intersected define

Father. In general, owl:intersectionOf defines its subject class as being

exactly equivalent to the intersection of all the classes that appear in the

owl:intersectionOf element. Note, the intersected classes do not have to be

named classes, but could be complex class descriptions themselves.

<owl:Class rdf:ID=”Father”>

 <owl:intersectionOf rdf:parseType=”Collection”>

 <owl:Class rdf:about=”#Parent” />

 <owl:Class rdf:about=”#Male” />

 </owl:intersectionOf>

</owl:Class>

Figure 2-8. Example of owl:intersection

At first glance, it might appear that the OWL in Figure 2-8 is equivalent

to saying Father rdfs:subClassOf Parent and Father rdfs:subclassOf Male.

However, these two subClassOf statements only state that all fathers must be

parents and male. They cannot be used to infer that someone is a father from

only their gender and parenthood, as can be done using owl:intersectionOf.

2. An Introduction to the OWL Web Ontology Language 15

We should also point out the need for the rdf:parseType=”Collection”

attribute in the owl:intersectionOf element. This is a means of specifying

that the object of the property is a Collection. In RDF, a Collection is a

closed list. That is, not only do we know that all of the subelements are

members of the list, but we also know that there are no other members of the

list. This may seem like a pedantic issue, but it is actually critical to the

Semantic Web. Both RDF and OWL make the open-world assumption. That

is, they assume that all RDF graphs are potentially incomplete, and can be

augmented with information from other sources. However, we cannot make

this assumption when defining a class. If there might be other classes

participating in the intersection, then we would never be able to infer

members of the defined class. This would be no better than having a set of

rdfs:subClassOf statements. However, by using the Collection parse type,

this problem is avoided. Further implications of OWL’s open world

assumption, as opposed to closed world, can be found in Section 6.

Unions in OWL are expressed in the same manner as intersections, but

we use the owl:unionOf property instead of the owl:intersectionOf property.

This states that the class that is the subject of the owl:unionOf property is

exactly the union of the classes contained in the Collection. This could be

used for example to state that Person is the union of Male and Female. In

classical logic this is equivalent to disjunction.

OWL can also define a class in terms of the complement of another class.

Using owl:complementOf, we can state that the members of a class are all

things that are not members of some other class. In Figure 2-9, we show that

a Man is a Person who is in the complement of Woman. In other words, any

Persons who are not Women are Men. Unlike owl:intersectionOf and

owl:unionOf, the complement is defined over a single class. Thus, there is no

need for a rdf:parseType=”Collection” attribute.

<owl:Class rdf:ID=”Man”>

 <owl:intersectionOf rdf:parseType=”Collection”>

 <owl:Class rdf:about=”#Person”>

 <owl:Class>

 <owl:complementOf rdf:resource=”#Woman” />

 </owl:Class>

 </owl:intersectionOf>

<owl:Class>

Figure 2-9. Example of owl:complementOf

It is important to consider why it would be incorrect to simply say that

Man is the complement of Woman. That would say that anything which is

not a woman is a man, including cars, places, animals, events, etc. By

intersecting with Person, we get a sensible definition. This is an important

16 Chapter 2

idiom to remember: when using owl:complementOf, always include an

intersection with some class to provide context for the complement. When

doing so, it is important to wrap the owl:complementOf element in an

owl:Class element. Since owl:complementOf is a property that defines a

class, we must provide a class for it to define. In this case, the class is

anonymous.

Each Boolean operator takes one or more classes as operands. These

classes may be named classes, or may be complex classes formed from

descriptions. In Figure 2-9, we saw an example of combining the

owl:intersectionOf and owl:complementOf Boolean operators to describe a

class. In general, we can have an arbitrary nesting or ordering of Boolean

operators.

4.2 Property Restrictions on Classes

In addition to describing classes using Boolean operators, we can

describe classes in terms of restrictions on the property values that may

occur for instances of the class. These restrictions include

owl:allValuesFrom, owl:someValuesFrom, owl:hasValue, owl:cardinality,

owl:minCardinality, and owl:maxCardinality.

