
International Journal of Computer Applications (0975 – 8887) 
Volume 14– No.7, February 2011 

31 

Advanced Steganographic Approach for Hiding 
Encrypted Secret Message in LSB, LSB+1, LSB+2 and 

LSB+3 Bits in Non standard Cover Files 

Joyshree Nath 

A.K.Chaudhuri School 

of IT, Calcutta 

University 

India 

 

 

Sankar Das 

Dept. of Comp. Sc., St. 

Xavier’s College 

(Autonomous), Kolkata, 

India 

 

 

Shalabh Agarwal 

Dept. of Comp. Sc., St. 

Xavier’s College 

(Autonomous), Kolkata, 

India 

 

  

Asoke Nath 

Dept. of Comp. Sc., St. 

Xavier’s College 

(Autonomous), Kolkata, 

India  

 

 

ABSTRACT 
In digital steganography normally image, audio or video files are 
the standard cover files or the host files for embedding secret 
message such as text, image, audio or video. Nath et al.(2) 
explored the standard method for hiding secret message inside 
standard cover files such as image, audio or video files. In the   

present work we have shown how we can hide secret message in 
encrypted form in some non standard cover files such as .exe, 
.com, .pdf, .doc, .xls, .mdb, .ppt files. However, the size of the 
secret message must be very small in comparison to  cover file. 
The secret message is converted to encrypted form using MSA 
algorithm(2) and then we hide the encrypted message inside the 
non standard cover file. To hide encrypted secret  message we 
insert the 8 bits in 2 consecutive bytes of  cover file in LSB, 

LSB+1, LSB+2 and LSB+3 positions. This method could be 
very effective to hide some information in some executable file. 
To make the entire process secured we have introduced the 
password when we hide message and while encrypting the secret 
message we have to input some text_key. While hiding secret 
message in cover file we embed 1 byte information in  two 
consecutive bytes of the cover file. There is a risk factor that it 
may damage the cover file in such a way that the embedded 

cover file may not behave in proper way as it was behaving 
before insertion of secret message.  However, there is one 
advantage that we can embed more data in a cover file. We 
propose that our new method could be most appropriate for 
hiding any file in any non-standard cover file such as executable 
file such as .EXE or .COM file, compiler, MS-Office files, Data 
Base files such as .MDB, .PDF file. Our method will now give 
open challenge to all user that it is possible to hide any small 
secret message inside in any non standard cover files. The 

present work shows that we can hide information in almost all 
files except pure text or ASCII file. The only restriction is the 
size of secret message should be extremely small in comparison 
to cover file. The present method may be implemented in digital 
water marking in any legal electronic documents, Bank data 
transactions,  in government sectors, in defense, in schools and 
colleges. 

General Terms 
Steganography 
  

Keywords 
Steganography, Cryptography, Data encryption and decryption. 
 

1. INTRODUCTION 
The present work shows how to embed secret message 

inside some non standard cover files such as executable file, 
Microsoft office files, access database file etc. The secret 
message(SM) is encrypted using   MSA(Meheboob,Saima and 
Asoke) algorithm proposed by Nath et al.(1). The encrypted 

secret message substituted inside the cover file(CF) by changing 
the LSB, LSB+1, LSB+2 and LSB+3  bits of the cover file. Nath 
et al(2) already proposed this steganographic method  for 
embedding SM into CF but there the SF was inserted as it is in 
the CF and hence the security of steganography was not very 
high. The present work  basically used the same method which 
was proposed earlier but in a more secured manner. Without 
knowing the encryption algorithm the decrypted message can 

not be restored to original secret message. The standard 
steganographic cover files are now well known to everyone. But 
in the present work we  try to embed almost any type of file 
inside any type of non standard cover file(CF). Now we will first 
describe our steganography method for embedding any type of 
SM inside any type of CF and then we will describe the MSA 
encryption method which we have used to encrypt the secret 
message and to decrypt the extracted data from the embedded 

cover file. 

 (i) Insertion of bits in LSB, LSB+1, LSB+2 and LSB+3 bit 

position in a cover file:  
Here we substitute the bits of the SF in to LSB, LSB+1, LSB+2 
and LSB+3  bit positions of  each byte of the cover file. The 
present  method  will take less space in the cover file. Let us 
consider 2 bytes in a  cover file  : 00101111   00011101. 
Suppose we want to embed a number  236 in the above bit 
pattern. The binary representation  of  236 is  11101100. Now 

we want to insert this bit pattern in above 2 bytes. To embed 
11101100 we will choose LSB, LSB+1, LSB+2 and LSB+3 bits 
of the above 2 bytes of the cover file. Table 1 shows how the 
bits are inserted.  
 
