
Documentation for the GNU Go Project
Edition 3.8

December, 2008

By Arend Bayer, Daniel Bump, Evan Berggren Daniel,
David Denholm, Jerome Dumonteil, Gunnar Farnebäck,
Paul Pogonyshev, Thomas Traber, Tanguy Urvoy, Inge Wallin



GNU Go 3.8

Copyright c© 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 and 2008 Free Software
Foundation, Inc.

This is Edition 3.8 of The GNU Go Project documentation,
for the 3.8 version of the GNU Go program.

Published by the Free Software Foundation Inc
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301
USA
Tel: 617-542-5942

Permission is granted to make and distribute verbatim or modified copies of this manual
is given provided that the terms of the GNU Free Documentation License (see Section A.5
[GFDL], page 218, version 1.3 or any later version) are respected.
Permission is granted to make and distribute verbatim or modified copies of the program
GNU Go is given provided the terms of the GNU General Public License (see Section A.1
[GPL], page 207, version 3 or any later version) are respected.

http://www.fsf.org
http://www.fsf.org


i

Table of Contents

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 About GNU Go and this Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Copyrights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thanks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 GNU/Linux and Unix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Configure Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Ram Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Default Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Other Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Compiling GNU Go on Microsoft platforms . . . . . . . . . . . . . . . . . . . . . 7
2.3.1 Windows 95/98, MS-DOS and Windows 3.x using DJGPP . . 8
2.3.2 Windows NT, 2000, XP, 95/98/ME using Cygwin . . . . . . . . . . 8
2.3.3 Windows NT, 2000, XP, 95/98/ME using MinGW32 . . . . . . . 9
2.3.4 Windows NT, Windows 95/98 using Visual C and project

files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.5 Running GNU Go on Windows NT and Windows 95/98 . . 10

2.4 Macintosh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Using GNU Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Getting Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Running GNU Go via CGoban . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Other Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Ascii Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 GNU Go mode in Emacs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.6 The Go Modem Protocol and Go Text Protocol . . . . . . . . . . . . . . . 13
3.7 Computer Go Tournaments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.8 Smart Game Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.9 Invoking GNU Go: Command line options . . . . . . . . . . . . . . . . . . . . . 14

3.9.1 Some basic options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.9.2 Monte Carlo Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.9.3 Other general options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.9.4 Other options affecting strength and speed . . . . . . . . . . . . . . . . 17
3.9.5 Ascii mode options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9.6 Development options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9.7 Experimental options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



ii

4 GNU Go engine overview . . . . . . . . . . . . . . . . . . . . . 24
4.1 Gathering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Move Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Move Valuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Detailed Sequence of Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5.1 Files in ‘engine/’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5.2 Files in ‘patterns/’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.6 Coding styles and conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6.1 Coding Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6.2 Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6.3 Assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.6.4 FIXME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.7 Navigating the Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Analyzing GNU Go’s moves . . . . . . . . . . . . . . . . . . 36
5.1 Interpreting Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 The Output File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 Checking the reading code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Checking the Owl Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.5 GTP and GDB techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.6 Debugging on a Graphical Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.7 Scoring the game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.8 Colored Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.8.1 Dragon Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.8.2 Eye Space Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Move generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 Generation of move reasons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.3 Detailed Descriptions of various Move Reasons . . . . . . . . . . . . . . . . 42

6.3.1 Attacking and defending moves . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3.2 Threats to Attack or Defend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3.3 Multiple attack or defense moves . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3.4 Cutting and connecting moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3.5 Semeai winning moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3.6 Making or destroying eyes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3.7 Antisuji moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3.8 Territorial moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3.9 Attacking and Defending Dragons . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3.10 Combination Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.4 Valuation of suggested moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.4.1 Territorial Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.4.2 Strategical Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.4.3 Shape Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.4.4 Minimum Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.4.5 Secondary Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



iii

6.4.6 Threats and Followup Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.5 End Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7 Worms and Dragons . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.1 Worms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2 Amalgamation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.3 Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.4 Half Eyes and False Eyes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.5 Dragons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.6 Colored Dragon Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8 Eyes and Half Eyes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.1 Local games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.2 Eye spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.3 The eyespace as local game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.4 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.5 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.6 Eye shape analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.7 Eye Local Game Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.8 Topology of Half Eyes and False Eyes . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.9 Eye Topology with Ko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.10 False Margins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.11 Functions in ‘optics.c’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

9 The Pattern Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9.2 Pattern Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

9.2.1 Constraint Pattern Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.2.2 Action Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

9.3 Pattern Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.4 Helper Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.5 Autohelpers and Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
9.6 Autohelper Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.7 Autohelper Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
9.8 Attack and Defense Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
9.9 The Connections Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
9.10 Connections Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
9.11 Tuning the Pattern databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
9.12 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.13 Symmetry and transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.14 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
9.15 The “Grid” Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.16 The Joseki Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.17 Ladders in Joseki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.18 Corner Matcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
9.19 Emacs Mode for Editing Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



iv

10 The DFA pattern matcher . . . . . . . . . . . . . . . . . 103
10.1 Introduction to the DFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
10.2 What is a DFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
10.3 Pattern matching with DFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.4 Building the DFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
10.5 Incremental Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
10.6 Some DFA Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

11 Tactical reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
11.1 Reading Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

11.1.1 Organization of the reading code . . . . . . . . . . . . . . . . . . . . . . . 111
11.1.2 Return Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
11.1.3 Reading cutoff and depth parameters . . . . . . . . . . . . . . . . . . . 112

11.2 Hashing of Positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
11.2.1 Calculation of the hash value . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
11.2.2 Organization of the hash table . . . . . . . . . . . . . . . . . . . . . . . . . 114
11.2.3 Hash Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

11.3 Persistent Reading Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
11.4 Ko Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
11.5 A Ko Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
11.6 Another Ko Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
11.7 Alternate Komaster Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

11.7.1 Essentially the 2.7.232 scheme. . . . . . . . . . . . . . . . . . . . . . . . . . 121
11.7.2 Revised 2.7.232 version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

11.8 Superstrings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
11.9 Debugging the reading code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
11.10 Connection Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

12 Pattern Based Reading . . . . . . . . . . . . . . . . . . . . . 126
12.1 The Owl Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
12.2 Combination reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

13 Influence Function . . . . . . . . . . . . . . . . . . . . . . . . . . 129
13.1 Conceptual Outline of Influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
13.2 Territory, Moyo and Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
13.3 Where influence gets used in the engine . . . . . . . . . . . . . . . . . . . . . 130
13.4 Influence and Territory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
13.5 Details of the Territory Valuation . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
13.6 The Core of the Influence Function . . . . . . . . . . . . . . . . . . . . . . . . . . 133
13.7 The Influence Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
13.8 Permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
13.9 Escape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
13.10 Break Ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
13.11 Surrounded Dragons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
13.12 Patterns used by the Influence module . . . . . . . . . . . . . . . . . . . . . 141
13.13 Colored display and debugging of influence . . . . . . . . . . . . . . . . . 143
13.14 Influence Tuning with view.pike . . . . . . . . . . . . . . . . . . . . . . . . . . 144



v

14 Monte Carlo Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
14.0.1 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

15 The Board Library . . . . . . . . . . . . . . . . . . . . . . . . . . 150
15.1 Board Data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
15.2 The Board Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
15.3 Incremental Board data structures . . . . . . . . . . . . . . . . . . . . . . . . . . 153
15.4 Some Board Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

16 Handling SGF trees in memory . . . . . . . . . . . . 159
16.1 The SGFTree datatype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

17 Application Programmers Interface to GNU
Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

17.1 How to use the engine in your own program: getting started
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

17.2 Basic Data Structures in the Engine . . . . . . . . . . . . . . . . . . . . . . . . . 162
17.3 The board state struct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
17.4 Functions which manipulate a Position . . . . . . . . . . . . . . . . . . . . . . 163
17.5 Game handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

17.5.1 Functions which manipulate a Gameinfo . . . . . . . . . . . . . . . . 166

18 Utility Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
18.1 General Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
18.2 Print Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
18.3 Board Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
18.4 Utilities from ‘engine/influence.c’ . . . . . . . . . . . . . . . . . . . . . . . . 178

19 The Go Text Protocol . . . . . . . . . . . . . . . . . . . . . . 179
19.1 The Go Text Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
19.2 Running GNU Go in GTP mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
19.3 GTP applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
19.4 The Metamachine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

19.4.1 The Standalone Metamachine . . . . . . . . . . . . . . . . . . . . . . . . . . 182
19.4.2 GNU Go as a Metamachine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

19.5 Adding new GTP commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
19.6 GTP command reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

20 Regression testing . . . . . . . . . . . . . . . . . . . . . . . . . . 202
20.1 Regression testing in GNU Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
20.2 Test suites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
20.3 Running the Regression Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
20.4 Running regress.pike . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
20.5 Viewing tests with Emacs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
20.6 HTML Regression Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

20.6.1 Setting up the HTML regression Views . . . . . . . . . . . . . . . . . 205



vi

Appendix A Copying . . . . . . . . . . . . . . . . . . . . . . . . . . 207
A.1 GNU GENERAL PUBLIC LICENSE . . . . . . . . . . . . . . . . . . . . . . . . 207
Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
TERMS AND CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
How to Apply These Terms to your New Programs . . . . . . . . . . . . . . . . 217
A.5 GNU FREE DOCUMENTATION LICENSE . . . . . . . . . . . . . . . . . 218
A.6 The Go Text Protocol License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Concept Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Functions Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230



1



Chapter 1: Introduction 2

1 Introduction

This is GNU Go 3.8, a Go program. Development versions of GNU Go may be found at
http://www.gnu.org/software/gnugo/devel.html. Contact us at gnugo@gnu.org if you
are interested in helping.

1.1 About GNU Go and this Manual

The challenge of Computer Go is not to beat the computer, but to program the computer.

In Computer Chess, strong programs are capable of playing at the highest level, even
challenging such a player as Garry Kasparov. No Go program exists that plays at the same
level as the strongest human players.

To be sure, existing Go programs are strong enough to be interesting as opponents, and
the hope exists that some day soon a truly strong program can be written. This is especially
true in view of the successes of Monte Carlo methods, and a general recent improvement of
computer Go.

Before GNU Go, Go programs have always been distributed as binaries only. The algo-
rithms in these proprietary programs are secret. No-one but the programmer can examine
them to admire or criticise. As a consequence, anyone who wished to work on a Go pro-
gram usually had to start from scratch. This may be one reason that Go programs have
not reached a higher level of play.

Unlike most Go programs, GNU Go is Free Software. Its algorithms and source code
are open and documented. They are free for any one to inspect or enhance. We hope this
freedom will give GNU Go’s descendents a certain competetive advantage.

Here is GNU Go’s Manual. There are doubtless inaccuracies. The ultimate documenta-
tion is in the commented source code itself.

The first three chapters of this manual are for the general user. Chapter 3 is the User’s
Guide. The rest of the book is for programmers, or persons curious about how GNU Go
works. Chapter 4 is a general overview of the engine. Chapter 5 introduces various tools
for looking into the GNU Go engine and finding out why it makes a certain move, and
Chapters 6–7 form a general programmer’s reference to the GNU Go API. The remaining
chapters are more detailed explorations of different aspects of GNU Go’s internals.

1.2 Copyrights

Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 and 2008 by the Free
Software Foundation except as noted below.

All source files are distributed under the GNU General Public License (see Section A.1
[GPL], page 207, version 3 or any later version), except ‘gmp.c’, ‘gmp.h’, ‘gtp.c’, and
‘gtp.h’.

The files ‘gtp.c’ and ‘gtp.h’ are copyright the Free Software Foundation. In the interests
of promoting the Go Text Protocol these two files are licensed under a less restrictive license
than the GPL and are free for unrestricted use (see Section A.6 [GTP License], page 225).

The two files ‘gmp.c’ and ‘gmp.h’ were placed in the public domain by William Shubert,
their author, and are free for unrestricted use.

http://www.gnu.org/software/gnugo/devel.html
mailto:gnugo@gnu.org


Chapter 1: Introduction 3

Documentation files (including this manual) are distributed under the GNU Free Docu-
mentation License (see Section A.5 [GFDL], page 218, version 1.3 or any later version).

The files ‘regression/games/golois/*sgf’ are copyright Tristan Cazenave and are
included with his permission.

The SGF files in ‘regression/games/handtalk/’ are copyright Jessie Annala and are
used with permission.

The SGF files in ‘regression/games/mertin13x13/’ are copyright Stefan Mertin and
are used with permission.

The remaining SGF files are either copyright by the FSF or are in the public domain.

1.3 Authors

GNU Go maintainers are Daniel Bump, Gunnar Farneback and Arend Bayer. GNU Go
authors (in chronological order of contribution) are Man Li, Wayne Iba, Daniel Bump,
David Denholm, Gunnar Farnebäck, Nils Lohner, Jerome Dumonteil, Tommy Thorn, Nick-
las Ekstrand, Inge Wallin, Thomas Traber, Douglas Ridgway, Teun Burgers, Tanguy Urvoy,
Thien-Thi Nguyen, Heikki Levanto, Mark Vytlacil, Adriaan van Kessel, Wolfgang Manner,
Jens Yllman, Don Dailey, Måns Ullerstam, Arend Bayer, Trevor Morris, Evan Berggren
Daniel, Fernando Portela, Paul Pogonyshev, S.P. Lee and Stephane Nicolet, Martin Holters
and Grzegorz Leszczynski.

1.4 Thanks

We would like to thank Arthur Britto, David Doshay, Tim Hunt, Matthias Krings, Pi-
otr Lakomy, Paul Leonard, Jean-Louis Martineau, Andreas Roever and Pierce Wetter for
helpful correspondence.

Thanks to everyone who stepped on a bug (and sent us a report)!

Thanks to Gary Boos, Peter Gucwa, Martijn van der Kooij, Michael Margolis, Trevor
Morris, Måns Ullerstam, Don Wagner and Yin Zheng for help with Visual C++.

Thanks to Alan Crossman, Stephan Somogyi, Pierce Wetter and Mathias Wagner for
help with Macintosh. And thanks to Marco Scheurer and Shigeru Mabuchi for helping us
find various problems.

Thanks to Jessie Annala for the Handtalk games.

Special thanks to Ebba Berggren for creating our logo, based on a design by Tanguy Ur-
voy and comments by Alan Crossman. The old GNU Go logo was adapted from Jamal Han-
nah’s typing GNU: http://www.gnu.org/graphics/atypinggnu.html. Both logos can be
found in ‘doc/newlogo.*’ and ‘doc/oldlogo.*’.

We would like to thank Stuart Cracraft, Richard Stallman and Man Lung Li for their
interest in making this program a part of GNU, William Shubert for writing CGoban and
gmp.c, Rene Grothmann for Jago and Erik van Riper and his collaborators for NNGS.

1.5 Development

You can help make GNU Go the best Go program.

http://www.gnu.org/graphics/atypinggnu.html


Chapter 1: Introduction 4

This is a task-list for anyone who is interested in helping with GNU Go. If you want to
work on such a project you should correspond with us until we reach a common vision of
how the feature will work!

A note about copyright. The Free Software Foundation has the copyright to GNU Go.
For this reason, before any code can be accepted as a part of the official release of GNU
Go, the Free Software Foundation will want you to sign a copyright assignment.

Of course you could work on a forked version without signing such a disclaimer. You
can also distribute such a forked version of the program so long as you also distribute the
source code to your modifications under the GPL (see Section A.1 [GPL], page 207). But
if you want your changes to the program to be incorporated into the version we distribute
we need you to assign the copyright.

Please contact the GNU Go maintainers, Daniel Bump (bump@sporadic.stanford.edu)
and Gunnar Farnebäck (gunnar@lysator.liu.se), to get more information and the papers
to sign.

Bug reports are very welcome, but if you can, send us bug FIXES as well as bug reports.
If you see some bad behavior, figure out what causes it, and what to do about fixing it. And
send us a patch! If you find an interesting bug and cannot tell us how to fix it, we would be
happy to have you tell us about it anyway. Send us the sgf file (if possible) and attach other
relevant information, such as the GNU Go version number. In cases of assertion failures
and segmentation faults we probably want to know what operating system and compiler
you were using, in order to determine if the problem is platform dependent.

If you want to work on GNU Go you should subscribe to the GNU Go development list.
Discussion of bugs and feedback from established developers about new projects or tuning
the existing engine can be done on the list.

mailto:bump@sporadic.stanford.edu
mailto:gunnar@lysator.liu.se
http://lists.gnu.org/mailman/listinfo/gnugo-devel


Chapter 2: Installation 5

2 Installation

You can get the most recent version of GNU Go ftp.gnu.org or a mirror (see
http://www.gnu.org/order/ftp.html for a list). You can read about newer versions and
get other information at http://www.gnu.org/software/gnugo/.

2.1 GNU/Linux and Unix

Untar the sources, change to the directory gnugo-3.8. Now do:

./configure [OPTIONS]
make

Several configure options will be explained in the next section. You do not need to set
these unless you are dissatisfied with GNU Go’s performance or wish to vary the experi-
mental options.

As an example,

./configure --enable-level=9 --enable-cosmic-gnugo

will make a binary in which the default level is 9, and the experimental “cosmic”’ option is
enabled. A list of all configure options can be obtained by running ./configure --help.
Further information about the experimental options can be found in the next section (see
Section 2.2 [Configure Options], page 5).

After running configure and make, you have now made a binary called
‘interface/gnugo’. Now (running as root) type

make install

to install ‘gnugo’ in ‘/usr/local/bin’.

There are different methods of using GNU Go. You may run it from the command line
by just typing:

gnugo

but it is nicer to run it using CGoban 1 (under X Window System), Quarry, Jago (on any
platform with a Java Runtime Environment) or other client programs offering a GUI.

You can get the most recent version of CGoban 1 from http://sourceforge.net/projects/cgoban1/.
The earlier version 1.12 is available from http://www.igoweb.org/~wms/comp/cgoban/index.html.
The CGoban version number MUST be 1.9.1 at least or it won’t work. CGoban 2 will not
work.

See Section 3.2 [CGoban], page 11, for instructions on how to run GNU Go from Cgoban,
or See Section 3.3 [Other Clients], page 12, for Jago or other clients.

Quarry is available at http://home.gna.org/quarry/.

2.2 Configure Options

There are three options which you should consider configuring, particularly if you are dis-
satisfied with GNU Go’s performance.

http://www.gnu.org/order/ftp.html
http://www.gnu.org/software/gnugo/
http://sourceforge.net/projects/cgoban1/
http://www.igoweb.org/~wms/comp/cgoban/index.html
http://home.gna.org/quarry/


Chapter 2: Installation 6

2.2.1 Ram Cache

By default, GNU Go makes a cache of about 8 Megabytes in RAM for its internal use.
The cache is used to store intermediate results during its analysis of the position. More
precisely the default cache size is 350000 entries, which translates to 8.01 MB on typical 32
bit platforms and 10.68 MB on typical 64 bit platforms.

Increasing the cache size will often give a modest speed improvement. If your system
has lots of RAM, consider increasing the cache size. But if the cache is too large, swapping
will occur, causing hard drive accesses and degrading performance. If your hard drive seems
to be running excessively your cache may be too large. On GNU/Linux systems, you may
detect swapping using the program ’top’. Use the ’f’ command to toggle SWAP display.

You may override the size of the default cache at compile time by running one of:
./configure --enable-cache-size=n

to set the cache size to n megabytes. For example
./configure --enable-cache-size=32

creates a cache of size 32 megabytes. If you omit this, your default cache size will be 8-11
MB as discussed above. Setting cache size negative also gives the default size. You must
recompile and reinstall GNU Go after reconfiguring it by running make and make install.

You may override the compile-time defaults by running ‘gnugo’ with the option
‘--cache-size n’, where n is the size in megabytes of the cache you want, and ‘--level’
where n is the level desired. We will discuss setting these parameters next in detail.

2.2.2 Default Level

GNU Go can play at different levels. Up to level 10 is supported. At level 10 GNU Go is
much more accurate but takes an average of about 1.6 times longer to play than at level 8.

The level can be set at run time using the ‘--level’ option. If you don’t set this,
the default level will be used. You can set the default level with the configure option
‘--enable-level=n’. For example

./configure --enable-level=9

sets the default level to 9. If you omit this parameter, the compiler sets the default level
to 10. We recommend using level 10 unless you find it too slow. If you decide you want to
change the default you may rerun configure and recompile the program.

2.2.3 Other Options

Anything new in the engine is generally tested as an experimental option which can be
turned on or off at compile time or run time. Some “experimental” options such as the
break-in code are no longer experimental but are enabled by default.

This section can be skipped unless you are interested in the experimental options.
Moreover, some configure options were removed from the stable release. For example it

is known that the owl extension code can cause crashes, so the configure option –enable-
experimental-owl-ext was disabled for 3.8.

The term “default” must be clarified, since there are really two sets of defaults at hand,
runtime defaults specified in ‘config.h’ and compile time default values for the runtime
defaults, contained in ‘configure’ (which is created by editing ‘configure.in’ then running
autoconf. For example we find in ‘config.h’



Chapter 2: Installation 7

/* Center oriented influence. Disabled by default. */
#define COSMIC_GNUGO 0

/* Break-in module. Enabled by default. */
#define USE_BREAK_IN 1

This means that the experimental cosmic option, which causes GNU Go to play a center-
oriented game (and makes the engine weaker) is disabled by default, but that the break-in
module is used. These are defaults which are used when GNU Go is run without command
line options. They can be overridden with the run time options:

gnugo --cosmic-gnugo --without-break-in

Alternatively you can configure GNU Go as follows:
./configure --enable-cosmic-gnugo --disable-experimental-break-in

then recompile GNU Go. This changes the defaults in ‘config.h’, so that you do not
have to pass any command line options to GNU Go at run time to get the experimental
owl extension turned on and the experimental break-in code turned off.

If you want to find out what experimental options were compiled into your GNU Go
binary you can run gnugo --options to find out. Here is a list of experimental options in
GNU Go.
• experimental-break-in. Experimental break-in code (see Section 13.10 [Break Ins],

page 138). You should not need to configure this because the break in code is enabled
by default in level 10, and is turned off at level 9. If you don’t want the breakin code
just play at level 9.

• cosmic-gnugo. An experimental style which plays a center oriented game and has a
good winning rate against standard GNU Go, though it makes GNU Go weaker against
other opponents.

• large-scale. Attempt to make large-scale captures. See:
http://lists.gnu.org/archive/html/gnugo-devel/2003-07/msg00209.html

for the philosophy of this option. This option makes the engine slower.
• metamachine. Enables the metamachine, which allows you to run the engine in an

experimental mode whereby it forks a new gnugo process which acts as an “oracle.”
Has no effect unless combined with the ‘--metamachine’ run-time option.

Other options are not experimental, and can be changed as configure or runtime options.
• chinese-rules Use Chinese (area) counting.
• resignation-allowed Allow GNU Go to resign games. This is on by default.

2.3 Compiling GNU Go on Microsoft platforms

GNU Go is being developed on Unix variants. GNU Go is easy to build and install on those
platforms. GNU Go 3.8 has support for building on MS-DOS, Windows 3.x, Windows
NT/2000 and Windows 95/98.

There are two approaches to building GNU Go on Microsoft platforms.
1. The first approach is to install a Unix-like environment based on ports of GCC to

Microsoft platforms. This approach is fully supported by the GNU Go developers and

http://lists.gnu.org/archive/html/gnugo-devel/2003-07/msg00209.html


Chapter 2: Installation 8

works well. Several high quality free Unix-environments for Microsoft platforms are
available.
One benefit of this approach is that it is easier to participate in GNU Go’s develop-
ment. These unix environments come for instance with the ‘diff’ and ‘patch’ programs
necessary to generate and apply patches.
Another benefit of the unix environments is that development versions (which may be
stronger than the latest stable version) can be built too. The supporting files for VC are
not always actively worked on and consequently are often out of sync for development
versions, so that VC will not build cleanly.

2. The second approach is to use compilers such as Visual C developed specially for the
Microsoft platform. GNU Go 2.6 and later support Visual C. Presently we support
Visual C through the project files which are supplied with the distribution.

The rest of this section gives more details on the various ways to compile GNU Go for
Microsoft platforms.

2.3.1 Windows 95/98, MS-DOS and Windows 3.x using DJGPP

On these platforms DJGPP can be used. GNU Go installation has been tested in a DOS-
Box with long filenames on Windows 95/98. GNU Go compiles out-of-the box with the
DJGPP port of GCC using the standard Unix build and install procedure.

Some URLs for DJGPP:
DJGPP home page: http://www.delorie.com/djgpp/
DJGPP ftp archive on simtel:
ftp://ftp.simtel.net/pub/simtelnet/gnu/djgpp/v2/

ftp://ftp.simtel.net/pub/simtelnet/gnu/djgpp/v2gnu/

Once you have a working DJGPP environment and you have downloaded the GNU Go
source available as gnugo-3.8.tar.gz you can build the executable as follows:

tar zxvf gnugo-3.8.tar.gz
cd gnugo-3.8
./configure
make

Optionally you can download GLib for DJGPP to get a working version of snprintf.

2.3.2 Windows NT, 2000, XP, 95/98/ME using Cygwin

Cygwin is a full fledged and rapidly maturing unix environment on top of windows. Cygwin
installs very easily with the interactive setup program available from the cygwin homepage
at http://sources.redhat.com/cygwin/. In fact precompiled versions of stable GNU Go
releases as well as of the cgoban X11 GUI can be downloaded through Cygwin’s setup.
Cygwin’s setup also provides precompiled packages of most of the unix tools necessary to
participate in development.

If you want to build GNU Go yourself make sure to download the ncurses packages
prior to building GNU Go. GNU Go compiles out-of-the box using the standard Unix
build procedure on the Cygwin environment. After installation of cygwin and fetching
‘gnugo-3.8.tar.gz’ you can type:

http://www.delorie.com/djgpp/
ftp://ftp.simtel.net/pub/simtelnet/gnu/djgpp/v2/
ftp://ftp.simtel.net/pub/simtelnet/gnu/djgpp/v2gnu/
http://sources.redhat.com/cygwin/


Chapter 2: Installation 9

tar zxvf gnugo-3.8.tar.gz
cd gnugo-3.8
./configure
make

The generated executable is not a stand-alone executable: it needs cygwin1.dll that
comes with the Cygwin environment. cygwin1.dll contains the emulation layer for Unix.

2.3.3 Windows NT, 2000, XP, 95/98/ME using MinGW32

The Cygwin environment also comes with MinGW32. The mingw32 platform generates
an executable that relies only on Microsoft DLLs. This executable is thus completely
comparable to a Visual C executable and easier to distribute than the Cygwin executable.
To build on cygwin an executable suitable for the win32 platform type the following at your
cygwin prompt:

tar zxvf gnugo-3.8.tar.gz
cd gnugo-3.8
env CC=’gcc -mno-cygwin’ ./configure
make

The generated executable can be reduced in size significantly by using the upx compres-
sion program that is available through Cygwin’s setup program.

2.3.4 Windows NT, Windows 95/98 using Visual C and project
files

We assume that you do not want to change any configure options. If you do, you should
edit the file ‘config.vc’. Note that when configure is run, this file is overwritten with
the contents of ‘config.vcin’, so you may also want to edit ‘config.vcin’, though the
instructions below do not have you running configure.
1. Open the VC++ 6 workspace file gnugo.dsw
2. Set the gnugo project as the active project (right-click on it, and select "Set as Active

Project". Select ’Build’ from the main menu, then select ’Build gnugo.exe’, this will
make all of the runtime subprojects.

Notes:
• a) The build can also be done from the command line:

msdev gnugo.dsw /make "gnugo - Win32 Release"

• b) The default configuration is ’Debug’, build the optimized version by selecting ’Build’
from the main menu , then select ’Set active Configuration’ and click on ’gnugo - Win32
Release’. See the Visual Studio help for more on project configurations.

• c) A custom build step in the first dependent subproject (utils) copys config.vc to
config.h in the root directory. If you want to modify config.h, copy any changes to
config.vc. In particular if you want to change the default level or default cache size,
whose significance is discussed in See Section 2.1 [GNU/Linux and Unix], page 5, you
must edit this file.

• d) This project was built and tested using VC version 6.0. It has not been tested, and
will most likely not work with earlier versions of VC.

•



Chapter 2: Installation 10

2.3.5 Running GNU Go on Windows NT and Windows 95/98

GNU Go does not come with its own graphical user interface. The Java client jago can be
used.

To run Jago you need a Java Runtime Environment (JRE). This can be obtained from
http://www.javasoft.com/. This is the runtime part of the Java Development Kit (JDK)
and consists of the Java virtual machine, Java platform core classes, and supporting files.
The Java virtual machine that comes with I.E. 5.0 works also.

Jago: http://www.rene-grothmann.de/jago/
1. Invoke GNU Go with gnugo --quiet --mode gmp

2. Run gnugo --help from a cygwin or DOS window for a list of options
3. optionally specify --level <level> to make the game faster

Jago works well with both the Cygwin and MinGW32 executables. The DJGPP exe-
cutable also works, but has some problems in the interaction with jago after the game has
been finished and scored.

2.4 Macintosh

If you have Mac OS X you can build GNU Go using Apple’s compiler, which is derived
from GCC.

http://www.javasoft.com/
http://www.rene-grothmann.de/jago/


Chapter 3: Using GNU Go 11

3 Using GNU Go

3.1 Getting Documentation

You can obtain a printed copy of the manual by running make gnugo.pdf in the
‘doc/’directory, then printing the resulting file. The manual contains a great deal of
information about the algorithms of GNU Go.

On platforms supporting info documentation, you can usually install the manual by
executing ‘make install’ (running as root) from the ‘doc/’ directory. This will create a
file called ‘gnugo.info’ (and a few others) and copy them into a system directory such
as ‘/usr/local/share/info’. You may then add them to your info directory tree with
the command install-info --info-file=[path to gnugo.info] --info-dir=[path to
dir]. The info documentation can be read conveniently from within Emacs by executing
the command Control-h i.

Documentation in ‘doc/’ consists of a man page ‘gnugo.6’, the info files ‘gnugo.info’,
‘gnugo.info-1’, ... and the Texinfo files from which the info files are built. The Texinfo
documentation contains this User’s Guide and extensive information about the algorithms
of GNU Go, for developers.

If you want a typeset copy of the Texinfo documentation, you can make gnugo.dvi, make
gnugo.ps, or make gnugo.pdf in the ‘doc/’ directory. (make gnugo.pdf only works after
you have converted all .eps-files in the doc/ directory to .pdf files, e.g. with the utility
epstopdf.)

You can make an HTML version with the command makeinfo --html gnugo.texi. If
you have texi2html, better HTML documentation may be obtained by make gnugo.html
in the ‘doc/’ directory.

User documentation can be obtained by running gnugo --help or man gnugo from any
terminal, or from the Texinfo documentation.

Documentation for developers is in the Texinfo documentation, and in comments
throughout the source. Contact us at gnugo@gnu.org if you are interested in helping to
develop this program.

3.2 Running GNU Go via CGoban

There are two different programs called CGoban, both written by William Shubert. In this
documentation, CGoban means CGoban 1.x, the older program. You should get a copy
with version number 1.12 or higher.

CGoban is an extremely nice way to run GNU Go. CGoban provides a beautiful graphic
user interface under X Window System.

Start CGoban. When the CGoban Control panel comes up, select “Go Modem”. You will
get the Go Modem Protocol Setup. Choose one (or both) of the players to be “Program,”
and fill out the box with the path to ‘gnugo’. After clicking OK, you get the Game Setup
window. Choose “Rules Set” to be Japanese (otherwise handicaps won’t work). Set the
board size and handicap if you want.

If you want to play with a komi, you should bear in mind that the GMP does not have
any provision for communicating the komi. Because of this misfeature, unless you set the

mailto:gnugo@gnu.org


Chapter 3: Using GNU Go 12

komi at the command line GNU Go will have to guess it. It assumes the komi is 5.5 for
even games, 0.5 for handicap games. If this is not what you want, you can specify the komi
at the command line with the ‘--komi’ option, in the Go Modem Protocol Setup window.
You have to set the komi again in the Game Setup window, which comes up next.

Click OK and you are ready to go.

In the Go Modem Protocol Setup window, when you specify the path to GNU Go, you
can give it command line options, such as ‘--quiet’ to suppress most messages. Since the
Go Modem Protocol preempts standard I/O other messages are sent to stderr, even if they
are not error messages. These will appear in the terminal from which you started CGoban.

3.3 Other Clients

In addition to CGoban (see Section 3.2 [CGoban], page 11) there are a number of other good
clients that are capable of running GNU Go. Here are the ones that we are aware of that
are Free Software. This list is part of a larger list of free Go programs that is maintained
at http://www.gnu.org/software/gnugo/free_go_software.html.

• Quarry (http://home.gna.org/quarry/) is a GPL’d client that supports GTP. Works
under GNU/Linux and requires GTK+ 2.x and librsvg 2.5. Supports GNU Go as well
as other engines. Can play not only Go, but also a few other board games.

• qGo (http://sourceforge.net/projects/qgo/) is a full featured Client for play-
ing on the servers, SGF viewing/editing, and GNU Go client written in C++ for
GNU/Linux, Windows and Mac OS X. Can play One Color Go. Licensed GPL and
QPL.

• ccGo (http://ccdw.org/~cjj/prog/ccgo/) is a GPL’d client written in C++ capable
of playing with GNU Go, or on IGS.

• RubyGo (http://rubygo.rubyforge.org/) is a GPL’d client by J.-F. Menon for IGS
written in the scripting language Ruby. RubyGo is capable of playing with GNU Go
using the GTP.

• Dingoui (http://dingoui.sourceforge.net/) is a free GMP client written in GTK+
which can run GNU Go.

• Jago (http://www.rene-grothmann.de/jago/) is a GPL’d Java client which works
for both Microsoft Windows and X Window System.

• Sente Software’s FreeGoban (http://www.sente.ch/software/goban/freegoban.html)
is a well-liked user interface for GNU Go (and potentially other programs) distributed
under the GPL.

• Mac GNU Go (http://www1.u-netsurf.ne.jp/~future/HTML/macgnugo.html) is a
front end for GNU Go 3.2 with both English and Japanese versions. License is GPL.

• Quickiego (http://www.geocities.com/secretmojo/QuickieGo/) is a Mac interface
to GNU Go 2.6.

• Gogui (http://sourceforge.net/projects/gogui/) from Markus En-
zenberger is a Java workbench that allows you to play with a gtp
(http://www.lysator.liu.se/~gunnar/gtp) engine such as GNU Go. Li-
cence is GPL. Gogui does not support gmp or play on servers but is potentially very
useful for programmers working on GNU Go or other engines.

http://www.gnu.org/software/gnugo/free_go_software.html
http://home.gna.org/quarry/
http://sourceforge.net/projects/qgo/
http://ccdw.org/~cjj/prog/ccgo/
http://rubygo.rubyforge.org/
http://dingoui.sourceforge.net/
http://www.rene-grothmann.de/jago/
http://www.sente.ch/software/goban/freegoban.html
http://www1.u-netsurf.ne.jp/~future/HTML/macgnugo.html
http://www.geocities.com/secretmojo/QuickieGo/
http://sourceforge.net/projects/gogui/
http://www.lysator.liu.se/~gunnar/gtp


Chapter 3: Using GNU Go 13

3.4 Ascii Interface

Even if you do not have any client program, you can play with GNU Go using its default
Ascii interface. Simply type gnugo at the command line, and GNU Go will draw a board.
Typing help will give a list of options. At the end of the game, pass twice, and GNU Go will
prompt you through the counting. You and GNU Go must agree on the dead groups—you
can toggle the status of groups to be removed, and when you are done, GNU Go will report
the score.

