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Abstract. We prove that for any positive integers q and k, there is a constant cq,k such that a uniformly random
set of cq,knk log n vectors in [q]n with high probability supports a balanced k-wise independent distribution. In
the case of k ≤ 2 a more elaborate argument gives the stronger bound cq,knk . Using a recent result by Austrin and
Mossel this shows that a predicate on t bits, chosen at random among predicates accepting cq,2t2 input vectors, is,
assuming the Unique Games Conjecture, likely to be approximation resistant.

These results are close to tight: we show that there are other constants, c′q,k , such that a randomly selected set
of cardinality c′q,knk points is unlikely to support a balanced k-wise independent distribution and, for some c > 0,
a random predicate accepting ct2/ log t input vectors is non-trivially approximable with high probability.

In a different application of the result of Austrin and Mossel we prove that, again assuming the Unique Games
Conjecture, any predicate on t Boolean inputs accepting at least (32/33) · 2t inputs is approximation resistant.

The results extend from balanced distributions to arbitrary product distributions.
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1. Introduction. The motivation of this paper comes from the approximability of maxi-
mum constraint satisfaction problems (Max-CSPs). A problem is defined by a t-ary predicate
P and an instance is given by a list of t-tuples of literals over Boolean variables (one can
allow larger domain sizes but for simplicity in this motivational discussion we stay with the
Boolean domain). The task is to find an assignment to the variables such that as many as
possible of the t-tuples of literals satisfy the predicate P .

The most famous such problem is probably Max-3-Sat where t = 3 and P is simply the
disjunction of the three bits. Another problem that (almost) falls into this category is Max-
Cut, in which t = 2 and P is non-equality. The reason we say “almost” is that in traditional
Max-Cut we do not allow negated literals and if we do allow negation the problem becomes
Max-2-Lin-2, linear equations modulo 2 with two variables in each equation.

These two problems, as well as almost all Max-CSPs, are NP-hard and the main focus of
research on these problems has been approximation algorithms. An algorithm is considered
to be a C-approximation if it, on each input, finds an assignment with an objective value that
is within a factor C of the optimal solution. We allow randomized algorithms and in this case
it is sufficient that the expected value of the objective values satisfies the desired bound.

To define what is non-trivial is a matter of taste but hopefully there is some consensus
that the following algorithm is trivial: Without looking at the instance pick a random value
for each variable. We say that an approximation ratio C is non-trivial if it is better than the
ratio obtained by this trivial algorithm. We call a predicate approximation resistant if it is
NP-hard to achieve a non-trivial approximation ratio.

It is perhaps surprising but many CSPs are approximation resistant and one basic example
is Max-3-Sat [13]. The famous approximation algorithm of Goemans and Williamson [10]
shows that Max-Cut is not approximation resistant and this result can be extended in great
generality to show that no predicate that depends on two inputs from an arbitrary finite domain
can be approximation resistant [14].
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Zwick [25] established approximability results for predicates that depend on three Boolean
inputs and from this it follows that the only predicates on three inputs that are approximation
resistant are those that are implied by parity or its negation. Many scattered results on wider
predicates do exist [11, 21] and in particular Hast [12] made an extensive classification of
predicates on four inputs.

These results for predicates of small width give little guidance on what to expect for a
generic predicate. Generally speaking there are several results pointing towards the direction
that predicates that accept more inputs are more likely to be approximation resistant. We say
that a predicate P implies a predicate Q if any assignment that satisfies P also satisfies Q.
We say that a predicate P is hereditarily approximation resistant if any predicate implied by
P is approximation resistant. Most predicates known to be approximation resistant also turn
out to be hereditarily approximation resistant. One of the few predicates that does not have
this property is P (x1, x2, x3, x4) which is satisfied if x1 is true and x2 6= x3 or x1 is false
and x2 6= x4. This was proved approximation resistant by Guruswami et al. [11] but implies
NAE(x2, x3, x4) (the “not-all-equal” predicate) which admits a nontrivial approximation
algorithm, see for instance [25].

As a generic positive result Hast [12] proved that any predicate on t bits that accepts
fewer than 2d(t + 1)/2e inputs does admit a nontrivial approximation algorithm. This might
at first seem like a rather weak result but evidence is mounting that this is very close to the
best possible result of this type. Let us elaborate on this evidence.

The strongest inapproximability results depend on the Unique Games Conjecture (UGC)
of Khot [17]. The truth of this conjecture is still very much open and probably the most im-
portant open problem in the theory of approximability. Even if we should not take a hardness
result based on UGC as a final word it is a very valuable result. Despite many strong efforts to
disprove the conjecture [23, 7, 2, 19, 1], the conjecture remains open. As these results appear
to push the currently available algorithmic techniques as far as they can go, any negative re-
sult based on the UGC rules out an algorithm using current techniques and thus it is a strong
indication that a problem is difficult.

Assuming the UGC, Samorodnitsky and Trevisan [22] proved that when t is of the form
2r−1, Hast’s result is tight and there is an approximation resistant predicate that accepts t+1
inputs. The proof extends to give hereditary approximation resistance and using this Håstad
[15] proved that a predicate chosen at random from all predicates that accept s inputs is likely
to be approximation resistant if s = ω(2t/

√
t). For t on the form 2r − 1, [15] improves the

value of s to 2t/t but this is shown to be the lower limit of what can be obtained using the
predicates of Samorodnitsky and Trevisan.

Austrin and Mossel [4], using the machinery of Mossel [20] extended the results of
Samorodnitsky and Trevisan to apply to a much wider class of predicates. To be more pre-
cise they proved that any predicate P for which there exists a balanced pairwise independent
distribution supported on the inputs accepted by P is, assuming the UGC, hereditarily ap-
proximation resistant. Using this result they established, without assumptions on the form of
t, that there are predicates that accept t + o(t) inputs which satisfy this property. Further-
more if the famous Hadamard Conjecture on the existence of Hadamard matrices is true their
bound is 4d(t + 1)/4e, matching the bounds of Hast for half of all values of t and being off
by an additive constant of 2 for other values.

The result of Austrin and Mossel is very powerful and we use it as a tool to investigate
the approximation resistance of randomly chosen predicates. The technical question that
arises is to analyze the probability that s random vectors of length t can support a balanced
pairwise independent distribution, and in particular for what values of s this probability is
1 − o(1). Many properties of pairwise independent distributions have been studied, but we
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have not found any results on randomly supported pairwise independent distributions. We
feel that this is natural question interesting in its own right and we study the question in some
generality, looking at the question of existence of a k-wise independent distribution over [q]n

for some alphabet size q, establishing the following result.
THEOREM 1.1 (informal). There are absolute constants cq,k such that if we pick cq,knk log n

random points in [q]n, then with high probability there is a k-wise independent distribution
supported on these points.

For the case k = 2, which is most important for our application, we are able to remove
the logarithmic factor, obtaining the following result.

THEOREM 1.2 (informal). There are absolute constants cq,2 such that if we pick cq,2n
2

random points in [q]n, then with high probability there is a pairwise independent distribution
supported on these points.

We remark that for the case of supporting an unbiased probability distribution over
{0, 1}n, i.e., the case k = 1 and q = 2, a sharp bound of 2n on the threshold is already
known by an elegant result by Füredi [9].

The bounds for the case k ≤ 2 are asymptotically tight: in Theorem 7.1 we prove that for
any constant k, Ω(nk) random strings are needed to have a good probability to be the support
of a k-wise independent probability distribution.

Through the result of Austrin and Mossel the existence of a pairwise independent distri-
bution gives approximation resistance and we have the following immediate corollary.

COROLLARY 1.3 (informal). There are absolute constants cq,2 such that if we pick a
random predicate P : [q]t → {0, 1} on t inputs which accepts cq,2t

2 of the qt possible
input strings then, assuming the UGC, with high probability P is hereditarily approximation
resistant.

Even though we have a tight answer for the number of points needed to support a pairwise
independent distribution this does not automatically give an answer to the question when
a predicate is approximation resistant. Here we get an almost tight result by showing in
Theorem 8.1 that, for some constant cq > 0, a predicate that accepts a random set of size
cqt

2/ log t is likely to admit a nontrivial approximation algorithm. Broadly speaking the
algorithm looks at the “quadratic part” of the predicate and applies a standard semidefinite
programming approach.

All these results have looked at very sparse sets. For rather dense sets we can prove
similar results with certainty.

THEOREM 1.4 (informal). There are constants cq > 0 such that any subset of size
(1− ck

q )qn of [q]n supports a k-wise independent distribution.
For the case of q = 2 and k = 2 we are interested in an explicit value of the constant and

we have the following corollary.
COROLLARY 1.5. Any predicate on t Boolean inputs that accepts at least (32/33) · 2t

inputs is, assuming the UGC, approximation resistant.
The best previous results of this form are that any predicate accepting more than 2t(1−

2−
√

t) inputs is resistant assuming P 6= NP [12], and that any predicate accepting more than
2t(1− (2t)−1) inputs is resistant assuming the UGC [15].

The constant 32/33 in Corollary 1.5 is not tight. A lower bound on the correct value of
this constant is 13/16: Hast [12] gives a non-trivially approximable predicate on 4 variables
which accepts 13 of the 16 assignments. For the corresponding constant in Theorem 1.4 for
q = 2 and k = 2, the correct value is strictly larger than 13/16 as we establish in Section 4.