Figure 2-10 shows an example of a description using owl:allValuesFrom,

which is a form of universal quantification. In this example, we state that a

Band is a subset of the objects that only have Musicians as members. The

syntax relies on the use of an owl:Restriction element, and this pattern is

found in all other property restrictions. The owl:Restriction contains two

subelements, an owl:onProperty element and an owl:allValuesFrom element.

When owl:allValuesFrom is used in an owl:Restriction, it defines a class that

is the set of all objects such that every value for the property specified in the

owl:onProperty element is of the type specified by the class in the

owl:allValuesFrom element.

<owl:Class rdf:ID=”Band”>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource=”#hasMember” />

 <owl:allValuesFrom rdf:resource=”#Musician” />

 </owl:Restriction>

 </rdfs:subClassOf>

</owl:Class>

Figure 2-10. Example using owl:allValuesFrom

In the example, the class Band is defined as a subclass of the restriction.

An owl:Restriction always defines a class, which is typically anonymous.

2. An Introduction to the OWL Web Ontology Language 17

We must then relate this class to a class that we are trying to describe or

define. By saying that a Band is a subclass of the restriction, we state that

every member of a Band must be a Musician, but we do not say that every

group of Musicians is a band. After all, a group of musicians that gets

together weekly to play poker is not necessarily a band!

One important thing to note about owl:allValuesFrom is that it has

weaker semantics than users often assume. In particular, if an object has no

values for the property, then it satisfies the restriction. Thus, in the example

above, things that do not have any members, such as a Person Robert, can

potentially be a Band. This is another reason why the subClassOf is

important in the example.

Just as the owl:allValuesFrom specifies a universal constraint,

owl:someValuesFrom specifies an existential one. The same syntactic

pattern as above is used, with an owl:Restriction element and an

owl:onProperty element, but instead of owl:allValuesFrom,

owl:someValuesFrom is used for the second subelement. When

owl:someValuesFrom is used in an owl:Restriction, it defines a class that is

the set of all objects such that at least one value for the property specified in

the owl:onProperty element is of the type specified by the class in the

owl:someValuesFrom element. For example, one might create a restriction

with an owl:onProperty of hasMember and an owl:someValuesFrom Singer

to say that a Band is a subclass of the class of things with at least one singer.

We can also use property restrictions to give a specific value for a

property, as opposed to its class. The owl:hasValue element is used for this

purpose. For example we could create a restriction containing an

owl:onProperty with value playsInstrument and owl:hasValue with value

Guitar, in order to define a class Guitarist. Like owl:someValuesFrom,

owl:hasValue is existential: it says that at least one value of the property

must be the specified one. However, there could be duplicate values, or there

could be other values for the property as well.

The final form of property restrictions are those based on the number of

values that individuals have for specified properties. These are called

cardinality restrictions. Figure 2-11 uses an owl:minCardinality restriction to

define the class Parent. Once again, the owl:Restriction and owl:onProperty

elements are used. The owl:minCardinality element specifies the minimum

number of values that instances can have for the property. In this case, we

say that a Parent has at least one value for the hasChild property. Also of

note here is the rdf:datatype attribute in the owl:minCardinality element.

Technically, this is a required element used to correctly interpret the value

given as content for the element. However, some parsers may be more

forgiving than others. In this case, the “&xsd;nonNegativeInteger” is a type

defined by XML Schema. Recall from Section 2.1 that “&xsd;” is an entity

18 Chapter 2

reference; we assume that there is a corresponding definition to

“http://www.w3.org/2001/XMLSchema#”. Also note with this example that

we use owl:equivalentClass to relate the restriction to the class being

described. This is because the restriction specifies necessary and sufficient

conditions for being a parent: anyone who is a Parent must have at least one

child, and any one who has at least one child is a Parent.

<owl:Class rdf:ID=”Parent”>

 <owl:equivalentClass>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#hasChild" />

 <owl:minCardinality

 rdf:datatype="&xsd;nonNegativeInteger">

 1</owl:minCardinality>

 </owl:Restriction>

 </owl:equivalentClass>

</owl:Class>

Figure 2-11. Example of owl:minCardinality

The two other forms of cardinality restrictions are owl:maxCardinality

and owl:cardinality. Both have similar syntax to owl:minCardinality. With

owl:maxCardinality, we say that members of the class have at most the

specified number of values for the property. With owl:cardinality, we say

that members of the class have exactly the number of specified values for the

property. Thus, owl:cardinality is equivalent to having an

owl:minCardinality restriction and an owl:maxCardinality restriction set to

the same value.