You can save the game at any point using the save filename command. You can
reload the game from the resulting SGF file with the command gnugo -l filename --mode
ascii. Reloading games is not supported when playing with CGoban. However you can
use CGoban to save a file, then reload it in ascii mode.

You may play games with a time limit against GNU Go in ascii mode. For this, the
Canadian time control system is used. (See http://en.wikipedia.org/wiki/Byoyomi
and http://senseis.xmp.net/?CanadianByoyomi.) That is, you have a main time to be
followed by byo-yomi periods. After the main time is exhausted you have a certain number
of moves to be made in a certain number of seconds. (see Section 3.9 [Invoking GNU Go],
page 14)

3.5 GNU Go mode in Emacs

You can run GNU Go from Emacs. This has the advantage that you place the stones using
the cursor arrow keys or with the mouse, and you can have a nice graphical display of the
board within emacs.

You will need the file ‘interface/gnugo.el’. There is a version of this distributed
with GNU Go but it only works with Emacs 21. Most Emacsen are Emacs 22
however. Therefore you should get the latest version of gnugo.el by Thien-Thi
Nguyen, which you can find at http://www.gnuvola.org/software/j/gnugo/ or
http://www.emacswiki.org/emacs/gnugo.el.

You will also need some xpm files for the graphical display. You can either use those
distributed by Thien-Thi Nguyen (at the first URL above) or those distributed with
GNU Go, either the file ‘interface/gnugo-xpms.el’ or (for high resolution displays)
‘interface/gnugo-big-xpms.el’.

Load the file ‘interface/gnugo.el’ and ‘interface/gnugo-xpms.el’. You may do this
using the Emacs M-x load-file command.

When you start a game with M-x gnugo, you will first see an ascii board. However typing
‘i’ toggles a graphical board display which is very nice. This is a pleasant way to play GNU
Go. You may get help by typing C-x m.

3.6 The Go Modem Protocol and Go Text Protocol

The Go Modem Protocol (GMP) was developed by Bruce Wilcox with input
from David Fotland, Anders Kierulf and others, according to the history in
http://www.britgo.org/tech/gmp.html.

Any Go program should support this protocol since it is a standard. Since CGoban
supports this protocol, the user interface for any Go program can be done entirely through

http://en.wikipedia.org/wiki/Byoyomi
http://senseis.xmp.net/?CanadianByoyomi
http://www.gnuvola.org/software/j/gnugo/
http://www.emacswiki.org/emacs/gnugo.el
http://www.britgo.org/tech/gmp.html


Chapter 3: Using GNU Go 14

CGoban. The programmer can concentrate on the real issues without worrying about
drawing stones, resizing the board and other distracting issues.

GNU Go 3.0 introduced a new protocol, the Go Text Protocol (see Chapter 19
[GTP], page 179) which we hope can serve the functions currently used by the GMP. The
GTP is becoming increasingly adopted by other programs as a method of interprocess
communication, both by computer programs and by clients. Still the GMP is widely used
in tournaments.

3.7 Computer Go Tournaments

Computer Tournaments currently use the Go Modem Protocol. The current method fol-
lowed in such tournaments is to connect the serial ports of the two computers by a “null
modem” cable. If you are running GNU/Linux it is convenient to use CGoban. If your pro-
gram is black, set it up in the Go Modem Protocol Setup window as usual. For White, select
“Device” and set the device to ‘/dev/cua0’ if your serial port is COM1 and ‘/dev/cua1’ if
the port is COM2.

3.8 Smart Game Format

The Smart Game Format (SGF), is the standard format for storing Go games. GNU
Go supports both reading and writing SGF files. The SGF specification (FF[4]) is at:
http://www.red-bean.com/sgf/

3.9 Invoking GNU Go: Command line options

3.9.1 Some basic options

• ‘--help’, ‘-h’
Print a help message describing the options. This will also tell you the
defaults of various parameters, most importantly the level and cache size.
The default values of these parameters can be set before compiling by
configure. If you forget the defaults you can find out using ‘--help’.

• ‘--boardsize size ’
Set the board size

• ‘--komi num ’
Set the komi

• ‘--level level ’
GNU Go can play with different strengths and speeds. Level 10 is the
default. Decreasing the level will make GNU Go faster but less accurate
in its reading.

• ‘--quiet’, ‘--silent’
Don’t print copyright and other messages. Messages specifically requested
by other command line options, such as ‘--trace’, are not supressed.

• ‘-l’, ‘--infile filename ’
Load the named SGF file. GNU Go will generate a move for the player
who is about to move. If you want to override this and generate a move for

http://www.red-bean.com/sgf/


Chapter 3: Using GNU Go 15

the other player you may add the option ‘--color <color>’ where <color>
is black or white.

• ‘-L’, ‘--until move ’
Stop loading just before the indicated move is played. move can be either
the move number or location.

• ‘-o’, ‘--outfile filename ’
Write sgf output to file

• ‘-O’, ‘--output-flags flags ’
Add useful information to the sgf file. Flags can be ’d’, ’v’ or both (i.e.
’dv’). If ’d’ is specified, dead and critical dragons are marked in the sgf
file. If ’v’ is specified, move valuations around the board are indicated.

• ‘--mode mode ’
Force the playing mode (’ascii’, ’emacs,’ ’gmp’ or ’gtp’). The default is
ASCII, but if no terminal is detected GMP (Go Modem Protocol) will be
assumed. In practice this is usually what you want, so you may never need
this option.

• ‘--resign-allowed’
GNU Go will resign games if this option is enabled. This is the
default unless you build the engine with the configure option
‘--disable-resignation-allowed’. Unfortunately the Go Modem
Protocol has no provision for passing a resignation, so this option has no
effect in GMP mode.

• ‘--never-resign’
GNU Go will not resign games.

• ‘--resign-allowed’
GNU Go will resign lost games. This is the default.

3.9.2 Monte Carlo Options

GNU Go can play Monte Carlo Go on a 9x9 board. (Not available for larger boards.) It
makes quite a strong engine. Here are the command line options.
• ‘--monte-carlo’

Use Monte Carlo move generation (9x9 or smaller).
• ‘--mc-games-per-level <number>’

Number of Monte Carlo simulations per level. Default 8000. Thus at level
10, GNU Go simulates 80,000 games in order to generate a move.

• ‘--mc-list-patterns’
list names of builtin Monte Carlo patterns

• ‘--mc-patterns <name>’
Choose a built in Monte Carlo pattern database. The argument can be
‘mc_mogo_classic’, ‘mc_montegnu_classic’ or ‘mc_uniform’.

• ‘--mc-load-patterns <filename>’
read Monte Carlo patterns from file



Chapter 3: Using GNU Go 16

3.9.3 Other general options

• ‘-M’, ‘--cache-size megs ’
Memory in megabytes used for caching of read results. The default size
is 8 unless you configure gnugo with the command configure --enable-
cache-size=size before compiling to make size the default (see Chapter 2
[Installation], page 5). GNU Go stores results of its reading calculations
in a hash table (see Section 11.2 [Hashing], page 113). If the hash table is
filled, it is emptied and the reading continues, but some reading may have
to be repeated that was done earlier, so a larger cache size will make GNU
Go run faster, provided the cache is not so large that swapping occurs.
Swapping may be detected on GNU/Linux machines using the program
top. However, if you have ample memory or if performance seems to be a
problem you may want to increase the size of the cache using this option.

• ‘--chinese-rules’
Use Chinese rules. This means that the Chinese or Area Counting is fol-
lowed. It may affect the score of the game by one point in even games,
more if there is a handicap (since in Chinese Counting the handicap stones
count for Black) or if either player passes during the game.

• ‘--japanese-rules’
Use Japanese Rules. This is the default unless you specify
‘--enable-chinese-rules’ as a configure option.

• ‘--play-out-aftermath’
• ‘--capture-all-dead’

These options cause GNU Go to play out moves that are usually left un-
played after the end of the game. Such moves lose points under Japanese
rules but not Chinese rules. With ‘--play-out-aftermath’, GNU Go may
play inside its territory in order to reach a position where it considers ev-
ery group demonstrably alive or dead. The option ‘--capture-all-dead’
causes GNU Go to play inside its own territory to remove dead stones.

• ‘--forbid-suicide’
Do not allow suicide moves (playing a stone so that it ends up without
liberties and is therefore immediately removed). This is the default.

• ‘--allow-suicide’
Allow suicide moves, except single-stone suicide. The latter would not
change the board at all and pass should be used instead.

• ‘--allow-all-suicide’
Allow suicide moves, including single-stone suicide. This is only interesting
in exceptional cases. Normally the ‘--allow-suicide’ option should be
used instead.

• ‘--simple-ko’
Do not allow an immediate recapture of a ko so that the previous position
is recreated. Repetition of earlier positions than that are allowed. This is
default.



Chapter 3: Using GNU Go 17

• ‘--no-ko’
Allow all kinds of board repetition.

• ‘--positional-superko’
Forbid repetition of any earlier board position. This only applies to moves
on the board; passing is always allowed.

• ‘--situational-superko’
Forbid repetition of any earlier board position with the same player to
move. This only applies to moves on the board; passing is always allowed.

• ‘--copyright’: Display the copyright notice
• ‘--version’ or ‘-v’: Print the version number
• ‘--printsgf filename ’:

Create an SGF file containing a diagram of the board. Useful with ‘-l’ and
‘-L’ to create a diagram of the board from another sgf file. Illegal moves
are indicated with the private IL property. This property is not used in
the FF4 SGF specification, so we are free to preempt it.

• ‘--options’
Print which experimental configure options were compiled into the program
(see Section 2.2.3 [Other Options], page 6).

• ‘--orientation n ’
Combine with ‘-l’. The Go board can be oriented in 8 different ways,
counting reflections and rotations of the position; this option selects an
orientation (default 0). The parameter ‘n’ is an integer between 0 and 7.

3.9.4 Other options affecting strength and speed

• ‘--level amount ’
The higher the level, the deeper GNU Go reads. Level 10 is the default. If
GNU Go plays too slowly on your machine, you may want to decrease it.

This single parameter ‘--level’ is the best way of choosing whether to play stronger
or faster. It controls a host of other parameters which may themselves be set individually
at the command line. The default values of these parameters may be found by running
gnugo --help.

Unless you are working on the program you probably don’t need the remaining
options in this category. Instead, just adjust the single variable ‘--level’. The following
options are of use to developers tuning the program for performance and accuracy. For
completeness, here they are.
• ‘-D’, ‘--depth depth ’

Deep reading cutoff. When reading beyond this depth (default 16) GNU
Go assumes that any string which can obtain 3 liberties is alive. Thus
GNU Go can read ladders to an arbitrary depth, but will miss other types
of capturing moves.

• ‘-B’, ‘--backfill-depth depth ’
Deep reading cutoff. Beyond this depth (default 12) GNU Go will no longer
try backfilling moves in its reading.



Chapter 3: Using GNU Go 18

• ‘--backfill2-depth depth ’

Another depth controlling how deeply GNU Go looks for backfilling moves.
The moves tried below backfill2_depth are generally more obscure and
time intensive than those controlled by backfill_depth, so this parameter
has a lower default.

• ‘-F’, ‘--fourlib-depth depth ’

Deep reading cutoff. When reading beyond this depth (default 7) GNU Go
assumes that any string which can obtain 4 liberties is alive.

• ‘-K’, ‘--ko-depth depth ’

Deep reading cutoff. Beyond this depth (default 8) GNU Go no longer
tries very hard to analyze kos.

• ‘--branch-depth depth ’

This sets the branch_depth, typically a little below the depth. Between
branch_depth and depth, attacks on strings with 3 liberties are considered
but branching is inhibited, so fewer variations are considered. Below this
depth (default 13), GNU Go still tries to attack strings with only 3 liberties,
but only tries one move at each node.

• ‘--break-chain-depth depth ’

Set the break_chain_depth. Beyond this depth, GNU Go abandons some
attempts to defend groups by trying to capture part of the surrounding
chain.

• ‘--aa-depth depth ’

The reading function atari_atari looks for combinations beginning with
a series of ataris, and culminating with some string having an unexpected
change in status (e.g. alive to dead or critical). This command line optio
sets the parameter aa_depth which determines how deeply this function
looks for combinations.

• ‘--superstring-depth’

A superstring (see Section 11.8 [Superstrings], page 122) is an amalgama-
tion of tightly strings. Sometimes the best way to attack or defend a string
is by attacking or defending an element of the superstring. Such tactics
are tried below superstring_depth and this command line option allows
this parameter to be set.

The preceeding options are documented with the reading code (see Section 11.1
[Reading Basics], page 111).

• ‘--owl-branch’ Below this depth Owl only considers one move. Default 8.

• ‘--owl-reading’ Below this depth Owl assumes the dragon has escaped. Default 20.

• ‘--owl-node-limit’

If the number of variations exceeds this limit, Owl assumes the dragon can
make life. Default 1000. We caution the user that increasing owl_node_
limit does not necessarily increase the strength of the program.



Chapter 3: Using GNU Go 19

• ‘--owl-node-limit n ’

If the number of variations exceeds this limit, Owl assumes the dragon can
make life. Default 1000. We caution the user that increasing owl_node_
limit does not necessarily increase the strength of the program.

• ‘--owl-distrust n ’

Below this limit some owl reading is truncated.

3.9.5 Ascii mode options

• ‘--color color ’

Choose your color (’black’ or ’white’).

• ‘--handicap number ’

Choose the number of handicap stones (0–9)

For more information about the following clock options see See Section 3.4 [Ascii],
page 13.

• ‘--clock seconds ’

Initialize the timer.

• ‘--byo-time seconds ’

Number of seconds per (Canadian) byo-yomi period

• ‘--byo-period stones ’

Number of stones per (Canadian) byo-yomi period

3.9.6 Development options

• ‘--replay color ’

Replay all moves in a game for either or both colors. If used with the
‘-o’ option the game record is annotated with move values. This option
requires ‘-l filename ’. The color can be:

• white: replay white moves only

• black: replay black moves only

• both: replay all moves

When the move found by genmove differs from the move in the sgf file the
values of both moves are reported thus:

Move 13 (white): GNU Go plays C6 (20.60) - Game move F4 (20.60)

This option is useful if one wants to confirm that a change such as a speedup
or other optimization has not affected the behavior of the engine. Note that
when several moves have the same top value (or nearly equal) the move
generated is not deterministic (though it can be made deterministic by
starting with the same random seed). Thus a few deviations from the
move in the sgf file are to be expected. Only if the two reported values
differ should we conclude that the engine plays differently from the engine
which generated the sgf file. See Chapter 20 [Regression], page 202.



Chapter 3: Using GNU Go 20

• ‘-a’, ‘--allpats’
Test all patterns, even those smaller in value than the largest move found
so far. This should never affect GNU Go’s final move, and it will make it
run slower. However this can be very useful when "tuning" GNU Go. It
causes both the traces and the output file (‘-o’) to be more informative.

• ‘-T’, ‘--printboard’: colored display of dragons.
Use rxvt, xterm or Linux Console. (see Section 5.8 [Colored Display],
page 38)

• ‘--showtime’
Print timing information to stderr.

• ‘-E’, ‘--printeyes’: colored display of eye spaces
Use rxvt, xterm or Linux Console. (see Section 5.8 [Colored Display],
page 38)

• ‘-d’, ‘--debug level ’
Produce debugging output. The debug level is given in hexadecimal, using
the bits defined in the following table from ‘engine/gnugo.h’. A list of
these may be produced using ‘--debug-flags’. Here they are in hexadec-
imal:

DEBUG_INFLUENCE 0x0001
DEBUG_EYES 0x0002
DEBUG_OWL 0x0004
DEBUG_ESCAPE 0x0008
DEBUG_MATCHER 0x0010
DEBUG_DRAGONS 0x0020
DEBUG_SEMEAI 0x0040
DEBUG_LOADSGF 0x0080
DEBUG_HELPER 0x0100
DEBUG_READING 0x0200
DEBUG_WORMS 0x0400
DEBUG_MOVE_REASONS 0x0800
DEBUG_OWL_PERFORMANCE 0x1000
DEBUG_LIFE 0x2000
DEBUG_FILLLIB 0x4000
DEBUG_READING_PERFORMANCE 0x8000
DEBUG_SCORING 0x010000
DEBUG_AFTERMATH 0x020000
DEBUG_ATARI_ATARI 0x040000
DEBUG_READING_CACHE 0x080000
DEBUG_TERRITORY 0x100000
DEBUG_OWL_PERSISTENT_CACHE 0X200000
DEBUG_TOP_MOVES 0x400000
DEBUG_MISCELLANEOUS 0x800000
DEBUG_ORACLE_STREAM 0x1000000

These debug flags are additive. If you want to turn on both dragon and
worm debugging you can use ‘-d0x420’.



Chapter 3: Using GNU Go 21

• ‘--debug-flags’
Print the list of debug flags

• ‘-w’, ‘--worms’
Print more information about worm data.

• ‘-m’, ‘--moyo level ’
moyo debugging, show moyo board. The level is fully documented else-
where (see Section 13.13 [Influential Display], page 143).

• ‘-b’, ‘--benchmark number ’
benchmarking mode - can be used with ‘-l’. Causes GNU Go to play itself
repeatedly, seeding the start of the game with a few random moves. This
method of testing the program is largely superceded by use of the twogtp
program.

• ‘-S’, ‘--statistics’
Print statistics (for debugging purposes).

• ‘-t’, ‘--trace’
Print debugging information. Use twice for more detail.

• ‘-r’, ‘--seed seed ’
Set random number seed. This can be used to guarantee that GNU Go
will make the same decisions on multiple runs through the same game. If
seed is zero, GNU Go will play a different game each time.

• ‘--decide-string location ’
Invoke the tactical reading code (see Chapter 11 [Tactical Reading],
page 111 to decide whether the string at location can be captured, and
if so, whether it can be defended. If used with ‘-o’, this will produce a
variation tree in SGF.

• ‘--decide-owl location ’
Invoke the owl code (see Section 12.1 [The Owl Code], page 126) to decide
whether the dragon at location can be captured, and whether it can be
defended. If used with ‘-o’, this will produce a variation tree in SGF.

• ‘--decide-connection location1/location2 ’
Decide whether dragons at location1 and location2 can be connected. Use-
ful in connection with ‘-o’ to write the variations to an SGF file.

• ‘--decide-dragon-data location ’
Print complete information about the status of the dragon at location.

• ‘--decide-semeai location1/location2 ’
At location1 and location2 are adjacent dragons of the opposite color.
Neither is aliveby itself, and their fate (alive, dead or seki) depends on the
outcome of a semeai (capturing race). Decide what happens. Useful in
connection with ‘-o’ to write the variations to an SGF file.

• ‘--decide-tactical-semeai location1/location2 ’
Similar to ‘--decide-semeai’, except that moves proposed by the owl code
are not considered.



Chapter 3: Using GNU Go 22

• ‘--decide-position’
Try to attack and defend every dragon with dragon.escape<6. If used with
‘-o’, writes the variations to an sgf file.

• ‘--decide-eye location ’
Evaluates the eyespace at location and prints a report. You can get more
information by adding ‘-d0x02’ to the command line. (see Section 8.7 [Eye
Local Game Values], page 66.)

• ‘--decide-surrounded location ’
A dragon is surrounded if it is contained in the convex hull of its unfriendly
neighbor dragons. This does not mean that it cannot escape, but it is often
a good indicator that the dragon is under attack. This option draws the
convex hull of the neighbor dragons and decides whether the dragon at
location is surrounded.

• ‘--decide-combination’
Calls the function atari_atari to decide whether there exist combinations
on the board.

• ‘--score method ’
Requires ‘-l’ to specify which game to score and ‘-L’ if you want to score
anywhere else than at the end of the game record. method can be "esti-
mate", "finish", or "aftermath". "finish" and "aftermath" are appropriate
when the game is complete, or nearly so, and both try to supply an ac-
curate final score. Notice that if the game is not already finished it will
be played out, which may take quite a long time if the game is far from
complete. The "estimate" method may be used to get a quick estimate
during the middle of the game. Any of these options may be combined
with ‘--chinese-rules’ if you want to use Chinese (Area) counting.
If the option ‘-o outputfilename ’ is provided, the result will also be writ-
ten as a comment in the output file. For the "finish" and "aftermath" scor-
ing algorithms, the selfplayed moves completing the game are also stored.
• finish

Finish the game by selfplaying until two passes, then de-
termine the status of all stones and compute territory.

• aftermath
Finish the game by selfplaying until two passes, then
accurately determine status of all stones by playing out
the "aftermath", i.e. playing on until all stones except
ones involved in seki have become either unconditionally
(in the strongest sense) alive or unconditionally dead (or
captured). Slower than ‘--score finish’, and while
these algorithms usually agree, if they differ, ‘--score
aftermath’ is most likely to be correct.

• --score aftermath --capture-all-dead --chinese-rules

This combination mandates Tromp-Taylor scoring. The Tromp-Taylor
ruleset requires the game to be played out until all dead stones are removed,



Chapter 3: Using GNU Go 23

then uses area (Chinese) scoring. The option ‘--capture-all-dead’ re-
quires the aftermath code to finish capturing all dead stones.

3.9.7 Experimental options

Most of these are available as configure options and are described in Section 2.2.3 [Other
Options], page 6.
• ‘--options’

Print which experimental configure options were compiled into the pro-
gram.

• ‘--with-break-in’
• ‘--without-break-in’

Use or do not use the experimental break-in code. This option has no effect
at level 9 or below. The break in code is enabled by default at level 10,
and the only difference between levels 9 and level 10 is that the break in
code is disabled at level 9.

• ‘--cosmic-gnugo’
Use center oriented influence.

• ‘--nofusekidb’
Turn off the fuseki database.

• ‘--nofuseki’
Turn off fuseki moves entirely

• ‘--nojosekidb’
Turn off the joseki database.

• ‘--mirror’
Try to play mirror go.

• ‘--mirror-limit n ’
Stop mirroring when n stones are on the board.



Chapter 4: GNU Go engine overview 24

4 GNU Go engine overview

This chapter is an overview of the GNU Go internals. Further documentation of how any
one module or routine works may be found in later chapters or comments in the source files.

GNU Go starts by trying to understand the current board position as good as possi-
ble. Using the information found in this first phase, and using additional move generators,
a list of candidate moves is generated. Finally, each of the candidate moves is valued ac-
cording to its territorial value (including captures or life-and-death effects), and possible
strategical effects (such as strengthening a weak group).

Note that while GNU Go does, of course, do a lot of reading to analyze possible
captures, life and death of groups etc., it does not (yet) have a fullboard lookahead.

4.1 Gathering Information

This is by far the most important phase in the move generation. Misunderstanding life-and-
death situations can cause gross mistakes. Wrong territory estimates will lead to inaccurate
move valuations. Bad judgement of weaknesses of groups make strategic mistakes likely.

This information gathering is done by the function examine_position(). It first
calls make_worms().

Its first steps are very simple: it identifies sets of directly connected stones, called
worms, and notes their sizes and their number of liberties.

Soon after comes the most important step of the worm analysis: the tactical reading
code (see Chapter 11 [Tactical Reading], page 111) is called for every worm. It tries to
read out which worms can be captured directly, giving up as soon as a worm can reach 5
liberties. If a worm can be captured, the engine of course looks for moves defending against
this capture. Also, a lot of effort is made to find virtually all moves that achieve the capture
or defense of a worm.

After knowing which worms are tactically stable, we can make a first picture of the
balance of power across the board: the Chapter 13 [Influence], page 129 code is called for
the first time.

This is to aid the next step, the analysis of dragons. By a dragon we mean a group
of stones that cannot be disconnected.

Naturally the first step in the responsible function make_dragons() is to identify
these dragons, i.e. determine which worms cannot be disconnected from each other. This is
partly done by patterns, but in most cases the specialized readconnect code is called. This
module does a minimax search to determine whether two given worms can be connected
with, resp. disconnected from each other.

Then we compute various measures to determine how strong or weak any given
dragon is:

• A crude estimate of the number of eyes is made.

• The results of the influence computations is used to see which dragons are adjacent to
own territory or a moyo.

• A guess is made for the potential to escape if the dragon got under attack.



Chapter 4: GNU Go engine overview 25

For those dragons that are considered weak, a life and death analysis is made (see
Section 12.1 [The Owl Code], page 126). If two dragons next to each other are found that
are both not alive, we try to resolve this situation with the semeai module.

For a more detailed reference of the worm and dragon analysis (and explanations of
the data structures used to store the information), see See Chapter 7 [Worms and Dragons],
page 47.

The influence code is then called second time to make a detailed analysis of likely
territory. Of course, the life-and-death status of dragons are now taken into account.

The territorial results of the influence module get corrected by the break-in module.
This specifically tries to analyze where an opponent could break into an alleged territory,
with sequences that would be too difficult to see for the influence code.

4.2 Move Generators

Once we have found out all about the position it is time to generate the best move. Moves
are proposed by a number of different modules called move generators. The move generators
themselves do not set the values of the moves, but enumerate justifications for them, called
move reasons. The valuation of the moves comes last, after all moves and their reasons have
been generated.

For a list and explanation of move reasons used in GNU Go, and how they are
evaluated, see See Chapter 6 [Move Generation], page 40.

There are a couple of move generators that only extract data found in the previous
phase, examining the position:
• worm_reasons()

Moves that have been found to capture or defend a worm are proposed as
candidates.

• owl_reasons()

The status of every dragon, as it has been determined by the owl code (see
Section 12.1 [The Owl Code], page 126) in the previous phase, is reviewed.
If the status is critical, the killing or defending move gets a corresponding
move reason.

• semeai_move_reasons()

Similarly as owl_reasons, this function proposes moves relevant for se-
meais.

• break_in_move_reasons()

This suggests moves that have been found to break into opponent’s terri-
tory by the break-in module.

The following move generators do additional work:
• fuseki()

Generate a move in the early fuseki, either in an empty corner of from the
fuseki database.

• shapes()

This is probably the most important move generator. It finds
patterns from ‘patterns/patterns.db’, ‘patterns/patterns2.db’,



Chapter 4: GNU Go engine overview 26

‘patterns/fuseki.db’, and the joseki files in the current position. Each
pattern is matched in each of the 8 possible orientations obtainable by
rotation and reflection. If the pattern matches, a so called "constraint"
may be tested which makes use of reading to determine if the pattern
should be used in the current situation. Such constraints can make
demands on number of liberties of strings, life and death status, and
reading out ladders, etc. The patterns may call helper functions, which
may be hand coded (in ‘patterns/helpers.c’) or autogenerated.
The patterns can be of a number of different classes with different goals.
There are e.g. patterns which try to attack or defend groups, patterns
which try to connect or cut groups, and patterns which simply try to
make good shape. (In addition to the large pattern database called by
shapes(), pattern matching is used by other modules for different tasks
throughout the program. See Chapter 9 [Patterns], page 77, for a complete
documentation of patterns.)

• combinations()

See if there are any combination threats or atari sequences and either
propose them or defend against them.

• revise_thrashing_dragon()

This module does not directly propose move: If we are clearly ahead, and
the last move played by the opponent is part of a dead dragon, we want to
attack that dragon again to be on the safe side. This is done be setting the
status of this thrashing dragon to unkown and repeating the shape move
generation and move valution.

• endgame_shapes()

If no move is found with a value greater than 6.0, this module matches a
set of extra patterns which are designed for the endgame. The endgame
patterns can be found in ‘patterns/endgame.db’.

• revise_semeai()

If no move is found, this module changes the status of opponent groups
involved in a semeai from DEAD to UNKNOWN. After this, genmove runs
shapes and endgame_shapes again to see if a new move turns up.

• fill_liberty()

Fill a common liberty. This is only used at the end of the game. If necessary
a backfilling or backcapturing move is generated.

4.3 Move Valuation

After the move generation modules have run, each proposed candidate move goes through
a detailed valuation by the function review_move_reasons. This invokes some analysis to
try to turn up other move reasons that may have been missed.

The most important value of a move is its territorial effect. see Section 13.4 [Influence
and Territory], page 131 explains in detail how this is determined.

This value is modified for all move reasons that cannot be expressed directly in terms
of territory, such as combination attacks (where it is not clear which of several strings will



Chapter 4: GNU Go engine overview 27

get captured), strategical effects, connection moves, etc. A large set heuristics is necessary
here, e.g. to avoid duplication of such values. This is explained in more detail in Section 6.4
[Valuation], page 44.

4.4 Detailed Sequence of Events

First comes the sequence of events when examine_position() is run from genmove(). This
is for reference only.

purge_persistent_caches()
make_worms():
compute_effective_sizes()
compute_unconditional_status()
find_worm_attacks_and_defenses():

for each attackable worm:
set worm.attack
change_attack() to add the attack point

find_attack_patterns() to find a few more attacks
for each defensible worm:

set worm.attack
change_defense() to add the defense point

find_defense_patterns() to find a few more defense moves
find additional attacks and defenses by testing all

immediate liberties
find higher order liberties (for each worm)
find cutting stones (for each worm)
improve attacks and defenses: if capturing a string defends

another friendly string, or kills an unfriendly one, we
add points of defense or attack. Make repairs if adjacent
strings can both be attacked but not defended.

find worm lunches
find worm threats
identify inessential worms (such as nakade stones)

compute_worm_influence():
find_influence_patterns()
value_influence()
segment_influence()

make_dragons():
find_cuts()
find_connections()
make_domains() (determine eyeshapes)
find_lunches() (adjacent strings that can be captured)
find_half_and_false_eyes()
eye_computations(): Compute the value of each eye space.

Store its attack and defense point.
analyze_false_eye_territory()
for each dragon compute_dragon_genus()
for each dragon compute_escape() and set escape route data



Chapter 4: GNU Go engine overview 28

resegment_initial_influence()
compute_refined_dragon_weaknesses() (called again after owl)
for each dragon compute_crude_status()
find_neighbor_dragons()
for each dragon compute surround status
for each weak dragon run owl_attack() and owl_defend()

to determine points of attack and defense
for each dragon compute dragon.status
for each thrashing dragon compute owl threats
for each dragon compute dragon.safety
revise_inessentiality()
semeai():

for every semeai, run owl_analyze_semeai()
find_moves_to_make_seki()

identify_thrashing_dragons()
compute_dragon_influence():
compute_influence()
break_territories() (see Section 13.10 [Break Ins], page 138)

compute_refined_dragon_weaknesses()

Now a summary of the sequence of events during the move generation and selection
phases of genmove(), which take place after the information gathering phase has been
completed:

estimate_score()
choose_strategy()
collect_move_reasons():
worm_reasons(): for each attack and defense point add a move reason
semeai_reasons(): for each dragon2.semeai point add a move reason
owl_reasons(): for each owl attack and defense point add a move reason
break_in_reasons(): for each breakin found add a move reason

fuseki()
break_mirror_go()
shapes(): match patterns around the board (see Section 9.1 [Patterns Overview], page 77)
combinations(): look for moves with a double meaning and other tricks
find_double_threats()
atari_atari()

review_move_reasons()
if ahead and there is a thrashing dragon, consider it

alive and reconsider the position
endgame_shapes()
endgame()
if no move found yet, revisit any semeai, change status of dead opponent

to alive, then run shapes() and endgame_shapes() again
if no move found yet, run fill_liberty()



Chapter 4: GNU Go engine overview 29

4.5 Roadmap

The GNU Go engine is contained in two directories, ‘engine/’ and ‘patterns/’. Code
related to the user interface, reading and writing of Smart Game Format files, and testing
are found in the directories ‘interface/’, ‘sgf/’, and ‘regression/’. Code borrowed from
other GNU programs is contained in ‘utils/’. That directory also includes some code
developed within GNU Go which is not go specific. Documentation is in ‘doc/’.

In this document we will describe some of the individual files comprising the engine
code in ‘engine/’ and ‘patterns/’. In ‘interface/’ we mention two files:

• ‘gmp.c’

This is the Go Modem Protocol interface (courtesy of William Shubert and
others). This takes care of all the details of exchanging setup and moves
with Cgoban, or any other driving program recognizing the Go Modem
Protocol.

• ‘main.c’

This contains main(). The ‘gnugo’ target is thus built in the ‘interface/’
directory.

4.5.1 Files in ‘engine/’

In ‘engine/’ there are the following files:

• ‘aftermath.c’

Contains algorithms which may be called at the end of the game to generate
moves that will generate moves to settle the position, if necessary playing
out a position to determine exactly the status of every group on the board,
which GNU Go can get wrong, particularly if there is a seki. This module
is the basis for the most accurate scoring algorithm available in GNU Go.

• ‘board.c’

This file contains code for the maintenance of the board. For example
it contains the important function trymove() which tries a move on the
board, and popgo() which removes it by popping the move stack. At the
same time vital information such as the number of liberties for each string
and their location is updated incrementally.

• ‘breakin.c’

Code to detect moves which can break into supposed territory and moves
to prevent this.

• ‘cache.c’ and ‘cache.h’

As a means of speeding up reading, computed results are cached so that
they can be quickly reused if the same position is encountered through e.g.
another move ordering. This is implemented using a hash table.

• ‘clock.c’ and ‘clock.h’

Clock code, including code allowing GNU Go to automatically adjust its
level in order to avoid losing on time in tournaments.



Chapter 4: GNU Go engine overview 30

• ‘combination.c’
When something can (only) be captured through a series of ataris or other
threats we call this a combination attack. This file contains code to find
such attacks and moves to prevent them.

• ‘dragon.c’
This contains make_dragons(). This function is executed before the move-
generating modules shapes() semeai() and the other move generators but
after make_worms(). It tries to connect worms into dragons and collect
important information about them, such as how many liberties each has,
whether (in GNU Go’s opinion) the dragon can be captured, if it lives, etc.

• ‘endgame.c’
Code to find certain types of endgame moves.

• ‘filllib.c’
Code to force filling of dame (backfilling if necessary) at the end of the
game.

• ‘fuseki.c’
Generates fuseki (opening) moves from a database. Also generates moves
in empty corners.

• ‘genmove.c’
This file contains genmove() and its supporting routines, particularly
examine_position().

• ‘globals.c’
This contains the principal global variables used by GNU Go.

• ‘gnugo.h’
This file contains declarations forming the public interface to the engine.

• ‘hash.c’ and ‘hash.h’
Hashing code implementing Zobrist hashing. (see Section 11.2 [Hashing],
page 113) The code in ‘hash.c’ provides a way to hash board positions into
compact descriptions which can be efficiently compared. The caching code
in ‘cache.c’ makes use of the board hashes when storing and retrieving
read results.

• ‘influence.c’ and ‘influence.h’.
This code determines which regions of the board are under the influence
of either player. (see Chapter 13 [Influence], page 129)

• ‘liberty.h’
Header file for the engine. The name “liberty” connotes freedom (see Ap-
pendix A [Copying], page 207).

• ‘matchpat.c’
This file contains the pattern matcher matchpat(), which looks for patterns
at a particular board location. The actual patterns are in the ‘patterns/’
directory. The function matchpat() is called by every module which does
pattern matching, notably shapes.