An outline of the paper is as follows. After giving preliminaries in Section 2 and Section 3
we establish Theorem 1.4 and Corollary 1.5 in Section 4. In Section 5 we prove the up-
per bound on the size of random support for a k-wise independent distribution and give the
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stronger bound for pairwise independence in Section 6. For the reverse directions we give
the lower bound on the number of random points needed to support a k-wise independent
distribution in Section 7 and the approximation result for sparse predicates in Section 8. We
end with some conclusions in Section 9.

All results extend to arbitrary product distributions over [q]n, not just the uniform one.
We refer to the respective theorem statements for precise details.

2. Preliminaries. Let Ω be a finite set and let µ be a probability distribution on Ω which
has full support in that µ(x) > 0 for any x ∈ Ω. The following notation is used throughout
the paper.

• (Ωn, µ⊗n) denotes the product space Ω× . . .×Ω, endowed with the product distri-
bution.

• α(µ) = min{µ(x) : x ∈ Ω, µ(x) > 0 } = min{µ(x) : x ∈ Supp(µ)} denotes the
minimum non-zero probability of any atom in Ω under the distribution µ.

• L2(Ω, µ) denotes the space of functions from Ω to R. We define the inner product on
L2(Ω, µ) by 〈f, g〉µ = Ex∈(Ω,µ)[f(x)g(x)], and `p norm by ||f ||p = (Ex∈(Ω,µ)[|f(x)|p])1/p.
The `∞ norm of f is defined by ||f ||∞ = maxµ(x)>0 |f(x)|.

We generally use U to denote the uniform distribution. So e.g. ({−1, 1}n,U) denotes
the Boolean hypercube endowed with the uniform distribution. We remind the reader of
Hölder’s Inequality: let 1 ≤ p, q ≤ ∞ be such that 1/p + 1/q = 1, and let f, g ∈ L2(Ω, µ).
Then

〈f, g〉µ ≤ ||f ||p · ||g||q

For a probability distribution η over Ωn (not necessarily a product distribution) and sub-
set S ⊆ [n] of coordinates, we denote by ηS the marginal distribution of η on the coordinates
in S (i.e., the distribution on Ω|S| induced by η by only looking at the coordinates in S). A
distribution η over Ωn is k-wise independent if, for every S ⊆ [n] with |S| = k, it holds that
ηS is a product distribution. If, additionally, each such ηS is the uniform distribution over Ωk,
we say that η is balanced k-wise independent.

For vectors u, v ∈ Rn, we denote by 〈u, v〉 =
∑n

i=1 uivi the standard inner product in
Rn. We denote by 0 = 0n ∈ Rn the all-zeros vector in Rn, and always drop the subscript n
as the dimension hopefully is clear from the context.

Given a set X ⊆ Rn, Conv(X) denotes the convex hull of X , defined as the smallest
convex set containing X . For X = {x1, . . . , xm} finite, Conv(X) is the set of all points
which are convex combinations of x1, . . . , xm,

Conv(X) =

{
m∑

i=1

αixi : αi ≥ 0,

m∑
i=1

αi = 1

}
.

We also need the following standard result on small ε-nets of the unit sphere (see e.g. [18]):
THEOREM 2.1. For every n and 0 < ε < 1/3, there exists a set S of at most (5/ε)n unit

vectors in Rn, such that, for any unit vector u ∈ Rn, there is a v ∈ S satisfying

〈u, v〉 ≥ 1− ε.

2.1. Fourier Decomposition. In this subsection we recall some background in Fourier
analysis that is used in the paper.

Let q be a positive integer (not necessarily a prime power), and let (Ω, µ) be a finite
probability space with |Ω| = q and full support, i.e., Supp(µ) = Ω. Let χ0, . . . , χq−1 : Ω →
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R be an orthonormal basis for the space L2(Ω, µ) w.r.t. the scalar product 〈·, ·〉µ. Furthermore,
we require that this basis has the property that χ0 = 1, i.e., the function that is identically 1
on every element of Ω. As we work with product spaces the following definition is useful for
us.

DEFINITION 2.2. A multi-index is a vector σ ∈ Zn
q , for some q and n. The support of a

multi-index σ is S(σ) = { i : σi > 0 } ⊆ [n].
For readability we slightly abuse notation and treat a multi-index as a set, e.g. writing |σ|

instead of |S(σ)|, i ∈ σ instead of i ∈ S(σ), and so on.
For a multi-index σ, define χσ : Ωn → R as

⊗
i∈[n] χσi , i.e.,

χσ(x1, . . . , xn) =
∏

i∈[n]

χσi(xi).

It is well-known and easy to check that the functions {χσ}σ∈Zn
q

form an orthonormal basis
for the product space L2(Ωn, µ⊗n). Thus, every function f ∈ L2(Ωn, µ⊗n) can be written
as

f(x) =
∑

σ∈Zn
q

f̂(σ)χσ(x),

where f̂ : Zn
q → R is defined by f̂(σ) = 〈f, χσ〉µ⊗n . The most basic properties of f̂

are summarized by Fact 2.3, which is an immediate consequence of the orthonormality of
{χσ}σ∈Zn

q
.

FACT 2.3. We have

E[fg] =
∑

σ

f̂(σ)ĝ(σ) E[f ] = f̂(0) Var[f ] =
∑
σ 6=0

f̂(σ)2.

We refer to the transform f 7→ f̂ as the Fourier transform, and f̂ as the Fourier coeffi-
cients of f . We remark that the article “the” is somewhat inappropriate, since the transform
and coefficients in general depend on the choice of basis {χi}i∈Zq

. However, we always work
with some fixed (albeit arbitrary) basis, and hence there should be no ambiguity in referring
to the Fourier transform as if it were unique. Furthermore, many of the important properties
of f̂ are actually basis-independent.

We say that a polynomial f ∈ L2(Ωn, µ⊗n) has degree d if f̂(σ) = 0 for every σ with
|σ| > d. We let f=d denote the part of f that is of degree exactly d. Note that in this notation
an arbitrary function is a polynomial of degree n.

As we frequently work with polynomials f of low degree, say k, and constant coefficient
f̂(0) = 0, we introduce the following notation for the set of all σ ⊆ [n] with cardinality
1 ≤ |σ| ≤ k:

Dk := Dk(n) = {σ ∈ Zn
q | 1 ≤ |σ| ≤ k },

and denote by dk := dk(n) the cardinality dk = |Dk|. Note that dk =
∑k

i=1

(
n
i

)
(q − 1)i ≤

((q − 1)n)k.
It is useful to view the monomials that can be input into a low degree polynomial as a

vector and towards this end let us introduce the following notation.
DEFINITION 2.4. Given a string x ∈ Ωn, we define x:≤k: as

x:≤k: = (χσ(x))σ∈Dk
∈ Rdk ,

5



In other words, x:≤k: is the vector obtained by writing down the values of all non-constant
monomials of degree at most k, evaluated at x. For a set X ⊆ Ωn, we use X :≤k: ⊆ Rdk to
denote the set {x:≤k: |x ∈ X }.

Note that every v ∈ Rdk is in 1–1 correspondence with a degree-k polynomial fv ∈
L2(Ωn, µ⊗n) with E[fv] = 0, defined by fv(x) =

〈
v, x:≤k:

〉
for every x ∈ Ωn (i.e., we

interpret v as giving the Fourier coefficients of fv).
Another fact which is sometimes useful is the following trivial bound on the `∞ norm of

χσ (recall that α(µ) is the minimum non-zero probability of any atom in µ which we assume
to be fully supported).

FACT 2.5. Let (Ωn, µ⊗n) be a product space with Fourier basis {χσ}σ∈Zn
q

. Then for
any σ ∈ Zn

q ,

||χσ||∞ ≤ α(µ)−|σ|/2.

Proof. It is clearly enough to prove this for any basis function χi and this case follows
from that by the orthonormality of these functions since

1 =
∑

x

χ2
i (x)µ(x) ≥ χ2

i (x0)µ(x0)

for any fixed x0.

2.2. Norm Inequalities. The main analytic tool in all our upper bounds are “Khinchin
type” inequalities for low degree polynomials, i.e., the fact that the `p norms of such polyno-
mials are related to within a constant factor. Such bounds follow in turn from hypercontrac-
tivity estimates for such functions. For instance, a well-known consequence of the famous
Hypercontractivity Theorem [6, 5] can be stated as follows.

THEOREM 2.6. Let f ∈ L2({−1, 1}n,U) be a degree-d polynomial. Then, for every
1 ≤ q < p ≤ ∞, it holds that

||f ||p ≤
√

p− 1
q − 1

d

||f ||q.

Recall that the classic Khinchin Inequality states that ||f ||p ≤ Cp||f ||2 for degree-1
polynomials and some constant Cp depending only on p. Using the recent sharp hypercon-
tractivity estimates of Wolff [24], we have the following generalization to arbitrary finite
probability spaces.

THEOREM 2.7 ([24]). Let (Ω, µ) be a finite probability space in which the minimum
non-zero probability is α = α(µ) ≤ 1/2. Then for p ≥ 2, every degree-d polynomial
f ∈ L2(Ωn, µ⊗n) satisfies

||f ||p ≤ Cp(α)d/2||f ||2.