Now we want to show what       happens to cover file text after 
we embed 11101100 in LSB, LSB+1, LSB+2 and LSB+3  bit 
position. 

 

Table 1 Changing  LSB, LSB+1,LSB+2 and LSB+3  bits of 

CF 

Before  
Replacement         

After 
Replacement      

Bits 
inserted 

Remarks 

00101111 00101100 1,1,0,0 Change 



International Journal of Computer Applications (0975 – 8887) 
Volume 14– No.7, February 2011 

32 

in bit 
pattern 

00011101 00011111 1,1,1,0  Change 

in bit 
pattern 

 
Here we can see that  2 bytes get changed. However, this change 
may not be prominent in case of audio, image or video files  as 
human eye or ear  is not very sensitive so therefore after 
embedding a secret message in a cover file our eye or ear  may 
not be able to find the difference between the original file and 

the file after inserting some secret text or message on to it. To 
embed secret message we  first skip 5000 bytes from the last 
byte of the cover file. After that according to size of the secret 
message (say n bytes) we  skip 2*n bytes. After that we start to 
insert the bits of the secret file into the cover file. However, the 
size of the cover file should be large in comparison to the secret 
message.  
To extract SF from CF we have to enter the password while  

embedding a secret message file. Once we get the file size we 
follow simply the reverse process of embedding a file in the 
cover file. We read LSB, LSB+1, LSB+2 and LSB+3  bits from  
each byte and accumulate 8 bits to form a character and then we 
immediately write that character on to an output  file. 
 
In table 2 we have shown a comparative study of different cover 
files as well as secret message files. 

 

Table 2 : Comparison of Cover File and Secret message File 

Sl.
No 

Cover file type Secret file type  

1 .EXE Any small file 

2. .DOC Any small file 

3. .XLS Any small file 

4. .PPT Any small file 

5. .MDB Any small File 

6. .PDF Any small file 

7. CMD.EXE Any small file 

8. .COM Any small file 

 
In table 2 we have shown mainly the non standard cover files 
which normally the people are not using as the host/cover file. 
However, our method is not applicable for hiding data in some 
ASCII file. 
 

(ii) Meheboob, Saima and Asoke (MSA) Symmetric key 

Cryptographic method:  
MSA cryptography based on symmetric key cryptography which 
means that same key is used encryption as well as decryption 
purpose. So therefore the key should not be public. In public key 
cryptosystem such as in RSA we use 2 keys one for encryption 
and one for decryption. The problem of Public key cryptosystem 
is that we have to do massive computation for encrypting any 

plain text. Some times these methods may not be  suitable such 
as in sensor networks where the computation time should be 
minimum. Nath et al.(1) proposed  an algorithm called MSA 
where they have used a random key generator for generating the 
initial key and that key is used for encrypting the given source 
file. MSA method is basically a substitution method where  2 
characters read from  input file and then search the 
corresponding characters in the random key matrix and store the 

corresponding encrypted data in another file. MSA algorithm 
provides the provision  for multiple encryption and multiple 
decryption. The key matrix contains all possible 
characters(ASCII code 0 to 255) in a random order. The pattern 
of the key matrix will depend on text_key entered by the user. 

Nath et al.(1) proposed algorithm to obtain randomization 
number, encryption number and the shift parameter from the 
initial text_key. We have given a exhaustive trial  run on 
text_key and we found that it is very difficult to match the three 
above parameters for 2 different Text_key which means if some 
one wants to break our encryption method then he/she has to 
know the exact pattern of the text_key otherwise  it will not be 
possible to obtain two sets of identical parameters from two 

different text_key. For pure text file we can apply brute force 
method to decrypt small text but for any other file such  any 
binary file we can not apply any brute force method and it does 
not work.    