Chapter 4: GNU Go engine overview 31

• ‘move_reasons.c’ and ‘move_reasons.h’
Code for keeping track of move reasons.

• ‘movelist.c’
Supporting code for lists of moves.

• ‘optics.c’
This file contains the code to recognize eye shapes, documented in See
Chapter 8 [Eyes], page 60.

• ‘oracle.c’
Code to fork off a second GNU Go process which can be used to simulate
reading with top level information (e.g. dragon partitioning) available.

• ‘owl.c’
This file does life and death reading. Move generation is pattern based and
the code in ‘optics.c’ is used to evaluate the eyespaces for vital moves and
independent life. A dragon can also live by successfully escaping. Semeai
reading along the same principles is also implemented in this file.

• ‘persistent.c’
Persistent cache which allows reuse of read results at a later move or
with additional stones outside an active area, which are those intersections
thought to affect the read result.

• ‘printutils.c’
Print utilities.

• ‘readconnect.c’ and ‘readconnect.h’
This file contains code to determine whether two strings can be connected
or disconnected.

• ‘reading.c’
This file contains code to determine whether any given string can be at-
tacked or defended. See Chapter 11 [Tactical Reading], page 111, for de-
tails.

• ‘semeai.c’
This file contains semeai(), the module which detects dragons in semeai.
To determine the semeai results the semeai reading in ‘owl.c’ is used.

• ‘sgfdecide.c’
Code to generate sgf traces for various types of reading.

• ‘shapes.c’
This file contains shapes(), the module called by genmove() which tries
to find moves which match a pattern (see Chapter 9 [Patterns], page 77).

• ‘showbord.c’
This file contains showboard(), which draws an ASCII representation of
the board, depicting dragons (stones with same letter) and status (color).
This was the primary interface in GNU Go 1.2, but is now a debugging
aid.



Chapter 4: GNU Go engine overview 32

• ‘surround.c’
Code to determine whether a dragon is surrounded and to find moves to
surround with or break out with.

• ‘utils.c’
An assortment of utilities, described in greater detail below.

• ‘value_moves.c’
This file contains the code which assigns values to every move after all
the move reasons are generated. It also tries to generate certain kinds of
additional move reasons.

• ‘worm.c’
This file contains make_worms(), code which is run at the beginning of each
move cycle, before the code in ‘dragon.c’, to determine the attributes of
every string. These attributes are things like liberties, wether the string
can be captured (and how), etc

4.5.2 Files in ‘patterns/’

The directory ‘patterns/’ contains files related to pattern matching. Currently there are
several types of patterns. A partial list:
• move generation patterns in ‘patterns.db’ and ‘patterns2.db’
• move generation patterns in files ‘hoshi.db’ etc. which are automatically build from

the files ‘hoshi.sgf’ etc. These comprise our small Joseki library.
• patterns in ‘owl_attackpats.db’, ‘owl_defendpats.db’ and ‘owl_vital_apats.db’.

These generate moves for the owl code (see Section 12.1 [The Owl Code], page 126).
• Connection patterns in ‘conn.db’ (see Section 9.9 [Connections Database], page 90)
• Influence patterns in ‘influence.db’ and ‘barriers.db’ (see Chapter 13 [Influence],

page 129)
• eye patterns in ‘eyes.db’ (see Chapter 8 [Eyes], page 60).

The following list contains, in addition to distributed source files some intermediate
automatically generated files such as ‘patterns.c’. These are C source files produced by
"compiling" various pattern databases, or in some cases (such as ‘hoshi.db’) themselves
automatically generated pattern databases produced by "compiling" joseki files in Smart
Game Format.
• ‘conn.db’

Database of connection patterns.
• ‘conn.c’

Automatically generated file, containing connection patterns in form of
struct arrays, compiled by mkpat from ‘conn.db’.

• ‘eyes.c’
Automatically generated file, containing eyeshape patterns in form of struct
arrays, compiled by mkpat from ‘eyes.db’.

• ‘eyes.h’
Header file for ‘eyes.c’.



Chapter 4: GNU Go engine overview 33

• ‘eyes.db’
Database of eyeshape patterns. See Chapter 8 [Eyes], page 60, for details.

• ‘helpers.c’
These are helper functions to assist in evaluating moves by matchpat.

• ‘hoshi.sgf’
Smart Game Format file containing 4-4 point openings

• ‘hoshi.db’
Automatically generated database of 4-4 point opening patterns, make by
compiling ‘hoshi.sgf’

• ‘joseki.c’
Joseki compiler, which takes a joseki file in Smart Game Format, and
produces a pattern database.

• ‘komoku.sgf’
Smart Game Format file containing 3-4 point openings

• ‘komoku.db’
Automatically generated database of 3-4 point opening patterns, make by
compiling ‘komoku.sgf’

• ‘mkeyes.c’
Pattern compiler for the eyeshape databases. This program takes ‘eyes.db’
as input and produces ‘eyes.c’ as output.

• ‘mkpat.c’
Pattern compiler for the move generation and connection databases. Takes
the file ‘patterns.db’ together with the autogenerated Joseki pattern files
‘hoshi.db’, ‘komoku.db’, ‘sansan.db’, ‘mokuhadzushi.db’, ‘takamoku.db’
and produces ‘patterns.c’, or takes ‘conn.db’ and produces ‘conn.c’.

• ‘mokuhazushi.sgf’
Smart Game Format file containing 5-3 point openings

• ‘mokuhazushi.db’
Pattern database compiled from mokuhadzushi.sgf

• ‘sansan.sgf’
Smart Game Format file containing 3-3 point openings

• ‘sansan.db’
Pattern database compiled from ‘sansan.sgf’

• ‘takamoku.sgf’
Smart Game Format file containing 5-4 point openings

• ‘takamoku.db’
Pattern database compiled from takamoku.sgf.

• ‘patterns.c’
Pattern data, compiled from patterns.db by mkpat.



Chapter 4: GNU Go engine overview 34

• ‘patterns.h’

Header file relating to the pattern databases.

• ‘patterns.db’ and ‘patterns2.db’

These contain pattern databases in human readable form.

4.6 Coding styles and conventions

4.6.1 Coding Conventions

Please follow the coding conventions at: http://www.gnu.org/prep/standards_toc.html

Please preface every function with a brief description of its usage.

Please help to keep this Texinfo documentation up-to-date.

4.6.2 Tracing

A function gprintf() is provided. It is a cut-down printf, supporting only %c, %d, %s,
and without field widths, etc. It does, however, add some useful facilities:

• %m

Takes two parameters, and displays a formatted board co-ordinate.

• indentation

Trace messages are automatically indented to reflect the current stack
depth, so it is clear during read-ahead when it puts a move down or takes
one back.

• "outdent"

As a workaround, %o at the beginning of the: format string suppresses the
indentation.

Normally gprintf() is wrapped in one of the following:

TRACE(fmt, ...):

Print the message if the ’verbose’ variable > 0. (verbose is set by -t on the
command line)

DEBUG(flags, fmt, ...):

While TRACE is intended to afford an overview of what GNU Go is considering,
DEBUG allows occasional in depth study of a module, usually needed when some-
thing goes wrong. flags is one of the DEBUG_* symbols in ‘engine/gnugo.h’.
The DEBUG macro tests to see if that bit is set in the debug variable, and prints
the message if it is. The debug variable is set using the -d command-line option.

The variable verbose controls the tracing. It can equal 0 (no trace), 1, 2, 3 or 4
for increasing levels of tracing. You can set the trace level at the command line by ‘-t’ for
verbose=1, ‘-t -t’ for verbose=2, etc. But in practice if you want more verbose tracing
than level 1 it is better to use GDB to reach the point where you want the tracing; you will
often find that the variable verbose has been temporarily set to zero and you can use the
GDB command set var verbose=1 to turn the tracing back on.

http://www.gnu.org/prep/standards_toc.html


Chapter 4: GNU Go engine overview 35

4.6.3 Assertions

Related to tracing are assertions. Developers are strongly encouraged to pepper their code
with assertions to ensure that data structures are as they expect. For example, the helper
functions make assertions about the contents of the board in the vicinity of the move they
are evaluating.

ASSERT() is a wrapper around the standard C assert() function. In addition to
the test, it takes an extra pair of parameters which are the co-ordinates of a "relevant"
board position. If an assertion fails, the board position is included in the trace output, and
showboard() and popgo() are called to unwind and display the stack.

4.6.4 FIXME

We have adopted the convention of putting the word FIXME in comments to denote known
bugs, etc.

4.7 Navigating the Source

If you are using Emacs, you may find it fast and convenient to use Emacs’ built-in facility for
navigating the source. Switch to the root directory ‘gnugo-3.6/’ and execute the command:

find . -print|grep "\.[ch]$" | xargs etags

This will build a file called ‘gnugo-3.6/TAGS’. Now to find any GNU Go function,
type M-. and enter the command which you wish to find, or just RET if the cursor is at the
name of the function sought.

The first time you do this you will be prompted for the location of the TAGS table.
Enter the path to ‘gnugo-3.6/TAGS’, and henceforth you will be able to find any function
with a minimum of keystrokes.



Chapter 5: Analyzing GNU Go’s moves 36

5 Analyzing GNU Go’s moves

In this chapter we will discuss methods of finding out how GNU Go understands a given
position. These methods will be of interest to anyone working on the program, or simply
curious about its workings.

In practice, most tuning of GNU Go is done in conjunction with maintaining the
‘regression/’ directory (see Chapter 20 [Regression], page 202).

We assume that you have a game GNU Go played saved as an sgf file, and you want
to know why it made a certain move.

5.1 Interpreting Traces

A quick way to find out roughly the reason for a move is to run
gnugo -l filename -t -L move number

(You may also want to add ‘--quiet’ to suppress the copyright message.) In GNU
Go 3.6, the moves together with their reasons are listed, followed by a numerical analysis
of the values given to each move.

If you are tuning (see Section 9.11 [Tuning], page 92) you may want to add the ‘-a’
option. This causes GNU Go to report all patterns matched, even ones that cannot affect
the outcome of the move. The reasons for doing this is that you may want to modify a
pattern already matched instead of introducing a new one.

If you use the ‘-w’ option, GNU Go will report the statuses of worms and dragons
around the board. This type of information is available by different methods, however (see
Section 5.6 [view.pike], page 38, see Section 5.8 [Colored Display], page 38).

5.2 The Output File

If GNU Go is invoked with the option ‘-o filename’ it will produce an output file. This
option can be added at the command line in the Go Modem Protocol Setup Window of
CGoban. The output file will show the locations of the moves considered and their weights.
It is worth noting that by enlarging the CGoban window to its fullest size it can display 3
digit numbers. Dragons with status DEAD are labelled with an ‘X’, and dragons with status
CRITICAL are labelled with a ‘!’.

If you have a game file which is not commented this way, or which was produced by
a non-current version of GNU Go you may ask GNU Go to produce a commented version
by running:

gnugo --quiet -l <old file> --replay <color> -o <new file>

Here <color> can be ’black,’ ’white’ or ’both’. The replay option will also help you to find
out if your current version of GNU Go would play differently than the program that created
the file.

5.3 Checking the reading code

The ‘--decide-string’ option is used to check the tactical reading code (see Chapter 11
[Tactical Reading], page 111). This option takes an argument, which is a location on the
board in the usual algebraic notation (e.g. ‘--decide-string C17’). This will tell you



Chapter 5: Analyzing GNU Go’s moves 37

whether the reading code (in ‘engine/reading.c’) believes the string can be captured, and
if so, whether it believes it can be defended, which moves it finds to attack or defend the
move, how many nodes it searched in coming to these conclusions. Note that when GNU Go
runs normally (not with ‘--decide-string’) the points of attack and defense are computed
when make_worms() runs and cached in worm.attack and worm.defend.

If used with an output file (‘-o filename ’) ‘--decide-string’ will produce a varia-
tion tree showing all the variations which are considered. This is a useful way of debugging
the reading code, and also of educating yourself with the way it works. The variation tree
can be displayed graphically using CGoban.

At each node, the comment contains some information. For example you may find a
comment:

attack4-B at D12 (variation 6, hash 51180fdf)
break_chain D12: 0
defend3 D12: 1 G12 (trivial extension)

This is to be interpreted as follows. The node in question was generated by the
function attack3() in ‘engine/reading.c’, which was called on the string at D12. The
data in parentheses tell you the values of count_variations and hashdata.hashval.

The second value (“hash”) you probably will not need to know unless you are de-
bugging the hash code, and we will not discuss it. But the first value (“variation”) is useful
when using the debugger gdb. You can first make an output file using the ‘-o’ option,
then walk through the reading with gdb, and to coordinate the SGF file with the debugger,
display the value of count_variations. Specifically, from the debugger you can find out
where you are as follows:

(gdb) set dump_stack()
B:D13 W:E12 B:E13 W:F12 B:F11 (variation 6)

If you place yourself right after the call to trymove() which generated the move in
question, then the variation number in the SGF file should match the variation number
displayed by dump_stack(), and the move in question will be the last move played (F11 in
this example).

This displays the sequence of moves leading up to the variation in question, and it
also prints count_variations-1.

The second two lines tell you that from this node, the function break_chain() was
called at D12 and returned 0 meaning that no way was found of rescuing the string by
attacking an element of the surrounding chain, and the function defend3() was called also
at D12 and returned 1, meaning that the string can be defended, and that G12 is the
move that defends it. If you have trouble finding the function calls which generate these
comments, try setting sgf_dumptree=1 and setting a breakpoint in sgf_trace.

5.4 Checking the Owl Code

You can similarly debug the Owl code using the option ‘--decide-dragon’. Usage is entirely
similar to ‘--decide-string’, and it can be used similarly to produce variation trees. These
should be typically much smaller than the variation trees produced by ‘--decide-string’.



Chapter 5: Analyzing GNU Go’s moves 38

5.5 GTP and GDB techniques

You can use the Go Text Protocol (see Chapter 19 [GTP], page 179) to determine the
statuses of dragons and other information needed for debugging. The GTP command
dragon_data P12 will list the dragon data of the dragon at P12 and worm_data will list the
worm data; other GTP commands may be useful as well.

You can also conveniently get such information from GDB. A suggested ‘.gdbinit’
file may be found in See Section 11.9 [Debugging], page 122. Assuming this file is loaded,
you can list the dragon data with the command:

(gdb) dragon P12

Similarly you can get the worm data with worm P12.

5.6 Debugging on a Graphical Board

The quickest way to analyze most positions is to use the tool ‘view.pike’ in the
‘regression’ directory. It can be started with a testcase specified, e.g. pike view.pike
strategy:40 or at a move in an sgf file, e.g. pike view.pike mistake.sgf:125. When
started it shows the position on a grapical board on which it also marks information like
move values, dragon status, and so on. By clicking on the board further information about
the valuation of moves, contents of various data structures, and other data can be made
available.

Specific information on how to use ‘view.pike’ for influence tuning can be found in
See Section 13.14 [Influence Tuning], page 144.

5.7 Scoring the game

GNU Go can score the game. Normally GNU Go will report its opinion about the score at
the end of the game, but if you want this information about a game stored in a file, use the
‘--score’ option (see Section 3.9 [Invoking GNU Go], page 14).

5.8 Colored Display

Various colored displays of the board may be obtained in a color xterm or rxvt window.
Xterm will only work if xterm is compiled with color support. If the colors are not displayed
on your xterm, try rxvt. You may also use the Linux console. The colored display will
work best if the background color is black; if this is not the case you may want to edit your
‘.Xdefaults’ file or add the options ‘-bg black -fg white’ to xterm or rxvt. On Mac OS
X put setenv TERM xterm-color in your ‘.tcshrc’ file to enable color in the terminal.

5.8.1 Dragon Display

You can get a colored ASCII display of the board in which each dragon is assigned a different
letter; and the different matcher_status values (ALIVE, DEAD, UNKNOWN, CRITICAL) have
different colors. This is very handy for debugging. Actually two diagrams are generated.
The reason for this is concerns the way the matcher status is computed. The dragon status
(see Section 7.5 [Dragons], page 54) is computed first, then for some, but not all dragons,
a more accurate owl status is computed. The matcher status is the owl status if available;
otherwise it is the dragon status. Both the dragon status and the owl status are displayed.
The color scheme is as follows:



Chapter 5: Analyzing GNU Go’s moves 39

green = alive
cyan = dead
red = critical
yellow = unknown
magenta = unchecked

To get the colored display, save a game in sgf format using CGoban, or using the
‘-o’ option with GNU Go itself.

Open an xterm or rxvt window.
Execute gnugo -l [filename] -L [movenum] -T to get the colored display.
Other useful colored displays may be obtained by using instead:

5.8.2 Eye Space Display

Instead of ‘-T’, try this with ‘-E’. This gives a colored display of the eyespaces, with
marginal eye spaces marked ‘!’ (see Chapter 8 [Eyes], page 60).



Chapter 6: Move generation 40

6 Move generation

6.1 Introduction

GNU Go 3.0 introduced a move generation scheme substantially different from earlier ver-
sions. In particular, it was different from the method of move generation in GNU Go 2.6.

In the old scheme, various move generators suggested different moves with attached
values. The highest such value then decided the move. There were two important drawbacks
with this scheme:
• Efficient multipurpose moves could only be found by patterns which explicitly looked

for certain combinations, such as a simultaneous connection and cut. There was also
no good way to e.g. choose among several attacking moves.

• The absolute move values were increasingly becoming harder to tune with the increasing
number of patterns. They were also fairly subjective and the tuning could easily break
in unexpected ways when something changed, e.g. the worm valuation.

The basic idea of the new move generation scheme is that the various move generators
suggest reasons for moves, e.g. that a move captures something or connects two strings,
and so on. When all reasons for the different moves have been found, the valuation starts.
The primary advantages are
• The move reasons are objective, in contrast to the move values in the old scheme.

Anyone can verify whether a suggested move reason is correct.
• The centralized move valuation makes tuning easier. It also allows for style dependent

tuning, e.g. how much to value influence compared to territory. Another possibility is
to increase the value of safe moves in a winning position.

6.2 Generation of move reasons

Each move generator suggests a number of moves. It justifies each move suggestion with
one or move move reasons. These move reasons are collected at each intersection where the
moves are suggested for later valuation. Here is a partial list of of move reasons considered
by GNU Go. (The complete list may be found in ‘move_reasons.h’.)

ATTACK_MOVE
DEFEND_MOVE

Attack or defend a worm.

ATTACK_THREAT_MOVE
DEFEND_THREAT_MOVE

Threaten to attack or defend a worm.

EITHER_MOVE
A move that either achieves one goal or another (at the moment this only used
for attacks on worms).

ALL_MOVE At the moment this is used for a move that defends two worms threatened by
a double attack.

CONNECT_MOVE
CUT_MOVE Connect or cut two worms.



Chapter 6: Move generation 41

ANTISUJI_MOVE
Declare an antisuji or forbidden move.

SEMEAI_MOVE
SEMEAI_THREAT

Win or threaten to win a semeai.

EXPAND_TERRITORY_MOVE
EXPAND_MOYO_MOVE

Move expanding our territory/moyo. These reasons are at the moment treated
identically.

VITAL_EYE_MOVE
A vital point for life and death.

STRATEGIC_ATTACK_MOVE
STRATEGIC_DEFEND_MOVE

Moves added by ’a’ and ’d’ class patterns (see Section 9.2 [Pattern Classifica-
tion], page 78) which (perhaps intangibly) attack or defend a dragon.

OWL_ATTACK_MOVE
OWL_DEFEND_MOVE

An owl attack or defense move.

OWL_ATTACK_THREAT
OWL_DEFEND_THREAT

A threat to owl attack or defend a group.

OWL_PREVENT_THREAT
A move to remove an owl threat.

UNCERTAIN_OWL_ATTACK
UNCERTAIN_OWL_DEFENSE

An uncertain owl attack or defense. This means that the owl code could not
decide the outcome, because the owl node limit was reached.

MY_ATARI_ATARI_MOVE
A move that starts a chain of ataris, eventually leading to a capture.

YOUR_ATARI_ATARI_MOVE
A move that if played by the opponent starts a chain of ataris for the opponent,
leading to capture, which is also a safe move for us. Preemptively playing such
a move almost always defends the threat.

The attack and defend move types can have a suffix to denote moves whose re-
sult depends on a ko, e.g. OWL_ATTACK_MOVE_GOOD_KO. Here ..._GOOD_KO and ..._
BAD_KO correspond to KO_A and KO_B as explained in Section 11.4 [Ko], page 117. See
‘engine/move_reasons.h’ for the full of move reasons.

NOTICE: Some of these are reasons for not playing a move.

More detailed discussion of these move reasons will be found in the next section.



Chapter 6: Move generation 42

6.3 Detailed Descriptions of various Move Reasons

6.3.1 Attacking and defending moves

A move which tactically captures a worm is called an attack move and a move which saves
a worm from being tactically captured is called a defense move. It is understood that a
defense move can only exist if the worm can be captured, and that a worm without defense
only is attacked by moves that decrease the liberty count or perform necessary backfilling.

It is important that all moves which attack or defend a certain string are found, so
that the move generation can make an informed choice about how to perform a capture, or
find moves which capture and/or defend several worms.

Attacking and defending moves are first found in make_worms while it evaluates the
tactical status of all worms, although this step only gives one attack and defense (if any)
move per worm. Immediately after, still in make_worms, all liberties of the attacked worms
are tested for additional attack and defense moves. More indirect moves are found by
find_attack_patterns and find_defense_patterns, which match the A (attack) and D
(defense) class patterns in ‘patterns/attack.db’ and ‘patterns/defense.db’ As a final
step, all moves which fill some purpose at all are tested whether they additionally attacks
or defends some worm. (Only unstable worms are analyzed.)

6.3.2 Threats to Attack or Defend

A threat to attack a worm, but where the worm can be defended is used as a secondary
move reason. This move reason can enhance the value of a move so that it becomes sente.
A threatening move without any other justification can also be used as a ko threat. The
same is true for a move that threatens defense of a worm, but where the worm can still be
captured if the attacker doesn’t tenuki.

Threats found by the owl code are called owl threats and they have their own owl
reasons.

6.3.3 Multiple attack or defense moves

Sometimes a move attacks at least one of a number of worms or simultaneously defends all
of several worms. These moves are noted by their own move reasons.

6.3.4 Cutting and connecting moves

Moves which connect two distinct dragons are called connecting moves. Moves which
prevent such connections are called cutting moves. Cutting and connecting moves are
primarily found by pattern matching, the C and B class patterns.

A second source of cutting and connecting moves comes from the attack and defense
of cutting stones. A move which attacks a worm automatically counts as a connecting move
if there are multiple dragons adjacent to the attacked worm. Similarly a defending move
counts as a cutting move. The action taken when a pattern of this type is found is to induce
a connect or cut move reason.

When a cut or connect move reason is registered, the involved dragons are of course
stored. Thus the same move may cut and/or connect several pairs of dragons.



Chapter 6: Move generation 43

6.3.5 Semeai winning moves

A move which is necessary to win a capturing race is called a semeai move. These are
similar to attacking moves, except that they involve the simultaneous attack of one worm
and the defense of another. As for attack and defense moves, it’s important that all moves
which win a semeai are found, so an informed choice can be made between them.

Semeai move reasons should be set by the semeai module. However this has not been
implemented yet. One might also wish to list moves which increase the lead in a semeai
race (removes ko threats) for use as secondary move reasons. Analogously if we are behind
in the race.

6.3.6 Making or destroying eyes

A move which makes a difference in the number of eyes produced from an eye space is called
an eye move. It’s not necessary that the eye is critical for the life and death of the dragon
in question, although it will be valued substantially higher if this is the case. As usual it’s
important to find all moves that change the eye count.

(This is part of what eye finder was doing. Currently it only finds one vital point
for each unstable eye space.)

6.3.7 Antisuji moves

Moves which are locally inferior or for some other reason must not be played are called
antisuji moves. These moves are generated by pattern matching. Care must be taken with
this move reason as the move under no circumstances will be played.

6.3.8 Territorial moves

Any move that increases territory gets a move reason. This is the expand territory move
reason. That move reason is added by the ‘e’ patterns in ‘patterns/patterns.db’. Simi-
larly the ‘E’ patterns attempt to generate or mitigate a moyo, which is a region of influence
not yet secure territory, yet valuable. Such a pattern sets the “expand moyo” move reason.

6.3.9 Attacking and Defending Dragons

Just as the tactical reading code tries to determine when a worm can be attacked or de-
fended, the owl code tries to determine when a dragon can get two eyes and live. The
function owl_reasons() generates the corresponding move reasons.

The owl attack and owl defense move reasons are self explanatory.
The owl attack threat reason is generated if owl attack on an opponent’s dragon fails

but the owl code determines that the dragon can be killed with two consecutive moves.
The killing moves are stored in dragon[pos].owl_attack_point and dragon[pos].owl_
second_attack_point.

Similarly if a friendly dragon is dead but two moves can revive it, an owl defense
threat move reason is generated.

The prevent threat reasons are similar but with the colors reversed: if the opponent
has an attack threat move then a move which removes the threat gets a prevent threat move
reason.

The owl uncertain move reasons are generated when the owl code runs out of nodes.
In order to prevent the owl code from running too long, a cap is put on the number of



Chapter 6: Move generation 44

nodes one owl read can generate. If this is exceeded, the reading is cut short and the result
is cached as usual, but marked uncertain. In this case an owl uncertain move reason may
be generated. For example, if the owl code finds the dragon alive but is unsure, a move to
defend may still be generated.

6.3.10 Combination Attacks

The function atari_atari tries to find a sequence of ataris culminating in an unexpected
change of status of any opponent string, from ALIVE to CRITICAL. Once such a sequence of
ataris is found, it tries to shorten it by rejecting irrelevant moves.

6.4 Valuation of suggested moves

At the end of the move generation process, the function value_move_reasons() tries to
assign values to the moves for the purpose of selecting the best move. The single purpose
of the move valuation is to try to rank the moves so that the best move gets the highest
score. In principle these values could be arbitrary, but in order to make it easier to evaluate
how well the valuation performs, not to mention simplify the tuning, we try to assign values
which are consistent with the usual methods of counting used by human Go players, as
explained for example in The Endgame by Ogawa and Davies.

Moves are valued with respect to four different criteria. These are

• territorial value

• strategical value

• shape value,

• secondary value.

All of these are floats and should be measured in terms of actual points.

The territorial value is the total change of expected territory caused by this move.
This includes changes in the status of groups if the move is an attack or a defense move.

Beginning with GNU Go 3.0, the influence function plays an important role in esti-
mating territory (see Section 13.4 [Influence and Territory], page 131). It is used to make a
guess at each intersection how likely it is that it will become black or white territory. The
territorial value sums up the changes in these valuations.

Strategical value is a measure of the effect the move has on the safety of all groups
on the board. Typically cutting and connecting moves have their main value here. Also
edge extensions, enclosing moves and moves towards the center have high strategical value.
The strategical value should be the sum of a fraction of the territorial value of the involved
dragons. The fraction is determined by the change in safety of the dragon.

Shape value is a purely local shape analysis. An important role of this measure is
to offset mistakes made by the estimation of territorial values. In open positions it’s often
worth sacrificing a few points of (apparent) immediate profit to make good shape. Shape
value is implemented by pattern matching, the Shape patterns.

Secondary value is given for move reasons which by themselves are not sufficient to
play the move. One example is to reduce the number of eyes for a dragon that has several
or to attack a defenseless worm.



Chapter 6: Move generation 45

When all these values have been computed, they are summed, possibly weighted
(secondary value should definitely have a small weight), into a final move value. This value
is used to decide the move.

6.4.1 Territorial Value

The algorithm for computing territorial value is in the function estimate_territorial_
value. As the name suggests, it seeks to estimate the change in territory.

It considers all groups that are changed from alive to death or vice-versa due to this
move. Also, it makes an assumption whether the move should be considered safe. If so,
the influence module is called: The function influence_delta_territory estimates the
territorial effect of both the stone played and of the changes of group status’.

The result returned by the influence module is subject to a number of corrections.
This is because some move reasons cannot be evaluated by a single call to the influence
function, such as moves depending on a ko.

6.4.2 Strategical Value

Strategical defense or attack reasons are assigned to any move which matches a pattern
of type ‘a’ or ‘d’. These are moves which in some (often intangible) way tend to help
strengthen or weaken a dragon. Of course strengthening a dragon which is already alive
should not be given much value, but when the move reason is generated it is not necessary
to check its status or safety. This is done later, during the valuation phase.

6.4.3 Shape Factor

In the value field of a pattern (see Section 9.3 [Pattern Values], page 80) one may specify a
shape value.

This is used to compute the shape factor, which multiplies the score of a move.
We take the largest positive contribution to shape and add 1 for each additional positive
contribution found. Then we take the largest negative contribution to shape, and add 1 for
each additional negative contribution. The resulting number is raised to the power 1.05 to
obtain the shape factor.

The rationale behind this complicated scheme is that every shape point is very signifi-
cant. If two shape contributions with values (say) 5 and 3 are found, the second contribution
should be devalued to 1. Otherwise the engine is too difficult to tune since finding multiple
contributions to shape can cause significant overvaluing of a move.

6.4.4 Minimum Value

A pattern may assign a minimum (and sometimes also a maximum) value. For example the
Joseki patterns have values which are prescribed in this way, or ones with a value field.
One prefers not to use this approach but in practice it is sometimes needed.

In the fuseki, there are often several moves with identical minimum value. GNU Go
chooses randomly between such moves, which ensures some indeterminacy of GNU Go’s
play. Later in the game, GNU Go’s genuine valuation of such a move is used as a secondary
criterion.



Chapter 6: Move generation 46

6.4.5 Secondary Value

Secondary move reasons are weighed very slightly. Such a move can tip the scales if all
other factors are equal.

6.4.6 Threats and Followup Value

Followup value refers to value which may acrue if we get two moves in a row in a local area.
It is assigned for moves that threaten to attack or defend a worm or dragon. Also, since
GNU Go 3.2 the influence module makes an assessment of the possible purely territorial
followup moves. In cases where these two heuristics are not sufficient we add patterns with
a followup_value autohelper macro.

Usually, the followup value gives only a small contribution; e.g. if it the followup
value is very large, then GNU Go treats the move as sente by doubling its value. However,
if the largest move on the board is a ko which we cannot legally take, then such a move
becomes attractive as a ko threat and the full followup value is taken into account.

6.5 End Game

Endgame moves are generated just like any other move by GNU Go. In fact, the concept of
endgame does not exist explicitly, but if the largest move initially found is worth 6 points or
less, an extra set of patterns in ‘endgame.db’ is matched and the move valuation is redone.



Chapter 7: Worms and Dragons 47

7 Worms and Dragons

Before considering its move, GNU Go collects some data in several arrays. Two of these
arrays, called worm and dragon, are discussed in this document. Others are discussed in
See Chapter 8 [Eyes], page 60.

This information is intended to help evaluate the connectedness, eye shape, escape
potential and life status of each group.

Later routines called by genmove() will then have access to this information. This
document attempts to explain the philosophy and algorithms of this preliminary analysis,
which is carried out by the two routines make_worm() and make_dragon() in ‘dragon.c’.

A worm is a maximal set of stones on the board which are connected along the
horizontal and vertical lines, and are of the same color. We often say string instead of
worm.

A dragon is a union of strings of the same color which will be treated as a unit.
The dragons are generated anew at each move. If two strings are in the dragon, it is
the computer’s working hypothesis that they will live or die together and are effectively
connected.

The purpose of the dragon code is to allow the computer to formulate meaningful
statements about life and death. To give one example, consider the following situation:

OOOOO
OOXXXOO
OX...XO
OXXXXXO
OOOOO

The X’s here should be considered a single group with one three-space eye, but
they consist of two separate strings. Thus we must amalgamate these two strings into a
single dragon. Then the assertion makes sense, that playing at the center will kill or save
the dragon, and is a vital point for both players. It would be difficult to formulate this
statement if the X’s are not perceived as a unit.

The present implementation of the dragon code involves simplifying assumptions
which can be refined in later implementations.

7.1 Worms

The array struct worm_data worm[MAX_BOARD] collects information about the worms. We
will give definitions of the various fields. Each field has constant value at each vertex of the
worm. We will define each field.

struct worm_data {
int color;
int size;
float effective_size;
int origin;



Chapter 7: Worms and Dragons 48

int liberties;
int liberties2;
int liberties3;
int liberties4;
int lunch;
int cutstone;
int cutstone2;
int genus;
int inessential;
int invincible;
int unconditional_status;
int attack_points[MAX_TACTICAL_POINTS];
int attack_codes[MAX_TACTICAL_POINTS];
int defense_points[MAX_TACTICAL_POINTS];
int defend_codes[MAX_TACTICAL_POINTS];
int attack_threat_points[MAX_TACTICAL_POINTS];
int attack_threat_codes[MAX_TACTICAL_POINTS];
int defense_threat_points[MAX_TACTICAL_POINTS];
int defense_threat_codes[MAX_TACTICAL_POINTS];

};

• color

The color of the worm.
• size

This field contains the cardinality of the worm.
• effective_size

This is the number of stones in a worm plus the number of empty in-
tersections that are at least as close to this worm as to any other worm.
Intersections that are shared are counted with equal fractional values for
each worm. This measures the direct territorial value of capturing a worm.
effective size is a floating point number. Only intersections at a distance
of 4 or less are counted.

• origin

Each worm has a distinguished member, called its origin. The purpose of
this field is to make it easy to determine when two vertices lie in the same
worm: we compare their origin. Also if we wish to perform some test once
for each worm, we simply perform it at the origin and ignore the other
vertices. The origin is characterized by the test:

worm[pos].origin == pos.

• liberties

• liberties2

• liberties3

• liberties4

For a nonempty worm the field liberties is the number of liberties of
the string. This is supplemented by LIBERTIES2, LIBERTIES3 and



Chapter 7: Worms and Dragons 49

LIBERTIES4, which are the number of second order, third order, and
fourth order liberties, respectively. The definition of liberties of order
>1 is adapted to the problem of detecting the shape of the surrounding
empty space. In particular we want to be able to see if a group is loosely
surrounded. A liberty of order n is an empty vertex which may be
connected to the string by placing n stones of the same color on the board,
but no fewer. The path of connection may pass through an intervening
group of the same color. The stones placed at distance >1 may not touch
a group of the opposite color. Connections through ko are not permitted.
Thus in the following configuration:

.XX... We label the .XX.4.
XO.... liberties of XO1234
XO.... order < 5 of XO1234
...... the O group: .12.4.
.X.X.. .X.X..

The convention that liberties of order >1 may not touch a group of the op-
posite color means that knight’s moves and one space jumps are perceived
as impenetrable barriers. This is useful in determining when the string is
becoming surrounded.
The path may also not pass through a liberty at distance 1 if that liberty
is flanked by two stones of the opposing color. This reflects the fact that
the O stone is blocked from expansion to the left by the two X stones in
the following situation:

X.
.O
X.

We say that n is the distance of the liberty of order n from the dragon.
• lunch

If nonzero, lunch points to a boundary worm which can be easily captured.
(It does not matter whether or not the string can be defended.)

We have two distinct notions of cutting stone, which we keep track of in the separate
fields worm.cutstone and worm.cutstone2. We use currently use both concepts in parallel.