Here Cp is defined by

Cp(α) =
A1/p′ −A−1/p′

A1/p −A−1/p

where A = (1− α)/α and 1/p + 1/p′ = 1. The value at α = 1/2 is taken to be the limit of
the above expression as α → 1/2, i.e., Cp(1/2) = p− 1.
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As the quantity Cp(α) is somewhat ungainly to work with, the following upper bounds
can be convenient.

FACT 2.8. For every α ∈ (0, 1/2] and p ≥ 2 we have Cp(α) ≤ p
2α and C3(α) ≤(

4
α

)1/3
.

Proof. The first bound is proven in [3] as Corollary 7.1.4. For the second bound, note
that p′ = 3/2 and hence

C3(α) =
A2/3 −A−2/3

A1/3 −A−1/3
= A1/3 + A−1/3.

Now for any x > 0 we have

(x + x−1)3 ≤ 4(x3 + x−3).

This follows as the difference between the two sides is

3x3 + 3x−3 − 3x− 3x−1 = 3(x2 − 1)(x− x−3)

which clearly is nonnegative. Applying this with x = A1/3 we get

A1/3 + A−1/3 ≤ (4(A + A−1))1/3 ≤ (4(A + 1))1/3 =
(

4
α

)1/3

and the proof is complete.
For some of our proofs, we need that the `1 norm is related to the `2 norm, which is not

an immediate consequence of Theorem 2.7. It does however follow from a classic “duality”
argument.

THEOREM 2.9. Let f be a random variable. If f satisfies ||f ||p ≤ C||f ||2 for some
constants p > 2 and C, then

||f ||2 ≤ Cp/(p−2)||f ||1.

Proof. Let r = (p−2)/(2p−2) ∈ (0, 1/2), and define g(x) = f(x)2r, h(x) = f(x)2−2r.
By Hölder’s Inequality,

||f ||22 ≤ ||g||1/2r · ||h||1/(1−2r) = ||f ||2r
1 · ||f ||2−2r

(2−2r)/(1−2r)

= ||f ||2r
1 · ||f ||2−2r

p ≤ C2−2r · ||f ||2r
1 · ||f ||2−2r

2

Simplifying, we get ||f ||2 ≤ C(1−r)/r||f ||1 = Cp/(p−2)||f ||1.
Combined with Theorem 2.7 and Fact 2.8 and taking p = 3, this implies the following

bound.
COROLLARY 2.10. Let f ∈ L2(Ωn, µ⊗n) be a degree-d polynomial. Then

||f ||2 ≤
(

4
α(µ)

)d/2

||f ||1.

In some cases, stronger relations between the norms of f are possible than can be ob-
tained by going via hypercontractivity. The following estimate for the uniform Boolean hy-
percube in the case p = 2, q = 4, and d = 2 (i.e., quadratic polynomials) is sometimes useful
(note that Theorem 2.6 in this case gives the constant 1/3 = 81−1/4).

THEOREM 2.11. Let f ∈ L2({−1, 1}n,U) be a degree-2 polynomial. Then

||f ||2 ≥ 15−1/4||f ||4.
7



This estimate is not new, but as we do not know of a reference for it, we include a proof.
A (different) proof of the same inequality for degree-2 multilinear polynomials in Gaussian
variables can be found in [16], Corollary 7.36 and Remark 7.37.

Proof. We want to estimate E[f4] for a quadratic polynomial f . We do this by expanding
the fourth power and looking at the expectation of each term. Any term that contains a
variable to an odd power gives zero contribution to the expected value and thus we only care
about terms of even degree. Replacing any linear terms xi by x0xi for a new variable x0 we
get the same expected value and hence we can assume that f is homogeneous of degree two.
For notation let us use f(x) =

∑
e f̂exixj for edges e = (i, j) and let us order the edges in

the lexicographic order.
Let us look at the expansion of f4. We have the following three types of terms that

contribute to the expected value:
1. f̂4

e .
2. f̂2

e1
f̂2

e2
with e1 < e2.

3. f̂e1 f̂e2 f̂e3 f̂e4 with all edges ei distinct and forming a quadrilateral.
The first type of terms appear with multiplicity 1, the second type with multiplicity 6 and

the last with multiplicity 24.
Let us apply the inequality ab ≤ 1

2 (a2 +b2) for the terms of type three with a the product
of two edges without common endpoints. This gives new terms of the form f̂2

e1
f̂2

e2
. Given

e1 and e2 there are two ways to choose (e3, e4) to complete the quadrilateral. Both of these
choices gives a contribution 12f̂2

e1
f̂2

e2
and thus we get the total estimate∑

e

f̂4
e + 30

∑
e1<e2

f̂2
e1

f̂2
e2

,

for E[f4]. This is clearly bounded by 15(
∑

e f̂2
e )2 = 15 E[f2]2 and the proof is complete.

2.3. Concentration Bounds. It is known that hypercontractivity implies good concen-
tration bounds for low-degree polynomials (see e.g. [8]). We need the following two results,
and give their (standard) proofs for completeness.

THEOREM 2.12. Let f ∈ L2(Ωn, µ⊗n) be a degree-d polynomial with ||f ||2 = 1. Then
for any t > ed/2,

Pr[|f | > t] ≤ exp(−ct2/d),

where c := α(µ)d
e .

Proof. For convenience let us use α instead of α(µ) and set p = 2α
e t2/d. By Markov’s

inequality, we have

Pr[|f | > t] = Pr[|f |p > tp] ≤
||f ||pp

tp
. (2.1)

Now, by Theorem 2.7 and Fact 2.8 we have

||f ||p ≤ Cp(α)d/2||f ||2 ≤
t

ed/2
.

Note that Theorem 2.7 is only applicable for p ≥ 2, but in the case p ∈ [1, 2] the bound
||f ||p ≤ t

ed/2 follows trivially from the monotonicity of `p norms and the assumption t >

ed/2.
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Plugging this into Equation (2.1) we get

Pr[|f | > t] ≤
(

te−d/2

t

)p

= exp(−pd/2) ≤ exp
(
−αd

e
t2/d

)
.

THEOREM 2.13. Let f ∈ L2(Ωn, µ⊗n) be a degree-2 polynomial with ||f ||2 = 1, and
let x1, . . . , xm be i.i.d. from (Ωn, µ⊗n). Then, for every r > 0 satisfying r < e

α(µ)

√
m, it

holds that

Pr

[∣∣∣∣∣
m∑

i=1

f(xi)−m E[f ]

∣∣∣∣∣ > r
√

m

]
≤ 2 exp

(
−α(µ)2r2

2e2

)
.

Furthermore, this holds also if f is replaced by |f |.
Proof. Let us again use α instead of α(µ). By Markov’s inequality and the standard

Chernoff method, we have

Pr

[
m∑

i=1

f(xi)−m E[f ] > r
√

m

]
≤

∏m
i=1 E[exp(λf(xi))]

exp(λm E[f ] + λr
√

m)
. (2.2)

We use the Taylor expansion of exp(x) =
∑∞

k=0 xk/k! to bound the expression E[exp(λf(xi))]:

E[exp(λf(xi))] =
∞∑

k=0

E
[
(λf(xi))k

]
k!

≤ 1 + λ E[f ] +
∞∑

k=2

(
λe

2α

)k

,

where the second inequality used E[f(xi)k] ≤
(

k
2α

)k
(Theorem 2.7 and Fact 2.8) and k! ≥

(k/e)k. Assuming that λ is small enough so that λe
2α < 1/2, we then get

E[exp(λf(xi))] ≤ 1 + λ E[f ] +

(
λe
2α

)2
1− λe

2α

≤ exp

(
λ E[f ] +

1
2

(
λe

α

)2
)

.

Hence, the bound in Equation (2.2) becomes∏m
i=1 E[exp(λf(xi))]

exp(λm E[f ] + λr
√

m)
≤ exp

(
1
2

(
λe

α

)2

m− λr
√

m

)

This is minimized for λ = α2r
e2
√

m
(the bound r < e

α

√
m guarantees that the assumption

λe
2α < 1/2 is satisfied). Plugging in this value of λ gives the bound

Pr

[
m∑

i=1

f(xi)−m E[f ] > r
√

m

]
≤ exp

(
−α2r2

2e2

)
.

The bound on Pr [
∑m

i=1 f(xi)−m E[f ] < −r
√

m] follows by applying the first inequality
to the degree-2 polynomial −f . That the bounds hold also when f is replaced by |f | follows
by the fact that the only property of f that was used was that its moments are bounded, and
taking absolute value does not change moments.
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3. Limited Independence and Low-Degree Polynomials. First, we characterize the
sets X ⊆ Ωn which support k-wise independent distributions, in terms of degree-k polyno-
mials over Ωn. We begin with the following easy lemma, which is a straightforward gener-
alization of the well-known fact that a distribution over bits has uniform distribution if and
only if the exclusive OR of any non-empty subset of the bits is unbiased.

LEMMA 3.1. Let (Ωn, µ⊗n) be a finite product space with Fourier basis {χσ}σ∈Zn
q

, and
let (Ωn, η) be an arbitrary probability space. Then η = µ⊗n if and only if

E
x′∈(Ωn,η)

[χσ(x′)] = 0

for every σ ∈ Zn
q with |σ| > 0.