4.3 Disjoint and Enumerated Classes

There are two other forms of complex class descriptions. One involves

describing a class in terms of a class or classes that it is disjoint with. The

other involves describing the class by listing its members.

We specify disjoint classes using the owl:disjointWith property. See

Figure 2-12 for a simple example that defines Male and Female as disjoint

classes. This means that they have no instances in common. It is important to

consider the difference between this and owl:complementOf. With the latter,

knowledge that someone is not Female allows you to infer that they are a

Male. With owl:disjointWith we cannot make the same inference.

2. An Introduction to the OWL Web Ontology Language 19

<owl:Class rdf:ID=”Male”>

 <owl:disjointWith rdf:resource=”#Female”>

</owl:Class>

Figure 2-12. Example of owl:disjointWith

The members of a class can be explicitly enumerated using the

owl:oneOf property. Figure 2-13 shows this construct being used to define

the class of primary colors: red, blue and yellow. This construct says that the

members are exactly those given: no more, no less. Due to this need to

describe the complete set of members, we use the

rdf:parseType=”Collection” syntax that we first saw with owl:intersectionOf

in Section 4.1. A subelement is given for each member. Each of these

members should be explicitly typed. In this case the class owl:Thing is used,

but more specific classes could be used as well.

<owl:Class rdf:ID=”PrimaryColor”>

 <owl:oneOf rdf:parseType=”Collection”>

 <owl:Thing rdf:about=”#Red” />

 <owl:Thing rdf:about=”#Blue” />

 <owl:Thing rdf:about=”#Yellow” />

 </owl:oneOf>

</owl:Class>

Figure 2-13. Example of owl:oneOf

5. DISTRIBUTED ONTOLOGIES

So far, we have discussed features of OWL that are typically found in

description logics. However, being a Web ontology language, OWL also

provides features for relating ontologies to each other. There are two

situations described below: importing an ontology and creating new versions

of an ontology.

5.1 Importing Ontologies

A primary goal of the Semantic Web is to describe ontologies in a way

that allows them to be reused. However, it is unlikely that an ontology

developed for one purpose will exactly meet the needs of a different

application. Instead, it is more likely that the old ontology will need to be

extended to support additional requirements. This functionality is supported

by the owl:imports statement.

20 Chapter 2

Figure 2-14 shows a fragment of a fictitious news ontology that imports

an equally fictitious person ontology. This is conveyed via the owl:imports

property used in the owl:Ontology element that serves as the header of the

document. The object of the property should be a URI that identifies another

ontology. In most cases, this should be a URL that can be used to retrieve the

imported ontology. However, if it is possible for systems to retrieve the

ontology without an explicit URL (for example, if there is a registration

service), then this is not necessary.

<owl:Ontology rdf:about="">

 <rdfs:label>News Ontology, v. 2.0</rdfs:label>

 <owl:imports

 rdf:resource="http://example.org/onts/person" />

 <owl:backwardCompatibleWith

 rdf:resource=”http://example.org/onts/news-v10” />

</owl:Ontology>

Figure 2-14. Example of importing and versioning

When an ontology imports another ontology, it effectively says that all

semantic conditions of the imported ontology hold in the importing

ontology. As a result, the imports relationship is transitive: if an ontology A

imports an ontology B, and B imports an ontology C, then A also imports C.

In the OWL specifications, the set of all imported ontologies, whether

directly or indirectly, is called the imports closure. It is important to note that

the semantics of an ontology are not changed by ontologies that import it.

Thus one can be certain of the semantics of any given ontology by simply

considering its imports closure.

Finally, we should note that importing is only a semantic convention and

that it has no impact on syntax. In particular, importing does not change the

namespaces of the document. In order to refer to classes and properties that

are defined in the imported ontology (or more generally in the imports

closure), then one must define the appropriate namespace prefixes and/or

entities. It is not unusual to see a namespace declaration, entity declaration

and an owl:imports statement for the same URI! This is an unfortunate

tradeoff that was made in order to preserve OWL’s compatibility with XML

and RDF.