• cutstone

This field is equal to 2 for cutting stones, 1 for potential cutting stones.
Otherwise it is zero. Definitions for this field: a cutting stone is one adja-
cent to two enemy strings, which do not have a liberty in common. The
most common type of cutting string is in this situation:

XO
OX



Chapter 7: Worms and Dragons 50

A potential cutting stone is adjacent to two enemy strings which do share
a liberty. For example, X in:

XO
O.

For cutting strings we set worm[].cutstone=2. For potential cutting
strings we set worm[].cutstone=1.

• cutstone2

Cutting points are identified by the patterns in the connections database.
Proper cuts are handled by the fact that attacking and defending moves
also count as moves cutting or connecting the surrounding dragons. The
cutstone2 field is set during find_cuts(), called from make_domains().

• genus

There are two separate notions of genus for worms and dragons. The
dragon notion is more important, so dragon[pos].genus is a far more
useful field than worm[pos].genus. Both fields are intended as approxi-
mations to the number of eyes. The genus of a string is the number of
connected components of its complement, minus one. It is an approxima-
tion to the number of eyes of the string.

• inessential

An inessential string is one which meets a criterion designed to guarantee
that it has no life potential unless a particular surrounding string of the
opposite color can be killed. More precisely an inessential string is a string
S of genus zero, not adjacent to any opponent string which can be easily
captured, and which has no edge liberties or second order liberties, and
which satisfies the following further property: If the string is removed from
the board, then the remaining cavity only borders worms of the opposite
color.

• invincible

An invincible worm is one which GNU Go thinks cannot be captured.
Invincible worms are computed by the function unconditional_life()
which tries to find those worms of the given color that can never be cap-
tured, even if the opponent is allowed an arbitrary number of consecutive
moves.

• unconditional status
Unconditional status is also set by the function unconditional_life. This
is set ALIVE for stones which are invincible. Stones which can not be turned
invincible even if the defender is allowed an arbitrary number of consecutive
moves are given an unconditional status of DEAD. Empty points where
the opponent cannot form an invincible worm are called unconditional
territory. The unconditional status is set to WHITE_TERRITORY or BLACK_
TERRITORY depending on who owns the territory. Finally, if a stone can be



Chapter 7: Worms and Dragons 51

captured but is adjacent to unconditional territory of its own color, it is also
given the unconditional status ALIVE. In all other cases the unconditional
status is UNKNOWN.
To make sense of these definitions it is important to notice that any stone
which is alive in the ordinary sense (even if only in seki) can be transformed
into an invincible group by some number of consecutive moves. Well, this
is not entirely true because there is a rare class of seki groups not satis-
fying this condition. Exactly which these are is left as an exercise for the
reader. Currently unconditional_life, which strictly follows the defini-
tions above, calls such seki groups unconditionally dead, which of course is
a misfeature. It is possible to avoid this problem by making the algorithm
slightly more complex, but this is left for a later revision.

• int attack_points[MAX_TACTICAL_POINTS]

• attack_codes[MAX_TACTICAL_POINTS]

• int defense_points[MAX_TACTICAL_POINTS];

• int defend_codes[MAX_TACTICAL_POINTS];

If the tactical reading code (see Chapter 11 [Tactical Reading], page 111)
finds that the worm can be attacked, attack_points[0] is a point of
attack, and attack_codes[0] is the attack code, WIN, KO_A or KO_B. If
multiple attacks are known, attack_points[k] and attack_codes[k] are
used. Similarly with the defense codes and defense points.

• int attack_threat_points[MAX_TACTICAL_POINTS];

• int attack_threat_codes[MAX_TACTICAL_POINTS];

• int defense_threat_points[MAX_TACTICAL_POINTS];

• int defense_threat_codes[MAX_TACTICAL_POINTS];

These are points that threaten to attack or defend a worm.

The function makeworms() will generate data for all worms.

7.2 Amalgamation

A dragon, we have said, is a group of stones which are treated as a unit. It is a working
hypothesis that these stones will live or die together. Thus the program will not expect to
disconnect an opponent’s strings if they have been amalgamated into a single dragon.

The function make_dragons() will amalgamate worms into dragons by maintaining
separate arrays worm[] and dragon[] containing similar data. Each dragon is a union
of worms. Just as the data maintained in worm[] is constant on each worm, the data in
dragon[] is constant on each dragon.

Amalgamation of worms in GNU Go proceeds as follows. First we amalgamate all
boundary components of an eyeshape. Thus in the following example:

.OOOO. The four X strings are amalgamated into a
OOXXO. single dragon because they are the boundary
OX..XO components of a blackbordered cave. The
OX..XO cave could contain an inessential string



Chapter 7: Worms and Dragons 52

OOXXO. with no effect on this amalgamation.
XXX...

The code for this type of amalgamation is in the routine dragon_eye(), discussed
further in EYES.

Next, we amalgamate strings which seem uncuttable. We amalgamate dragons which
either share two or more common liberties, or share one liberty into the which the opponent
cannot play without being captured. (ignores ko rule).

X. X.X XXXX.XXX X.O
.X X.X X......X X.X

XXXXXX.X OXX

A database of connection patterns may be found in ‘patterns/conn.db’.

7.3 Connection

The fields black_eye.cut and white_eye.cut are set where the opponent can cut, and
this is done by the B (break) class patterns in ‘conn.db’. There are two important uses for
this field, which can be accessed by the autohelper functions xcut() and ocut(). The first
use is to stop amalgamation in positions like

..X..
OO*OO
X.O.X
..O..

where X can play at * to cut off either branch. What happens here is that first connection
pattern CB1 finds the double cut and marks * as a cutting point. Later the C (connection)
class patterns in conn.db are searched to find secure connections over which to amalgamate
dragons. Normally a diagonal connection would be deemed secure and amalgamated by
connection pattern CC101, but there is a constraint requiring that neither of the empty
intersections is a cutting point.

A weakness with this scheme is that X can only cut one connection, not both, so
we should be allowed to amalgamate over one of the connections. This is performed by
connection pattern CC401, which with the help of amalgamate_most_valuable_helper()
decides which connection to prefer.

The other use is to simplify making alternative connection patterns to the solid
connection. Positions where the diag miai helper thinks a connection is necessary are
marked as cutting points by connection pattern 12. Thus we can write a connection pattern
like CC6:

?xxx? straight extension to connect
XOO*?
O...?



Chapter 7: Worms and Dragons 53

:8,C,NULL

?xxx?
XOOb?
Oa..?

;xcut(a) && odefend_against(b,a)

where we verify that a move at * would stop the enemy from safely playing at the cutting
point, thus defending against the cut.

7.4 Half Eyes and False Eyes

A half eye is a place where, if the defender plays first, an eye will materialize, but where if
the attacker plays first, no eye will materialize. A false eye is a vertex which is surrounded
by a dragon yet is not an eye. Here is a half eye:

XXXXX
OO..X
O.O.X
OOXXX

Here is a false eye:

XXXXX
XOO.X
O.O.X
OOXXX

The "topological" algorithm for determining half and false eyes is described elsewhere
(see Section 8.8 [Eye Topology], page 67).

The half eye data is collected in the dragon array. Before this is done, however,
an auxiliary array called half eye data is filled with information. The field type is 0, or
else HALF_EYE or FALSE_EYE depending on which type is found; the fields attack_point[]
point to up to 4 points to attack the half eye, and similarly defense_point[] gives points
to defend the half eye.



Chapter 7: Worms and Dragons 54

struct half_eye_data half_eye[MAX_BOARD];

struct half_eye_data {
float value; /* Topological eye value */
int type; /* HALF_EYE or FALSE_EYE */
int num_attacks; /* Number of attacking points */
int attack_point[4]; /* The moves to attack a topological halfeye */
int num_defends; /* Number of defending points */
int defense_point[4]; /* The moves to defend a topological halfeye */

};

The array struct half_eye_data half_eye[MAX_BOARD] contains information
about half and false eyes. If the type is HALF_EYE then up to four moves are recorded
which can either attack or defend the eye. In rare cases the attack points could be different
from the defense points.

7.5 Dragons

The array struct dragon_data dragon[MAX_BOARD] collects information about the drag-
ons. We will give definitions of the various fields. Each field has constant value at each
vertex of the dragon. (Fields will be discussed below.)

struct dragon_data {
int color; /* its color */
int id; /* the index into the dragon2 array */
int origin; /* the origin of the dragon. Two vertices */

/* are in the same dragon iff they have */
/* same origin. */

int size; /* size of the dragon */
float effective_size; /* stones and surrounding spaces */
int crude_status; /* (ALIVE, DEAD, UNKNOWN, CRITICAL)*/
int status; /* best trusted status */

};

extern struct dragon_data dragon[BOARDMAX];

Other fields attached to the dragon are contained in the dragon_data2 struct array.
(Fields will be discussed below.)

struct dragon_data2 {
int origin;
int adjacent[MAX_NEIGHBOR_DRAGONS];
int neighbors;
int hostile_neighbors;
int moyo_size;



Chapter 7: Worms and Dragons 55

float moyo_territorial_value;
int safety;
float weakness;
float weakness_pre_owl;
int escape_route;
struct eyevalue genus;
int heye;
int lunch;
int surround_status;
int surround_size;
int semeais;
int semeai_margin_of_safety;
int semeai_defense_point;
int semeai_defense_certain;
int semeai_attack_point;
int semeai_attack_certain;
int owl_threat_status;
int owl_status;
int owl_attack_point;
int owl_attack_code;
int owl_attack_certain;
int owl_second_attack_point;
int owl_defense_point;
int owl_defense_code;
int owl_defense_certain;
int owl_second_defense_point;
int owl_attack_kworm;
int owl_defense_kworm;

};

extern struct dragon_data2 *dragon2;

The difference between the two arrays is that the dragon array is indexed by the
board, and there is a copy of the dragon data at every stone in the dragon, while there
is only one copy of the dragon2 data. The dragons are numbered, and the id field of the
dragon is a key into the dragon2 array. Two macros DRAGON and DRAGON2 are provided
for gaining access to the two arrays.

#define DRAGON2(pos) dragon2[dragon[pos].id]
#define DRAGON(d) dragon[dragon2[d].origin]

Thus if you know the position pos of a stone in the dragon you can access the dragon
array directly, for example accessing the origin with dragon[pos].origin. However if you
need a field from the dragon2 array, you can access it using the DRAGON2 macro, for
example you can access its neighor dragons by

for (k = 0; k < DRAGON2(pos).neighbors; k++) {
int d = DRAGON2(pos).adjacent[k];
int apos = dragon2[d].origin;



Chapter 7: Worms and Dragons 56

do_something(apos);
}

Similarly if you know the dragon number (which is dragon[pos].id) then you can
access the dragon2 array directly, or you can access the dragon array using the DRAGON
macro.

Here are the definitions of each field in the dragon arrray.
• color

The color of the dragon.
• id

The dragon number, used as a key into the dragon2 array.
• origin

The origin of the dragon is a unique particular vertex of the dragon, useful
for determining when two vertices belong to the same dragon. Before amal-
gamation the worm origins are copied to the dragon origins. Amalgamation
of two dragons amounts to changing the origin of one.

• size
The number of stones in the dragon.

• effective size
The sum of the effective sizes of the constituent worms. Remembering that
vertices equidistant between two or more worms are counted fractionally in
worm.effective_size, this equals the cardinality of the dragon plus the
number of empty vertices which are nearer this dragon than any other.

• crude status
(ALIVE, DEAD, UNKNOWN, CRITICAL). An early measure of the life
potential of the dragon. It is computed before the owl code is run and is
superceded by the status as soon as that becomes available.

• status
The dragon status is the best measure of the dragon’s health. It is com-
puted after the owl code is run, then revised again when the semeai code
is run.

Here are definitions of the fields in the dragon2 array.
• origin

The origin field is duplicated here.
• adjacent
• adjacent[MAX_NEIGHBOR_DRAGONS]

Dragons of either color near the given one are called neighbors.
They are computed by the function find_neighbor_dragons(). The
dragon2.adjacent array gives the dragon numbers of these dragons.

• neighbors

Dragons of either color near the given one are called neighbors.
They are computed by the function find_neighbor_dragons(). The
dragon2.adjacent array gives the dragon numbers of these dragons.



Chapter 7: Worms and Dragons 57

• neighbors
The number of neighbor dragons.

• hostile neighbors
The number of neighbor dragons of the opposite color.

• moyo size
• float moyo territorial value

The function compute_surrounding_moyo_sizes() assigns a size and a
territorial value to the moyo around each dragon (see Section 13.2 [Territory
and Moyo], page 129). This is the moyo size. They are recorded in these
fields.

• safety
The dragon safety can take on one of the values
− TACTICALLY DEAD - a dragon consisting of a single worm found

dead by the reading code (very reliable)
− ALIVE - found alive by the owl or semeai code
− STRONGLY ALIVE - alive without much question
− INVINCIBLE - definitively alive even after many tenukis
− ALIVE IN SEKI - determined to be seki by the semeai code
− CRITICAL - lives or dies depending on who moves first
− DEAD - found to be dead by the owl code
− INESSENTIAL - the dragon is unimportant (e.g. nakade stones) and

dead
• weakness
• weakness pre owl

A floating point measure of the safety of a dragon. The dragon weakness is
a number between 0. and 1., higher numbers for dragons in greater need of
safety. The field weakness_pre_owl is a preliminary computation before
the owl code is run.

• escape route
A measure of the dragon’s potential to escape towards safety, in case it
cannot make two eyes locally. Documentation may be found in Section 13.9
[Escape], page 136.

• struct eyevalue genus
The approximate number of eyes the dragon can be expected to get. Not
guaranteed to be accurate. The eyevalue struct, which is used throughout
the engine, is declared thus:

struct eyevalue {
unsigned char a; /* # of eyes if attacker plays twice */
unsigned char b; /* # of eyes if attacker plays first */
unsigned char c; /* # of eyes if defender plays first */
unsigned char d; /* # of eyes if defender plays twice */



Chapter 7: Worms and Dragons 58

};

• heye
Location of a half eye attached to the dragon.

• lunch
If nonzero, this is the location of a boundary string which can be captured.
In contrast with worm lunches, a dragon lunch must be able to defend
itself.

• surround status
• surround size

In estimating the safety of a dragon it is useful to know if it is surrounded.
See Section 13.11 [Surrounded Dragons], page 140 and the comments in
‘surround.c’ for more information about the algorithm. Used in comput-
ing the escape route, and also callable from patterns (currently used by
CB258).

• semeais
• semeai defense point
• semeai defense certain
• semeai attack point
• semeai attack certain

If two dragons of opposite color both have the status CRITICAL or DEAD
they are in a semeai (capturing race), and their status must be adjudicated
by the function owl_analyze_semeai() in ‘owl.c’, which attempts to de-
termine which is alive, which dead, or if the result is seki, and whether it is
important who moves first. The function ‘new_semeai()’ in ‘semeai.c’ at-
tempts to revise the statuses and to generate move reasons based on these
results. The field dragon2.semeais is nonzero if the dragon is an element
of a semeai, and equals the number of semeais (seldom more than one).
The semeai defense and attack points are locations the defender or at-
tacker must move to win the semeai. The field semeai_margin_of_safety
is intended to indicate whether the semeai is close or not but currently this
field is not maintained. The fields semeai_defense_certain and semeai_
attack_certain indicate that the semeai code was able to finish analysis
without running out of nodes.

• owl status
This is a classification similar to dragon.crude_status, but based on the
life and death reading in ‘owl.c’. The owl code (see Section 12.1 [The
Owl Code], page 126) is skipped for dragons which appear safe by certain
heuristics. If the owl code is not run, the owl status is UNCHECKED. If owl_
attack() determines that the dragon cannot be attacked, it is classified
as ALIVE. Otherwise, owl_defend() is run, and if it can be defended it is
classified as CRITICAL, and if not, as DEAD.

• owl attack point
If the dragon can be attacked this is the point to attack the dragon.



Chapter 7: Worms and Dragons 59

• owl attack code
The owl attack code, It can be WIN, KO A, KO B or 0 (see [Return
Codes], page 111).

• owl attack certain
The owl reading is able to finish analyzing the attack without running out
of nodes.

• owl second attack point
A second attack point.

• owl defense point
If the dragon can be defended, this is the place to play.

• owl defense code
The owl defense code, It can be WIN, KO A, KO B or 0 (see [Return
Codes], page 111).

• owl defense certain
The owl code is able to finish analyzing the defense without running out
of nodes.

• owl second defense point
A second owl defense point.

7.6 Colored Dragon Display

You can get a colored ASCII display of the board in which each dragon is assigned a different
letter; and the different values of dragon.status values (ALIVE, DEAD, UNKNOWN, CRITICAL)
have different colors. This is very handy for debugging. A second diagram shows the values
of owl.status. If this is UNCHECKED the dragon is displayed in White.

Save a game in sgf format using CGoban, or using the ‘-o’ option with GNU Go
itself.

Open an xterm or rxvt window. You may also use the Linux console. Using the
console, you may need to use “SHIFT-PAGE UP” to see the first diagram. Xterm will only
work if it is compiled with color support—if you do not see the colors try rxvt. Make the
background color black and the foreground color white.

Execute:
gnugo -l [filename] -L [movenum] -T to get the colored display.
The color scheme: Green = ALIVE; Yellow = UNKNOWN; Cyan = DEAD and Red =

CRITICAL. Worms which have been amalgamated into the same dragon are labelled with
the same letter.

Other useful colored displays may be obtained by using instead:
• the option -E to display eye spaces (see Chapter 8 [Eyes], page 60).
• the option -m 0x0180 to display territory, moyo and area (see Section 13.2 [Territory

and Moyo], page 129).

The colored displays are documented elsewhere (see Section 5.8 [Colored Display],
page 38).



Chapter 8: Eyes and Half Eyes 60

8 Eyes and Half Eyes

The purpose of this Chapter is to describe the algorithm used in GNU Go to determine
eyes.

8.1 Local games

The fundamental paradigm of combinatorial game theory is that games can be added and
in fact form a group. If ‘G’ and ‘H’ are games, then ‘G+H’ is a game in which each player on
his turn has the option of playing in either move. We say that the game ‘G+H’ is the sum of
the local games ‘G’ and ‘H’.

Each connected eyespace of a dragon affords a local game which yields a local game
tree. The score of this local game is the number of eyes it yields. Usually if the players take
turns and make optimal moves, the end scores will differ by 0 or 1. In this case, the local
game may be represented by a single number, which is an integer or half integer. Thus if
‘n(O)’ is the score if ‘O’ moves first, both players alternate (no passes) and make alternate
moves, and similarly ‘n(X)’, the game can be represented by ‘{n(O)|n(X)}’. Thus {1|1} is
an eye, {2|1} is an eye plus a half eye, etc.

The exceptional game {2|0} can occur, though rarely. We call an eyespace yielding
this local game a CHIMERA. The dragon is alive if any of the local games ends up with a
score of 2 or more, so {2|1} is not different from {3|1}. Thus {3|1} is NOT a chimera.

Here is an example of a chimera:

XXXXX
XOOOX
XO.OOX
XX..OX
XXOOXX
XXXXX

8.2 Eye spaces

In order that each eyespace be assignable to a dragon, it is necessary that all the dragons
surrounding it be amalgamated (see Section 7.2 [Amalgamation], page 51). This is the
function of dragon_eye().

An EYE SPACE for a black dragon is a collection of vertices adjacent to a dragon
which may not yet be completely closed off, but which can potentially become eyespace. If
an open eye space is sufficiently large, it will yield two eyes. Vertices at the edge of the eye
space (adjacent to empty vertices outside the eye space) are called MARGINAL.

Here is an example from a game:



Chapter 8: Eyes and Half Eyes 61

|. X . X X . . X O X O
|X . . . . . X X O O O
|O X X X X . . X O O O
|O O O O X . O X O O O
|. . . . O O O O X X O
|X O . X X X . . X O O
|X O O O O O O O X X O
|. X X O . O X O . . X
|X . . X . X X X X X X
|O X X O X . X O O X O

Here the ‘O’ dragon which is surrounded in the center has open eye space. In the
middle of this open eye space are three dead ‘X’ stones. This space is large enough that
O cannot be killed. We can abstract the properties of this eye shape as follows. Marking
certain vertices as follows:

|- X - X X - - X O X O
|X - - - - - X X O O O
|O X X X X - - X O O O
|O O O O X - O X O O O
|! . . . O O O O X X O
|X O . X X X . ! X O O
|X O O O O O O O X X O
|- X X O - O X O - - X
|X - - X - X X X X X X
|O X X O X - X O O X O

the shape in question has the form:

!...
.XXX.!

The marginal vertices are marked with an exclamation point (‘!’). The captured ‘X’
stones inside the eyespace are naturally marked ‘X’.

The precise algorithm by which the eye spaces are determined is somewhat complex.
Documentation of this algorithm is in the comments in the source to the function make_
domains() in ‘optics.c’.

The eyespaces can be conveniently displayed using a colored ascii diagram by running
gnugo -E.

8.3 The eyespace as local game

In the abstraction, an eyespace consists of a set of vertices labelled:



Chapter 8: Eyes and Half Eyes 62

! . X

Tables of many eyespaces are found in the database ‘patterns/eyes.db’. Each of
these may be thought of as a local game. The result of this game is listed after the eyespace
in the form :max,min, where max is the number of eyes the pattern yields if ‘O’ moves first,
while min is the number of eyes the pattern yields if ‘X’ moves first. The player who owns
the eye space is denoted ‘O’ throughout this discussion. Since three eyes are no better than
two, there is no attempt to decide whether the space yields two eyes or three, so max never
exceeds 2. Patterns with min>1 are omitted from the table.

For example, we have:

Pattern 548

x
xX.!

:0111

Here notation is as above, except that ‘x’ means ‘X’ or EMPTY. The result of the
pattern is not different if ‘X’ has stones at these vertices or not.

We may abstract the local game as follows. The two players ‘O’ and ‘X’ take turns
moving, or either may pass.

RULE 1: ‘O’ for his move may remove any vertex marked ‘!’ or marked ‘.’.

RULE 2: ‘X’ for his move may replace a ‘.’ by an ‘X’.

RULE 3: ‘X’ may remove a ‘!’. In this case, each ‘.’ adjacent to the ‘!’ which is
removed becomes a ‘!’ . If an ‘X’ adjoins the ‘!’ which is removed, then that ‘X’ and any
which are connected to it are also removed. Any ‘.’ which are adjacent to the removed ‘X’’s
then become ‘.’.

Thus if ‘O’ moves first he can transform the eyeshape in the above example to:

... or !...
.XXX.! .XXX.

However if ‘X’ moves he may remove the ‘!’ and the ‘.’s adjacent to the ‘!’ become
‘!’ themselves. Thus if ‘X’ moves first he may transform the eyeshape to:

!.. or !..
.XXX.! .XXX!

NOTE: A nuance which is that after the ‘X:1’, ‘O:2’ exchange below, ‘O’ is threaten-
ing to capture three X stones, hence has a half eye to the left of 2. This is subtle, and there
are other such subtleties which our abstraction will not capture. Some of these at least can
be dealt with by a refinements of the scheme, but we will content ourselves for the time
being with a simplified model.



Chapter 8: Eyes and Half Eyes 63

|- X - X X - - X O X O
|X - - - - - X X O O O
|O X X X X - - X O O O
|O O O O X - O X O O O
|1 2 . . O O O O X X O
|X O . X X X . 3 X O O
|X O O O O O O O X X O
|- X X O - O X O - - X
|X - - X - X X X X X X
|O X X O X - X O O X O

We will not attempt to characterize the terminal states of the local game (some of
which could be seki) or the scoring.

8.4 An example

Here is a local game which yields exactly one eye, no matter who moves first:

!
...
...!

Here are some variations, assuming ‘O’ moves first.

! (start position)
...
...!

... (after ‘O’’s move)

...!

...

..!

...

..

.X. (nakade)

..

Here is another variation:



Chapter 8: Eyes and Half Eyes 64

! (start)
...
...!

! (after ‘O’’s move)
. .
...!

! (after ‘X’’s move)
. .
..X!

. .

..X!

. !

.!

8.5 Graphs

It is a useful observation that the local game associated with an eyespace depends only on
the underlying graph, which as a set consists of the set of vertices, in which two elements
are connected by an edge if and only if they are adjacent on the Go board. For example
the two eye shapes:

..
..

and

....

though distinct in shape have isomorphic graphs, and consequently they are isomorphic as
local games. This reduces the number of eyeshapes in the database ‘patterns/eyes.db’.

A further simplification is obtained through our treatment of half eyes and false eyes.
Such patterns are identified by the topological analysis (see Section 8.8 [Eye Topology],
page 67).

A half eye is isomorphic to the pattern (!.) . To see this, consider the following two
eye shapes:

XOOOOOO
X.....O
XOOOOOO



Chapter 8: Eyes and Half Eyes 65

and:

XXOOOOO
XOa...O
XbOOOOO
XXXXXXX

These are equivalent eyeshapes, with isomorphic local games {2|1}. The first has
shape:

!....

The second eyeshape has a half eye at ‘a’ which is taken when ‘O’ or ‘X’ plays at ‘b’.
This is found by the topological criterion (see Section 8.8 [Eye Topology], page 67).

The graph of the eye shape, ostensibly ‘....’ is modified by replacing the left ‘.’ by
‘!.’ during graph matching.

A false eye is isomorphic to the pattern (!) . To see this, consider the following eye
shape:

XXXOOOOOO
X.Oa....O
XXXOOOOOO

This is equivalent to the two previous eyeshapes, with an isomorphic local game
{2|1}.

This eyeshape has a false eye at ‘a’. This is also found by the topological criterion.

The graph of the eye shape, ostensibly ‘.....’ is modified by replacing the left ‘.’
by ‘!’. This is made directly in the eye data, not only during graph matching.

8.6 Eye shape analysis

The patterns in ‘patterns/eyes.db’ are compiled into graphs represented essentially by
arrays in ‘patterns/eyes.c’.

Each actual eye space as it occurs on the board is also compiled into a graph. Half
eyes are handled as follows. Referring to the example

XXOOOOO
XOa...O
XbOOOOO
XXXXXX

repeated from the preceding discussion, the vertex at ‘b’ is added to the eyespace as a
marginal vertex. The adjacency condition in the graph is a macro (in ‘optics.c’): two
vertices are adjacent if they are physically adjacent, or if one is a half eye and the other is
its key point.



Chapter 8: Eyes and Half Eyes 66

In recognize_eyes(), each such graph arising from an actual eyespace is matched
against the graphs in ‘eyes.c’. If a match is found, the result of the local game is known.
If a graph cannot be matched, its local game is assumed to be {2|2}.

8.7 Eye Local Game Values

The game values in ‘eyes.db’ are given in a simplified scheme which is flexible enough to
represent most possibilities in a useful way.

The colon line below the pattern gives the eye value of the matched eye shape. This
consists of four digits, each of which is the number of eyes obtained during the following
conditions:
1. The attacker moves first and is allowed yet another move because the defender plays

tenuki.
2. The attacker moves first and the defender responds locally.
3. The defender moves first and the attacker responds locally.
4. The defender moves first and is allowed yet another move because the attacker plays

tenuki.

The first case does not necessarily mean that the attacker is allowed two consecutive
moves. This is explained with an example later.

Also, since two eyes suffice to live, all higher numbers also count as two.
The following 15 cases are of interest:

• 0000 0 eyes.
• 0001 0 eyes, but the defender can threaten to make one eye.
• 0002 0 eyes, but the defender can threaten to make two eyes.
• 0011 1/2 eye, 1 eye if defender moves first, 0 eyes if attacker does.
• 0012 3/4 eyes, 3/2 eyes if defender moves first, 0 eyes if attacker does.
• 0022 1* eye, 2 eyes if defender moves first, 0 eyes if attacker does.
• 0111 1 eye, attacker can threaten to destroy the eye.
• 0112 1 eye, attacker can threaten to destroy the eye, defender can threaten to make

another eye.
• 0122 5/4 eyes, 2 eyes if defender moves first, 1/2 eye if attacker does.
• 0222 2 eyes, attacker can threaten to destroy both.
• 1111 1 eye.
• 1112 1 eye, defender can threaten to make another eye.
• 1122 3/2 eyes, 2 eyes if defender moves first, 1 eye if attacker does.
• 1222 2 eyes, attacker can threaten to destroy one eye.
• 2222 2 eyes.

The 3/4, 5/4, and 1* eye values are the same as in Howard Landman’s paper Eyespace
Values in Go. Attack and defense points are only marked in the patterns when they have
definite effects on the eye value, i.e. pure threats are not marked.

Examples of all different cases can be found among the patterns in this file. Some of
them might be slightly counterintuitive, so we explain one important case here. Consider



Chapter 8: Eyes and Half Eyes 67

Pattern 6141

X
XX.@x

:1122

which e.g. matches in this position:
.OOOXXX
OOXOXOO
OXXba.O
OOOOOOO

Now it may look like ‘X’ could take away both eyes by playing ‘a’ followed by ‘b’,
giving 0122 as eye value. This is where the subtlety of the definition of the first digit in
the eye value comes into play. It does not say that the attacker is allowed two consecutive
moves but only that he is allowed to play "another move". The crucial property of this
shape is that when ‘X’ plays at a to destroy (at least) one eye, ‘O’ can answer at ‘b’, giving:

.OOOXXX
OO.OXOO
O.cOX.O
OOOOOOO

Now ‘X’ has to continue at ‘c’ in order to keep ‘O’ at one eye. After this ‘O’ plays
tenuki and ‘X’ cannot destroy the remaining eye by another move. Thus the eye value is
indeed 1122.

As a final note, some of the eye values indicating a threat depend on suicide to be
allowed, e.g.

Pattern 301

X.X

:1222

We always assume suicide to be allowed in this database. It is easy enough to sort
out such moves at a higher level when suicide is disallowed.

8.8 Topology of Half Eyes and False Eyes

A HALF EYE is a pattern where an eye may or may not materialize, depending on who
moves first. Here is a half eye for O:

OOXX
O.O.
OO.X



Chapter 8: Eyes and Half Eyes 68

A FALSE EYE is an eye vertex which cannot become a proper eye. Here are two
examples of false eyes for O:

OOX OOX
O.O O.OO
XOO OOX

We describe now the topological algorithm used to find half eyes and false eyes. In
this section we ignore the possibility of ko.

False eyes and half eyes can locally be characterized by the status of the diagonal
intersections from an eye space. For each diagonal intersection, which is not within the eye
space, there are three distinct possibilities:

• occupied by an enemy (X) stone, which cannot be captured.

• either empty and X can safely play there, or occupied by an X stone that can both be
attacked and defended.

• occupied by an O stone, an X stone that can be attacked but not defended, or it’s empty
and X cannot safely play there.

We give the first possibility a value of two, the second a value of one, and the last
a value of zero. Summing the values for the diagonal intersections, we have the following
criteria:

• sum >= 4: false eye

• sum == 3: half eye

• sum <= 2: proper eye

If the eye space is on the edge, the numbers above should be decreased by 2. An
alternative approach is to award diagonal points which are outside the board a value of 1.
To obtain an exact equivalence we must however give value 0 to the points diagonally off
the corners, i.e. the points with both coordinates out of bounds.

The algorithm to find all topologically false eyes and half eyes is:

For all eye space points with at most one neighbor in the eye space, evaluate the
status of the diagonal intersections according to the criteria above and classify the point
from the sum of the values.

8.9 Eye Topology with Ko

This section extends the topological eye analysis to handle ko. We distinguish between a
ko in favor of ‘O’ and one in favor of ‘X’:

.?O? good for O
OO.O
O.O?
XOX.
.X..



Chapter 8: Eyes and Half Eyes 69

.?O? good for X
OO.O
OXO?
X.X.
.X..

Preliminarily we give the former the symbolic diagonal value a and the latter the
diagonal value b. We should clearly have 0 < a < 1 < b < 2. Letting e be the topological eye
value (still the sum of the four diagonal values), we want to have the following properties:

e <= 2 - proper eye
2 < e < 3 - worse than proper eye, better than half eye
e = 3 - half eye
3 < e < 4 - worse than half eye, better than false eye
e >= 4 - false eye

In order to determine the appropriate values of a and b we analyze the typical cases
of ko contingent topological eyes:

.X.. (slightly) better than proper eye
(a) ..OO e < 2

OO.O
O.OO e = 1 + a
XOX.
.X..

.X.. better than half eye, worse than proper eye
(a’) ..OO 2 < e < 3

OO.O
OXOO e = 1 + b
X.X.
.X..

.X.. better than half eye, worse than proper eye
(b) .XOO 2 < e < 3

OO.O
O.OO e = 2 + a
XOX.
.X..

.X.. better than false eye, worse than half eye
(b’) .XOO 3 < e < 4

OO.O
OXOO e = 2 + b
X.X.
.X..



Chapter 8: Eyes and Half Eyes 70

.X..
XOX. (slightly) better than proper eye

(c) O.OO e < 2
OO.O
O.OO e = 2a
XOX.
.X..

.X..
XOX. proper eye, some aji

(c’) O.OO e ~ 2
OO.O
OXOO e = a + b
X.X.
.X..

.X..
X.X. better than half eye, worse than proper eye

(c’’) OXOO 2 < e < 3
OO.O
OXOO e = 2b
X.X.
.X..

.X...
XOX.. better than half eye, worse than proper eye

(d) O.O.X 2 < e < 3
OO.O.
O.OO. e = 1 + 2a
XOX..
.X...

.X...
XOX.. half eye, some aji

(d’) O.O.X e ~ 3
OO.O.
OXOO. e = 1 + a + b
X.X..
.X...



Chapter 8: Eyes and Half Eyes 71

.X...
X.X.. better than false eye, worse than half eye

(d’’) OXO.X 3 < e < 4
OO.O.
OXOO. e = 1 + 2b
X.X..
.X...

.X...
XOX.. better than false eye, worse than half eye

(e) O.OXX 3 < e < 4
OO.O.
O.OO. e = 2 + 2a
XOX..
.X...

.X...
XOX.. false eye, some aji

(e’) O.OXX e ~ 4
OO.O.
OXOO. e = 2 + a + b
X.X..
.X...

.X...
X.X.. (slightly) worse than false eye

(e’’) OXOXX 4 < e
OO.O.
OXOO. e = 2 + 2b
X.X..
.X...