Proof. Define f : Ωn → R by f(x) = η(x)/µ⊗n(x). Note that η = µ⊗n iff f is a
constant, i.e., iff Var[f ] = 0, which happens iff f̂(σ) = 0 for every σ 6= 0. Let us then
compute f̂ . We have

f̂(σ) = 〈χσ, f〉µ⊗n = E
x∈(Ωn,µ⊗n)

[χσ(x)η(x)/µ⊗n(x)]

=
∑

x∈Ωn

µ⊗n(x)χσ(x)η(x)/µ⊗n(x) = E
x∈(Ωn,η)

[χσ(x)].

Thus, η = µ⊗n if and only if

E
x∈(Ωn,η)

[χσ(x)] = 0

for all σ 6= 0, as desired.
We now state the characterization of the subsets of Ωn that support k-wise independent

distributions.
THEOREM 3.2. Let (Ω, µ) be a finite probability space, and let X ⊆ Ωn be a set of

strings over Ω. Then, the following conditions are equivalent:
(1) There exists a k-wise independent distribution η over Ωn with marginals µ (i.e.,

ηS = µ⊗|S| for every |S| ≤ k) such that Supp(η) ⊆ X
(2) 0 ∈ Conv(X :≤k:)
(3) There is no degree k polynomial f ∈ L2(Ωn, µ⊗n) such that f(x) > E[f ] for every

x ∈ X .
Note that while item (2) of the above characterization does not explicitly mention the

underlying space (Ω, µ) it is the case that X :≤k: depends on the space through the characters.
This characterization is most likely already known, but as we have not been able to find it in
the literature, we give a proof here.

Proof. (1) ⇔ (2). We view Conv(X :≤k:) as the set of probability distributions over Ωn

supported on X . Any convex combination
∑

x∈X cx · x:≤k: ∈ Conv(X :≤k:) corresponds to
the probability distribution ηc over Ωn in which

ηc(x) =
{

cx if x ∈ X
0 otherwise .

Thus, it suffices to prove that, for every convex combination {cx}x∈X , the corresponding dis-
tribution ηc has all k-dimensional marginals being the uniform distribution iff

∑
cx ·x:≤k: =

0. This in turn follows from Lemma 3.1.
(2) ⇔ (3). Without loss of generality, we can restrict our attention to f such that E[f ] =

0. Now, 0 is not in the convex hull of X :≤k: if and only if there exists a separating hyperplane
v ∈ Rdk such that

〈
v, x:≤k:

〉
> 0 for every x ∈ X . The equivalence now follows by the

correspondence between v ∈ Rdk and degree-k polynomials f with E[f ] = 0.
10



4. Polynomials Are Somewhat Balanced. In this section we prove that low-degree
polynomials must exceed their expectation by a constant amount on a constant fraction of
inputs.

THEOREM 4.1. For every probability space (Ω, µ) there is a constant c := α(µ)/25
such that for any degree-d polynomial f ∈ L2(Ωn, µ⊗n) with E[f ] = 0 and Var[f ] = 1, it
holds that

Pr[f > cd] > cd.

A similar statement can be found in [8] for the Boolean case, Ω = {−1, 1}. They lower
bound Pr[f > 0] rather than Pr[f > cd], but this difference is superficial, and their proof
(which is quite different from the one below) can be adapted to a proof of Theorem 4.1 as
well.

Proof. We are going to use the relation between the `1 norm and the `2 norm given by
Corollary 2.10. Define g ∈ L2(Ωn, µ⊗n) by

g(x) = 1f>cd(x) · f(x) =
{

f(x) if f(x) > cd

0 otherwise .

We lower bound Pr[f > cd] = Pr[g > 0] by the second moment method:

Pr[g > 0] ≥ E[g]2

E[g2]
> ||g||21, (4.1)

where the last inequality follows from E[g2] < E[f2] = 1. For ||g||1, note that, since E[f ] =
0, we have E[1f>0 · f ] = 1

2 ||f ||1, implying that

||g||1 = E[g] =
1
2
||f ||1 − E[10<f≤cdf ] ≥ 1

2
||f ||1 − cd,

which, by Corollary 2.10, is lower-bounded by

||g||1 ≥
1
2

(
α(µ)

4

)d/2

||f ||2 − cd =
(

α(µ)
4

)d/2(1
2
− α(µ)d/2

(25/2)d

)
≥
(

α(µ)
4

)d/2

· 1
(25/4)d/2

= cd/2

so that Pr[g > 0] > ||g||21 ≥ cd, as desired.
As an easy corollary, we see that for every k, any set X ⊆ Ωn of sufficiently large

constant density supports a k-wise independent distribution.
COROLLARY 4.2. Let (Ω, µ) be a finite probability space. Then every set X ⊆ Ωn

of density µ⊗n(X) ≥ 1 − (α(µ)/4)k/4 supports a k-wise independent distribution with
marginals µ.

Proof. This is almost a direct consequence of Theorem 3.2 and (the proof of) Theorem 4.1.
As the corollary only needs a bound on Pr[f > 0] we define g to be the positive part of f .
Then

||g||1 =
1
2
||f ||1 ≥

1
2

(
α(µ)

4

)k/2

||f ||2

and the corollary follows from (4.1).
11



We note that the exponential dependence on the degree (i.e., the amount of independence)
in both Theorem 4.1 and Corollary 4.2 is tight. To see this, consider the Boolean hypercube
equipped with the uniform distribution, and a scaled version of the degree-d polynomial f :
{−1, 1}n → R defined by

f(x) =
d∏

i=1

(1− xi)− 1,

which takes the value 2d−1 with probability 2−d, and the value−1 with probability 1−2−d.

4.1. The Boolean Hypercube. Because of our application to approximation resistance
of predicates, the case of pairwise independence in the Boolean hypercube with the uniform
distribution is of special interest to us, and we now examine how Corollary 4.2 can be im-
proved in this setting.

The bound in Corollary 4.2 is based on the relation between the `2 norm and the `1 norm.
Using Theorems 2.11 and 2.9 one gets the bound ||f ||2 ≤ 151/2||f ||1 for degree-2 polyno-
mials in L2({−1, 1}n,U). This in turn improves the bound for k = 2 in Corollary 4.2 from
255/256 to 59/60. As an alternative approach Ryan O’Donnell has suggested the following
proof along the lines of the proof [8] for their variant of Theorem 4.1, giving an even better
bound of 32/33.

THEOREM 4.3. Let f ∈ L2({−1, 1}n,U) be a degree-2 polynomial with E[f ] = 0,
Var[f ] = 1. Then Pr[f > 0] > 1/33.

Proof. The proof is based on the inequality 1x>0 ≥ 0.13x+0.062x2−0.0021x4, where
1x>0 is the indicator function of the event x > 0. Hence, we have that

Pr[f(x) > 0] = E[1f(x)>0] ≥ 0.062 E[f2]− 0.0021 E[f4].

Using Theorem 2.11 to bound the `4 norm in terms of the `2 norm and plugging in ||f ||2 = 1,
we have that

Pr[f(x) > 0] ≥ 0.062− 15 · 0.0021 = 0.0305 > 1/33

We remark that choosing the coefficients more carefully, the lower bound of 0.0305 can be
marginally improved (to roughly 0.0309401).

Combining the proof above with the result of Austrin and Mossel [4] we get the following
result.

COROLLARY 4.4. Let P be any predicate on t Boolean variables that accepts at least
(32/33) · 2t input strings. Then, assuming the UGC, P is approximation resistant.

Theorem 4.3 uses the relation between `2 norm and `4 norm given by Theorem 2.11, and
that bound is tight, so it is not clear whether the constant can be improved using this method.
The first approach, giving 59/60, uses the relation between `1 norm and `2 norm, for which
our constant 151/2 is probably not the best possible. It is quite possible that that constant can
be taken larger than (33/4)1/2, which would result in a better constant in Theorem 4.4.

Finally, we give a lower bound on the density needed for a subset X ⊆ {−1, 1}t to be
certain to support a pairwise independent distribution. We have the following theorem, saying
that given a subset of the hypercube that does not support pairwise independence, there is a
strictly denser subset of a hypercube in higher dimension that also does not support pairwise
independence.

THEOREM 4.5. Let X ⊂ {−1, 1}t be such that there is no balanced pairwise inde-
pendent distribution supported on X . Then there is an t′ ≥ t and X ′ ⊆ {−1, 1}t′ with

12



|X ′|/2t′ = |X|/2t + 1/2t′ such that there is no balanced pairwise independent distribution
supported on X ′.

Proof. We construct X ′ as follows. For each x ∈ X and y ∈ {−1, 1}t′−t, concatenate x
and y and add the resulting string to X ′. Finally, let x be some string not in X , and y some
string in {−1, 1}t′−t, and add the concatenation of x and y to X ′. Let x̃ ∈ {−1, 1}t′ denote
this last string added to X ′.

Consider an arbitrary distribution η on X ′, and write it as η = δ · η̃ + (1− δ) · η′, where
η̃ is a point distribution on x̃ and η′ is some distribution on X ′ \ x̃.

First, we have the following claim, bounding the min-entropy of pairwise independent
distributions.

CLAIM 4.6. Let η be a balanced pairwise independent distribution over {−1, 1}t. Then
for every x ∈ {−1, 1}t it holds that η(x) ≤ 1/(t + 1).