5.2 Ontology Versioning

Since an ontology is essentially a component of a software system, it is

reasonable to expect that ontologies will change over time. There are many

possible reasons for change: the ontology was erroneous, the domain has

evolved, or there is a desire to represent the domain in a different way. In a

2. An Introduction to the OWL Web Ontology Language 21

centralized system, it would be simple to modify the ontology. However, in a

highly decentralized system, like the Web, changes can have far reaching

impacts on resources beyond the control of the original ontology author. For

this reason, Semantic Web ontologies should not be changed directly.

Instead, when a change needs to be made, the document should be copied

and given a new URL first. In order to connect this document to the original

version, OWL provides a number of versioning properties.

There are two kinds of versioning relationships: owl:priorVersion and

owl:backwardCompatibleWith. The former simply states that the ontology

identified by the property’s object is an earlier version of the current

ontology. The second states that the current ontology is not only a

subsequent version of the identified ontology, but that it is also backward

compatible with the prior version. By backward-compatibility we mean that

the new ontology can be used as a replacement for the old without having

unwanted consequences on applications. In particular, it means that all terms

of the old ontology are still present in the new, and that the intended

meanings of these terms are the same.

Officially, owl:priorVersion and owl:backwardCompatibleWith have no

formal semantics. Instead they are intended to inform ontology authors.

However, Heflin and Pan (2004) have proposed a semantics for distributed

ontologies that takes into accounts the interactions between backward-

compatibility and imports. It is unknown whether this proposal will have

impact on future versions of OWL.

Some programming languages, such as Java, allow for deprecation of

components. The point of deprecation is to preserve the component for

backward-compatibility, while warning users that it may be phased out in the

future. OWL can deprecate both classes and properties using the

owl:DeprecatedClass and owl:DeprecatedProperty classes. Typically, there

should be some axioms that provide a mapping from the deprecated classes

and/or properties to new classes/properties.

Finally, OWL provides two more versioning properties. The

owl:versionInfo property allows the ontology to provide a versioning string

that might be used by a version management system. OWL also has an

owl:incompatibleWith property that is the opposite of

owl:backwardCompatibleWith. It is essentially for ontology authors that

want to emphasize the point that the current ontology is not compatible with

a particular prior version.

22 Chapter 2

6. A WARNING ABOUT OWL’S SEMANTICS

The nature of OWL’s semantics is sometimes confusing to novices.

Often this results from two key principles in OWL’s design: OWL does not

make the closed world assumption and OWL does not make the unique

names assumption. The closed world assumption presumes that anything not

known to be true must be false. The unique names assumption presumes that

all individual names refer to distinct objects.

As a result of not assuming a closed-world, the implications of properties

like rdfs:domain and rdfs:range are often misunderstood. First and foremost,

in OWL these should not be treated as database constraints. Instead, any

resource that appears in the subject of a statement using the property must be

inferred to be a member of the domain class. Likewise, any resource that

appears in the object of statement using the property must be inferred to be a

member of the range class. Thus, if we knew that Randy hasChild Fido, Fido

is of type Dog and the range of hasChild was Person, then we would have to

conclude that Fido was a Person as well as a Dog. We would need to state

that the classes Dog and Person were disjoint in order to raise any suspicion

that there might be something wrong with the data. Doing so would result in

a logical contradiction, but whether the error is that Fido is not a Dog or that

the hasChild property should be generalized to apply to all animals and not

just people would have to be determined by a domain expert. Similarly, if a

class has an owl:minCardinality restriction of 1 on some property, then that

does not mean that instances of that class must include a triple for the given

property. Instead, if no such triples are found, then we can infer that there is

such a relationship to some yet unknown object.

OWL’s open world assumption also impacts the semantics of properties

that have multiple domains or multiple ranges. In each case, the domain (or

range) is effectively the intersection of all such classes. This may seem

counterintuitive, since if we create multiple range statements, we probably

mean to say that the range is one of the classes. However, such union

semantics do not work in an open world. We would never know if there is

another rdfs:range statement on another Web page that will widen the

property’s range, and thus the statement would have no inferential power.

The intersection semantics used by OWL guarantee that we can infer that the

object in question is of the type specified by the range, regardless of

whatever other rdfs:range statements exist.