It may seem obvious that we should use

(i) a=1/2, b=3/2

but this turns out to have some drawbacks. These can be solved by using either of

(ii) a=2/3, b=4/3
(iii) a=3/4, b=5/4
(iv) a=4/5, b=6/5

Summarizing the analysis above we have the following table for the four different
choices of a and b.

case symbolic a=1/2 a=2/3 a=3/4 a=4/5 desired



Chapter 8: Eyes and Half Eyes 72

value b=3/2 b=4/3 b=5/4 b=6/5 interval
(a) 1+a 1.5 1.67 1.75 1.8 e < 2
(a’) 1+b 2.5 2.33 2.25 2.2 2 < e < 3
(b) 2+a 2.5 2.67 2.75 2.8 2 < e < 3
(b’) 2+b 3.5 3.33 3.25 3.2 3 < e < 4
(c) 2a 1 1.33 1.5 1.6 e < 2
(c’) a+b 2 2 2 2 e ~ 2
(c’’) 2b 3 2.67 2.5 2.4 2 < e < 3
(d) 1+2a 2 2.33 2.5 2.6 2 < e < 3
(d’) 1+a+b 3 3 3 3 e ~ 3
(d’’) 1+2b 4 3.67 3.5 3.4 3 < e < 4
(e) 2+2a 3 3.33 3.5 3.6 3 < e < 4
(e’) 2+a+b 4 4 4 4 e ~ 4
(e’’) 2+2b 5 4.67 4.5 4.4 4 < e

We can notice that (i) fails for the cases (c”), (d), (d”), and (e). The other three
choices get all values in the correct intervals. The main distinction between them is the
relative ordering of (c”) and (d) (or analogously (d”) and (e)). If we do a more detailed
analysis of these we can see that in both cases ‘O’ can secure the eye unconditionally if he
moves first while ‘X’ can falsify it with ko if he moves first. The difference is that in (c”),
‘X’ has to make the first ko threat, while in (d), O has to make the first ko threat. Thus
(c”) is better for O and ought to have a smaller topological eye value than (d). This gives
an indication that (iv) is the better choice.

We can notice that any value of a, b satisfying a+b=2 and 3/4<a<1 would have
the same qualities as choice (iv) according to the analysis above. One interesting choice
is a=7/8, b=9/8 since these allow exact computations with floating point values having a
binary mantissa. The latter property is shared by a=3/4 and a=1/2.

When there are three kos around the same eyespace, things become more complex.
This case is, however, rare enough that we ignore it.

8.10 False Margins

The following situation is rare but special enough to warrant separate attention:
OOOOXX
OXaX..
------

Here ‘a’ may be characterized by the fact that it is adjacent to O’s eyespace, and it
is also adjacent to an X group which cannot be attacked, but that an X move at ’a’ results
in a string with only one liberty. We call this a false margin.

For the purpose of the eye code, O’s eyespace should be parsed as (X), not (X!).

8.11 Functions in ‘optics.c’

The public function make_domains() calls the function make_primary_domains() which
is static in ‘optics.c’. It’s purpose is to compute the domains of influence of each color,
used in determining eye shapes. Note: the term influence as used here is distinct from the
influence in influence.c.



Chapter 8: Eyes and Half Eyes 73

For this algorithm the strings which are not lively are invisible. Ignoring these, the
algorithm assigns friendly influence to
1. every vertex which is occupied by a (lively) friendly stone,
2. every empty vertex adjoining a (lively) friendly stone,
3. every empty vertex for which two adjoining vertices (not on the first line) in the (usually

8) surrounding ones have friendly influence, with two CAVEATS explained below.

Thus in the following diagram, ‘e’ would be assigned friendly influence if ‘a’ and ‘b’
have friendly influence, or ‘a’ and ‘d’. It is not sufficent for ‘b’ and ‘d’ to have friendly
influence, because they are not adjoining.

uabc
def
ghi

The constraint that the two adjoining vertices not lie on the first line prevents influ-
ence from leaking under a stone on the third line.

The first CAVEAT alluded to above is that even if ‘a’ and ‘b’ have friendly influence,
this does not cause ‘e’ to have friendly influence if there is a lively opponent stone at ‘d’.
This constraint prevents influence from leaking past knight’s move extensions.

The second CAVEAT is that even if ‘a’ and ‘b’ have friendly influence this does not
cause ‘e’ to have influence if there are lively opponent stones at ‘u’ and at ‘c’. This prevents
influence from leaking past nikken tobis (two space jumps).

The corner vertices are handled slightly different.
+---
|ab
|cd

We get friendly influence at ‘a’ if we have friendly influence at ‘b’ or ‘c’ and no lively
unfriendly stone at ‘b’, ‘c’ or ‘d’.

Here are the public functions in ‘optics.c’, except some simple access functions
used by autohelpers. The statically declared functions are documented in the source code.
• void make_domains(struct eye_data b_eye[BOARDMAX], struct eye_data

w_eye[BOARDMAX], int owl_call)

This function is called from make_dragons() and from owl_determine_
life(). It marks the black and white domains (eyeshape regions) and
collects some statistics about each one.

• void partition_eyespaces(struct eye_data eye[BOARDMAX], int color)

Find connected eyespace components and compute relevant statistics.
• void propagate_eye(int origin, struct eye_data eye[BOARDMAX])

propagate eye(origin) copies the data at the (origin) to the rest of the eye
(invariant fields only).

• int find_eye_dragons(int origin, struct eye_data eye[BOARDMAX], int
eye_color, int dragons[], int max_dragons)

Find the dragon or dragons surrounding an eye space. Up to max dragons
dragons adjacent to the eye space are added to the dragon array, and the
number of dragons found is returned.



Chapter 8: Eyes and Half Eyes 74

• void compute_eyes(int pos, struct eyevalue *value, int *attack_point,
int *defense_point, struct eye_data eye[BOARDMAX], struct half_eye_data
heye[BOARDMAX], int add_moves)

Given an eyespace with origin pos, this function computes the minimum
and maximum numbers of eyes the space can yield. If max and min are
different, then vital points of attack and defense are also generated. If add_
moves == 1, this function may add a move reason for color at a vital point
which is found by the function. If add_moves == 0, set color = EMPTY.

• void compute_eyes_pessimistic(int pos, struct eyevalue *value, int
*pessimistic_min, int *attack_point, int *defense_point, struct eye_data
eye[BOARDMAX], struct half_eye_data heye[BOARDMAX])

This function works like compute_eyes(), except that it also gives a pes-
simistic view of the chances to make eyes. Since it is intended to be used
from the owl code, the option to add move reasons has been removed.

• void add_false_eye(int pos, struct eye_data eye[BOARDMAX], struct
half_eye_data heye[BOARDMAX])

turns a proper eyespace into a margin.
• int is_eye_space(int pos)

• int is_proper_eye_space(int pos)

These functions are used from constraints to identify eye spaces, primarily
for late endgame moves.

• int max_eye_value(int pos)

Return the maximum number of eyes that can be obtained from the eye-
space at (i, j). This is most useful in order to determine whether the
eyespace can be assumed to produce any territory at all.

• int is_marginal_eye_space(int pos)

• int is_halfeye(struct half_eye_data heye[BOARDMAX], int pos)

• int is_false_eye(struct half_eye_data heye[BOARDMAX], int pos)

These functions simply return information about an eyeshape that has
already been analyzed. (They do no real work.)

• void find_half_and_false_eyes(int color, struct eye_data eye[BOARDMAX],
struct half_eye_data heye[BOARDMAX], int find_mask[BOARDMAX])

Find topological half eyes and false eyes by analyzing the diagonal inter-
sections, as described in the Texinfo documentation (Eyes/Eye Topology).

• float topological_eye(int pos, int color, struct eye_data my_
eye[BOARDMAX],struct half_eye_data heye[BOARDMAX])

See Texinfo documentation (Eyes:Eye Topology). Returns:
• 2 or less if pos is a proper eye for color;
• between 2 and 3 if the eye can be made false only by ko
• 3 if pos is a half eye;
• between 3 and 4 if the eye can be made real only by ko
• 4 or more if pos is a false eye.



Chapter 8: Eyes and Half Eyes 75

Attack and defense points for control of the diagonals are stored in the
heye[] array. my_eye is the eye space information with respect to color.

• int obvious_false_eye(int pos, int color)

Conservative relative of topological_eye(). Essentially the same algo-
rithm is used, but only tactically safe opponent strings on diagonals are
considered. This may underestimate the false/half eye status, but it should
never be overestimated.

• void set_eyevalue(struct eyevalue *e, int a, int b, int c, int d)

set parameters into the struct eyevalue as follows: (see Section 8.7 [Eye
Local Game Values], page 66):

struct eyevalue { /* number of eyes if: */
unsigned char a; /* attacker plays first twice */
unsigned char b; /* attacker plays first */
unsigned char c; /* defender plays first */
unsigned char d; /* defender plays first twice */

};

• int min_eye_threat(struct eyevalue *e)

Number of eyes if attacker plays first twice (the threat of the first move by
attacker).

• int min_eyes(struct eyevalue *e)

Number of eyes if attacker plays first followed by alternating play.
• int max_eyes(struct eyevalue *e)

Number of eyes if defender plays first followed by alternating play.
• int max_eye_threat(struct eyevalue *e)

Number of eyes if defender plays first twice (the threat of the first move
by defender).

• void add_eyevalues(struct eyevalue *e1, struct eyevalue *e2, struct
eyevalue *sum)

Add the eyevalues *e1 and *e2, leaving the result in *sum. It is safe to let
sum be the same as e1 or e2.

• char * eyevalue_to_string(struct eyevalue *e)

Produces a string containing the eyevalue. Note: the result string is stored
in a statically allocated buffer which will be overwritten the next time this
function is called.

• void test_eyeshape(int eyesize, int *eye_vertices) /* Test whether the optics
code evaluates an eyeshape consistently. */

• int analyze_eyegraph(const char *coded_eyegraph, struct eyevalue *value,
char *analyzed_eyegraph)

Analyze an eye graph to determine the eye value and vital moves. The eye
graph is given by a string which is encoded with ‘%’ for newlines and ‘O’
for spaces. E.g., the eye graph

!



Chapter 8: Eyes and Half Eyes 76

.X
!...

is encoded as OO!%O.X%!.... (The encoding is needed for the GTP in-
terface to this function.) The result is an eye value and a (nonencoded)
pattern showing the vital moves, using the same notation as eyes.db. In
the example above we would get the eye value 0112 and the graph (showing
ko threat moves)

.X
!.*.

If the eye graph cannot be realized, 0 is returned, 1 otherwise.



Chapter 9: The Pattern Code 77

9 The Pattern Code

9.1 Overview

Several pattern databases are in the patterns directory. This chapter primarily discusses
the patterns in ‘patterns.db’, ‘patterns2.db’, and the pattern files ‘hoshi.db’ etc. which
are compiled from the SGF files ‘hoshi.sgf’ (see Section 9.16 [Joseki Compiler], page 98).
There is no essential difference between these files, except that the ones in ‘patterns.db’
and ‘patterns2.db’ are hand written. They are concatenated before being compiled by
mkpat into ‘patterns.c’. The purpose of the separate file ‘patterns2.db’ is that it is
handy to move patterns into a new directory in the course of organizing them. The patterns
in ‘patterns.db’ are more disorganized, and are slowly being moved to ‘patterns2.db’.

During the execution of genmove(), the patterns are matched in ‘shapes.c’ in order
to find move reasons.

The same basic pattern format is used by ‘attack.db’, ‘defense.db’, ‘conn.db’,
‘apats.db’ and ‘dpats.db’. However these patterns are used for different purposes. These
databases are discussed in other parts of this documentation. The patterns in ‘eyes.db’
are entirely different and are documented elsewhere (see Chapter 8 [Eyes], page 60).

The patterns described in the databases are ascii representations, of the form:
Pattern EB112

?X?.? jump under
O.*oo
O....
o....
-----

:8,ed,NULL

Here ‘O’ marks a friendly stone, ‘X’ marks an enemy stone, ‘.’ marks an empty vertex,
‘*’ marks O’s next move, ‘o’ marks a square either containing ‘O’ or empty but not ‘X’. (The
symbol ‘x’, which does not appear in this pattern, means ‘X’ or ‘.’.) Finally ‘?’ Indicates
a location where we don’t care what is there, except that it cannot be off the edge of the
board.

The line of ‘-’’s along the bottom in this example is the edge of the board itself—
this is an edge pattern. Corners can also be indicated. Elements are not generated for ‘?’
markers, but they are not completely ignored - see below.

The line beginning ‘:’ describes various attributes of the pattern, such as its sym-
metry and its class. Optionally, a function called a “helper” can be provided to assist the
matcher in deciding whether to accept move. Most patterns do not require a helper, and
this field is filled with NULL.

The matcher in ‘matchpat.c’ searches the board for places where this layout appears
on the board, and the callback function shapes_callback() in ‘shapes.c’ registers the
appropriate move reasons.

After the pattern, there is some supplementary information in the format:



Chapter 9: The Pattern Code 78

:trfno, classification, [values], helper_function

Here trfno represents the number of transformations of the pattern to consider, usu-
ally ‘8’ (no symmetry, for historical reasons), or one of ‘|’, ‘\’, ‘/’, ‘-’, ‘+’, ‘X’, where the
line represents the axis of symmetry. (E.g. ‘|’ means symmetrical about a vertical axis.)

The above pattern could equally well be written on the left edge:

|oOO?
|...X
|..*?
|..o.
|..o?

:8,ed,NULL

The program mkpat is capable of parsing patterns written this way, or for that
matter, on the top or right edges, or in any of the four corners. As a matter of convention
all the edge patterns in ‘patterns.db’ are written on the bottom edge or in the lower left
corners. In the ‘patterns/’ directory there is a program called transpat which can rotate
or otherwise transpose patterns. This program is not built by default—if you think you
need it, make transpat in the ‘patterns/’ directory and consult the usage remarks at the
beginning of ‘patterns/transpat.c’.

9.2 Pattern Attributes

The attribute field in the ‘:’ line of a pattern consists of a sequence of zero or more of the
following characters, each with a different meaning. The attributes may be roughly classified
as constraints, which determine whether or not the pattern is matched, and actions, which
describe what is to be done when the pattern is matched, typically to add a move reason.

9.2.1 Constraint Pattern Attributes

• ‘s’
Safety of the move is not checked. This is appropriate for sacrifice patterns.
If this classification is omitted, the matcher requires that the stone played
cannot be trivially captured. Even with s classification, a check for legality
is made, though.

• ‘n’
In addition to usual check that the stone played cannot be trivially cap-
tured, it is also confirmed that an opponent move here could not be cap-
tured.

• ‘O’
It is checked that every friendly (‘O’) stone of the pattern belongs to a
dragon which has status (see Section 7.5 [Dragons], page 54) ALIVE or
UNKNOWN. The CRITICAL matcher status is excluded. It is possible for a
string to have ALIVE status and still be tactically critical, since it might be



Chapter 9: The Pattern Code 79

amalgamated into an ALIVE dragon, and the matcher status is constant
on the dragon. Therefore, an additional test is performed: if the pattern
contains a string which is tactically critical, and if ‘*’ does not rescue it,
the pattern is rejected.

• ‘o’
It is checked that every friendly (‘O’) stone of the pattern belongs to a
dragon which is classified as DEAD or UNKNOWN.

• ‘X’
It is checked that every opponent (‘X’) stone of the pattern belongs to a
dragon with status ALIVE, UNKNOWN or CRITICAL. Note that there is an
asymmetry with ‘O’ patterns, where CRITICAL dragons are rejected.

• ‘x’
It is checked that every opponent (‘X’) stone of the pattern belongs to a
dragon which is classified as DEAD or UNKNOWN

9.2.2 Action Attributes

• ‘C’
If two or more distinct O dragons occur in the pattern, the move is given
the move reasons that it connects each pair of dragons. An exception is
made for dragons where the underlying worm can be tactically captured
and is not defended by the considered move.

• ‘c’
Add strategical defense move reason for all our dragons and a small shape
bonus. This classification is appropriate for weak connection patterns.

• ‘B’
If two or more distinct ‘X’ dragons occur in the pattern, the move is given
the move reasons that it cuts each pair of dragons.

• ‘e’
The move makes or secures territory.

• ‘E’
The move attempts increase influence and create/expand a moyo.

• ‘d’
The move strategically defends all O dragons in the pattern, except those
that can be tactically captured and are not tactically defended by this
move. If any O dragon should happen to be perfectly safe already, this
only reflects in the move reason being valued to zero.

• ‘a’
The move strategically attacks all ‘X’ dragons in the pattern.

• ‘J’
Standard joseki move. Unless there is an urgent move on the board these
moves are made as soon as they can be. This is equivalent to adding the
‘d’ and ‘a’ classifications together with a minimum accepted value of 27.



Chapter 9: The Pattern Code 80

• ‘F’
This indicates a fuseki pattern. This is only effective together with either
the ‘j’ or ‘t’ classification, and is used to ensure indeterministic play during
fuseki.

• ‘j’
Slightly less urgent joseki move. These moves will be made after those with
the ‘J’ classification. This adds the ‘e’ and ‘E’ classifications. If the move
has the ‘F’ classification, it also gets a fixed value of 20.1, otherwise it gets
a minimum accepted value of 20. (This makes sure that GNU Go chooses
randomly between different moves that have ‘jF’ as classification.)

• ‘t’
Minor joseki move (tenuki OK). This is equivalent to adding the ‘e’ and
‘E’ classifications together with either a fixed value of 15.07 (if the move
has ‘F’ classification) or a minimum value of 15 (otherwise).

• ‘U’
Urgent joseki move (never tenuki). This is equivalent to the ‘d’ and ‘a’
classifications together with a shape bonus of 15 and a minimum accepted
value of 40.

A commonly used class is OX (which rejects pattern if either side has dead stones).
The string ‘-’ may be used as a placeholder. (In fact any characters other than the above
and ‘,’ are ignored.)

The types ‘o’ and ‘O’ could conceivably appear in a class, meaning it applies only
to UNKNOWN. ‘X’ and ‘x’ could similarly be used together. All classes can be combined
arbitrarily.

9.3 Pattern Attributes

The second and following fields in the ‘:’ line of a pattern are optional and of the form
value1(x),value2(y),.... The available set of values are as follows.
• terri(x)

Forces the territorial value of the move to be at least x.
• minterri(x)

Forces the territorial value of the move to be at least x.
• maxterri(x)

Forces the territorial value of the move to be at most x.
• value(x)

Forces the final value of the move to be at least x.
• minvalue(x), maxvalue(x)

Forces the final value of the move to be at least/most x.
• shape(x)

Adds x to the move’s shape value.
• followup(x)

Adds x to the move’s followup value.



Chapter 9: The Pattern Code 81

The meaning of these values is documented in See Chapter 6 [Move Generation],
page 40.

9.4 Helper Functions

Helper functions can be provided to assist the matcher in deciding whether to accept a
pattern, register move reasons, and setting various move values. The helper is supplied
with the compiled pattern entry in the table, and the (absolute) position on the board of
the ‘*’ point.

One difficulty is that the helper must be able to cope with all the possible transfor-
mations of the pattern. To help with this, the OFFSET macro is used to transform relative
pattern coordinates to absolute board locations.

The actual helper functions are in ‘helpers.c’. They are declared in ‘patterns.h’.
As an example to show how to write a helper function, we consider a hypothetical

helper called wedge_helper. Such a helper used to exist, but has been replaced by a
constraint. Due to its simplicity it’s still a good example. The helper begins with a comment:

/*

?O. ?Ob
.X* aX*
?O. ?Oc

:8,C,wedge_helper
*/

The image on the left is the actual pattern. On the right we’ve taken this image and
added letters to label apos, bpos, and cpos. The position of *, the point where GNU Go
will move if the pattern is adopted, is passed through the parameter move.

int
wedge_helper(ARGS)
{
int apos, bpos, cpos;
int other = OTHER_COLOR(color);
int success = 0;

apos = OFFSET(0, -2);
bpos = OFFSET(-1, 0);
cpos = OFFSET(1, 0);

if (TRYMOVE(move, color)) {
if (TRYMOVE(apos, other)) {

if (board[apos] == EMPTY || attack(apos, NULL))
success = 1;

else if (TRYMOVE(bpos, color)) {
if (!safe_move(cpos, other))

success = 1;
popgo();



Chapter 9: The Pattern Code 82

}
popgo();

}
popgo();

}

return success;
}

The OFFSET lines tell GNU Go the positions of the three stones at ‘a’, ‘b’, and ‘c’.
To decide whether the pattern guarantees a connection, we do some reading. First we use
the TRYMOVE macro to place an ‘O’ at ‘move’ and let ‘X’ draw back to ‘a’. Then we ask
whether ‘O’ can capture these stones by calling attack(). The test if there is a stone at
‘a’ before calling attack() is in this position not really necessary but it’s good practice to
do so, because if the attacked stone should happen to already have been captured while
placing stones, GNU Go would crash with an assertion failure.

If this attack fails we let ‘O’ connect at ‘b’ and use the safe_move() function to
examine whether a cut by ‘X’ at ‘c’ could be immediately captured. Before we return the
result we need to remove the stones we placed from the reading stack. This is done with
the function popgo().

9.5 Autohelpers and Constraints

In addition to the hand-written helper functions in ‘helpers.c’, GNU Go can automatically
generate helper functions from a diagram with labels and an expression describing a con-
straint. The constraint diagram, specifying the labels, is placed below the ‘:’ line and the
constraint expression is placed below the diagram on line starting with a ‘;’. Constraints
can only be used to accept or reject a pattern. If the constraint evaluates to zero (false)
the pattern is rejected, otherwise it’s accepted (still conditioned on passing all other tests
of course). To give a simple example we consider a connection pattern.

Pattern Conn311

O*.
?XO

:8,C,NULL

O*a
?BO

;oplay_attack_either(*,a,a,B)

Here we have given the label ‘a’ to the empty spot to the right of the considered
move and the label ‘B’ to the ‘X’ stone in the pattern. In addition to these, ‘*’ can also be
used as a label. A label may be any lowercase or uppercase ascii letter except OoXxt. By



Chapter 9: The Pattern Code 83

convention we use uppercase letters for ‘X’ stones and lowercase for ‘O’ stones and empty
intersections. When labeling a stone that’s part of a larger string in the pattern, all stones
of the string should be marked with the label. (These conventions are not enforced by the
pattern compiler, but to make the database consistent and easy to read they should be
followed.)

The labels can now be used in the constraint expression. In this example we have a
reading constraint which should be interpreted as "Play an ‘O’ stone at ‘*’ followed by an
‘X’ stone at ‘a’. Accept the pattern if ‘O’ now can capture either at ‘a’ or at ‘B’ (or both
strings)."

The functions that are available for use in the constraints are listed in the section
‘Autohelpers Functions’ below. Technically the constraint expression is transformed by
mkpat into an automatically generated helper function in ‘patterns.c’. The functions in
the constraint are replaced by C expressions, often functions calls. In principle any valid C
code can be used in the constraints, but there is in practice no reason to use anything more
than boolean and arithmetic operators in addition to the autohelper functions. Constraints
can span multiple lines, which are then concatenated.

9.6 Autohelper Actions

As a complement to the constraints, which only can accept or reject a pattern, one can
also specify an action to perform when the pattern has passed all tests and finally has been
accepted.

Example:

Pattern EJ4

...*. continuation

.OOX.

..XOX

.....
-----

:8,Ed,NULL

...*. never play a here

.OOX.

.aXOX

.....
-----

>antisuji(a)

The line starting with ‘>’ is the action line. In this case it tells the move generation
that the move at a should not be considered, whatever move reasons are found by other
patterns. The action line uses the labels from the constraint diagram. Both constraint and



Chapter 9: The Pattern Code 84

action can be used in the same pattern. If the action only needs to refer to ‘*’, no constraint
diagram is required. Like constraints, actions can span multiple lines.

Here is a partial list of the autohelper macros which are typically called from action
lines. This list is not complete. If you cannot find an autohelper macro in an action line
in this list, consult ‘mkpat.c’ to find out what function in the engine is actually called.
If no macro exists which does what you want, you can add macros by editing the list in
‘mkpat.c’.
• antisuji(a);

Mark ‘a’ as an antisuji, that is, a move that must never be played.
• replace(a,*)

This is appropriate if the move at ‘*’ is definitely better than the move
at ‘a’. The macro adds a point redistribution rule. Any points which
are assigned to ‘a’ during the move generation by any move reason are
redistributed to ‘*’.

• prevent_attack_threat(a)

Add a reverse followup value because the opponent’s move here would
threaten to capture ‘a’.

• threaten_to_save(a)

Add a followup value because the move at ‘*’ threatens to rescue the dead
string at ‘a’.

• defend_against_atari(a)

Estimate the value of defending the string ‘a’ which can be put into atari
and add this as a reverse followup value.

• add_defend_both_move(a,b);

• add_cut_move(c,d);

Add to the move reasons that the move at ‘*’ threatens to cut ‘c’ and ‘d’.

9.7 Autohelper Functions

The autohelper functions are translated into C code by the program in ‘mkpat.c’. To see
exactly how the functions are implemented, consult the autohelper function definitions in
that file. Autohelper functions can be used in both constraint and action lines.

lib(x)
lib2(x)
lib3(x)
lib4(x)

Number of first, second, third, and fourth order liberties of a worm respectively. See
Chapter 7 [Worms and Dragons], page 47, the documentation on worms for definitions.

xlib(x)
olib(x)



Chapter 9: The Pattern Code 85

The number of liberties that an enemy or own stone, respectively, would obtain if
played at the empty intersection ‘x’.

xcut(x)
ocut(x)

Calls cut_possible (see Section 18.1 [General Utilities], page 167) to determine
whether ‘X’ or ‘O’ can cut at the empty intersection ‘x’.

ko(x)

True if ‘x’ is either a stone or an empty point involved in a ko position.
status(x)

The matcher status of a dragon. status(x) returns an integer that can have the values
ALIVE, UNKNOWN, CRITICAL, or DEAD (see Chapter 7 [Worms and Dragons], page 47).

alive(x)
unknown(x)
critical(x)
dead(x)

Each function true if the dragon has the corresponding matcher status and false
otherwise (see Chapter 7 [Worms and Dragons], page 47).

status(x)

Returns the status of the dragon at ‘x’ (see Chapter 7 [Worms and Dragons], page 47).
genus(x)

The number of eyes of a dragon. It is only meaningful to compare this value against
0, 1, or 2.

xarea(x)
oarea(x)
xmoyo(x)
omoyo(x)
xterri(x)
oterri(x)

These functions call whose_territory(), whose_moyo() and whose_area() (see
Section 13.2 [Territory and Moyo], page 129). For example xarea(x) evaluates to true if ‘x’
is either a living enemy stone or an empty point within the opponent’s “area”. The function
oarea(x) is analogous but with respect to our stones and area. The main difference between
area, moyo, and terri is that area is a very far reaching kind of influence, moyo gives a more
realistic estimate of what may turn in to territory, and terri gives the points that already
are believed to be secure territory.

weak(x)

True for a dragon that is perceived as weak.

attack(x)
defend(x)



Chapter 9: The Pattern Code 86

Results of tactical reading. attack(x) is true if the worm can be captured,
defend(x) is true if there also is a defending move. Please notice that defend(x) will
return false if there is no attack on the worm.

safe_xmove(x)
safe_omove(x)

True if an enemy or friendly stone, respectively, can safely be played at ‘x’. By safe
it is understood that the move is legal and that it cannot be captured right away.

legal_xmove(x)
legal_omove(x)

True if an enemy or friendly stone, respectively, can legally be played at x.

o_somewhere(x,y,z, ...)
x_somewhere(x,y,z, ...)

True if O (respectively X) has a stone at one of the labelled vertices. In the diagram,
these vertices should be marked with a ‘?’.

odefend_against(x,y)
xdefend_against(x,y)

True if an own stone at ‘x’ would stop the enemy from safely playing at ‘y’, and
conversely for the second function.

does_defend(x,y)
does_attack(x,y)

True if a move at ‘x’ defends/attacks the worm at ‘y’. For defense a move of the
same color as ‘y’ is tried and for attack a move of the opposite color.

xplay_defend(a,b,c,...,z)
oplay_defend(a,b,c,...,z)
xplay_attack(a,b,c,...,z)
oplay_attack(a,b,c,...,z)

These functions make it possible to do more complex reading experiments in the
constraints. All of them work so that first the sequence of moves ‘a’,‘b’,‘c’,... is played
through with alternating colors, starting with ‘X’ or ‘O’ as indicated by the name. Then
it is tested whether the worm at ‘z’ can be attacked or defended, respectively. It doesn’t
matter who would be in turn to move, a worm of either color may be attacked or defended.
For attacks the opposite color of the string being attacked starts moving and for defense



Chapter 9: The Pattern Code 87

the same color starts. The defend functions return true if the worm cannot be attacked in
the position or if it can be attacked but also defended. The attack functions return true
if there is a way to capture the worm, whether or not it can also be defended. If there is
no stone present at ‘z’ after the moves have been played, it is assumed that an attack has
already been successful or a defense has already failed. If some of the moves should happen
to be illegal, typically because it would have been suicide, the following moves are played
as if nothing has happened and the attack or defense is tested as usual. It is assumed that
this convention will give the relevant result without requiring a lot of special cases.

The special label ‘?’ can be used to represent a tenuki. Thus oplay_
defend(a,?,b,c) tries moves by ‘O’ at ‘a’ and ‘b’, as if ‘X’ plays the second move in
another part of the board, then asks if ‘c’ can be defended. The tenuki cannot be the first
move of the sequence, nor does it need to be: instead of oplay_defend(?,a,b,c) you can
use xplay_defend(a,b,c).

xplay_defend_both(a,b,c,...,y,z)
oplay_defend_both(a,b,c,...,y,z)
xplay_attack_either(a,b,c,...,y,z)
oplay_attack_either(a,b,c,...,y,z)

These functions are similar to the previous ones. The difference is that the last *two*
arguments denote worms to be attacked or defended simultaneously. Obviously ‘y’ and ‘z’
must have the same color. If either location is empty, it is assumed that an attack has been
successful or a defense has failed. The typical use for these functions is in cutting patterns,
where it usually suffices to capture either cutstone.

The function xplay_defend_both plays alternate moves beginning with an ‘X’ at ‘a’.
Then it passes the last two arguments to defend_both in ‘engine/utils.c’. This function
checks to determine whether the two strings can be simultaneously defended.

The function xplay_attack_either plays alternate moves beginning with an ‘X’
move at ‘a’. Then it passes the last two arguments to attack_either in ‘engine/utils.c’.
This function looks for a move which captures at least one of the two strings. In its current
implementation attack_either only looks for uncoordinated attacks and would thus miss
a double atari.

xplay_connect(a,b,c,...,y,z)
oplay_connect(a,b,c,...,y,z)
xplay_disconnect(a,b,c,...,y,z)
oplay_disconnect(a,b,c,...,y,z)

The function xplay_connect(a,b,c,...,y,z) begins with an ‘X’ move at ‘a’, then
an ‘O’ move at ‘b’, and so forth, then finally calls string_connect() to determine whether
‘x’ and ‘y’ can be connected. The other functions are similar (see Section 11.10 [Connection
Reading], page 125).

xplay_break_through(a,b,c,...,x,y,z)
oplay_break_through(a,b,c,...,x,y,z)

These functions are used to set up a position like



Chapter 9: The Pattern Code 88

.O. .y.
OXO xXz

and ‘X’ aims at capturing at least one of ‘x’, ‘y’, and ‘z’. If this succeeds ‘1’ is returned. If
it doesn’t, ‘X’ tries instead to cut through on either side and if this succeeds, ‘2’ is returned.
Of course the same shape with opposite colors can also be used.

Important notice: ‘x’, ‘y’, and ‘z’ must be given in the order they have in the diagram
above, or any reflection and/or rotation of it.

seki_helper(x)

Checks whether the string at ‘x’ can attack any surrounding string. If so, return
false as the move to create a seki (probably) wouldn’t work.

threaten_to_save(x)

Calls add_followup_value to add as a move reason a conservative estimate of the
value of saving the string ‘x’ by capturing one opponent stone.

area_stone(x)

Returns the number of stones in the area around ‘x’.
area_space(x)

Returns the amount of space in the area around ‘x’.
eye(x)
proper_eye(x)
marginal_eye(x)

True if ‘x’ is an eye space for either color, a non-marginal eye space for either color,
or a marginal eye space for either color, respectively.

antisuji(x)

Tell the move generation that ‘x’ is a substandard move that never should be played.
same_dragon(x,y)
same_worm(x,y)

Return true if ‘x’ and ‘y’ are the same dragon or worm respectively.
dragonsize(x)
wormsize(x)

Number of stones in the indicated dragon or worm.
add_connect_move(x,y)
add_cut_move(x,y)
add_attack_either_move(x,y)
add_defend_both_move(x,y)

Explicitly notify the move generation about move reasons for the move in the pattern.
halfeye(x)

Returns true if the empty intersection at ‘x’ is a half eye.
remove_attack(x)

Inform the tactical reading that a supposed attack does in fact not work.



Chapter 9: The Pattern Code 89

potential_cutstone(x)

True if cutstone2 field from worm data is larger than one. This indicates that saving
the worm would introduce at least two new cutting points.

not_lunch(x,y)

Prevents the misreporting of ‘x’ as lunch for ‘y’. For example, the following pattern
tells GNU Go that even though the stone at ‘a’ can be captured, it should not be considered
“lunch” for the dragon at ‘b’, because capturing it does not produce an eye:

XO| ba|
O*| O*|
oo| oo|
?o| ?o|

> not_lunch(a,b)

vital_chain(x)

Calls vital_chain to determine whether capturing the stone at ‘x’ will result in one
eye for an adjacent dragon. The current implementation just checks that the stone is not a
singleton on the first line.

amalgamate(x,y)

Amalgamate (join) the dragons at ‘x’ and ‘y’ (see Chapter 7 [Worms and Dragons],
page 47).

amalgamate_most_valuable(x,y,z)

Called when ‘x’, ‘y’, ‘z’ point to three (preferably distinct) dragons, in situations
such as this:

.O.X
X*OX
.O.X

In this situation, the opponent can play at ‘*’, preventing the three dragons from
becoming connected. However ‘O’ can decide which cut to allow. The helper amalgamates
the dragon at ‘y’ with either ‘x’ or ‘z’, whichever is largest.

make_proper_eye(x)

This autohelper should be called when ‘x’ is an eyespace which is misidentified as
marginal. It is reclassified as a proper eyespace (see Section 8.2 [Eye Space], page 60).

remove_halfeye(x)

Remove a half eye from the eyespace. This helper should not be run after make_
dragons is finished, since by that time the eyespaces have already been analyzed.

remove_eyepoint(x)

Remove an eye point. This function can only be used before the segmentation into
eyespaces.

owl_topological_eye(x,y)

Here ‘x’ is an empty intersection which may be an eye or half eye for some dragon,
and ‘y’ is a stone of the dragon, used only to determine the color of the eyespace in question.



Chapter 9: The Pattern Code 90

Returns the sum of the values of the diagonal intersections, relative to ‘x’, as explained in
See Section 8.8 [Eye Topology], page 67, equal to 4 or more if the eye at ‘x’ is false, 3 if it
is a half eye, and 2 if it is a true eye.

owl_escape_value(x)

Returns the escape value at ‘x’. This is only useful in owl attack and defense patterns.

9.8 Attack and Defense Database

The patterns in ‘attack.db’ and ‘defense.db’ are used to assist the tactical reading in
finding moves that attacks or defends worms. The matching is performed during make_
worms(), at the time when the tactical status of all worms is decided. None of the classes
described above are useful in these databases, instead we have two other classes.

‘D’ For each ‘O’ worm in the pattern that can be tactically captured
(worm[m][n].attack_code != 0), the move at ‘*’ is tried. If it is found to
defend the stone, this is registered as a reason for the move ‘*’ and the defense
point of the worm is set to ‘*’.

‘A’ For each ‘X’ worm in the pattern, it’s tested whether the move at ‘*’ captures
the worm. If that is the case, this is registered as a reason for the move at ‘*’.
The attack point of the worm is set to ‘*’ and if it wasn’t attacked before, a
defense is searched for.