Proof. Fix an arbitrary x∗ ∈ {−1, 1}t. For notational convenience, we define for x ∈
{−1, 1}t an additional coordinate x0 which is always taken to be 1. For 0 ≤ i ≤ t, consider
the vector wi ∈ R2t

where, for x ∈ {−1, 1}t, we set wi(x) =
√

η(x)xi, where we identify
the coordinates of R2t

with the points of {−1, 1}t arbitrarily.
Then ||wi||22 = 1, and by the pairwise independence of η it holds that the wi’s are orthog-

onal, so ||
∑t

i=0 x∗i wi||2 =
√

t + 1. On the other hand, the x∗’th coordinate of
∑t

i=0 x∗i wi

equals (t + 1)
√

η(x∗) and hence η(x∗) ≤ 1/(t + 1). As x∗ was arbitrary the claim follows.

Next, note that there exists some δ∗ > 0 (depending on X) such that if δ < δ∗ then
η is not pairwise independent. To see this, define the distance of η from being pairwise
independent as

d(η) = max
1≤|S|≤2

∣∣∣∣∣Eη
[∏

i∈S

xi

]∣∣∣∣∣ , (4.2)

and similarly the distance of X from being able to support pairwise independence as d(X) =
infSupp(η)⊆X d(η). As the set of measures on a finite set is a compact space we know that
whenever X does not support a pairwise independent measure then d(X) is strictly positive.
Now take the measure η′ and convert it into a measure, η′′ on X by setting

η′′(x) =
∑

y∈{−1,1}t′−t

η′(x||y)

where x||y is the concatenation of x and y. Let S0 ⊆ [t] be the set giving the maximum value,
in (4.2) for the measure η′′. Clearly

E
η′

[∏
i∈S0

xi

]
= E

η′′

[∏
i∈S0

xi

]

and hence

d(η) ≥ (1− δ)d(η′′)− δ ≥ (1− δ)d(X)− δ

so that if δ < δ∗ := d(X)
1+d(X) then η is not pairwise independent.

But by the claim we also see that if δ > 1/(t′ + 1) then η is not pairwise independent.
Hence if t′ + 1 > 1/δ∗, we conclude that η, which was an arbitrary distribution on X ′, can
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not be balanced pairwise independent.
PROPOSITION 4.7. The following subset of {−1, 1}4 of size 13 can not support pairwise

independence:

{ (−1,−1,−1,−1), (−1,−1,−1,+1), (−1,−1,+1,−1), (−1,−1,+1,+1),
(−1,+1,−1,−1), (−1,+1,−1,+1), (−1,+1,+1,−1), (−1,+1,+1,+1),
(+1,−1,−1,−1), (+1,−1,−1,+1), (+1,−1,+1,−1), (+1,−1,+1,+1),
(+1,+1,+1,+1) }

Proof. Note that this set obtained by applying the construction of Theorem 4.5 to the set
{(−1,−1), (−1,+1), (+1,−1)}. In this case it is very simple to obtain an explicit bound on
δ∗: any pairwise independent distribution must put weight 1/4 on (+1,+1,+1,+1) since
this is the only string where the first two bits are +1. On the other hand, by Claim 4.6, a
pairwise independent distribution can put weight at most 1/5 on (+1,+1,+1,+1).

As an immediate corollary to Theorem 4.5 and Proposition 4.7, we have
COROLLARY 4.8. There is a constant δ > 0 and a set X ⊆ {−1, 1}n such that |X| =

(13/16 + δ)2n and X does not support pairwise independence.

5. Obtaining k-wise Independence. In this section, we give an upper bound of the form
cq,knk log(n) on the threshold for randomly supported independence. This comes relatively
close to matching our lower bound, established in Section 7, of c′nk for constant k, being only
a logarithmic factor off from being tight. In the next section, we prove our main theorem, that
in the case k = 2, this logarithmic factor can be removed.

THEOREM 5.1. For every (Ω, µ) there are constants c, δ > 0 such that the following
holds. Let x1, . . . , xm ∈ Ωn be a sequence of m independent samples from (Ωn, µ⊗n).
Then, if m > (cn)k log(nk), the probability that X = {x1, . . . , xm} contains a pairwise
independent distribution with marginals µ is at least 1− exp(−δnk)

Proof. By Theorem 3.2, x1, . . . , xm does not support a k-wise independent distribution
if and only if there is a degree-k polynomial f ∈ L2(Ωn, µ⊗n) with E[f ] = 0 such that
f(xi) < 0 for every i ∈ [m].

For any fixed f , Theorem 4.1 gives that the probability that f(xi) < τk for every i ∈ [m]
is at most (1− τk)m ≤ exp(−τkm), where τ = α(µ)/25 is the constant from Theorem 4.1.
Thus, it is clear that any fixed f has a very small probability of witnessing that x1, . . . , xm

does not support a k-wise independent distribution.
To bound the probability that any f witnesses that x1, . . ., xm supports a k-wise inde-

pendent distribution, we construct a net of degree-k polynomials as follows: let Fε denote
the set of degree-k polynomials f ∈ L2(Ωn, µ⊗n) such that E[f ] = 0, Var[f ] ≤ 2 and every
Fourier coefficient of f is an integer multiple of ε.

We then have that |Fε| ≤ (1/ε)O(dk) ≤ exp(c1(qn)k log 1/ε) (recall the definition of dk

from Section 2.1) for some universal constant c1. Then Theorem 4.1 and a union bound gives
that the probability that there exists an f ∈ Fε such that f(xi) < τk for every xi, is bounded
by

|Fε|(1− τk)m ≤ exp(c1(qn)k log(1/ε)− τkm) ≤ exp(−τkm/2),

provided m ≥ 2c1(qn/τ)k log(1/ε).
Now, given an arbitrary degree-k polynomial f with E[f ] = 0, denote by f̃ the polyno-

mial inFε which is closest to f in `∞ norm. Then, if ||f−f̃ ||∞ ≤ τk for every degree-k poly-
nomial f , we would be done, since the existence of f ∈ L2(Ωn, µ⊗n) such that f(xi) < 0 for
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every xi then implies the existence of f̃ ∈ Fε such that f̃(xi) ≤ f(xi)+|f̃(xi)−f(xi)| < τk,
which happens with probability at most exp(−τkm/2) ≤ exp(−δkm) for δ = τ/2.

We have the following easy bound on the distance ||f − f̃ ||∞.
CLAIM 5.2. For every f with ||f ||2 = 1,

||f − f̃ ||∞ ≤ ε

(
qn√
α(µ)

)k

,

provided this quantity is smaller than 1.
Proof. Let f ′ be the result of rounding every Fourier coefficient of f to its nearest multi-

ple of ε. Then, for any x ∈ Ωn,

|f(x)− f ′(x)| =

∣∣∣∣∣ ∑
σ∈Dk

(f̂(σ)− f̂ ′(σ))χσ(x)

∣∣∣∣∣ ≤ ε
∑

σ∈Dk

||χσ||∞ ≤ ε

(
qn√
α(µ)

)k

,

where the last step used Fact 2.5 and |Dk| ≤ (qn)k. It remains to show that f ′ ∈ Fε, i.e., that
Var[f ′] ≤ 2. But this follows immediately since

Var[f ′] = ||f ′||2 ≤ ||f ||2 + ||f − f ′||2 ≤ 1 + ||f − f ′||∞ ≤ 2

provided the bound on ||f − f ′||∞ ≤ 1. To finish the proof of Theorem 5.1, we thus
conclude that in order to have ||f − f̃ ||∞ ≤ τk, it suffices to take

ε =

(√
α(µ)τ
qn

)k

,

giving the bound

m ≥ 2c1(qn/τ)k log(1/ε) = (cn)k log nk

for c depending only on α(µ), q and τ , which in turn depend only on (Ω, µ).

6. Pairwise Independence. In this section, we give our main theorem.
THEOREM 6.1. For every (Ω, µ) there are constants c, δ > 0 such that the following

holds. Let x1, . . . , xm ∈ Ωn be a sequence of m independent samples from (Ωn, µ⊗n).
Then, if m > cn2, the probability that X = {x1, . . . , xm} contains a pairwise independent
distribution with marginals µ is at least 1− exp(−δ

√
n)

We get an immediate corollary.
COROLLARY 6.2. There are universal constants c, δ > 0 such that the following holds.

Let x1, . . . , xs ∈ {−1, 1}t be a sequence of s independent uniformly random elements from
{−1, 1}t. Let P be the predicate that accepts exactly the strings (xi)s

i=1. Then, assuming the
UGC, if s > ct2, the probability that P is approximation resistant is at least 1−exp(−δ

√
t).

Before proceeding with the proof of Theorem 6.1, let us briefly describe the intuition
behind it. The idea is to look at the convex hull K of the set of all ±1 combinations of
x:≤2:

1 , . . . , x:≤2:
m , and compare this to the sum x = x:≤2:

1 + . . . + x:≤2:
m . By an application of

Theorem 3.2, it suffices to prove that the latter sum lies strictly inside K with high probability.
Intuitively, since x is a sum of m independent vectors with expected value 0 and length

√
d2,

the total length of x should be around
√

m · d2 and we want to prove that K contains any
vector of this length. For a unit vector v let the width of K in direction v be the maximal
multiple of v in result when K is projected on the one-dimensional space v. Equivalently this
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is maximal value of (v, x) when x ranges over K. It is easy to see that a convex set contains
the ball of radius R iff the width in any direction is at least R.