 

2. RANDOM KEY GENERATION AND 

MSA ENCRYPTION ALGORITHM: 
To create Random key Matrix of size(16x16) we have to enter 
any text_key. The size of text_key must be less than or equal to 
16 characters long. These 16 characters can be any of the 256 

characters(ASCII code 0 to 255). The relative position and the 
character itself is very important in our method to calculate the 
randomization number , the encryption number and the relative 
shift of characters in the starting key matrix. Suppose text_key 
entered=AB. We choose  table-3 for calculating the place value 
and the power of characters of the incoming key: 
 

Table 3: Length of text_key and base value 

Length 
of 
key(n) 

1 2 3 4 5 6 7 8 

Base 
value(b) 

17 16 15 14 13 12 11 10 

Length 
of 

key(n) 

9 10 11 12 13 14 15 16 

Base 
value(b) 

9 8 7 6 5 4 3 2 

 
   n 

Sum=  ASCII Code * bm    ----(1) 

m=1                      
 Now we calculate the sum for key=”AB” using equation(1) 

          Sum=65*161 + 66 * 162 =17936 
 Now we have to calculate 3 parameters from this sum (i) 
Randomization number(n1), (ii) Encryption number(n2) and 
(iii)Relative shift(n3) using the following method: 
(i) Randomization number(n1): 
     num1=1*1+7*2+9*3+3*4+6*5=84 
     n1=sum mod num1=17936 mod 84=44    

     Note: if n1=0 then n1=num1 and n1<=128 

(ii) Encryption number(n2): 
      num2=6*1+3*2+9*3+7*4+1*5=72 
     n2=sum  mod  num2 =17936 mod 72 =8   

      Note: if n2=0 then n2=num2 and n2<=64 (iii)Relative 
shift(n3): 

      n3= all digits in sum=1+7+9+3+6=26 



International Journal of Computer Applications (0975 – 8887) 
Volume 14– No.7, February 2011 

33 

We first create 16 X 16 (total 256 characters) key matrix which 
contains all characters (ASCII code 
0-255) and then we give a relative shift(n3) to all elements in the 
matrix.  
 

After that  we apply the following randomization methods one 
after another in a serial manner: 
Step-1: Function cycling() 
Step-2: Function upshift() 
Step-3: Function downshift() 
Step-4:Function leftshift() 
Step-5:Function rightshift() 
Step-6:Function random() 

Step-7:Function random_diagonal_right() 
Step-8:Function random_diagonal_left() 
 
For detail randomization methods we refer to Nath et al(1). 
 
After finishing above shifting process we perform  
 (i)column randomization  
 (ii)row randomization  

(iii)diagonal rotation  and  
(iv)reverse diagonal rotation. 
 
Each operation will continue for n3 number of times. 
 
Now we apply encryption process on any text file. Our 
encryption process is as follows: 
 

We choose  a  4X4 simple key matrix: 

 

Table-4 :Key matrix(4X4) 

A B C D 

E F G H 

I J K L 

M N O P 

 

Case-I : Suppose we want to encrypt  FF then it will taken as 
GG which is just one character after F in the same row. 
 
Case –II : Suppose we want to encrypt FK where F and K 
appears in two different rows and two different columns. FK 

will be encrypted to KH (FKGJHKKH). 

 
Case-III: Suppose we want to encrypt EF where EF occurs in 
the same row. Here EF will be converted to HG. 

 
In the present work the  last 5000 bytes of the cover file we 
reserved for storing the password and the size of the secret 
message file. After that we subtract n*(size of the secret 

message file) from the size of the cover file. Here n=4 
depending on how many bytes we have used to embed one byte 
of the secret message file in the cover file. To embed any  secret 
message we have to enter the password and to extract message 
we have to enter the same password. The size of the secret 
message file we convert into 32 bits binary and then convert it 
into 4 characters and write onto cover file. When we want to 
extract encrypted secret message from a cover file then we first 

extract the file size from the cover file and extract  the same 
amount of bytes from cover file. Now we will describe the 
algorithms which we have used in our present study. We read 
one byte at a time from the encrypted  secret message file 
(ESMF) and then we extract 8 bits from that byte. After that we 
read 2 consecutive bytes from the cover file(CF). We check the 
LSB and LSB+1  bit  of each byte of that 2 byte chunk whether 
it is different from the bits of ESMF. If it is different then we 

replace that bit by the bit we obtain from the ESMF. Our 
program also counts how many bits we change and how many 
bytes we change  and then we also calculate the percentage of 
bits changed and percentage of bytes  changed in the CF. Now 
we will demonstrate in a simple case : 
Suppose we want to embed “A” in the cover text “AD”. Now we 
will show how this cover text will be modified after we insert 
“A” within it. The entire process is shown in Table-5. 