Furthermore, ‘A’ patterns can only be used in ‘attack.db’ and ‘D’ patterns only in
‘defense.db’. Unclassified patterns may appear in these databases, but then they must
work through actions to be effective.

9.9 The Connections Database

The patterns in ‘conn.db’ are used for helping make_dragons() amalgamate worms into
dragons and to some extent for modifying eye spaces. The patterns in this database use the
classifications ‘B’, ‘C’, and ‘e’. ‘B’ patterns are used for finding cutting points, where amal-
gamation should not be performed, ‘C’ patterns are used for finding existing connections,
over which amalgamation is to be done, and ‘e’ patterns are used for modifying eye spaces
and reevaluating lunches. There are also some patterns without classification, which use
action lines to have an impact. These are matched together with the ‘C’ patterns. Further
details and examples can be found in See Chapter 7 [Worms and Dragons], page 47.

We will illustrate these databases by example. In this situation:
XOO
O.O
...

‘X’ cannot play safely at the cutting point, so the ‘O’ dragons are to be amalgamated. Two
patterns are matched here:

Pattern CC204

O
.
O



Chapter 9: The Pattern Code 91

:+,C

O
A
O

;!safe_xmove(A) && !ko(A) && !xcut(A)

Pattern CC205

XO
O.

:\,C

AO
OB

;attack(A) || (!safe_xmove(B) && !ko(B) && !xcut(B))

The constraints are mostly clear. For example the second pattern should not be
matched if the ‘X’ stone cannot be attacked and ‘X’ can play safely at ‘B’, or if ‘B’ is a
ko. The constraint !xcut(B) means that connection has not previously been inhibited by
find_cuts. For example consider this situation:

OOXX
O.OX
X..O
X.OO

The previous pattern is matched here twice, yet ‘X’ can push in and break one of the
connections. To fix this, we include a pattern:

Pattern CB11

?OX?
O!OX
?*!O
??O?

:8,B

?OA?
OaOB
?*bO
??O?

; !attack(A) && !attack(B) && !xplay_attack(*,a,b,*) && !xplay_attack(*,b,a,*)



Chapter 9: The Pattern Code 92

After this pattern is found, the xcut autohelper macro will return true at any of the
points ‘*’, ‘a’ and ‘b’. Thus the patterns CB204 and CB205 will not be matched, and the
dragons will not be amalgamated.

9.10 Connections Functions

Here are the public functions in ‘connections.c’.
• static void cut_connect_callback(int m, int n, int color, struct pattern

*pattern, int ll, void *data)

Try to match all (permutations of) connection patterns at (m,n). For
each match, if it is a B pattern, set cutting point in worm data structure
and make eye space marginal for the connection inhibiting entries of the
pattern. If it is a ‘C’ pattern, amalgamate the dragons in the pattern.

• void find_cuts(void)

Find cutting points which should inhibit amalgamations and sever the ad-
jacent eye space. This goes through the connection database consulting
only patterns of type B. When such a function is found, the function cut_
connect_callback is invoked.

• void find_connections(void)

Find explicit connection patterns and amalgamate the involved dragons.
This goes through the connection database consulting patterns except those
of type B, E or e. When such a function is found, the function cut_
connect_callback is invoked.

• void modify eye spaces1(void)
Find explicit connection patterns and amalgamate the involved dragons.
This goes through the connection database consulting only patterns of type
E (see Section 9.9 [Connections Database], page 90). When such a function
is found, the function cut_connect_callback is invoked.

• void modify eye spaces1(void)
Find explicit connection patterns and amalgamate the involved dragons.
This goes through the connection database consulting only patterns of type
e (see Section 9.9 [Connections Database], page 90). When such a function
is found, the function cut_connect_callback is invoked.

9.11 Tuning the Pattern databases

Since the pattern databases, together with the valuation of move reasons, decide GNU Go’s
personality, much time can be devoted to “tuning” them. Here are some suggestions.

If you want to experiment with modifying the pattern database, invoke with the ‘-a’
option. This will cause every pattern to be evaluated, even when some of them may be
skipped due to various optimizations.

You can obtain a Smart Game Format (SGF) record of your game in at least two
different ways. One is to use CGoban to record the game. You can also have GNU Go
record the game in Smart Game Format, using the ‘-o’ option. It is best to combine this
with ‘-a’. Do not try to read the SGF file until the game is finished and you have closed the



Chapter 9: The Pattern Code 93

game window. This does not mean that you have to play the game out to its conclusion.
You may close the CGoban window on the game and GNU Go will close the SGF file so
that you can read it.

If you record a game in SGF form using the ‘-o’ option, GNU Go will add labels to
the board to show all the moves it considered, with their values. This is an extremely useful
feature, since one can see at a glance whether the right moves with appropriate weights are
being proposed by the move generation.

First, due to a bug of unknown nature, it occasionally happens that GNU Go will
not receive the SIGTERM signal from CGoban that it needs to know that the game is over.
When this happens, the SGF file ends without a closing parenthesis, and CGoban will not
open the file. You can fix the file by typing:

echo ")" >>[filename]

at the command line to add this closing parenthesis. Or you could add the ) using an editor.
Move values exceeding 99 (these should be rare) can be displayed by CGoban but

you may have to resize the window in order to see all three digits. Grab the lower right
margin of the CGoban window and pull it until the window is large. All three digits should
be visible.

If you are playing a game without the ‘-o’ option and you wish to analyze a move,
you may still use CGoban’s “Save Game” button to get an SGF file. It will not have the
values of the moves labelled, of course.

Once you have a game saved in SGF format, you can analyze any particular move
by running:

gnugo -l [filename] -L [move number] -t -a -w

to see why GNU Go made that move, and if you make changes to the pattern database and
recompile the program, you may ask GNU Go to repeat the move to see how the behavior
changes. If you’re using emacs, it’s a good idea to run GNU Go in a shell in a buffer (M-x
shell) since this gives good navigation and search facilities.

Instead of a move number, you can also give a board coordinate to ‘-L’ in order to
stop at the first move played at this location. If you omit the ‘-L’ option, the move after
those in the file will be considered.

If a bad move is proposed, this can have several reasons. To begin with, each move
should be valued in terms of actual points on the board, as accurately as can be expected by
the program. If it’s not, something is wrong. This may have two reasons. One possibility
is that there are reasons missing for the move or that bogus reasons have been found. The
other possibility is that the move reasons have been misevaluated by the move valuation
functions. Tuning of patterns is with a few exceptions a question of fixing the first kind of
problems.

If there are bogus move reasons found, search through the trace output for the
pattern that is responsible. (Some move reasons, e.g. most tactical attack and defense,
do not originate from patterns. If no pattern produced the bogus move reason, it is not a



Chapter 9: The Pattern Code 94

tuning problem.) Probably this pattern was too general or had a faulty constraint. Try to
make it more specific or correct bugs if there were any. If the pattern and the constraint
looks right, verify that the tactical reading evaluates the constraint correctly. If not, this is
either a reading bug or a case where the reading is too complicated for GNU Go.

If a connecting move reason is found, but the strings are already effectively con-
nected, there may be missing patterns in ‘conn.db’. Similarly, worms may be incorrectly
amalgamated due to some too general or faulty pattern in ‘conn.db’. To get trace output
from the matching of patterns in ‘conn.db’ you need to add a second ‘-t’ option.

If a move reason is missing, there may be a hole in the database. It could also
be caused by some existing pattern being needlessly specific, having a faulty constraint, or
being rejected due to a reading mistake. Unless you are familiar with the pattern databases,
it may be hard to verify that there really is a pattern missing. Look around the databases
to try to get a feeling for how they are organized. (This is admittedly a weak point of
the pattern databases, but the goal is to make them more organized with time.) If you
decide that a new pattern is needed, try to make it as general as possible, without allowing
incorrect matches, by using proper classification from among snOoXx and constraints. The
reading functions can be put to good use. The reason for making the patterns as general
as they can be is that we need a smaller number of them then, which makes the database
much easier to maintain. Of course, if you need too complicated constraints, it’s usually
better to split the pattern.

If a move has the correct set of reasons but still is misevaluated, this is usually not a
tuning problem. There are, however, some possibilities to work around these mistakes with
the use of patterns. In particular, if the territorial value is off because delta_terri() give
strange results, the (min)terri and maxterri values can be set by patterns as a workaround.
This is typically done by the endgame patterns, where we can know the (minimum) value
fairly well from the pattern. If it should be needed, (min)value and maxvalue can be used
similarly. These possibilities should be used conservatively though, since such patterns are
likely to become obsolete when better (or at least different) functions for e.g. territory
estimation are being developed.

In order to choose between moves with the same move reasons, e.g. moves that
connect two dragons in different ways, patterns with a nonzero shape value should be used.
These should give positive shape values for moves that give good shape or good aji and
negative values for bad shape and bad aji. Notice that these values are additive, so it’s
important that the matches are unique.

Sente moves are indicated by the use of the pattern followup value. This can usually
not be estimated very accurately, but a good rule is to be rather conservative. As usual it
should be measured in terms of actual points on the board. These values are also additive
so the same care must be taken to avoid unintended multiple matches.

You can also get a visual display of the dragons using the ‘-T’ option. The default
GNU Go configuration tries to build a version with color support using either curses or the
ansi escape sequences. You are more likely to find color support in rxvt than xterm, at
least on many systems, so we recommend running:

gnugo -l [filename] -L [move number] -T

in an rxvt window. If you do not see a color display, and if your host is a GNU/Linux
machine, try this again in the Linux console.



Chapter 9: The Pattern Code 95

Worms belonging to the same dragon are labelled with the same letters. The colors
indicate the value of the field dragon.safety, which is set in ‘moyo.c’.
Green: GNU Go thinks the dragon is alive
Yellow: Status unknown
Blue: GNU Go thinks the dragon is dead
Red: Status critical (1.5 eyes) or weak by the algorithm

in ‘moyo.c’
If you want to get the same game over and over again, you can eliminate the ran-

domness in GNU Go’s play by providing a fixed random seed with the ‘-r’ option.

9.12 Implementation

The pattern code in GNU Go is fairly straightforward conceptually, but because the matcher
consumes a significant part of the time in choosing a move, the code is optimized for speed.
Because of this there are implementation details which obscure things slightly.

In GNU Go, the ascii ‘.db’ files are precompiled into tables (see ‘patterns.h’) by a
standalone program ‘mkpat.c’, and the resulting ‘.c’ files are compiled and linked into the
main GNU Go executable.

Each pattern is compiled to a header, and a sequence of elements, which are (notion-
ally) checked sequentially at every position and orientation of the board. These elements
are relative to the pattern ’anchor’ (or origin). One ‘X’ or ‘O’ stone is (arbitrarily) chosen to
represent the origin of the pattern. (We cannot dictate one or the other since some patterns
contain only one colour or the other.) All the elements are in co-ordinates relative to this
position. So a pattern matches "at" board position (m,n,o) if the the pattern anchor stone
is on (m,n), and the other elements match the board when the pattern is transformed by
transformation number ‘o’. (See below for the details of the transformations, though these
should not be necessary)

9.13 Symmetry and transformations

In general, each pattern must be tried in each of 8 different permutations, to reflect the
symmetry of the board. But some patterns have symmetries which mean that it is unneces-
sary (and therefore inefficient) to try all eight. The first character after the ‘:’ can be one of
‘8’,‘|’,‘\’,‘/’, ‘X’, ‘-’, ‘+’, representing the axes of symmetry. It can also be ‘O’, representing
symmetry under 180 degrees rotation.
transformation I - | . \ l r /

ABC GHI CBA IHG ADG CFI GDA IFC
DEF DEF FED FED BEH BEH HEB HEB
GHI ABC IHG CBA CFI ADG IFC GDA

a b c d e f g h
Then if the pattern has the following symmetries, the following are true:

| c=a, d=b, g=e, h=f
- b=a, c=d, e=f, g=h
\ e=a, g=b, f=c, h=d



Chapter 9: The Pattern Code 96

/ h=a, f=b, g=c, e=d
O a=d, b=c, e=h, f=g
X a=d=e=h, b=c=f=g
+ a=b=c=d, e=f=g=h

We can choose to use transformations a,d,f,g as the unique transformations for pat-
terns with either ‘|’, ‘-’, ‘\’, or ‘/’ symmetry.

Thus we choose to order the transformations a,g,d,f,h,b,e,c and choose first 2 for ‘X’
and ‘+’, the first 4 for ‘|’, ‘-’, ‘/’, and ‘\’, the middle 4 for ‘O’, and all 8 for non-symmetrical
patterns.

Each of the reflection operations (e-h) is equivalent to reflection about one arbitrary
axis followed by one of the rotations (a-d). We can choose to reflect about the axis of
symmetry (which causes no net change) and can therefore conclude that each of e-h is
equivalent to the reflection (no-op) followed by a-d. This argument therefore extends to
include ‘-’ and ‘/’ as well as ‘|’ and ‘\’.

9.14 Implementation Details

1. An entry in the pattern header states whether the anchor is an ‘X’ or an ‘O’. This helps
performance, since all transformations can be rejected at once if the anchor stone does
not match. (Ideally, we could just define that the anchor is always ‘O’ or always ‘X’,
but some patterns contain no ‘O’ and some contain no ‘X’.)

2. The pattern header contains the size of the pattern (ie the co-ordinates of the top left
and bottom right elements) relative to the anchor. This allows the pattern can be
rejected quickly if there is not room for the pattern to fit around the anchor stone
in a given orientation (ie it is too near the edge of the board). The bounding box
information must first be transformed like the elements before it can be tested, and
after transforming, we need to work out where the top-left and bottom-right corners
are.

3. The edge constraints are implemented by notionally padding the pattern with rows or
columns of ‘?’ until it is exactly 19 (or whatever the current board size is) elements
wide or high. Then the pattern is quickly rejected by (ii) above if it is not at the edge.
So the example pattern above is compiled as if it was written

"example"
.OO????????????????
*XX????????????????
o??????????????????
:8,80

4. The elements in a pattern are sorted so that non-space elements are checked before
space elements. It is hoped that, for most of the game, more squares are empty, and
so the pattern can be more quickly rejected doing it this way.

5. The actual tests are performed using an ’and-compare’ sequence. Each board position
is a 2-bit quantity. %00 for empty, %01 for ‘O’, %10 for ‘X’. We can test for an exact
match by and-ing with %11 (no-op), then comparing with 0, 1 or 2. The test for ‘o’ is



Chapter 9: The Pattern Code 97

the same as a test for ’not-X’, ie not %10. So and with %01 should give 0 if it matches.
Similarly ‘x’ is a test that bit 0 is not set.

9.15 The “Grid” Optimization

The comparisons between pattern and board are performed as 2-bit bitwise operations.
Therefore they can be performed in parallel, 16-at-a-time on a 32-bit machine.

Suppose the board is layed out as follows :

.X.O....OO
XXXXO.....
.X..OOOOOO
X.X.......
....X...O.

which is internally stored internally in a 2d array (binary)

00 10 00 01 00 00 00 00 01 01
10 10 10 10 01 00 00 00 00 00
00 10 00 00 01 01 01 01 01 01
10 00 10 00 00 00 00 00 00 00
00 00 00 00 10 00 00 00 01 00

we can compile this to a composite array in which each element stores the state of a 4x4
grid of squares :

???????? ???????? ???????? ...
??001000 00100001 10000100
??101010 10101010 10101001
??001000 00100000 10000001

??001000 00100001 ...
??101010 10101010
??001000 00100000
??001000 10001000

...

??100010 ...
??000000
????????
????????

Where ’??’ is off the board.
We can store these 32-bit composites in a 2d merged-board array, substituting the

illegal value %11 for ’??’.



Chapter 9: The Pattern Code 98

Similarly, for each pattern, mkpat produces appropriate 32-bit and-value masks for
the pattern elements near the anchor. It is a simple matter to test the pattern with a similar
test to (5) above, but for 32-bits at a time.

9.16 The Joseki Compiler

GNU Go includes a joseki compiler in ‘patterns/joseki.c’. This processes an SGF
file (with variations) and produces a sequence of patterns which can then be fed back
into mkpat. The joseki database is currently in files in ‘patterns/’ called ‘hoshi.sgf’,
‘komoku.sgf’, ‘sansan.sgf’, ‘mokuhazushi.sgf’ and ‘takamoku.sgf’. This division can be
revised whenever need arises.

The SGF files are transformed into the pattern database ‘.db’ format by the program
in ‘joseki.c’. These files are in turn transformed into C code by the program in ‘mkpat.c’
and the C files are compiled and linked into the GNU Go binary.

Not every node in the SGF file contributes a pattern. The nodes which contribute
patterns have the joseki in the upper right corner, with the boundary marked with a square
mark and other information to determine the resulting pattern marked in the comments.

The intention is that the move valuation should be able to choose between the avail-
able variations by normal valuation. When this fails the primary workaround is to use
shape values to increase or decrease the value. It is also possible to add antisuji variations
to forbid popular suboptimal moves. As usual constraints can be used, e.g. to condition a
variation on a working ladder.

The joseki format has the following components for each SGF node:
• A square mark (SQ or MA property) to decide how large part of the board should be

included in the pattern.
• A move (‘W’ or ‘B’ property) with the natural interpretation. If the square mark is

missing or the move is a pass, no pattern is produced for the node.
• Optional labels (LB property), which must be a single letter each. If there is at least

one label, a constraint diagram will be produced with these labels.
• A comment (‘C’ property). As the first character it should have one of the following

characters to decide its classification:
− ‘U’ - urgent move
− ‘S’ or ‘J’ - standard move
− ‘s’ or ‘j’ - lesser joseki
− ‘T’ - trick move
− ‘t’ - minor joseki move (tenuki OK)
− ‘0’ - antisuji (‘A’ can also be used)

The rest of the line is ignored, as is the case of the letter. If neither of these is found,
it’s assumed to be a standard joseki move.
In addition to this, rows starting with the following characters are recognized:
− ‘#’ - Comments. These are copied into the patterns file, above the diagram.
− ‘;’ - Constraints. These are copied into the patterns file, below the constraint

diagram.



Chapter 9: The Pattern Code 99

− ‘>’ - Actions. These are copied into the patterns file, below the constraint diagram.
− ‘:’ - Colon line. This is a little more complicated, but the colon line of the produced

patterns always start out with ":8,s" for transformation number and sacrifice pat-
tern class (it usually isn’t a sacrifice, but it’s pointless spending time checking for
tactical safety). Then a joseki pattern class character is appended and finally what
is included on the colon line in the comment for the SGF node.

Example: If the comment in the SGF file looks like

F
:C,shape(3)
;xplay_attack(A,B,C,D,*)

the generated pattern will have a colon line

:8,sjC,shape(3)

and a constraint

;xplay_attack(A,B,C,D,*)

9.17 Ladders in Joseki

As an example of how to use autohelpers with the Joseki compiler, we consider an example
where a Joseki is bad if a ladder fails. Assume we have the taisha and are considering
connecting on the outside with the pattern

--------+
........|
........|
...XX...|
...OXO..|
...*O...|
....X...|
........|
........|

But this is bad unless we have a ladder in our favor. To check this we add a constraint
which may look like

--------+
........|
........|
...XX...|
...OXO..|
...*OAC.|
....DB..|
........|
........|

;oplay_attack(*,A,B,C,D)

In order to accept the pattern we require that the constraint on the semicolon line
evaluates to true. This particular constraint has the interpretation "Play with alternating



Chapter 9: The Pattern Code 100

colors, starting with ‘O’, on the intersections ‘*’, ‘A’, ‘B’, and ‘C’. Then check whether the
stone at ‘D’ can be captured." I.e. play to this position

--------+
........|
........|
...XX...|
...OXO..|
...OOXX.|
....XO..|
........|
........|

and call attack() to see whether the lower ‘X’ stone can be captured. This is not limited
to ladders, but in this particular case the reading will of course involve a ladder.

The constraint diagram above with letters is how it looks in the ‘.db’ file. The joseki
compiler knows how to create these from labels in the SGF node. ‘Cgoban’ has an option
to create one letter labels, but this ought to be a common feature for SGF editors.

Thus in order to implement this example in SGF, one would add labels to the four
intersections and a comment:

;oplay_attack(*,A,B,C,D)

The appropriate constraint (autohelper macro) will then be added to the Joseki ‘.db’
file.

9.18 Corner Matcher

GNU Go uses a special matcher for joseki patterns. It has certain constraints on the patterns
it can match, but is much faster and takes far less space to store patterns than the standard
matcher.

Patterns used with corner matcher have to qualify the following conditions:
• They must be matchable only at a corner of the board (hence the name of the matcher).
• They can consist only of ‘O’, ‘X’ and ‘.’ elements.
• Of all pattern values (see Section 9.3 [Pattern Values], page 80), corner matcher only

support shape(x). This is not because the matcher cannot handle other values in
principle, just they are currently not used in joseki databases.

Corner matcher was specifically designed for joseki patterns and they of course satisfy
all the conditions above. With some modifications corner matcher could be used for fuseki
patterns as well, but fullboard matcher does its work just fine.

The main idea of the matcher is very same to the one of DFA matcher (see Sec-
tion 10.3 [Pattern matching with DFA], page 106): check all available patterns at once, not
a single pattern at a time. A modified version of DFA matcher could be used for joseki
pattern matching, but its database would be very large. Corner matcher capitalizes on the
fact that there are relatively few stones in each such pattern.

Corner pattern database is organized into a tree. Nodes of the tree are called “vari-
ations”. Variations represent certain sets of stones in a corner of the board. Root variation
corresponds to an empty corner and a step down the tree is equivalent to adding a stone to
the corner. Each variation has several properties:



Chapter 9: The Pattern Code 101

− stone position relative to the corner,
− a flag determining whether the stone color must be equal to the first matched stone

color,
− number of stones in the corner area (see below) of the variation stone.

By corner area we define a rectangle which corners are the current corner of the
board and the position of the stone (inclusive). For instance, if the current board corner is
A19 then corner area of a stone at C18 consists of A18, A19, B18, B19, C18 and C19.

Variation which is a direct child of the root variation matches if there is any stone
at the variation position and the stone is alone in its corner area.

Variation at a deeper level of the tree matches if there is a stone of specified color
in variation position and the number of stones in its corner area is equal to the number
specified in variation structure.

When a certain variation matches, all its children has to be checked recursively for
a match.

All leaf variations and some inner ones have patterns attached to them. For a pattern
to match, it is required that its parent variation matches. In addition, it is checked that
pattern is being matched for the appropriate color (using its variation “stone color” field)
and that the number of stones in the area where the pattern is being matched is indeed
equal to the number of stones in the pattern. The “stone position” property of the pattern
variation determines the move suggested by the pattern.

Consider this joseki pattern which has four stones:
------+
......|
......|
.O*...|
.XXO..|
......|
......|

To encode it for the corner matcher, we have to use five variations, each next being
a child of previous:
Tree level Position Color Number of stones
1 R16 “same” 1
2 P17 “same” 1
3 Q16 “other” 2
4 P16 “other” 4
5 Q17 “same” 1

The fifth variation should have an attached pattern. Note that the stone color for
the fifth variation is “same” because the first matched stone for this pattern is ‘O’ which
stands for the stones of the player to whom moves are being suggested with ‘*’.

The tree consists of all variations for all patterns combined together. Variations for
each patterns are sorted to allow very quick tree branch rejection and at the same time keep
the database small enough. More details can be found in comments in file ‘mkpat.c’

Corner matcher resides in ‘matchpat.c’ in two functions: corner_matchpat() and
do_corner_matchpat(). The former computes num_stones[] array which holds number of



Chapter 9: The Pattern Code 102

stones in corner areas of different intersections of the board for all possible transformations.
corner_matchpat() also matches top-level variations. do_corner_matchpat() is responsi-
ble for recursive matching on the variation tree and calling callback function upon pattern
match.

Tree-like database for corner matcher is generated by mkpat program. Database gen-
erator consists of several functions, most important are: corner_best_element(), corner_
variation_new(), corner_follow_variation() and corner_add_pattern().

9.19 Emacs Mode for Editing Patterns

If you use GNU Emacs (XEmacs might work too), you can try a special mode for editing
GNU Go pattern databases. The mode resides in ‘patterns/gnugo-db.el’.

Copy the file to ‘emacs/site-lisp’ directory. You can then load the mode
with (require ’gnugo-db). It makes sense to put this line into your configuration file
(‘~/.emacs’). You can either use gnugo-db-mode command to switch to pattern editing
mode, or use the following code snippet to make Emacs do this automatically upon
opening a file with ‘.db’ suffix:

(setq auto-mode-alist
(append
auto-mode-alist
’(("\\.db\\’" . gnugo-db-mode))))

Pattern editing mode provides the following features:
− highlighting of keywords (Pattern, goal_elements and callback_data) and com-

ments,
− making paragraphs equal to patterns (M-h, M-{, M-} and others operate on patterns),
− commands for pattern creation with automatic name selection (C-c C-p) and copying

main diagram to constraint diagram (C-c C-c),
− automated indentation of constraints and side comments (pattern descriptions).



Chapter 10: The DFA pattern matcher 103

10 The DFA pattern matcher

In this chapter, we describe the principles of the GNU Go DFA pattern matcher. The aim
of this system is to permit a fast pattern matching when it becomes time critical like in
owl module (Section 12.1 [The Owl Code], page 126). Since GNU Go 3.2, this is enabled
by default. You can still get back the traditional pattern matcher by running configure
--disable-dfa and then recompiling GNU Go.

Otherwise, a finite state machine called a Deterministic Finite State Automaton
(Section 10.2 [What is a DFA], page 104) will be built off line from the pattern database.
This is used at runtime to speedup pattern matching (Section 10.3 [Pattern matching with
DFA], page 106 and Section 10.5 [Incremental Algorithm], page 109). The runtime speedup
is at the cost of an increase in memory use and compile time.

10.1 Introduction to the DFA

The general idea is as follows:

For each intersection of the board, its neighbourhood is scanned following a prede-
fined path. The actual path used does not matter very much; GNU Go uses a spiral as
shown below.

In each step of the path, the pattern matcher jumps into a state determined by what
it has found on the board so far. If we have successfully matched one or several patterns in
this step, this state immediately tells us so (in its attribute). But the state also implicitly
encodes which further patterns can still get matched: The information stored in the state
contains in which state to jump next, depending on whether we find a black, white or empty
intersection (or an intersection out of board) in the next step of the path. The state will
also immediately tell us if we cannot find any further pattern (by telling us to jump into
the error state).

These sloppy explanations may become clearer with the definitions in the next section
(Section 10.2 [What is a DFA], page 104).

Reading the board following a predefined path reduces the two dimentional pattern
matching to a linear text searching problem. For example, this pattern

?X?
.O?
?OO

scanned following the path



Chapter 10: The DFA pattern matcher 104

B
C4A
5139
628
7

gives the string "OO?X.?*O*?*?" where "?" means ’don’t care’ and "*" means ’don’t care,
can even be out of board’.

So we can forget that we are dealing with two dimensional patterns and consider
linear patterns.

10.2 What is a DFA

The acronym DFA means Deterministic Finite state Automaton (See http://www.eti.pg.gda.pl/~jandac/thesis/node12.html
or Hopcroft & Ullman "Introduction to Language Theory" for more details). DFA
are common tools in compilers design (Read Aho, Ravi Sethi, Ullman "COMPILERS:
Principles, Techniques and Tools" for a complete introduction), a lot of powerfull text
searching algorithm like Knuth-Morris-Pratt or Boyer-Moore algorithms are based on
DFA’s (See http://www-igm.univ-mlv.fr/~lecroq/string/ for a bibliography of
pattern matching algorithms).

Basically, a DFA is a set of states connected by labeled transitions. The labels are
the values read on the board, in GNU Go these values are EMPTY, WHITE, BLACK or
OUT BOARD, denoted respectively by ’.’,’O’,’X’ and ’#’.

The best way to represent a DFA is to draw its transition graph: the pattern
"????..X" is recognized by the following DFA:

This means that starting from state [1], if you read ’.’,’X’ or ’O’ on the board, go to
state [2] and so on until you reach state [5]. From state [5], if you read ’.’, go to state [6]
otherwise go to error state [0]. And so on until you reach state [8]. As soon as you reach
state [8], you recognize Pattern "????..X"

Adding a pattern like "XXo" (’o’ is a wildcard for not ’X’) will transform directly
the automaton by synchronization product (Section 10.4 [Building the DFA], page 107).
Consider the following DFA:

http://www.eti.pg.gda.pl/~jandac/thesis/node12.html
http://www-igm.univ-mlv.fr/~lecroq/string/


Chapter 10: The DFA pattern matcher 105

By adding a special error state and completing each state by a transition to error
state when there is none, we transform easily a DFA in a Complete Deterministic Finite
state Automaton (CDFA). The synchronization product (Section 10.4 [Building the DFA],
page 107) is only possible on CDFA’s.

The graph of a CDFA is coded by an array of states: The 0 state is the "error" state
and the start state is 1.

----------------------------------------------------
state | . | O | X | # | att
----------------------------------------------------

1 | 2 | 2 | 9 | 0 |
2 | 3 | 3 | 3 | 0 |
3 | 4 | 4 | 4 | 0 |
5 | 6 | 0 | 0 | 0 |
6 | 7 | 0 | 0 | 0 |
7 | 0 | 0 | 8 | 0 |
8 | 0 | 0 | 0 | 0 | Found pattern "????..X"
9 | 3 | 3 | A | 0 |
A | B | B | 4 | 0 |
B | 5 | 5 | 5 | 0 | Found pattern "XXo"

----------------------------------------------------

To each state we associate an often empty list of attributes which is the list of pattern
indexes recognized when this state is reached. In ’‘dfa.h’’ this is basically represented by
two stuctures:



Chapter 10: The DFA pattern matcher 106

/* dfa state */
typedef struct state
{
int next[4]; /* transitions for EMPTY, BLACK, WHITE and OUT_BOARD */
attrib_t *att;

}
state_t;

/* dfa */
typedef struct dfa
{
attrib_t *indexes; /* Array of pattern indexes */
int maxIndexes;

state_t *states; /* Array of states */
int maxStates;

}
dfa_t;

10.3 Pattern matching with DFA

Recognizing with a DFA is very simple and thus very fast (See ’scan_for_pattern()’ in
the ’‘engine/matchpat.c’’ file).

Starting from the start state, we only need to read the board following the spiral
path, jump from states to states following the transitions labelled by the values read on
the board and collect the patterns indexes on the way. If we reach the error state (zero), it
means that no more patterns will be matched. The worst case complexity of this algorithm
is o(m) where m is the size of the biggest pattern.

Here is an example of scan:
First we build a minimal DFA recognizing these patterns: "X..X", "X???", "X.OX"

and "X?oX". Note that wildcards like ’?’,’o’, or ’x’ give multiple out-transitions.



Chapter 10: The DFA pattern matcher 107

----------------------------------------------------
state | . | O | X | # | att
----------------------------------------------------

1 | 0 | 0 | 2 | 0 |
2 | 3 | 10 | 10 | 0 |
3 | 4 | 7 | 9 | 0 |
4 | 5 | 5 | 6 | 0 |
5 | 0 | 0 | 0 | 0 | 2
6 | 0 | 0 | 0 | 0 | 4 2 1
7 | 5 | 5 | 8 | 0 |
8 | 0 | 0 | 0 | 0 | 4 2 3
9 | 5 | 5 | 5 | 0 |
10 | 11 | 11 | 9 | 0 |
11 | 5 | 5 | 12 | 0 |
12 | 0 | 0 | 0 | 0 | 4 2

----------------------------------------------------

We perform the scan of the string "X..XXO...." starting from state 1:
Current state: 1, substring to scan : X..XXO....

We read an ’X’ value, so from state 1 we must go to state 2.
Current state: 2, substring to scan : ..XXO....

We read a ’.’ value, so from state 2 we must go to state 3 and so on ...
Current state: 3, substring to scan : .XXO....
Current state: 4, substring to scan : XXO....
Current state: 6, substring to scan : XO....
Found pattern 4
Found pattern 2
Found pattern 1

After reaching state 6 where we match patterns 1,2 and 4, there is no out-transitions
so we stop the matching. To keep the same match order as in the standard algorithm, the
patterns indexes are collected in an array and sorted by indexes.

10.4 Building the DFA

The most flavouring point is the building of the minimal DFA recognizing a given set of
patterns. To perform the insertion of a new pattern into an already existing DFA one must
completly rebuild the DFA: the principle is to build the minimal CDFA recognizing the new
pattern to replace the original CDFA with its synchronised product by the new one.

We first give a formal definition: Let L be the left CDFA and R be the right one.
Let B be the synchronised product of L by R. Its states are the couples (l,r) where l is a
state of L and r is a state of R. The state (0,0) is the error state of B and the state (1,1) is
its initial state. To each couple (l,r) we associate the union of patterns recognized in both l
and r. The transitions set of B is the set of transitions (l1,r1)—a—>(l2,r2) for each symbol
’a’ such that both l1—a—>l2 in L and r1—a—>r2 in R.

The maximal number of states of B is the product of the number of states of L and
R but almost all this states are non reachable from the initial state (1,1).



Chapter 10: The DFA pattern matcher 108

The algorithm used in function ’sync_product()’ builds the minimal product DFA
only by keeping the reachable states. It recursively scans the product CDFA by following
simultaneously the transitions of L and R. A hast table (gtest) is used to check if a state
(l,r) has already been reached, the reachable states are remapped on a new DFA. The CDFA
thus obtained is minimal and recognizes the union of the two patterns sets.

For example these two CDFA’s:



Chapter 10: The DFA pattern matcher 109

Give by synchronization product the following one:

It is possible to construct a special pattern database that generates an "explosive"
automaton: the size of the DFA is in the worst case exponential in the number of patterns
it recognizes. But it doesn’t occur in pratical situations: the DFA size tends to be stable.
By stable we mean that if we add a pattern which greatly increases the size of the DFA
it also increases the chance that the next added pattern does not increase its size at all.
Nevertheless there are many ways to reduce the size of the DFA. Good compression methods
are explained in Aho, Ravi Sethi, Ullman "COMPILERS: Principles, Techniques and Tools"
chapter Optimization of DFA-based pattern matchers.

10.5 Incremental Algorithm

The incremental version of the DFA pattern matcher is not yet implemented in GNU Go
but we explain here how it will work. By definition of a deterministic automaton, scanning
the same string will reach the same states every time.

Each reached state during pattern matching is stored in a stack top_stack[i][j]
and state_stack[i][j][stack_idx] We use one stack by intersection (i,j). A precom-
puted reverse path list allows to know for each couple of board intersections (x,y) its
position reverse(x,y) in the spiral scan path starting from (0,0).

When a new stone is put on the board at (lx,ly), the only work of the pattern
matcher is:



Chapter 10: The DFA pattern matcher 110

for(each stone on the board at (i,j))
if(reverse(lx-i,ly-j) < top_stack[i][j])

{
begin the dfa scan from the state
state_stack[i][j][reverse(lx-i,ly-j)];

}

In most situations reverse(lx-i,ly-j) will be inferior to top stack[i][j]. This should
speedup a lot pattern matching.