Now, K consists of all [−1, 1]-valued linear combinations of x:≤2:
1 , . . . , x:≤2:

m and as a
consequence of hypercontractivity it turns out that, in every direction v, each x:≤2:

i contributes
a constant to the expected width of K in direction v. Thus one can hope that the size of K
grows linearly in m so that if m is a sufficiently large multiple of d2, K contains any vector
of length ||x|| ≈

√
m · d2. It turns out that this is indeed the case, but in order to be able to

show that the size of K grows linearly in every direction, we need to use the concentration in-
equality Theorem 2.13 for quadratic polynomials. It is this part which breaks down when one
tries to repeat the same proof for k-wise independence in general—the necessary analogue of
Theorem 2.13 is simply not true. We feel that this limitation to pairwise independence is a
limitation of our proof rather than an inherent limitation in the problem, and that the analogue
of Theorem 6.1 (where we require m > (cn)k) should be true also for higher independence.

Finally, let us remark on how the constant c in Theorem 6.1 depends on the underlying
space (Ω, µ). Tracing through the proof, it is not hard to see that one can take c polynomial
in α(µ). Keeping careful track of the exponents, our proof gives that c can be of order
O( q2 log 1/α(µ)

α(µ)4 ). The main bottleneck in the current proof, giving rise to the α(µ)4 factor,
turns out to be an application of Theorem 2.13 (in Lemma 6.5 below). By being more careful
in the proof of Theorem 2.13 and using the exact value of the degree 2 term in the Taylor
expansion of exp(f) one can obtain a somewhat stronger version of Theorem 2.13 which in
turn allows one to improve the α(µ)4 factor to α(µ)3.

Proof. [Proof of Theorem 6.1] Let m > c0d2, where c0 is a constant that is chosen
sufficiently large. We prove that, with probability at least 1−exp(−δ

√
n), for some δ > 0, we

have 0 ∈ Conv(X :≤2:). By Theorem 3.2 this implies that X contains a pairwise independent
distribution. This then implies Theorem 6.1 with c := c0q

2, since d2 ≤ q2n2.
Let

K =

{
m∑

i=1

aix
:≤2:
i : |ai| ≤ 1

}
,

and define

x =
m∑

i=1

x:≤2:
i ∈ Rd2 .

Then, it suffices to prove that x lies in the interior of K. To see this, note that if x that is in
the interior of K it can be written as

∑
i aix

:≤2:
i with all |ai| < 1 (since the point (1 + δ)x

has to be in K for some δ > 0). In particular not all the ai’s are equal to 1 and therefore we
can rearrange and write 0 as the convex combination

0 =
m∑

i=1

1− ai∑
j(1− aj)

x:≤2:
i ∈ Conv(X :≤2:).

For a unit vector v ∈ Rdk , let

Width(K, v) = sup
x∈K

{〈x, v〉}

be the width of K in the direction v.
We prove that, with high probability, the minimum width of K is larger than ||x|| (where

|| · || denotes the standard Euclidean `2 norm in Rdk ). In particular, we have the following
two lemmas (where the constants involved depend solely on the underlying space (Ω, µ))
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LEMMA 6.3. There are constants c1c2 > 0 and δ1 > 0 such that, if m > c1d2, the
probability that

inf
v

Width(K, v) < c2m (6.1)

is at most exp(−δ1m).
LEMMA 6.4. There is a constant δ2 > 0 such that if m ≥ d2, the probability that

||x|| > 2
√

md2 (6.2)

is at most exp(−δ2
√

n).
Before proving the lemmas, let us see how they suffice to finish the proof of the theorem.

Let c0 = max(c1, (2/c2)2), and m > c0d2. Then by a union bound there is a δ such that with
probability at least 1− exp(−δ

√
n), neither Equation (6.1) nor Equation (6.2) holds, and we

have

inf
v

Width(K, v) ≥ c2m > 2
√

md2 ≥ ||x||.

This implies that x lies strictly inside K, as desired. Hence, if m > cn2 ≥ c0d2, the
probability that 0 ∈ Conv(X :≤2:) is at least 1− exp(−δ

√
n), and we are done.

It remains to prove the two lemmas. We begin with Lemma 6.4 as this is the easier of the
two.

Proof. [Proof of Lemma 6.4] Let

l = ||x||2 =
∑

σ∈D2

(
m∑

i=1

χσ(xi)

)2

be the squared length of x. We can then view l as a degree 4 polynomial in L2(Ωnm, µ⊗mn).
Our goal is to apply the concentration bound Theorem 2.12 to l. To be successful in this, we
need that the variance Var[l] is of a lower order than E[l]2. The expectation of l is easily seen
to be E[l] = d2m. To compute the variance of l, we compute

l2 =
∑

σ1,σ2

(
m∑

i=1

χσ1(xi)

)2( m∑
i=1

χσ2(xi)

)2

=
∑

σ1,σ2

∑
i1,i2,i3,i4∈[m]

χσ1(xi1)χσ1(xi2)χσ2(xi3)χσ2(xi4).

Define

S(σ1, σ2) =
∑

i1,i2,i3,i4∈[m]

χσ1(xi1)χσ1(xi2)χσ2(xi3)χσ2(xi4),

and let us analyze E[S(σ1, σ2)]. If σ1 6= σ2, the expected value of

χσ1(xi1)χσ1(xi2)χσ2(xi3)χσ2(xi4)

is 0 unless i2 = i1 and i4 = i3. Hence for σ1 6= σ2, we have

E[S(σ1, σ2)] =
∑
i1,i3

E[χσ1(xi1)
2χσ2(xi3)

2].
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The terms where i1 6= i3 contribute 1 to this sum, and the terms where i1 = i3 contribute at
most 1/α2, where α = α(µ), by Fact 2.5. Hence we have for σ1 6= σ2

E[S(σ1, σ2)] ≤ m2 + m/α2.

Now let σ1 = σ2 := σ, and consider the expected value of

χσ(xi1)χσ(xi2)χσ(xi3)χσ(xi4).

If for any j ∈ [m] it is the case that only one of the ik:s equal j, this expectation is 0. Thus
the only tuples (i1, i2, i3, i4) for which the expectation is not 0 are those where the values are
paired up in the sense that i = j and k = l, or i = k and j = l, or i = l and j = k. There are
exactly 3m(m− 1) + m ≤ 3m2 ways to choose i1, i2, i3, i4 in such a paired way and hence
in this case

E[S(σ, σ)] ≤ 3m2/α2,

where we again used Fact 2.5. After these lengthy computations we thus find that

E[l2] =
∑

σ1,σ2

E[S(σ1, σ2)] ≤ d2
2m

2 + d2
2m/α2 + 3d2m

2/α2,

so that

Var[l] ≤ d2
2m/α2 + 3d2m

2/α2 ≤ 4d2m
2/α2,

where the last inequality assumed that m ≥ d2. Applying Theorem 2.12 to the polynomial
(l − E[l])/

√
Var[l], we have

Pr[||x|| > 2
√

d2m] = Pr[l − E[l] > 3d2m]

≤ exp
(
−c
(
3d2m/

√
Var[l]

)1/2
)
≤ exp(−c′d

1/4
2 ),

for c′ = c
√

3α/2. Since d2 ≥ q2n2, the lemma follows with δ2 = c′
√

q.
We now move on to the proof of Lemma 6.3. By a standard argument the width of K in

any fixed direction is likely to be close to its expectation. Applying this to an ε-net of points
we first prove that the maximum width of K is bounded and then proceed to establish also
that the minimum is of the same order of magnitude.

LEMMA 6.5. There are constants c3, τ > 0 such that the following holds: for every
v ∈ Rd2 with ||v|| = 1, the probability that

c3m ≤ Width(K, v) ≤ (1 + c3)m

is at least 1− exp(−τm).
Proof. Set 2c3 = α(µ)/4, the constant from Corollary 2.10 for d = 2. For v ∈ Rd2

with ||v|| = 1, let fv ∈ L2(Ωn, µ⊗n) be the corresponding degree-2 polynomial such that
fv(x) =

〈
v, x:≤2:

〉
.

By definition,

Width(K, v) = max
a∈[−1,1]m

m∑
i=1

ai

〈
v, x:≤2:

i

〉
.
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The maximum is clearly attained by setting

ai = sgn
(〈

v, x:≤2:
i

〉)
so that

Width(K, v) =
m∑

i=1

∣∣∣〈v, x:≤2:
i

〉∣∣∣ = m∑
i=1

|fv(xi)|.

Applying Theorem 2.13 with r = c3
√

m, the probability that
∑

i |fv(xi)| deviates by more
than c3m from its expectation is at most exp(−τm) for some constant τ > 0. But the
expectation of

∑
i |fv(xi)| equals ||fv||1 ·m, which is trivially upper bounded by ||fv||2 ·m =

m, and by Corollary 2.10 lower bounded by 2c3||fv||2 ·m = 2c3m.
Hence, with probability at least 1− exp(−τm), we have

(||fv||1 − c3)m ≤ Width(K, v) ≤ (||fv||1 + c3)m
c3m ≤ Width(K, v) ≤ (1 + c3)m.