   

Table -5  Changing  LSB, LSB+1, LSB+2 and LSB+3 bits 

Original 
Text 

Bit string Bit to be inserted 
in LSB & LSB+1 

Changed  Bit 
string 

Changed Text 

A 01000001 0,1,0,0 01000100 D 

D 01000100 0,0,0,1 01000001 A 

 
Here we can see that to embed “A” we modify the cover file AD 
to DA. We can see that the change in cover text is prominent. 
AD is modified to DA. For text file this change is noticeable but 
when we do it in some image or audio file then it will not be so 

prominent. To extract byte from the cover file we follow the 
reverse process which we apply in case of encoding the 
message. We simply extract serially one by one from the cover 
file and then we club 8 bits and convert it to a character and then 
we write it to another file. But this extracted file is now in 
encrypted form and hence we apply decryption process which 
will be the reverse of encryption process to get back original 
secret message file. 

 
 
 
 

 

3.  RESULTS AND DISCUSSION 
Case-1:  Cover File type=.jpg, secret File type=.jpg -- [sxc1.jpg 
(Fig-1) + joy3.jpg (Fig-2)=sxc1.jpg (Fig-3)]  

 

 

Fig-1:Cover File name = sxc1.jpg (size=1155378B) 

 
+ 

 

 

 

 

 



International Journal of Computer Applications (0975 – 8887) 
Volume 14– No.7, February 2011 

34 

Fig-2: Secret message file name = joy3.jpg (size=634B) 

 
= 

Fig-3: Embedded cover file name = sxc1.jpg (size=11553778) 

 
Joy3.jpg is hidden inside this file. 

 

Case-2: Cover File type=.mp3, secret message file =.jpg -- 

[S91.mp3 (Fig-4) + joy1.jpg (Fig-5) = S91.mp3 (Fig-4) ] 

 

Fig-4: Cover file name=S91.mp3 size=110771B) 

 
 

+ 

Fig-5:Secret message file name=joy1.jpg (size=1870B) 

 
= 

Fig-6: Embedded cover file name = s91.mp3 (size=110771B) 

 
joy1.jpg is embedded inside this file 

 

 

Case-3: Cover file=.exe file, secret file=.c file [tc.exe (Fig-7) + 
wordext1.c(Fig-8)=tc.exe(Fig-9)] 

 

Fig-7:Cover file name=tc..exe (size=290249B). 

It is Turbo-C compiler 

 
+ 

Fig-8: secret file name=wordext1.c (size=978B) 

/*Write a program to extract words from any file*/ 

 #include<stdio.h> 
 main() 
 { 
 FILE *fp1,*fp2; 
 char file1[50],file2[50],ch; 
 long int n,nw,flag,lc; 
 clrscr(); 
 printf("\nEnter File name form where words to be 

extracted="); 
 gets(file1); 
 printf("Enter Word file name="); 

 gets(file2); 
 fp1=fopen(file1,"rb"); 
 fp2=fopen(file2,"wb+"); 
 n=nw=lc=0; 
 flag=1; 

 while(fscanf(fp1,"%c",&ch)>0) 
 { 
 n++; 
  if((ch>='A' && ch<='Z') || (ch>='a' && 
ch<='z') || ch=='-') 
  {if(flag==1) 
   { 
   nw++; 

   flag=0; 
   } 
  fprintf(fp2,"%c",ch); 
  } 
  else if(flag==0) 
  { 
  fprintf(fp2,"\n"); 
  flag=1; 

  } 
 } 
 fclose(fp1); 
 rewind(fp2); 
 while(fscanf(fp2,"%c",&ch)>0) 
 {printf("%c",ch); 
  if(ch=='\n') 
  {lc++; 

   if((lc%20)==0) 
   { 
   printf("\nPress any key to 
continue-->"); 
   getch(); 
   clrscr(); 
   } 
  } 
 

 } 
 printf("\nSize of <%s>=%ld\n",file1,n); 
 printf("Number of words extracted=%ld\n",nw); 
 getch(); 
 } 

 

= 

 

Fig-9: embedded cover file name = tc.exe (size=290249B) 

 
 
wordext1.c is embedded inside this turbo-c compiler.  
 
The compiler works perfectly ok even after we embed this c-

program file. 
 

Case-4: Cover File=.doc file, secret message=.c file.  
[mydoc2.doc (Fig-10) + xxfile.c (Fig-11) = mydoc2.doc ] 

 

 

 

 

tc.exe 

tc.exe 

S91.MP3 

S91.MP3 



International Journal of Computer Applications (0975 – 8887) 
Volume 14– No.7, February 2011 

35 

Fig-10: Coverfile=mydoc2.doc (size=22528B) 

To, 
Dr. Amlan Chakrabarti 
A.K.Chaudhuri School of I.T. 