10.6 Some DFA Optimizations

The DFA is constructed to minimize jumps in memory making some assumptions about
the frequencies of the values: the EMPTY value is supposed to appear often on the board,
so the the ’.’ transition are almost always successors in memory. The OUT BOARD are
supposed to be rare, so ’#’ transitions will almost always imply a big jump.



Chapter 11: Tactical reading 111

11 Tactical reading

The process of visualizing potential moves done by you and your opponent to learn the
result of different moves is called "reading". GNU Go does three distinct types of reading:
tactical reading which typically is concerned with the life and death of individual strings,
Owl reading which is concerned with the life and death of dragons, and connection reading.
In this Chapter, we document the tactical reading code, which is in ‘engine/reading.c’.

11.1 Reading Basics

What we call Tactical Reading is the analysis whether there is a direct capture of a single
string, or whether there is a move to prevent such a direct capture.

If the reading module finds out that the string can get captured, this answer should
(usually) be trusted. However, if it says it can be defended, this does not say as much.
It is often the case that such a string has no chance to make a life, but that it cannot be
captured within the horizon (and the cutoff heuristics) of the tactical reading.

The tactical reading is done by the functions in ‘engine/reading.c’. It is a minimax
search that declares win for the attacker once he can physically take the string off board,
whereas the defense is considered successful when the string has sufficiently many liberties.
A string with five liberties is always considered alive. At higher depth within the search
tree even fewer liberties cause GNU Go to give up the attack, See [depthparams], page 112.

The reading code makes use of a stack onto which board positions can be pushed.
The parameter stackp is zero if GNU Go is examining the true board position; if it is
higher than zero, then GNU Go is examining a hypothetical position obtained by playing
several moves.

The most important public reading functions are attack and find_defense. These
are wrappers for functions do_attack and do_find_defense which are declared statically
in ‘reading.c’. The functions do_attack and do_find_defense call each other recursively.

11.1.1 Organization of the reading code

The function do_attack and do_find_defense are wrappers themselves and call attack1,
attack2, attack3 or attack4 resp. defend1, defend1, defend1 or defend1 depending on
the number of liberties.

These are fine-tuned to generate and try out the moves in an efficient order. They
generate a few moves themselves (mostly direct liberties of the string), and then call helper
functions called ..._moves which suggest less obvious moves. Which of these functions get
called depends on the number of liberties and of the current search depth.

11.1.2 Return Codes

The return codes of the reading (and owl) functions and owl can be 0, KO_B, KO_A or WIN.
Each reading function determines whether a particular player (assumed to have the move)
can solve a specific problem, typically attacking or defending a string.

A return code of WIN means success, 0 failure, while KO_A and KO_B are success
conditioned on ko. A function returns KO_A if the position results in ko and that the player
to move will get the first ko capture (so the opponent has to make the first ko threat). A
return code of KO_B means that the player to move will have to make the first ko threat.



Chapter 11: Tactical reading 112

If GNU Go is compiled with the configure option ‘--enable-experimental-owl-ext’
then the owl functions also have possible return codes of GAIN and LOSS. A code of GAIN
means that the attack (or defense) does not succeed, but that in the process of trying to
attack or defend, an opponent’s worm is captured. A code of LOSS means that the attack
or defense succeeds, but that another friendly worm dies during the attack or defense.

11.1.3 Reading cutoff and depth parameters

Depth of reading is controlled by the parameters depth and branch_depth. The depth has
a default value DEPTH (in ‘liberty.h’), which is set to 16 in the distribution, but it may
also be set at the command line using the ‘-D’ or ‘--depth’ option. If depth is increased,
GNU Go will be stronger and slower. GNU Go will read moves past depth, but in doing so
it makes simplifying assumptions that can cause it to miss moves.

Specifically, when stackp > depth, GNU Go assumes that as soon as the string can
get 3 liberties it is alive. This assumption is sufficient for reading ladders.

The branch_depth is typically set a little below depth. Between branch_depth and
depth, attacks on strings with 3 liberties are considered, but branching is inhibited, so fewer
variations are considered.

%%Currently the reading code does not try to defend a string by %attacking a
boundary string with more than two liberties. Because %of this restriction, it can make
oversights. A symptom of this is %two adjacent strings, each having three or four liberties,
each %classified as DEAD. To resolve such situations, a function %small_semeai() (in
‘engine/semeai.c’) looks for such %pairs of strings and corrects their classification.

The backfill_depth is a similar variable with a default 12. Below this depth, GNU
Go will try "backfilling" to capture stones. For example in this situation:

.OOOOOO. on the edge of the board, O can capture X but
OOXXXXXO in order to do so he has to first play at a in
.aObX.XO preparation for making the atari at b. This is
-------- called backfilling.

Backfilling is only tried with stackp <= backfill_depth. The parameter backfill_
depth may be set using the ‘-B’ option.

The fourlib_depth is a parameter with a default of only 7. Below this depth, GNU
Go will try to attack strings with four liberties. The fourlib_depth may be set using the
‘-F’ option.

The parameter ko_depth is a similar cutoff. If stackp<ko_depth, the reading code
will make experiments involving taking a ko even if it is not legal to do so (i.e., it is
hypothesized that a remote ko threat is made and answered before continuation). This
parameter may be set using the ‘-K’ option.
• int attack(int str, int *move)

Determines if the string at str can be attacked, and if so, *move returns
the attacking move, unless *movei is a null pointer. (Use null pointers if
you are interested in the result of the attack but not the attacking move
itself.) Returns WIN, if the attack succeeds, 0 if it fails, and KO_A or KO_B
if the result depends on ko [Return Codes], page 111.



Chapter 11: Tactical reading 113

• find_defense(int str, int *move)

Attempts to find a move that will save the string at str. It returns true if
such a move is found, with *move the location of the saving move (unless
*move is a null pointer). It is not checked that tenuki defends, so this may
give an erroneous answer if !attack(str). Returns KO_A or KO_B if the
result depends on ko See [Return Codes], page 111.

• safe_move(int str, int color) :
The function safe_move(str, color) checks whether a move at str is
illegal or can immediately be captured. If stackp==0 the result is cached.
If the move only can be captured by a ko, it’s considered safe. This may
or may not be a good convention.

11.2 Hashing of Positions

To speed up the reading process, we note that a position can be reached in several different
ways. In fact, it is a very common occurrence that a previously checked position is rechecked,
often within the same search but from a different branch in the recursion tree.

This wastes a lot of computing resources, so in a number of places, we store away the
current position, the function we are in, and which worm is under attack or to be defended.
When the search for this position is finished, we also store away the result of the search and
which move made the attack or defense succeed.

All this data is stored in a hash table, sometimes also called a transposition table,
where Go positions are the key and results of the reading for certain functions and groups
are the data. You can increase the size of the Hash table using the ‘-M’ or ‘--memory’ option
see Section 3.9 [Invoking GNU Go], page 14.

The hash table is created once and for all at the beginning of the game by the function
hashtable_new(). Although hash memory is thus allocated only once in the game, the
table is reinitialized at the beginning of each move by a call to hashtable_clear() from
genmove().

11.2.1 Calculation of the hash value

The hash algorithm is called Zobrist hashing, and is a standard technique for go and chess
programming. The algorithm as used by us works as follows:
1. First we define a go position. This positions consists of

• the actual board, i.e. the locations and colors of the stones
• A ko point, if a ko is going on. The ko point is defined as the empty point where

the last single stone was situated before it was captured.

It is not necessary to specify the color to move (white or black) as part of the position.
The reason for this is that read results are stored separately for the various reading
functions such as attack3, and it is implicit in the calling function which player is to
move.

2. For each location on the board we generate random numbers:
• A number which is used if there is a white stone on this location
• A number which is used if there is a black stone on this location



Chapter 11: Tactical reading 114

• A number which is used if there is a ko on this location

These random numbers are generated once at initialization time and then used through-
out the life time of the hash table.

3. The hash key for a position is the XOR of all the random numbers which are applicable
for the position (white stones, black stones, and ko position).

11.2.2 Organization of the hash table

The hash table consists of 3 parts:

• An area which contains so called Hash Nodes. Each hash node contains:
− A go position as defined above.
− A computed hash value for the position
− A pointer to Read Results (see below)
− A pointer to another hash node.

• An area with so called Read Results. These are used to store which function was called
in the go position, which string was under attack or to be defended, and the result of
the reading.
Each Read Result contains:
− the function ID (an int between 0 and 255), the position of the string under attack

and a depth value, which is used to determine how deep the search was when it
was made, packed into one 32 bit integer.

− The result of the search (a numeric value) and a position to play to get the result
packed into one 32 bit integer.

− A pointer to another Read Result.
• An array of pointers to hash nodes. This is the hash table proper.

When the hash table is created, these 3 areas are allocated using malloc(). When
the hash table is populated, all contents are taken from the Hash nodes and the Read
results. No further allocation is done and when all nodes or results are used, the hash table
is full. Nothing is deleted from the hash table except when it is totally emptied, at which
point it can be used again as if newly initialized.

When a function wants to use the hash table, it looks up the current position using
hashtable_search(). If the position doesn’t already exist there, it can be entered using

hashtable_enter_position().

Once the function has a pointer to the hash node containing a function, it can search
for a result of a previous search using hashnode_search(). If a result is found, it can be
used, and if not, a new result can be entered after a search using hashnode_new_result().

Hash nodes which hash to the same position in the hash table (collisions) form a
simple linked list. Read results for the same position, created by different functions and
different attacked or defended strings also form a linked list.

This is deemed sufficiently efficient for now, but the representation of collisions could
be changed in the future. It is also not determined what the optimum sizes for the hash
table, the number of positions and the number of results are.



Chapter 11: Tactical reading 115

11.2.3 Hash Structures

The basic hash structures are declared in ‘engine/hash.h’ and ‘engine/cache.c’
typedef struct hashposition_t {
Compacttype board[COMPACT_BOARD_SIZE];
int ko_pos;

} Hashposition;

Represents the board and optionally the location of a ko, which is an illegal move.
The player whose move is next is not recorded.

typedef struct {
Hashvalue hashval;
Hashposition hashpos;

} Hash_data;

Represents the return value of a function (hashval) and the board state (hashpos).
typedef struct read_result_t {
unsigned int data1;
unsigned int data2;

struct read_result_t *next;
} Read_result;

The data1 field packs into 32 bits the following fields:

komaster: 2 bits (EMPTY, BLACK, WHITE, or GRAY)
kom_pos : 10 bits (allows MAX_BOARD up to 31)
routine : 4 bits (currently 10 different choices)
str1 : 10 bits
stackp : 5 bits

The data2 field packs into 32 bits the following fields:

status : 2 bits (0 free, 1 open, 2 closed)
result1: 4 bits
result2: 4 bits
move : 10 bits
str2 : 10 bits

The komaster and (kom_pos) field are documented in See Section 11.4 [Ko],
page 117.

When a new result node is created, ’status’ is set to 1 ’open’. This is then set to 2
’closed’ when the result is entered. The main use for this is to identify open result nodes
when the hashtable is partially cleared. Another potential use for this field is to identify
repeated positions in the reading, in particular local double or triple kos.

typedef struct hashnode_t {
Hash_data key;
Read_result * results;



Chapter 11: Tactical reading 116

struct hashnode_t * next;
} Hashnode;

The hash table consists of hash nodes. Each hash node consists of The hash value
for the position it holds, the position itself and the actual information which is purpose of
the table from the start.

There is also a pointer to another hash node which is used when the nodes are sorted
into hash buckets (see below).

typedef struct hashtable {
size_t hashtablesize; /* Number of hash buckets */
Hashnode ** hashtable; /* Pointer to array of hashnode lists */

int num_nodes; /* Total number of hash nodes */
Hashnode * all_nodes; /* Pointer to all allocated hash nodes. */
int free_node; /* Index to next free node. */

int num_results; /* Total number of results */
Read_result * all_results; /* Pointer to all allocated results. */
int free_result; /* Index to next free result. */

} Hashtable;

The hash table consists of three parts:
• The hash table proper: a number of hash buckets with collisions being handled by a

linked list.
• The hash nodes. These are allocated at creation time and are never removed or real-

located in the current implementation.
• The results of the searches. Since many different searches can be done in the same

position, there should be more of these than hash nodes.

11.3 Persistent Reading Cache

Some calculations can be safely saved from move to move. If the opponent’s move is not
close to our worm or dragon, we do not have to reconsider the life or death of that group
on the next move. So the result is saved in a persistent cache. Persistent caches are used
for are used in the engine for several types of read results.
• Tactical reading
• Owl reading
• Connection reading
• Breakin code

In this section we will discuss the persistent caching of tactical reading but the same
principles apply to the other persistent caches.

Persistent caching is an important performance feature. However it can lead to
mistakes and debugging problems—situations where GNU Go generates the right move
during debugging but plays a wrong move during a game. If you suspect a persistent cache
effect you may try loading the sgf file with the ‘--replay’ option and see if the mistake is
repeated (see Section 3.9 [Invoking GNU Go], page 14).



Chapter 11: Tactical reading 117

The function store_persistent_cache() is called only by attack and
find_defense, never from their static recursive counterparts do_attack and do_defend.
The function store_persistent_reading_cache() attempts to cache the most expensive
reading results. The function search_persistent_reading_cache attempts to retrieve a
result from the cache.

If all cache entries are occupied, we try to replace the least useful one. This is indi-
cated by the score field, which is initially the number of nodes expended by this particular
reading, and later multiplied by the number of times it has been retrieved from the cache.

Once a (permanent) move is made, a number of cache entries immediately become
invalid. These are cleaned away by the function purge_persistent_reading_cache(). To
have a criterion for when a result may be purged, the function store_persistent_cache()
computes the reading shadow and active area. If a permanent move is subsequently played
in the active area, the cached result is invalidated. We now explain this algorithm in detail.

The reading shadow is the concatenation of all moves in all variations, as well as
locations where an illegal move has been tried.

Once the read is finished, the reading shadow is expanded to the active area which
may be cached. The intention is that as long as no stones are played in the active area, the
cached value may safely be used.

Here is the algorithm used to compute the active area. This algorithm is in the
function store_persistent_reading_cache(). The most expensive readings so far are
stored in the persistent cache.
• The reading shadow and the string under attack are marked with the character ‘1’. We

also include the successful move, which is most often a part of the reading shadow, but
sometimes not, for example with the function attack1().

• Next the reading shadow is expanded by marking strings and empty vertices adjacent
to the area marked ‘1’ with the character ‘2’.

• Next vertices adjacent to empty vertices marked ‘2’ are labelled with the character ‘3’.
• Next all vertices adjacent to previously marked vertices. These are marked ‘-1’ instead

of the more logical ‘4’ because it is slightly faster to code this way.
• If the stack pointer is >0 we add the moves already played from the moves stack with

mark 4.

11.4 Ko Handling

The principles of ko handling are the same for tactical reading and owl reading.
We have already mentioned (see Section 11.1 [Reading Basics], page 111) that GNU

Go uses a return code of KO_A or KO_B if the result depends on ko. The return code of
KO_B means that the position can be won provided the player whose move calls the function
can come up with a sufficiently large ko threat. In order to verify this, the function must
simulate making a ko threat and having it answered by taking the ko even if it is illegal.
We call such an experimental taking of the ko a conditional ko capture.

Conditional ko captures are accomplished by the function tryko(). This function is
like trymove() except that it does not require legality of the move in question.

The static reading functions, and the global functions do_attack and do_find_
defense consult parameters komaster, kom_pos, which are declared static in ‘board.c’.



Chapter 11: Tactical reading 118

These mediate ko captures to prevent the occurrence of infinite loops. During reading, the
komaster values are pushed and popped from a stack.

Normally komaster is EMPTY but it can also be ‘BLACK’, ‘WHITE’, GRAY_BLACK, GRAY_
WHITE or WEAK_KO. The komaster is set to color when color makes a conditional ko
capture. In this case kom_pos is set to the location of the captured ko stone.

If the opponent is komaster, the reading functions will not try to take the ko at
kom_pos. Also, the komaster is normally not allowed to take another ko. The exception is
a nested ko, characterized by the condition that the captured ko stone is at distance 1 both
vertically and horizontally from kom_pos, which is the location of the last stone taken by
the komaster. Thus in this situation:

.OX
OX*X
OmOX
OO

Here if ‘m’ is the location of kom_pos, then the move at ‘*’ is allowed.
The rationale behind this rule is that in the case where there are two kos on the

board, the komaster cannot win both, and by becoming komaster he has already chosen
which ko he wants to win. But in the case of a nested ko, taking one ko is a precondition
to taking the other one, so we allow this.

If the komaster’s opponent takes a ko, then both players have taken one ko. In this
case komaster is set to GRAY_BLACK or GRAY_WHITE and after this further ko captures are
even further restricted.

If the ko at kom_pos is filled, then the komaster reverts to EMPTY.
In detail, the komaster scheme is as follows. Color ‘O’ is to move. This scheme is

known as scheme 5 since in versions of GNU Go through 3.4, several different schemes were
included.
• 1. Komaster is EMPTY.

− 1a. Unconditional ko capture is allowed.
Komaster remains EMPTY if previous move was not a ko capture.
Komaster is set to WEAK KO if previous move was a ko capture and
kom pos is set to the old value of board ko pos.

− 1b) Conditional ko capture is allowed.
Komaster is set to O and kom pos to the location of the ko, where a
stone was just removed.

• 2. Komaster is O:
− 2a) Only nested ko captures are allowed. Kom pos is moved to the new removed

stone.
− 2b) If komaster fills the ko at kom pos then komaster reverts to EMPTY.

• 3. Komaster is X:
Play at kom pos is not allowed. Any other ko capture is allowed. If O
takes another ko, komaster becomes GRAY X.



Chapter 11: Tactical reading 119

• 4. Komaster is GRAY O or GRAY X:
Ko captures are not allowed. If the ko at kom pos is filled then the komaster
reverts to EMPTY.

• 5. Komaster is WEAK KO:
− 5a) After a non-ko move komaster reverts to EMPTY.
− 5b) Unconditional ko capture is only allowed if it is nested ko capture.

Komaster is changed to WEAK X and kom pos to the old value of
board ko pos.

− 5c) Conditional ko capture is allowed according to the rules of 1b.

11.5 A Ko Example

To see the komaster scheme in action, consider this position from the file
‘regressions/games/life_and_death/tripod9.sgf’. We recommend studying this
example by examining the variation file produced by the command:

gnugo -l tripod9.sgf --decide-dragon C3 -o vars.sgf

In the lower left hand corner, there are kos at A2 and B4. Black is unconditionally
dead because if W wins either ko there is nothing B can do.

8 . . . . . . . .
7 . . O . . . . .
6 . . O . . . . .
5 O O O . . . . .
4 O . O O . . . .
3 X O X O O O O .
2 . X X X O . . .
1 X O . . . . . .
A B C D E F G H

This is how the komaster scheme sees this. B (i.e. X) starts by taking the ko at B4.
W replies by taking the ko at A1. The board looks like this:

8 . . . . . . . .
7 . . O . . . . .
6 . . O . . . . .
5 O O O . . . . .
4 O X O O . . . .
3 X . X O O O O .
2 O X X X O . . .
1 . O . . . . . .
A B C D E F G H

Now any move except the ko recapture (currently illegal) at A1 loses for B, so B
retakes the ko and becomes komaster. The board looks like this:



Chapter 11: Tactical reading 120

8 . . . . . . . . komaster: BLACK
7 . . O . . . . . kom_pos: A2
6 . . O . . . . .
5 O O O . . . . .
4 O X O O . . . .
3 X . X O O O O .
2 . X X X O . . .
1 X O . . . . . .
A B C D E F G H

W takes the ko at B3 after which the komaster is GRAY and ko recaptures are not
allowed.

8 . . . . . . . . komaster: GRAY
7 . . O . . . . . kom_pos: B4
6 . . O . . . . .
5 O O O . . . . .
4 O . O O . . . .
3 X O X O O O O .
2 . X X X O . . .
1 X O . . . . . .
A B C D E F G H

Since B is not allowed any ko recaptures, there is nothing he can do and he is found
dead. Thus the komaster scheme produces the correct result.

11.6 Another Ko Example

We now consider an example to show why the komaster is reset to EMPTY if the ko is resolved
in the komaster’s favor. This means that the ko is filled, or else that is becomes no longer
a ko and it is illegal for the komaster’s opponent to play there.

The position resulting under consideration is in the file ‘regressions/games/ko5.sgf’.
This is the position:

. . . . . . O O 8
X X X . . . O . 7
X . X X . . O . 6
. X . X X X O O 5
X X . X . X O X 4
. O X O O O X . 3
O O X O . O X X 2
. O . X O X X . 1
F G H J K L M N

We recommend studying this example by examining the variation file produced by
the command:

gnugo -l ko5.sgf --quiet --decide-string L1 -o vars.sgf



Chapter 11: Tactical reading 121

The correct resolution is that H1 attacks L1 unconditionally while K2 defends it with
ko (code KO_A).

After Black (X) takes the ko at K3, white can do nothing but retake the ko condi-
tionally, becoming komaster. B cannot do much, but in one variation he plays at K4 and
W takes at H1. The following position results:

. . . . . . O O 8
X X X . . . O . 7
X . X X . . O . 6
. X . X X X O O 5
X X . X X X O X 4
. O X O O O X . 3
O O X O . O X X 2
. O O . O X X . 1
F G H J K L M N

Now it is important the ‘O’ is no longer komaster. Were ‘O’ still komaster, he could
capture the ko at N3 and there would be no way to finish off B.

11.7 Alternate Komaster Schemes

The following alternate schemes have been proposed. It is assumed that ‘O’ is the player
about to move.

11.7.1 Essentially the 2.7.232 scheme.

• Komaster is EMPTY.
− Unconditional ko capture is allowed. Komaster remains EMPTY.
− Conditional ko capture is allowed. Komaster is set to O and kom_pos to the

location of the ko, where a stone was just removed.
• Komaster is O:

− Conditional ko capture is not allowed.
− Unconditional ko capture is allowed. Komaster parameters unchanged.

• Komaster is X:
− Conditional ko capture is not allowed.
− Unconditional ko capture is allowed except for a move at kom_pos. Komaster

parameters unchanged.

11.7.2 Revised 2.7.232 version

• Komaster is EMPTY.
− Unconditional ko capture is allowed. Komaster remains EMPTY.
− Conditional ko capture is allowed. Komaster is set to ‘O’ and kom_pos to the

location of the ko, where a stone was just removed.
• Komaster is ‘O’:

− Ko capture (both kinds) is allowed only if after playing the move, is_ko(kom_pos,
X) returns false. In that case, kom_pos is updated to the new ko position, i.e. the
stone captured by this move.



Chapter 11: Tactical reading 122

• Komaster is ‘X’:
− Conditional ko capture is not allowed.
− Unconditional ko capture is allowed except for a move at kom_pos. Komaster

parameters unchanged.

11.8 Superstrings

A superstring is an extended string, where the extensions are through the following kinds
of connections:
1. Solid connections (just like ordinary string).

OO

2. Diagonal connection or one space jump through an intersection where an opponent
move would be suicide or self-atari.

...
O.O
XOX
X.X

3. Bamboo joint.
OO
..
OO

4. Diagonal connection where both adjacent intersections are empty.
.O
O.

5. Connection through adjacent or diagonal tactically captured stones. Connections of this
type are omitted when the superstring code is called from ‘reading.c’, but included
when the superstring code is called from ‘owl.c’.

Like a dragon, a superstring is an amalgamation of strings, but it is a much tighter
organization of stones than a dragon, and its purpose is different. Superstrings are encoun-
tered already in the tactical reading because sometimes attacking or defending an element
of the superstring is the best way to attack or defend a string. This is in contrast with
dragons, which are ignored during tactical reading.

11.9 Debugging the reading code

The reading code searches for a path through the move tree to determine whether a string
can be captured. We have a tool for investigating this with the ‘--decidestring’ option.
This may be run with or without an output file.

Simply running

gnugo -t -l [input file name] -L [movenumber] --decidestring [location]

will run attack() to determine whether the string can be captured. If it can, it will also
run find_defense() to determine whether or not it can be defended. It will give a count



Chapter 11: Tactical reading 123

of the number of variations read. The ‘-t’ is necessary, or else GNU Go will not report its
findings.

If we add ‘-o output file ’ GNU Go will produce an output file with all variations
considered. The variations are numbered in comments.

This file of variations is not very useful without a way of navigating the source code.
This is provided with the GDB source file, listed at the end. You can source this from GDB,
or just make it your GDB init file.

If you are using GDB to debug GNU Go you may find it less confusing to com-
pile without optimization. The optimization sometimes changes the order in which pro-
gram steps are executed. For example, to compile ‘reading.c’ without optimization, edit
‘engine/Makefile’ to remove the string -O2 from the file, touch ‘engine/reading.c’ and
make. Note that the Makefile is automatically generated and may get overwritten later.

If in the course of reading you need to analyze a result where a function gets its value
by returning a cached position from the hashing code, rerun the example with the hashing
turned off by the command line option ‘--hash 0’. You should get the same result. (If you
do not, please send us a bug report.) Don’t run ‘--hash 0’ unless you have a good reason
to, since it increases the number of variations.

With the source file given at the end of this document loaded, we can now navigate
the variations. It is a good idea to use cgoban with a small ‘-fontHeight’, so that the
variation window takes in a big picture. (You can resize the board.)

Suppose after perusing this file, we find that variation 17 is interesting and we would
like to find out exactly what is going on here.

The macro ’jt n’ will jump to the n-th variation.

(gdb) set args -l [filename] -L [move number] --decidestring [location]
(gdb) tbreak main
(gdb) run
(gdb) jt 17

will then jump to the location in question.
Actually the attack variations and defense variations are numbered separately. (But

find_defense() is only run if attack() succeeds, so the defense variations may or may
not exist.) It is redundant to have to tbreak main each time. So there are two macros avar
and dvar.

(gdb) avar 17

restarts the program, and jumps to the 17-th attack variation.

(gdb) dvar 17

jumps to the 17-th defense variation. Both variation sets are found in the same sgf file,
though they are numbered separately.

Other commands defined in this file:



Chapter 11: Tactical reading 124

dump will print the move stack.
nv moves to the next variation
ascii i j converts (i,j) to ascii

#######################################################
############### .gdbinit file ###############
#######################################################

# this command displays the stack

define dump
set dump_stack()
end

# display the name of the move in ascii

define ascii
set gprintf("%o%m\n",$arg0,$arg1)
end

# display the all information about a dragon

define dragon
set ascii_report_dragon("$arg0")
end

define worm
set ascii_report_worm("$arg0")
end

# move to the next variation

define nv
tbreak trymove
continue
finish
next
end

# move forward to a particular variation

define jt
while (count_variations < $arg0)
nv
end



Chapter 11: Tactical reading 125

nv
dump
end

# restart, jump to a particular attack variation

define avar
delete
tbreak sgffile_decidestring
run
tbreak attack
continue
jt $arg0
end

# restart, jump to a particular defense variation

define dvar
delete
tbreak sgffile_decidestring
run
tbreak attack
continue
finish
next 3
jt $arg0
end

11.10 Connection Reading

GNU Go does reading to determine if strings can be connected. The algorithms for this are
in ‘readconnect.c’. As with the reading code, the connection code is not pattern based.

The connection code is invoked by the engine through the functions:
• int string_connect(int str1, int str2, int *move)

Returns WIN if str1 and str2 can be connected.
• int disconnect(int str1, int str2, int *move)

Returns WIN if str1 and str2 can be disconnected.

To see the connection code in action, you may try the following example.
gnugo --quiet -l connection3.sgf --decide-connection M3/N7 -o vars.sgf

(The file ‘connection3.sgf’ is in ‘regression/games’.) Examine the sgf file pro-
duced by this to see what kind of reading is done by the functions string_connect() and
string_disconnect(), which are called by the function decide_connection.

One use of the connection code is used is through the autohelper macros oplay_
connect, xplay_connect, oplay_disconnect and xplay_disconnect which are used in
the connection databases.



Chapter 12: Pattern Based Reading 126

12 Pattern Based Reading

In the tactical reading code in ‘reading.c’, the code generating the moves which are tried
are all hand coded in C, for efficiency. There is much to be said for another type of reading,
in which the moves to be tried are generated from a pattern database.

GNU Go does three main types of pattern based reading. First, there is the OWL
code (Optics with Limit Negotiation) which attempts to read out to a point where the code
in ‘engine/optics.c’ (see Chapter 8 [Eyes], page 60) can be used to evaluate it. Like the
tactical reading code, a persistent cache is employed to maintain some of the owl data from
move to move. This is an essential speedup without which GNU Go would play too slowly.

Secondly, there is the ‘engine/combination.c’ which attempts to find
combinations—situations where a series of threats eventually culminates in one that
cannot be parried.

Finally there is the semeai module. A semeai is a capturing race between two adjacent
DEAD or CRITICAL dragons of opposite colors. The principal function, owl_analyze_
semeai() is contained in ‘owl.c’. Due to the complex nature of semeais, the results of this
function are more frequently wrong than the usual owl code.

12.1 The Owl Code

The life and death code in ‘optics.c’, described elsewhere (see Chapter 8 [Eyes], page 60),
works reasonably well as long as the position is in a terminal position, which we define to be
one where there are no moves left which can expand the eye space, or limit it. In situations
where the dragon is surrounded, yet has room to thrash around a bit making eyes, a simple
application of the graph-based analysis will not work. Instead, a bit of reading is needed to
reach a terminal position.

The defender tries to expand his eyespace, the attacker to limit it, and when neither
finds an effective move, the position is evaluated. We call this type of life and death
reading Optics With Limit-negotiation (OWL). The module which implements it is in
‘engine/owl.c’.

There are two reasonably small databases ‘patterns/owl_defendpats.db’ and
‘patterns/owl_attackpats.db’ of expanding and limiting moves. The code in ‘owl.c’
generates a small move tree, allowing the attacker only moves from ‘owl_attackpats.db’,
and the defender only moves from ‘owl_defendpats.db’. In addition to the moves
suggested by patterns, vital moves from the eye space analysis are also tested.

A third database, ‘owl_vital_apats.db’ includes patterns which override the eye-
space analysis done by the optics code. Since the eyeshape graphs ignore the complications
of shortage of liberties and cutting points in the surrounding chains, the static analysis of
eyespace is sometimes wrong. The problem is when the optics code says that a dragon def-
initely has 2 eyes, but it isn’t true due to shortage of liberties, so the ordinary owl patterns
never get into play. In such situations ‘owl_vital_apats.db’ is the only available measure
to correct mistakes by the optics. Currently the patterns in ‘owl_vital_apats.db’ are only
matched when the level is 9 or greater.

The owl code is tuned by editing these three pattern databases, principally the first
two.



Chapter 12: Pattern Based Reading 127

A node of the move tree is considered terminal if no further moves are found
from ‘owl_attackpats.db’ or ‘owl_defendpats.db’, or if the function compute_eyes_
pessimistic() reports that the group is definitely alive. At this point, the status of the
group is evaluated. The functions owl_attack() and owl_defend(), with usage similar
to attack() and find_defense(), make use of the owl pattern databases to generate the
move tree and decide the status of the group.

The function compute_eyes_pessimistic() used by the owl code is very conserva-
tive and only feels certain about eyes if the eyespace is completely closed (i.e. no marginal
vertices).

The maximum number of moves tried at each node is limited by the parameter MAX_
MOVES defined at the beginning of ‘engine/owl.c’. The most most valuable moves are tried
first, with the following restrictions:
• If stackp > owl_branch_depth then only one move is tried per variation.
• If stackp > owl_reading_depth then the reading terminates, and the situation is de-

clared a win for the defender (since deep reading may be a sign of escape).
• If the node count exceeds owl_node_limit, the reading also terminates with a win for

the defender.
• Any pattern with value 99 is considered a forced move: no other move is tried, and

if two such moves are found, the function returns false. This is only relevant for the
attacker.

• Any pattern in ‘patterns/owl_attackpats.db’ and ‘patterns/owl_defendpats.db’
with value 100 is considered a win: if such a pattern is found by owl_attack or owl_
defend, the function returns true. This feature must be used most carefully.

The functions owl_attack() and owl_defend() may, like attack() and find_
defense(), return an attacking or defending move through their pointer arguments. If
the position is already won, owl_attack() may or may not return an attacking move. If it
finds no move of interest, it will return PASS, that is, 0. The same goes for owl_defend().

When owl_attack() or owl_defend() is called, the dragon under attack is marked
in the array goal. The stones of the dragon originally on the board are marked with goal=1;
those added by owl_defend() are marked with goal=2. If all the original strings of the
original dragon are captured, owl_attack() considers the dragon to be defeated, even if
some stones added later can make a live group.

Only dragons with small escape route are studied when the functions are called from
make_dragons().

The owl code can be conveniently tested using the ‘--decide-owl location ’ option.
This should be used with ‘-t’ to produce a useful trace, ‘-o’ to produce an SGF file of
variations produced when the life and death of the dragon at location is checked, or both.
‘--decide-position’ performs the same analysis for all dragons with small escape route.

12.2 Combination reading

It may happen that no single one of a set of worms can be killed, yet there is a move that
guarantees that at least one can be captured. The simplest example is a double atari. The
purpose of the code in ‘combination.c’ is to find such moves.

For example, consider the following situation:



Chapter 12: Pattern Based Reading 128

+---------
|....OOOOX
|....OOXXX
|..O.OXX..
|.OXO.OX..
|.OX..OO..
|.XXOOOXO.
|..*XXOX..
|....XOX..
|.XX..X...
|X........

Every ‘X’ stone in this position is alive. However the move at ‘*’ produces a position
in which at least one of four strings will get captured. This is a combination.

The driving function is called atari_atari because typically a combination involves
a sequence of ataris culminating in a capture, though sometimes the moves involved are
not ataris. For example in the above example, the first move at ‘*’ is not an atari, though
after ‘O’ defends the four stones above, a sequence of ataris ensues resulting in the capture
of some string.

Like the owl functions atari_atari does pattern-based reading. The database gen-
erating the attacking moves is ‘aa_attackpats.db’. One danger with this function is that
the first atari tried might be irrelevant to the actual combination. To detect this possibility,
once we’ve found a combination, we mark that first move as forbidden, then try again. If
no combination of the same size or larger turns up, then the first move was indeed essential.
• void combinations(int color)

Generate move reasons for combination attacks and defenses against them.
This is one of the move generators called from genmove().

• int atari_atari(int color, int *attack_move, char defense_moves[BOARDMAX],
int save_verbose)

Look for a combination for color. For the purpose of the move generation,
returns the size of the smallest of the worms under attack.

• int atari_atari_confirm_safety(int color, int move, int *defense,
int minsize, const char saved_dragons[BOARDMAX], const char saved_
worms[BOARDMAX])

Tries to determine whether a move is a blunder. Wrapper around
atari atari blunder size. Check whether a combination attack of size at
least minsize appears after move at move has been made. The arrays
saved_dragons[] and saved_worms[] should be one for stones belonging
to dragons or worms respectively, which are supposedly saved by move.

• int atari_atari_blunder_size(int color, int move, int *defense, const char
safe_stones[BOARDMAX])

This function checks whether any new combination attack appears after
move at (move) has been made, and returns its size (in points). safe_
stones marks which of our stones are supposedly safe after this move.