We now prove the lower bound on the minimum width of K.
Proof. [Proof of Lemma 6.3] Let V = {v1, . . . , vL} be an ε-net of the unit sphere in Rd2

(where we are eventually going to choose
√

ε to be a sufficiently small multiple of c3 from
Lemma 6.5)), i.e., a set of vectors such that, for every v ∈ Rd2 with ||v|| = 1, there is a vector
vi ∈ V such that 〈v, vi〉 ≥ 1 − ε. As stated in Theorem 2.1 such a set can be constructed of
size at most L = (5/ε)d2 .

For any vi ∈ V , Lemma 6.5 tells us that

c3m ≤ Width(K, vi) ≤ (1 + c3)m

except with probability at most exp(−τm). By a union bound, these inequalities then hold
for every vi ∈ V except with probability at most

L exp(−τm) ≤ exp(−τm + ln(5/ε)d2) ≤ exp(−τm/2),

provided m ≥ 2d2 ln(1/ε)/τ .
Let Wmax = sup||v||=1 Width(K, v). We now prove that Wmax is small.
For any w ∈ Rd2 with ||w|| = 1, we can write w = (1 − ε′)vi +

√
1− (1− ε′)2w′ for

some ε′ ≤ ε, vi ∈ V and unit vector w′. We then have for any u ∈ K

〈u, w〉 = (1− ε′) 〈u, vi〉+
√

ε′(2− ε′) 〈u, w′〉
≤ Width(K, vi) +

√
2ε Width(K, w′)

≤ (1 + c3)m +
√

2εWmax.

Taking the supremum over all u ∈ K and unit vectors w ∈ Rd2 , we obtain

Wmax ≤ (1 + c3)m +
√

2εWmax

Wmax ≤
1 + c3

1−
√

2ε
m ≤ (1 + 2c3)m,

provided ε is a small constant multiple of c2
3.
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Having established that K is not too wide in any direction we can now prove that it is
not too narrow completing the proof of Lemma 6.3.

We have, again for any w = (1− ε′)vi +
√

ε′(2− ε′)w′ and u ∈ K,

〈u, w〉 = (1− ε′) 〈u, vi〉+
√

ε′(2− ε′) 〈u, w′〉
≥ (1− ε)c3m−

√
2ε Width(K, w′)

≥ ((1− ε)c3 −
√

2ε(1 + 2c3))m ≥ c3m/2,

again provided ε is a small constant multiple of c2
3.

Hence, with probability at least 1−exp(−δm) (where δ = τ/2), we have inf ||v||=1 Width(K, v) ≥
c3m/2 := c2m, provided that m ≥ c1d2 where c1 = 2 ln(1/ε)/τ .

7. A Lower Bound for Random Support Size. In this section we give a lower bound
on the threshold for randomly supported independence.

THEOREM 7.1. Let Ω be a space of size q = |Ω| and U denote the uniform distri-
bution over Ω. Let x1, . . . , xm be a sequence of m independent samples from (Ωn,U⊗n).

Then, if m <
(

n
2k2qk

)k

, the probability that x1, . . . , xm can support a k-wise independent
distribution with marginals U (i.e., a balanced k-wise independent distribution) is at most
exp

(
− n

4kqk

)
.

Proof. We prove that, if m ≤
(

n
2k2qk

)k

, then with high probability x:≤k:
1 , . . . , x:≤k:

m

are linearly independent. In particular, this implies that any convex combination of x:≤k:
1 , . . .,

x:≤k:
m is non-zero, so that, by Theorem 3.2, x1, . . . , xm does not support a k-wise independent

distribution.
The main component of the proof is the following lemma.

LEMMA 7.2. Let m ≤
(

n
2k2qk

)k

, and let y1, . . . , ym ∈ Rdk be m arbitrary points.

Then, the probability that a uniformly random point x ∈ Ωn has x:≤k: lying in the space
spanned by y1, . . . , ym is at most exp

(
− n

2kqk

)
.

Before proving the lemma we finish the proof of the theorem. Set m0 = n
2k2qk and

m = mk
0 , and let x1, . . . , xm be m uniformly random points of Ωn. Using Lemma 7.2, we

conclude that the probability that x:≤k:
1 , . . . , x:≤k:

m are linearly independent is at least

1−m exp
(
− n

2kqk

)
= 1− exp (−k (m0 − ln(m0))) ≥ 1− exp (−km0/2) .

This concludes the proof of Theorem 7.1.
Next, we turn to the proof of the lemma.
Proof. [Proof of Lemma 7.2] Let S ⊆ Rdk be the space spanned by the vectors y1, . . . , ym.

Then S has dimension at most m and hence is determined by at least dk−m linearly indepen-
dent equations v1, . . . , vdk−m ∈ Rdk such that y ∈ S iff 〈vi, y〉 = 0 for every i ∈ [dk −m].
Equivalently, for x ∈ Ωn, we have x:≤k: ∈ S iff fvi(x) = 0 for every i, where we again
interpret vi as giving the coefficients of a degree-k polynomial. We prove that only an expo-
nentially small fraction of all points x ∈ Ωn satisfy these conditions.

In what follows, we explicitly refer to dk as a function of n, i.e.,

dk(n) :=
k∑

i=1

(q − 1)i

(
n

i

)
≥
(

(q − 1)n
k

)k

,
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Let T (n, m) be the maximum possible number of solutions x ∈ Ωn to a system of at least
dk(n)−m linearly independent degree-k polynomial equations fv1(x) = 0, . . ., fvdk(n)−m(x) =
0. We prove that

T (n, m) ≤ (qk − 1)n/k · exp(km1/k). (7.1)

If dk(n) ≤ m so that n ≤ m1/kk/(q − 1), we have the trivial bound T (n, m) ≤ qn ≤
exp(km1/k), so let dk(n) > m and assume inductively that Equation (7.1) holds for all
n′ < n. Assume that there is a fvi which has degree exactly k (if all fvi have degree at most
k − 1, we would get an even better bound). Without loss of generality, we can take fv1 to
have degree exactly k, and having a non-zero coefficient σ with support S(σ) = [k].

Next, eliminate (by standard Gaussian elimination) all coordinates σ′ with S(σ′)∩ [k] 6=
∅. As there are exactly dk(n) − dk(n − k) such values of σ′, the resulting system has at
least (dk(n) − m) − (dk(n) − dk(n − k)) = dk(n − k) − m equations, and hence has at
most T (n− k, m) solutions. Let us, for each such solution x∗ ∈ Ωn−k, consider the number
of ways of extending it to a solution for the original system. Plugging in x∗ in the equation
fv1(x) = 0, this equation becomes an equation of the form

p(x[k]) = 0,

for some function p : Ωk → R. Furthermore, the function p is not identically zero, since
p̂(σ) = f̂v1(σ) 6= 0. This implies that the number of ways of extending x∗ is at most qk − 1,
and hence we have

T (n, m) ≤ (qk − 1) · T (n− k, m) ≤ (qk − 1)n/k · exp(km1/k).

Thus, the probability that x:≤k: lies inside S for a uniformly random point x ∈ Ωn is at
most

(qk − 1)n/k exp(km1/k)/qn = (1− q−k)n/k exp(km1/k) ≤ exp
(
− n

kqk
+ km1/k

)
.

Plugging in m ≤
(

n
2k2qk

)k

, the lemma follows.

8. Approximating a Random Predicate. In this section we let P be a predicate con-
structed by randomly choosing O(t2/ log t) strings of length t and making these be the inputs
accepted by P . We then show that with high probability this predicate is not approximation
resistant. Formally:

THEOREM 8.1. There is a constant cq > 0 such that the following is true. Suppose
s ≤ cqt

2/ log t and suppose P : [q]t 7→ {0, 1} is a predicate chosen randomly among
all predicates that accept s inputs. Then, with probability 1 − 1

t , P is not approximation
resistant.

8.1. The Boolean Case. As the case of general domains gives a more complicated argu-
ment we begin by establishing the theorem in the case of the Boolean domain which illustrates
the main idea.

THEOREM 8.2. There is a constant c > 0 such that the following is true. Suppose
s ≤ ct2/ log t and suppose P : {−1, 1}t 7→ {0, 1} is a predicate chosen randomly among
all predicates that accept s inputs. Then, with probability 1 − 1

t , P is not approximation
resistant.

In the analysis we assume that the s strings accepted by P are chosen with replacement
and hence are independent. Since the strings are distinct with probability 1 − O(t42−t) this
is sufficient to prove the theorem.
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As discussed in Section 2, P can be represented by a multilinear polynomial and in this
section the quadratic part, denoted by P=2, is of special importance.

The following lemma is a special case of Theorem 4.9 (using C = 0) of [12].
LEMMA 8.3. Suppose P=2(y) > 0 for any y ∈ P−1(1), then P is not approximation

resistant.
The key technical lemma to apply the above lemma is the following.
LEMMA 8.4. Suppose P is constructed as in the hypothesis of Theorem 8.2, then for any

y ∈ P−1(1),

Pr[P=2(y) ≤ 0] ≤ t−3.

Using an application of the union bound it is easy to see that Lemma 8.3 and Lemma 8.4
jointly imply Theorem 8.2 and thus all we need to do is to establish Lemma 8.4.

Proof. [Proof of Lemma 8.4] P=2 is the quadratic form

P=2(x) =
∑
i<j

P̂ijxixj

where

P̂ij = 2−t
∑

z∈P−1(1)

zizj .

Now for y ∈ P−1(1) we see that

P=2(y) = 2−t
∑
i<j

∑
z∈P−1(1)

zizjyiyj .