Since OWL does not make the unique names assumption, there are some

interesting issues that occur when reasoning about cardinalities. Consider the

example in Figure 2-15 where we assume that p:Person has a maxCardinality

restriction of 1 on the property p:hasMom. If you are new to OWL, you

might think this is a violation of the property restriction. However, since

2. An Introduction to the OWL Web Ontology Language 23

there is no assumption that Sue and Mary must be different people, this in

fact leads us to infer Sue owl:sameAs Mary. If this was undesirable, we

would have to also state Sue owl:differentFrom Mary, which then results in a

logical contradiction.

<p:Person rdf:about=”#Bob”>

 <p:hasMom rdf:resource=”#Sue” />

 <p:hasMom rdf:resource=”#Mary” />

</p:Person>

Figure 2-15. Example demonstrating use of cardinality without the unique names assumption.

If p:Person has a maxCardinality restriction of 1 on the property p:hasMom, then we infer Sue

owl:sameAs Mary.

There are a number of other common mistakes made by beginning OWL

ontologists. A good discussion of these issues can be found in Rector et al.

(2004).

7. CONCLUSION

This chapter has provided an overview of the OWL language, with a

focus on OWL DL. We have discussed the fundamentals of XML and RDF,

and how they relate to OWL. We described how to create very simple OWL

ontologies consisting of classes, properties and instances. We then

considered how more complex OWL axioms could be stated. This was

followed by a discussion of how OWL enables distributed ontologies, with a

special focus on imports and versioning. Finally, we discussed some of the

features of OWL’s semantics that tend to lead to modeling mistakes by

beginning OWL ontologists.

ACKNOWLEDGEMENTS

I would like to thank Mike Dean, Zhengxiang Pan and Abir Qasem for

helpful comments on drafts of this chapter. The authorship of this chapter

was supported in part by the National Science Foundation (NSF) under

Grant No. IIS-0346963.

REFERENCES

G. Antoniou and F. van Harmelen. A Semantic Web Primer. MIT Press, Cambridge, MA,

2004.

24 Chapter 2

F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, P.F. Patel-Schneider, eds. The

Description Logic Handbook, Cambridge University Press, 2002.

P. Biron and A. Malhotra, eds.. XML Schema Part 2: Datatypes Second Edition. W3C

Recommendation, 28 October 2004, http://www.w3.org/TR/2004/REC-xmlschema-2-

20041028/ .

T. Gruber. A Translation Approach to Portable Ontology Specifications. Knowledge

Acquisition, vol. 5 no. 2, 1993, pp. 199-220.

N. Guarino, Formal Ontology and Information Systems. In Proceedings of Formal Ontology

and Information Systems, Trento, Italy. IOS Press, 1998.

J. Heflin and Z. Pan. A Model Theoretic Semantics for Ontology Versioning. Third

International Semantic Web Conference (ISWC 2004). LNCS 3298, Springer, 2004. pp.

62-76.

I. Horrocks and P. Patel-Schneider. Reducing OWL Entailment to Description Logic

Satisfiability. In Dieter Fensel, Katia Sycara, and John Mylopoulos, editors, Proc. of the

2003 International Semantic Web Conference (ISWC 2003), Lecture Notes in Computer

Science 2870, pp. 17-29. Springer, 2003.

N. Noy and C. Hafner. The State of the Art in Ontology Design. AI Magazine, vol. 18, no. 3,

1997, pp. 53-74.

A. Rector, N. Drummond, M. Horridge, J. Rogers, H. Knublauch, R. Stevens, H. Wang, and

C. Wroe. OWL Pizzas: Practical Experience of Teaching OWL-DL: Common Errors &

Common Patterns. 14th International Conference on Knowledge Engineering and

Knowledge Management (EKAW 2004), pp. 63-81. 2004.

M. Smith, C. Welty, and D. McGuinness, eds. OWL Web Ontology Language Guide, W3C

Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-owl-guide-

20040210/ .

T. Wang, B. Parsia, and J. Hendler. A Survey of the Web Ontology Landscape. Fifth

International Semantic Web Conference (ISWC 2006), LNCS 4273, Springer, 2006. pp.

682-694.