Raja Bazar Science College 
 
    Date: 05/07/2010 
 
Dear Dr. Chakrabarti, 
 
How are you? I hope you will be now very busy with your 
work. I was trying to go and meet you in Science College but 

because of tremendous work pressure I am unable to meet you. 
I am leaving Kolkata on 10-th July at 8:00PM. My lecture on 
13-th July at 12:20PM-12:40PM(Las Vegas Standard Time). 
On 14-th July I have to chair one full 2hrs session. My return 
ticket on 16-th of July and I will return back to Kolkata on 18-
th July at 10:20PM. If everything goes right direction then I 
will again join college on 19-th July. As soon as I return back I 
will contact you at Science College. I have to finalize the 

workshop on Matlab.  
Amlan I have some queries. If possible you answer it : 

(i) When the result of 6-th of MCA will be 
declared? 

(ii) When Joyshree and the students of MCA final 
year can join M.tech in your Dept as I will be 
out from 10/07/2010 to 18/07/2010. 

(iii) Any idea about the amount of fees to be 
deposited at time of admission in M.Tech? 

I am now totally tied up with our second work on Crytography. 
It is almost at the finishing stage. I want to send it before I 
leave from Kolkata. I to also prepare the slides of my lecture to 
be delivered at Las Vegas. 
 
With kind regards. 
 
Yours sincerely 

 
Asoke Nath 
Nataraj Housing 
381 & 382A M.G.Road 
Kolkata-700 082 
Phone: 24020909 

+ 

Fig-11: secret message file=xxfile1.c (size=460B) 

 
/*Write a program to create a file which contains all 
characters whose ASCII  Code 0-255 */ 
 #include<stdio.h> 
 main() 
 { 
         int i; 

 char file1[50]; 
 FILE *fp1; 
 clrscr(); 
 printf("\n\n\nEnter your File Name :"); 
 gets(file1); 
 fp1=fopen(file1,"wb"); 
 for(i=0;i<=255;i++) 
 fprintf(fp1,"%c",i); 

        for(i=0;i<=255;i++) 
 fprintf(fp1,"%c",i); 

 fcloseall(); 
 printf("\n\nFile is created. Press any key to finish the  
program--->"); 
 getch(); 

 

= 
mydoc2.doc (embedded cover file) size=22528B 

 

4. CONCLUSION  
In the present work we have tried to hide any secret message 
inside any cover file such as executable file, Microsoft Office 
file, Database file and common cover file type such as image, 
audio, video etc. The security of our method is also very high as 
the message which we embed that is in encrypted form. It means 
even if someone extracts the message from the cover file but 
will not be able to able to decipher it. Brute force method will 
not help the intruder to decipher the encrypted message. Our 

method may  be used in Bank, Defense and Government sectors 
where the Confidentiality of data is very important. In Mobile 
communication also this method may be implemented. The time 
coming when it will be possible to hide any secret message 
within pure ASCII file. 
  

5. ACKNOWLEDGEMENT 
AN,SD and SA sincerely express their gratitude to Department 
of Computer Science for providing necessary help and 
assistance. AN is also extremely grateful to University Grants 
Commission  for providing fund for continuing minor research 
project on Data encryption using symmetric key and public key 
crypto system. JN is grateful to A.K. Chaudhury School of I.T. 

for giving inspiration for doing research work 
 

6. REFERENCES 
[1] Symmetric key cryptography using random key generator,  

A.Nath, S.Ghosh, .A.Mallik, Proceedings of International 

conference on SAM-2010 held at Las Vegas(USA) 12-15 
July,2010, Vol-2,P-239-244 

[2] Data Hiding and Retrieval, A.Nath, S.Das, A.Chakrabarti, 

Proceedings of IEEE Int.ational conference on Computer 
Intelligence and Computer Network held at Bhopal from 
26-28 Nov, 2010.  

[3] William Stallings, "Cryptography and Network Security: 
Principles and Practices." 3rd edition, 2003. 

[4] Steganography at http://en.wikipedia.org/wiki/ 
Steganography 

[5] An Overview of Image Steganography by T.Morkel, J.H.P. 
Eloff and M.S.Oliver. 

[6]   An Overview of Steganography by Shawn D. Dickman    

[7] Digital Steganography: Hiding data within Data, IEEE 
Internet Computing, May/June 2001, pp.  75-80. 

[8] Cyber Warfare: steganography vs. Steganalysis, 
Communications of the ACM, Vol 47, Issue 10, Oct 
2004, PP. 76-82. 