= 2−t

(t

2

)
+

∑
z∈P−1(1)

z 6=y

∑
i<j

zizjyiyj

 (8.1)

The sum in Equation (8.1) is of the form
∑

z Py(z) where Py is a quadratic polynomial such
that E[Py(z)] = 0 and E[(Py(z))2] =

(
t
2

)
. As we are summing Py at s− 1 random points we

have, if r ≤ 2e
√

s− 1, by Theorem 2.13, that

Pr

[∣∣∣∣∣∑
z

Py(z)

∣∣∣∣∣ ≥ r

√
(s− 1)

(
t

2

)]
≤ exp(−Ω(r2)).

Setting r =
√(

t
2

)
/(s− 1), this implies, for s = ω(t), that

Pr

[∣∣∣∣∣∑
z

Py(z)

∣∣∣∣∣ ≥
(

t

2

)]
≤ exp(−Ω(t2/s)) ≤ 1/t3 (8.2)

for an appropriately chosen s = Θ(t2/ log t) and the proof of the lemma is complete.
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8.2. Arbitrary Domains. Let us then turn to the proof in the case of general size do-
mains. The proof follows the ideas of [12] and [14] and is completely analogous to the
Boolean case, but as the relevant analogue of Lemma 8.3 does not seem to have appeared we
need supply some details of this part of the argument even though the extension is immediate.

First we need to define literal and, as done in [4] we let it be of the form x + a where x
is a variable, a is a constant and addition is done modulo q. 1

Let us start be giving an overview of the approach. The idea is to construct numbers
pa

i , i ∈ [n], 0 ≤ a ≤ q − 1 such that −1 ≤ pa
i ≤ q − 1 and

q−1∑
a=0

pa
i = 0 (8.3)

and then set xi to a with probability (1+εpa
i )/q for a small number 0 < ε ≤ 1, independently

for each i.
If we have a total of m constraints each satisfied by s inputs then it easy to see that the

expected number of satisfied constraints is of the form

ms

qt
+

εL(p) + ε2Q(p) + ε3P ′(p, ε)
qt

, (8.4)

where p is the vector of pa
i , L is a linear function, Q is a bilinear function, and ε3P ′ contains

all terms that are of degree at least 3. Let us analyze this expression a little bit more carefully.
We have

P (x) =
∑

z∈P−1(1)

P z(x) (8.5)

where P z(x) is the predicate which is true if and only if x = z and let us first try to prove
that there is some set of probabilities that makes Q(p) large. Let us first analyze a single
application of the predicate. For an assignment y ∈ [q]t let us define a set of probabilities
by setting pa

i = q − 1 when yi = a and pa
i = −1 otherwise. The probability that a random

assignment, with this probability distribution, satisfies P is of the form

s

qt
+

εLy + ε2Qy + ε3P y(ε)
qt

.

We have the following lemma that takes the place of Lemma 8.4.
LEMMA 8.5. Suppose P is constructed as in the hypothesis of Theorem 8.1, then for any

y ∈ P−1(1),

Pr[Qy > 0] ≥ 1− t−3.

Proof. Using the expansion (8.5) we have contributions to Qy from z = y and from
other terms. The contribution from y is

(
t
2

)
(q − 1)2 and let us analyze the contribution from

a randomly chosen z. This contribution is the value of a quadratic polynomial Py evaluated
at a random point and it has expectation zero. Indeed, each variable of Py indicate whether
the randomly chosen z equals y in that particular coordinate. If the coordinate is equal,

1In fact, the current proof works in the more general context that a literal is a variable together with a permutation
π mapping the value of the variable to a value of the literal.
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which happens with probability 1/q then the variable takes the value q − 1 and otherwise
it takes the value −1. Thus Py(z) is the sum

(
t
2

)
terms which each has the value (q − 1)2

with probability 1/q2, the value −(q − 1) with probability 2(q − 1)/q2 and the value 1 with
probability (q − 1)2/q2.

It is not difficult to see that each value Py(z) has variance
(

t
2

)
(q − 1)2 and bounding the

probability that
∑

z Py(z) is negative can be done in way analogous to the Boolean case. We
omit the details.

Next we prove that from this local property we get that the overall quadratic part, Q(p)
in (8.4), is large.

LEMMA 8.6. There is a constant cq > 0 such that the following is true. Suppose
s ≤ cqt

2/ log t and suppose P : [q]t 7→ {0, 1} is a predicate chosen randomly among all
predicates that accept s inputs. Then, with probability 1− ot(1) there exist ε′ > 0 and δ > 0
such that whenever the number of simultaneous satisfiable constraints is at least (1 − ε′)m
there is a choice of values pa

i such that Q(p) > δm.
Proof. With probability 1− o(t), Lemma 8.5 is true for all y ∈ P−1(1) and define

ε0 = min
y∈P−1(1)

Qy.

Now, given the assignment x that satisfies (1− ε′)m clauses we set pa
i = q− 1 if xi = a and

pa
i = −1 otherwise. The contribution to Q of any satisfied constraint is at least ε0, while the

contribution to Q for any non-satisfied constraint is lower bounded by a constant c which can
be taken to be −s

(
t
2

)
(q − 1)2. Thus

Q(p) ≥ (1− ε′)mε0 − ε′mc

and choosing ε′ to be a sufficiently small constant this is lower bounded by δm for δ > 0.
Next we prove that if we can make Q(p) large then we can indeed find a good assignment.
LEMMA 8.7. For any δ > 0 there is a cδ > 0 such that if Q(p) ≥ δm then there is a

value of ε such that setting xi = a with probability 1+εpa
i

q satisfies m(s + cδ)q−t constraints
in expectation.

Proof. Let us first note that, provided we choose ε ≤ 1
q−1 to maintain non-negative

probabilities, we may change pa
i to −pa

i and hence we can assume that L(p) ≥ 0. In order to
lower bound (8.4) we need to upper bound |P ′(p, ε)|, which we do in the Claim 8.8 below.

Now, setting ε = δ(2s(2(q − 1))t)−1 (which is upper-bounded by 1
q−1 as needed) we

see, by the claim below that |ε3P ′(p, ε)| ≤ ε2Q(p)/2 and thus we can choose cδ = ε2δ/2.
This concludes the proof of Lemma 8.7.

CLAIM 8.8. For every 0 ≤ ε ≤ 1, |P ′(p, ε)| ≤ ms(2(q − 1))t.
Proof. We use the expansion (8.5). The expected value of each P z(x) is exactly the

probability that x takes the value z. This probability is of the form
∏t

i=1
1+εp

zi
i

q : expanding
that product we get at most 2t terms and using |pa

i | ≤ q − 1 and ε ≤ 1 we get a bound
(2(q − 1))t for the contribution of a single occurrence of P z to P ′. We have m constraints
and each is the sum of s different delta-predicates. The claim follows.

Finally, we can find reasonable approximations to the maximum value of Q(p).
LEMMA 8.9. There is a constant factor approximation algorithm for Q(p).
Proof. [Sketch of proof] Though we proved existence of numbers p making Q(p) large

we also need to discuss how to find such values efficiently. This is done, as is standard, by
semidefinite programming.

We replace each variable pa
i by a vector va

i and replacing products by scalar products
we can maximize Q(v). The obtained vector solution can be translated back to biases using
exactly the same procedure as used in [14].
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Namely we pick a random vector r where each coordinate is normally distributed with
mean zero and standard deviation 1 and set ya

i = (r, va
i ).

This ensures that Er[Q(y)] = Q(v) and the only problem is that we have a small proba-
bility of ya

i being too large in absolute value. The remedy is to use 1
D ya

i whenever |ya
i | ≤ D

and setting yi = 0 otherwise.
This decreases the value of Q(y) by a factor of D2, but as the probability of ya

i being
too large decreases as e−D2/2 the loss from large values of ya

i is insignificant for sufficiently
large D. We omit the details as the argument follows very close the argument of [14].

Theorem 8.1 now follows from the Lemmas 8.6, 8.7 and 8.9.
We remark that using this approach one can also prove that there is a constant c(q)

such that every predicate P : [q]t → {0, 1} with at most c(q) · t accepting assignments is
approximable, analogously to the theorem by Hast [12] that any predicate P : {−1, 1}t →
{0, 1} on t Boolean inputs having fewer than 2d(t + 1)/2e accepting inputs is approximable.
In this case one changes Lemma 8.6 by letting P be an arbitrary predicate (as opposed to a
random one) with at most c(q)t accepting assignments (as opposed to c(q)t2/ log t accepting
assignments). We omit the details.

9. Concluding remarks. Assuming the UGC we have established rather tight bounds
on the density at which a random predicate is likely to become approximation resistant. This
indicates that approximation resistance is the typical property of a predicate and only very
sparse or very special predicates can be efficiently approximated in a non trivial way.

It is difficult not to view this paper as yet another reason that we must, if possible, settle
the Unique Games Conjecture in the close future. Another road ahead is of course to prove
the results without the UGC but it is not obvious that this is significantly easier.

On a detailed technical level, although our results are rather tight we have two annoying
logarithmic gaps that should be closed.

We feel that it is likely that O(nk) random points are sufficient to support a k-wise
independent distribution with good probability. For the case of the density at which a random
predicate becomes approximation resistance we feel less convinced of the correct answer but
our inclination is to believe that the correct answer is Θ(t2).
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