Chapter 13: Influence Function 129

13 Influence Function

13.1 Conceptual Outline of Influence

We define call stones lively if they cannot be tactically attacked, or if they have a tactical
defense and belong to the player whose turn it is. Similarly, stones that cannot be strategi-
cally attacked (in the sense of the life-and-death analysis), or that have a strategical defense
and belong to the player to move, are called alive. If we want to use the influence function
before deciding the strategical status, all lively stones count as alive.

Every alive stone on the board works as an influence source, with influence of its color
radiating outwards in all directions. The strength of the influence declines exponentially
with the distance from the source.

Influence can only flow unhindered if the board is empty, however. All lively stones
(regardless of color) act as influence barriers, as do connections between enemy stones that
can’t be broken through. For example the one space jump counts as a barrier unless either of
the stones can be captured. Notice that it doesn’t matter much if the connection between
the two stones can be broken, since in that case there would come influence from both
directions anyway.

From the influence of both colors we compute a territorial value between -1.0 and
+1.0 for each intersection, which can be seen as the likely hood of it becoming territory for
either color.

In order to avoid finding bogus territory, we add extra influence sources at places
where an invasion can be launched, e.g. at 3-3 under a handicap stone, in the middle of
wide edge extensions and in the center of large open spaces anywhere. Similarly we add
extra influence sources where intrusions can be made into what otherwise looks as solid
territory, e.g. monkey jumps. These intrusions depend on whose turn we assume it to be.

All these extra influence sources, as well as connections, are controlled by a pattern
database, which consists of the two files patterns/influence.db and patterns/barriers.db.
The details are explained in Section 13.12 [Influential Patterns], page 141.

13.2 Territory, Moyo and Area

Using the influence code, empty regions of the board are partitioned in three ways. A
vertex may be described as White or Black’s territory, moyo or area. The functions whose_
territory(), whose_moyo() and whose_area() will return a color, or EMPTY if it belongs
to one player or the other in one of these classifications.

• Territory

Those parts of the board which are expected to materialize as actual points
for one player or the other at the end of the game are considered territory.

• Moyo

Those parts of the board which are either already territory or more gener-
ally places where a territory can easily materialize if the opponent neglects
to reduce are considered moyo. moyo.



Chapter 13: Influence Function 130

• Area

Those parts of the board where one player or the other has a stronger
influence than his opponent are considered area.

Generally territory is moyo and moyo is area. To get a feeling for these concepts,
load an sgf file in a middle game position with the option ‘-m 0x0180’ and examine the
resulting diagrams (see Section 13.13 [Influential Display], page 143).

13.3 Where influence gets used in the engine

The information obtained from the influence computation is used in a variety of places in
the engine, and the influence module is called several times in the process of the move
generation. The details of the influence computation vary according to the needs of the
calling function.

After GNU Go has decided about the tactical stability of strings, the influence module
gets called the first time. Here all lively stones act as an influence source of default strength
100. The result is stored in the variables initial_influence and initial_opposite_
influence, and it is used as an important information for guessing the strength of dragons.
For example, a dragon that is part of a moyo of size 25 is immediately considered alive. For
dragons with a smaller moyo size, a life-and-death analysis will be done by the owl code
(see Chapter 12 [Pattern Based Reading], page 126). A dragon with a moyo size of only 5
will be considered weak, even if the owl code has decided that it cannot be killed.

As a tool for both the owl code and the strength estimate of dragons, an "escape"
influence gets computed for each dragon (see Section 13.9 [Escape], page 136).

Once all dragons have been evaluated, the influence module is called again and
the variables initial_influence and initial_opposite_influence get overwritten. Of
course, the dragon status’, which are available now, are taken into account. Stones belonging
to a dead dragon will not serve as an influence source, and the strengths of other stones get
adjusted according to the strength of their respective dragon.

The result of this run is the most important tool for move evaluation. All helper
functions of patterns as explained in Chapter 9 [Patterns], page 77 that refer to influence
results (e. g. olib(*) etc.) actually use these results. Further, initial_influence serves
as the reference for computing the territorial value of a move. That is, from the influence
strengths stored in initial_influence, a territory value is assigned to each intersection.
This value is supposed to estimate the likelyhood that this intersection will become white
or black territory.

Then, for each move that gets considered in the function value_moves, the influ-
ence module is called again via the function compute_move_influence to assess the likely
territorial balance after this move, and the result is compared with the state before that
move.

An additional influence computation is done in order to compute the followup value
of a move. Some explainations are in Section 13.5 [Territorial Details], page 133.

Some of the public functions from ‘influence.c’ which are used throughout the
engine are listed in Section 18.4 [Influence Utilities], page 178.



Chapter 13: Influence Function 131

13.4 Influence and Territory

In this section we consider how the influence function is used to estimate territory in the
function estimate_territorial_value().

A move like ‘*’ by ‘O’ below is worth one point:
OXXX.
OX.XX
O*a.X
OX.XX
OXXX.

This is evaluated by the influence function in the following way: We first assign
territory under the assumption that X moves first in all local positions in the original
position; then we reassing territory, again under the assumption that ‘X’ moves first in all
local positions, but after we let ‘O’ make the move at ‘*’. These two territory assignments
are compared and the difference gives the territorial value of the move.

Technically, the assumption that ‘X’ plays first everywhere is implemented via an
asymmetric pattern database in barriers.db. What exactly is a safe connection that stops
hostile influence from passing through is different for ‘O’ and ‘X’; of course such a connection
has to be tighter for stones with color ‘O’. Also, additional intrusion influence sources are
added for ‘X’ in places where ‘X’ stones have natural followup moves.

In this specific example above, the asymmetry (before any move has been made)
would turn out as follows: If ‘X’ is in turn to move, the white influence would get stopped
by a barrier at ‘*’, leaving 4 points of territory for ‘X’. However, if ‘O’ was next to move,
then a followup move for the white stones at the left would be assumed in the form of an
extra ("intrusion") influence source at ‘*’. This would get stopped at ‘a’, leaving three
points of territory.

Returning to the valuation of a move by ‘O’ at ‘*’, we get a value of 1 for the move
at ‘*’. However, of course this move is sente once it is worth playing, and should therefore
(in miai counting) be awarded an effective value of 2. Hence we need to recognize the
followup value of a move. GNU Go 3.0 took care of this by using patterns in patterns.db
that enforced an explicit followup value. Versions from 3.2 on instead compute a seperate
followup influence to each move considered. In the above example, an intrusion source will
be added at ‘a’ as a followup move to ‘*’. This destroys all of Black’s territory and hence
gives a followup value of 3.

The pattern based followup value are still needed at some places, however.
To give another example, consider this position where we want to estimate the value

of an ‘O’ move at ‘*’:
OOOXXX
..OX..
..OX..
...*..
------

Before the move we assume ‘X’ moves first in the local position (and that ‘O’ has to
connect), which gives territory like this (lower case letter identify territory for each player):

OOOXXX



Chapter 13: Influence Function 132

ooOXxx
o.OXxx
o...xx
------

Then we let ‘O’ make the move at ‘*’ and assume ‘X’ moves first again next. The
territory then becomes (‘X’ is also assumed to have to connect):

OOOXXX
ooOXxx
ooOX.x
oo.O.x
------

We see that this makes a difference in territory of 4, which is what influ-
ence delta territory() should report. Then again, we have followup value, and here also a
reverse followup value. The reverse followup value, which in this case will be so high that
the move is treated as reverse sente, is added by an explicit pattern. Other sources for
followup or reverse followup values are threats to capture a rescue a string of stones. See
the code and comments in the function value_move_reaons for how followup and reverse
followup values are used to adjust the effective move value.

To give an example of territorial value where something is captured, consider the ‘O’
move at ‘*’ here,

XXXXXXXO
X.OOOOXO
X.O..O*O
--------

As before we first let the influence function determine territory assuming X moves
first, i.e. with a captured group:

XXXXXXXO
XxyyyyXO
Xxyxxy.O
--------

Here ‘y’ indicates ‘X’ territory + captured stone, i.e. these count for two points. After
the ‘O’ move at ‘*’ we instead get

XXXXXXXO
X.OOOOXO
X.OooOOO
--------

and we see that ‘X’ has 16 territory fewer and ‘O’ has two territory more, for a total
difference of 18 points.

That the influence function counts the value of captured stones was introduced in
GNU Go 3.2. Previously this was instead done using the effective size heuristic. The
effective size is the number of stones plus the surrounding empty spaces which are closer to
this string or dragon than to any other stones. Here the ‘O’ string would thus have effective
size 6 (number of stones) + 2 (interior eye) + 2*0.5 (the two empty vertices to the left of
the string, split half each with the surrounding X string) + 1*0.33 (the connection point,



Chapter 13: Influence Function 133

split between three strings) = 9.33. As noted this value was doubled, giving 18.67 which
is reasonably close to the correct value of 18. The effective size heuristic is still used in
certain parts of the move valuation where we can’t easily get a more accurate value from
the influence function (e. g. attacks depending on a ko, attack threats).

Note that this section only describes the territorial valuation of a move. Apart
from that, GNU Go uses various heuristics in assigning a strategical value (weakening and
strengthening of other stones on the board) to a move. Also, the influence function isn’t
quite as well tuned as the examples above may seem to claim. But it should give a fairly
good idea of how the design is intended.

Another matter is that so far we have only considered the change in secure territory.
GNU Go 3.2 and later versions use a revised heuristic, which is explained in the next section,
to assign probable territory to each player.

13.5 Details of the Territory Valuation

This section explains how GNU Go assigns a territorial value to an intersection once the
white and black influence have been computed. The intention is that an intersection that
has a chance of xx% of becoming white territory is counted as 0.xx points of territory for
white, and similar for black.

The algorithm in the function new_value_territory goes roughly as follows:

If wi is the white influence at a point, and bi the black influence, then value = (
(wi-bi)/ (wi+bi) )^3 (positive values indicates likley white territory, negative stand for
black territory) turns out to be very simple first guess that is still far off, but reasonable
enough to be useful.

This value is then suspect a number of corrections. Assume that this first guess
resulted in a positive value.

If both bi and wi are small, it gets reduced. What exactly is "small" depends on
whether the intersection is close to a corner or an edge of the board, since it is easier to
claim territory in the corner than in the center.

Then the value at each intersection is degraded to the minimum value of its neighbors.
This can be seen as a second implementation of the proverb saying that there is no territory
in the center of the board. This step substantially reduces the size of spheres of territory
that are open at several sides.

Finally, there are a number of patterns that explicitly forbid GNU Go to count
territory at some intersections. This is used e. g. for false eyes that will eventually have to
be filled in. Also, points for prisoners are added.

To fine tune this scheme, some revisions have been made to the influence computa-
tions that are relevant for territorial evaluation. This includes a reduced default attenuation
and some revised pattern handling.

13.6 The Core of the Influence Function

The basic influence radiation process can efficiently be implemented as a breadth first search
for adjacent and more distant points, using a queue structure.



Chapter 13: Influence Function 134

Influence barriers can be found by pattern matching, assisted by reading through
constraints and/or helpers. Wall structures, invasion points and intrusion points can be
found by pattern matching as well.

When influence is computed, the basic idea is that there are a number of influence
sources on the board, whose contributions are summed to produce the influence values. For
the time being we can assume that the living stones on the board are the influence sources,
although this is not the whole story.

The function compute_influence() contains a loop over the board, and for each
influence source on the board, the function accumulate_influence() is called. This is the
core of the influence function. Before we get into the details, this is how the influence field
from a single isolated influence source of strength 100 turns out (with an attenuation of
3.0):

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0
0 0 0 1 2 3 2 1 0 0 0
0 0 1 3 5 11 5 3 1 0 0
0 1 2 5 16 33 16 5 2 1 0
0 1 3 11 33 X 33 11 3 1 0
0 1 2 5 16 33 16 5 2 1 0
0 0 1 3 5 11 5 3 1 0 0
0 0 0 1 2 3 2 1 0 0 0
0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

These values are in reality floating point numbers but have been rounded down to
the nearest integer for presentation. This means that the influence field does not stop when
the numbers become zeroes.

Internally accumulate_influence() starts at the influence source and spreads in-
fluence outwards by means of a breadth first propagation, implemented in the form of a
queue. The order of propagation and the condition that influence only is spread outwards
guarantee that no intersection is visited more than once and that the process terminates.
In the example above, the intersections are visited in the following order:

+ + + + + + + + + + +
+ 78 68 66 64 63 65 67 69 79 +
+ 62 46 38 36 35 37 39 47 75 +
+ 60 34 22 16 15 17 23 43 73 +
+ 58 32 14 6 3 7 19 41 71 +
+ 56 30 12 2 0 4 18 40 70 +
+ 57 31 13 5 1 8 20 42 72 +
+ 59 33 21 10 9 11 24 44 74 +
+ 61 45 28 26 25 27 29 48 76 +
+ 77 54 52 50 49 51 53 55 80 +
+ + + + + + + + + + +

The visitation of intersections continues in the same way on the intersections marked
’‘+’ and further outwards. In a real position there will be stones and tight connections stop-
ping the influence from spreading to certain intersections. This will disrupt the diagram



Chapter 13: Influence Function 135

above, but the main property of the propagation still remains, i.e. no intersection is vis-
ited more than once and after being visited no more influence will be propagated to the
intersection.

13.7 The Influence Algorithm

Let (m, n) be the coordinates of the influence source and (i, j) the coordinates of a an in-
tersection being visited during propagation, using the same notation as in the accumulate_
influence() function. Influence is now propagated to its eight closest neighbors, including
the diagonal ones, according to the follow scheme:

For each of the eight directions (di, dj), do:

1. Compute the scalar product di*(i-m) + dj*(j-n) between the vectors (di,dj) and
(i,j) - (m,n)

2. If this is negative or zero, the direction is not outwards and we continue with the next
direction. The exception is when we are visiting the influence source, i.e. the first
intersection, when we spread influence in all directions anyway.

3. If (i+di, j+dj) is outside the board or occupied we also continue with the next direc-
tion.

4. Let S be the strength of the influence at (i, j). The influence propagated to (i+di,
j+dj) from this intersection is given by P*(1/A)*D*S, where the three different kinds
of damping are:

• The permeability ‘P’, which is a property of the board intersections. Normally this
is one, i.e. unrestricted propagation, but to stop propagation through e.g. one
step jumps, the permeability is set to zero at such intersections through pattern
matching. This is further discussed below.

• The attenuation ‘A’, which is a property of the influence source and different in
different directions. By default this has the value 3 except diagonally where the
number is twice as much. By modifying the attenuation value it is possible to
obtain influence sources with a larger or a smaller effective range.

• The directional damping ‘D’, which is the squared cosine of the angle between
(di,dj) and (i,j) - (m,n). The idea is to stop influence from "bending" around
an interfering stone and get a continuous behavior at the right angle cutoff. The
choice of the squared cosine for this purpose is rather arbitrary, but has the ad-
vantage that it can be expressed as a rational function of ‘m’, ‘n’, ‘i’, ‘j’, ‘di’, and
‘dj’, without involving any trigonometric or square root computations. When we
are visiting the influence source we let by convention this factor be one.

Influence is typically contributed from up to three neighbors "between" this inter-
section and the influence source. These values are simply added together. As pointed out
before, all contributions will automatically have been made before the intersection itself is
visited.

When the total influence for the whole board is computed by compute_influence(),
accumulate_influence() is called once for each influence source. These invocations are
totally independent and the influence contributions from the different sources are added
together.



Chapter 13: Influence Function 136

13.8 Permeability

The permeability at the different points is initially one at all empty intersections and zero at
occupied intersections. To get a useful influence function we need to modify this, however.
Consider the following position:

|......
|OOOO..
|...O..
|...a.X (’a’ empty intersection)
|...O..
|...OOO
|.....O
+------

The corner is of course secure territory for ‘O’ and clearly the ‘X’ stone has negligible
effect inside this position. To stop ‘X’ influence from leaking into the corner we use pattern
matching (pattern Barrier1/Barrier2 in ‘barriers.db’) to modify the permeability for ‘X’
at this intersection to zero. ‘O’ can still spread influence through this connection.

Another case that needs to be mentioned is how the permeability damping is com-
puted for diagonal influence radiation. For horizontal and vertical radiation we just use the
permeability (for the relevant color) at the intersection we are radiating from. In the diag-
onal case we additionally multiply with the maximum permeability at the two intersections
we are trying to squeeze between. The reason for this can be found in the diagram below:

|...X |...X
|OO.. |Oda.
|..O. |.bc.
|..O. |..O.
+---- +----

We don’t want ‘X’ influence to be spread from ‘a’ to ‘b’, and since the permeability
at both c and d is zero, the rule above stops this.

13.9 Escape

One application of the influence code is in computing the dragon.escape_route field.
This is computed by the function compute_escape() as follows. First, every intersection
is assigned an escape value, ranging between 0 and 4, depending on the influence value of
the opposite color.

The escape_route field is modified by the code in ‘surround.c’ (see Section 13.11
[Surrounded Dragons], page 140). It is divided by two for weakly surrounded dragons, and
set to zero for surrounded ones.

In addition to assiging an escape value to empty vertices, we also assign an escape
value to friendly dragons. This value can range from 0 to 6 depending on the status of the
dragon, with live dragons having value 6.

Then we sum the values of the resulting influence escape values over the intersections
(including friendly dragons) at distance 4, that is, over those intersections which can be
joined to the dragon by a path of length 4 (and no shorter path) not passing adjacent to



Chapter 13: Influence Function 137

any unfriendly dragon. In the following example, we sum the influence escape value over
the four vertices labelled ’4’.

. . . . . . . . . . . . . . . . . .

. . . . . X . . O . . . . . X . . O

. . X . . . . . O . . X . 2 . 4 . O
X . . . . . . . . X . . 1 1 2 3 4 .
X O . O . . . . O X O 1 O 1 2 3 4 O
X O . O . . . . . X O 1 O 1 . 4 . .
X O . . . X . O O X O 1 . . X . . O
. . . X . . . . . . 1 . X . . . . .
X . . . . X . . . X . . . . X . . .
. . . . . . . . . . . . . . . . . .

Since the dragon is trying to reach safety, the reader might wonder why compute_
influence() is called with the opposite color of the dragon contemplating escape. To
explain this point, we first remind the reader why there is a color parameter to compute_
influence(). Consider the following example position:

...XX...
OOO..OOO
O......O
O......O
--------

Whether the bottom will become O territory depends on who is in turn to play. This
is implemented with the help of patterns in barriers.db, so that X influence is allowed to leak
into the bottom if X is in turn to move but not if O is. There are also “invade” patterns which
add influence sources in sufficiently open parts of the board which are handled differently
depending on who is in turn to move.

In order to decide the territorial value of an O move in the third line gap above,
influence is first computed in the original position with the opponent (i.e. X) in turn to
move. Then the O stone is played to give:

...XX...
OOO.OOOO
O......O
O......O
--------

Now influence is computed once more, also this time with X in turn to move. The
difference in territory (as computed from the influence values) gives the territorial value of
the move.

Exactly how influence is computed for use in the escape route estimation is all ad
hoc. But it makes sense to assume the opponent color in turn to move so that the escape



Chapter 13: Influence Function 138

possibilities aren’t overestimated. After we have made a move in the escape direction it is
after all the opponent’s turn.

The current escape route mechanism seems good enough to be useful but is not
completely reliable. Mostly it seems to err on the side of being too optimistic.

13.10 Break Ins

The code in ‘breakin.c’ break-ins into territories that require deeper tactical reading and
are thus impossible to detect for the influence module. It gets run after the influence module
and revises its territory valuations.

The break-in code makes use of two public functions in ‘readconnect.c’,
• int break in(int str, const char goal[BOARDMAX], int *move)

Returns WIN if str can connect to the area goal[] (which may or may
not contain stones), if the string’s owner gets the first move.

• int block off(int str, const char goal[BOARDMAX], int *move)
Returns WIN if str cannot connect to the area goal[] (which may or may
not contain stones), if the other color moves first.

These functions are public front ends to their counterparts recursive_break_in and
recursive_block_off, which call each other recursively.

The procedure is as follows: We look at all big (>= 10) territory regions as detected
by the influence code. Using the computation of connection distances from readconnect.c,
we compute all nearby vertices of this territory. We look for the closest safe stones belonging
to the opponent.

For each such string str we call
• break_in(str, territory) if the opponent is assumed to be next to move,
• block_off(str, territory) if the territory owner is next.

If the break in is successful resp. the blocking unsuccessful, we shrink the territory,
and see whether the opponent can still break in. We repeat this until the territory is shrunk
so much that the opponent can no longer reach it.

To see the break in code in action run GNU Go on the file ‘regression/games/break_in.sgf’
with the option -d0x102000. Among the traces you will find:

Trying to break in from D7 to:
E9 (1) F9 (1) G9 (1) E8 (1) F8 (1) G8 (1)
H8 (1) G7 (1) H7 (1) J7 (1) H6 (1) J6 (1)
H5 (1) J5 (1) H4 (1) J4 (1) H3 (1) J3 (1)
H2 (1) J2 (1)
block_off D7, result 0 PASS (355, 41952 nodes, 0.73 seconds)
E9 (1) F9 (1) G9 (1) E8 (1) F8 (1) G8 (1)
H8 (1) G7 (1) H7 (1) J7 (1) H6 (1) J6 (1)
H5 (1) J5 (1) H4 (1) J4 (1) H3 (1) J3 (1)
H2 (1) J2 (1)
B:F4
Erasing territory at E8 -b.
Erasing territory at G3 -b.



Chapter 13: Influence Function 139

Now trying to break to smaller goal:
F9 (1) G9 (1) F8 (1) G8 (1) H8 (1) G7 (1)
H7 (1) J7 (1) H6 (1) J6 (1) H5 (1) J5 (1)
H4 (1) J4 (1) H3 (1) J3 (1) H2 (1) J2 (1)

This means that the function break_in is called with the goal marked ’a’ in the
following diagram. The code attempts to find out whether it is possible to connect into this
area from the string at D7.

A B C D E F G H J
9 . . . . a a a . . 9
8 . . . . a a a a . 8
7 . . . X O O a a a 7
6 . . . X X X O a a 6
5 . . . . + . . a a 5
4 . . . X . . O a a 4
3 . . . . X . . a a 3
2 . . . . . . O a a 2
1 . . . . . . . . . 1
A B C D E F G H J

A breakin is found, so the goal is shrunk by removing E9 and J2, then break in is
called again.

In order to see what reading is actually done in order to do this break in, you may
load GNU Go in gtp mode, then issue the commands:

loadsgf break_in.sgf
= black

start_sgftrace
=

break_in D7 E9 F9 G9 E8 F8 G8 H8 G7 H7 J7 H6 J6 H5 J5 H4 J4 H3 J3 H2 J2
= 1 E8

finish_sgftrace vars.sgf
=

start_sgftrace
=

break_in D7 F9 G9 F8 G8 H8 G7 H7 J7 H6 J6 H5 J5 H4 J4 H3 J3 H2 J2
= 1 G7

finish_sgftrace vars1.sgf

This will produce two sgf files containing the variations caused by these calls to the
breakin code. The second file, ‘vars1.sgf’ will contain quite a few variations.

The break in code makes a list of break ins which are found. When it is finished, the
function add_expand_territory_move is called for each break in, adding a move reason.



Chapter 13: Influence Function 140

The break in code is slow, and only changes a few moves by the engine per game.
Nevertheless we believe that it contributes substantially to the strength of the program.
The break in code is enabled by default in GNU Go 3.6 at level 10, and disabled at level 9.
In fact, this is the only difference between levels 9 and 10 in GNU Go 3.6.

13.11 Surrounded Dragons

When is a dragon surrounded?
As has been pointed out by Bruce Wilcox, the geometric lines connecting groups of

the opposite color are often important. It is very hard to prevent the escape of this ‘O’
dragon:

..........

.....O....

.X.......X

.X...O...X

..........

..........
----------

On the other hand, this dragon is in grave danger:
..........
..........
.X.......X
.....O....
.X.......X
.X...O...X
..........
..........
----------

The difference between these two positions is that in the first, the ‘O’ dragon crosses
the line connecting the top two ‘X’ stones.

Code in ‘surround.c’ implements a test for when a dragon is surrounded. The
idea is to compute the convex hull of the surround set, that is, the set stones belonging to
unfriendly neighbor dragons. If the dragon is contained within that hull. If it is, it is said
to be surrounded.

In practice this scheme is modified slightly. The implementation uses various algo-
rithms to compute distances and hostile stones are discarded from the surround set when a
pair other hostile ones can be found which makes the considered one useless. For example,
in the following position the bottom ‘O’ stone would get discarded.

O.X.O
.....
.O.O.
.....
..O..

Also, points are added to the surround set below stones on the second and third
lines. This should account for the edge being a natural barrier.



Chapter 13: Influence Function 141

In order to compute distances between corners of the convex hull a sorting by angle
algorithm has been implemented. If the distance between a pair enclosing stones is large,
the surround status gets decreased to WEAKLY_SURROUNDED, or even 0 for very large ones.

The sorting by angle must be explained. A small diagram will probably help :

.O.O.
O...O
..X..
O...O
.O.O.

The sorting algorithm will generate this:

.4.5.
3...6
..X..
2...7
.1.8.

That is, the points are sorted by ascending order of the measure of the angle S-G-O,
where S is SOUTH, G the (approximated) gravity center of the goal, and O the position of
the considered hostile stones.

The necessity of such sorting appears when one tries to measure distances between
enclosing stones without sorting them, just by using directly the existing left and right
corners arrays. In some positions, the results will be inconsistent. Imagine, for example a
position where for instance the points 1,2,3,4,6 and 7 were in the left arrary, leaving only 5
and 8 in the right array. Because of the large distance between 5 and 8, the dragon would
have declared weak surrounded or not surrounded at all. Such cases are rare but frequent
enough to require the angle sorting.

The following position:

O.X.O
.....
.O.O.

This is "more" surrounded than the following position:

O.XXXXXX.O
..........
.O......O.

In the second case, the surround status would be lowered to WEAKLY_SURROUNDED.

The surround code is used to modify the escape route field in the dragon2 data
array. When a dragon is WEAKLY SURROUNDED, the escape route is divided by 2. If
the dragon is SURROUNDED, escape route is simply set to 0.

13.12 Patterns used by the Influence module

This section explains the details of the pattern databases used for the influence computation.

First, we have the patterns in ‘influence.db’, which get matched symmetrically for
both colors.



Chapter 13: Influence Function 142

• ‘E’

These patterns add extra influence sources close to some shapes like walls.
This tries to reflect their extra strength. These patterns are not used in
the influence computations relevant for territory valuations, but they are
useful for getting a better estimate of strengths of groups.

• ‘I’

These patterns add extra influence sources at typical invasion points. Usu-
ally they are of small strength. If they additionally have the class ‘s’, the
extra influence source is added for both colors. Otherwise, only the player
assumed to be next to move gets the benefit.

The patterns in ‘barriers.db’ get matched only for ‘O’ being the player next to
move.

• ‘A’

Connections between ‘X’ stones that stop influence of ‘O’. They have to be
tight enough that ‘O’ cannot break through, even though he is allowed to
move first.

• ‘D’

Connections between ‘O’ stones that stop influence of ‘X’. The stones in-
volved can be more loosely connected than those in ‘A’ patterns.

• ‘B’

These indicate positions of followup moves for the ‘O’ stone marked with
‘Q’ in the pattern. They are used to reduce the territory e. g. where a
monkey jump is possible. Also, they are used in the computation of the
followup influence, if the ‘Q’ stone was the move played (or a stone saved
by the move played).

• ‘t’

These patterns indicate intersections where one color will not be able to
get territory, for example in a false eye. The points are set with a call to
the helper non oterritory or non xterritory in the action of the pattern.

The intrusion patterns (‘B’) are more powerful than the description above might
suggest. They can be very helpful in identifying weak shapes (by adding an intrusion
source for the opponent where he can break through). A negative inference for this is that
a single bad ‘B’ pattern, e. g. one that has a wrong constraint, typically causes 5 to 10
FAILs in the regression test suite.

Influence Patterns can have autohelper constraints as usual. As for the constraint
attributes, there are (additionally to the usual ones ‘O’, ‘o’, ‘X’ and ‘x’), attributes ‘Y’ and
‘FY’. A pattern marked with ‘Y’ will only be used in the influence computations relevant for
the territory valuation, while ‘FY’ patterns only get used in the other influence computations.

The action of an influence pattern is at the moment only used for non-territory
patterns as mentioned above, and as a workaround for a problem with ‘B’ patterns in the
followup influence.

To see why this workaround is necessary, consider the follwoing situation:



Chapter 13: Influence Function 143

..XXX

.a*.O

.X.O.

..XXO

(Imagine that there is ‘X’ territory on the left.)

The move by ‘O’ at ‘*’ has a natural followup move at ‘a’. So, in the computation of
the followup influence for ‘*’, there would be an extra influence source for ‘O’ at ‘a’ which
would destroy a lot of black territory on the left. This would give a big followup value, and
in effect the move ‘*’ would be treated as sente.

But of course it is gote, since ‘X’ will answer at ‘a’, which both stops the possible
intrusion and threatens to capture ‘*’. This situation is in fact quite common.

Hence we need an additional constraint that can tell when an intrusion pattern can
be used in followup influence. This is done by misusing the action line: An additional line

>return <condition>;

gets added to the pattern. The condition should be true if the intrusion cannot be
stopped in sente. In the above example, the relevant intrusion pattern will have an action
line of the form

>return (!xplay_attack(a,b));

where ‘b’ refers to the stone at ‘*’. In fact, almost all followup-specific constraints
look similar to this.

13.13 Colored display and debugging of influence

There are various ways to obtain detailed information about the influence computations.
Colored diagrams showing influence are possible from a colored xterm or rxvt window.

There are two options controlling when to generate diagrams:

• ‘-m 0x08’ or ‘-m 8’
Show diagrams for the initial influence computation. This is done twice, the
first time before make_dragons() is run and the second time after. The
difference is that dead dragons are taken into account the second time.
Tactically captured worms are taken into account both times.

• ‘--debug-influence location ’
Show influence diagrams after the move at the given location. An impor-
tant limitation of this option is that it’s only effective for moves that the
move generation is considering.

The other options control which diagrams should be generated in these situations.
You have to specify at least one of the options above and at least one of the options below
to generate any output.

The options below must be combined with one of the two previous ones, or the
diagram will not be printed. For example to print the influence diagram, you may combine
0x08 and 0x010, and use the option ‘-m 0x018’.



Chapter 13: Influence Function 144

• ‘-m 0x010’ or ‘-m 16’
Show colored display of territory/moyo/area regions.
− territory: cyan
− moyo: yellow
− area: red

This feature is very useful to get an immediate impression of the influence
regions as GNU Go sees them.

• ‘-m 0x20’ or ‘-m 32’
Show numerical influence values for white and black. These come in two
separate diagrams, the first one for white, the second one for black. Notice
that the influence values are represented by floats and thus have been
rounded in these diagrams.

• ‘-m 0x40’ or ‘-m 64’
This generates two diagrams showing the permeability for black and white
influence on the board.

• ‘-m 0x80’ or ‘-m 128’
This shows the strength of the influence sources for black and white across
the board. You will see sources at each lively stone (with strength depend-
ing on the strength of this stone), and sources contributed by patterns.

• ‘-m 0x100’ or ‘-m 256’
This shows the attenuation with which the influence sources spread influ-
ence across the board. Low attenuation indicates far-reaching influence
sources.

• ‘-m 0x200’ or ‘-m 512’
This shows the territory valuation of GNU Go. Each intersection is shown
with a value between -1.0 and +1.0 (or -2 resp. +2 if there is a dead stone
on this intersection). Positive values indicate territory for white. A value
of -0.5 thus indicates a point where black has a 50% chance of getting
territory.

Finally, there is the debug option ‘-d 0x1’ which turns on on DEBUG_INFLUENCE. This
gives a message for each influence pattern that gets matched. Unfortunately, these are way
too many messages making it tedious to navigate the output. However, if you discover an
influence source with ‘-m 0x80’ that looks wrong, the debug output can help you to quickly
find out the responsible pattern.

13.14 Influence Tuning with view.pike

A useful program in the regression directory is view.pike. To run it, you need Pike, which
you may download from http://pike.ida.liu.se/.

The test case ‘endgame:920’ fails in GNU Go 3.6. We will explain how to fix it.

Start by firing up view.pike on testcase endgame:920, e.g. by running pike
view.pike endgame:920 in the regression directory.

http://pike.ida.liu.se/


Chapter 13: Influence Function 145

We see from the first view of move values that filling dame at P15 is valued highest
with 0.17 points while the correct move at C4 is valued slightly lower with 0.16. The real
problem is of course that C4 is worth a full point and thus should be valued about 1.0.

Now click on C4 to get a list of move reasons and move valuation information.
Everything looks okay except that change in territory is 0.00 rather than 1.00 as it ought
to be.

We can confirm this by choosing the “delta territory for...” button and again clicking
C4. Now B5 should have been marked as one point of change in territory, but it’s not.

Next step is to enter the influence debug tool. Press the “influence” button, followed
by “black influence, dragons known,” and “territory value.” This shows the expected terri-
tory if black locally moves first everywhere (thus “black influence”). Here we can see that
B5 is incorrectly considered as 1.0 points of white territory.

We can compare this with the territory after a white move at C4 (still assuming that
black locally moves first everywhere after that) by pressing “after move influence for...”
and clicking C4. This looks identical, as expected since delta territory was 0, but here it is
correct that B5 is 1.0 points of territory for white.

The most straightforward solution to this problem is to add a non-territory pattern,
saying that white can’t get territory on B5 if black moves first. The nonterritory patterns
are in ‘barriers.db’.

Pattern Nonterritory56

...
X.O
?O.

:8,t

eac
XbO
?Od

;oplay_attack(a,b,c,d,d)

>non_xterritory(e);

In these patterns it’s always assumed that ‘O’ moves first and thus it says that ‘X’
can’t get territory at B5 (‘e’ in the pattern). Now we need to be a bit careful however
since after ‘O’ plays at ‘a’ and ‘X’ cuts in at ‘b’, it may well happen that ‘O’ needs to defend
around ‘d’, allowing ‘X’ to cut at ‘c’, possibly making the nonterritory assumption invalid.
It’s difficult to do this entirely accurate, but the constraint above is fairly conservative and
should guarantee that ‘a’ is safe in most, although not all, cases.



Chapter 14: Monte Carlo Go 146

14 Monte Carlo Go

In Monte Carlo Go the engine plays random games to the end, generating moves from a pat-
tern database within the context of the algorithm UCT (upper bound confidence in trees).
This algorithm allowed the program MoGo (http://www.lri.fr/~gelly/MoGo.htm, to be-
come the first computer program to defeat a professional while taking a 9 stone handicap
(http://senseis.xmp.net/?MoGo).

GNU Go 3.8 can play 9x9 Go with the option ‘--monte-carlo’ using the UCT
algorithm. For command line options, see See Section 3.9 [Invoking GNU Go], page 14.

During reading, the engine makes incremental updates of local 3x3 neighborhood,
suicide status, self-atari status, and number of stones captured, for each move.

GNU Go’s simulations (Monte Carlo games) are pattern generated. The random
playout move generation is distributed strictly proportional to move values computed by
table lookup from a local context consisting of 3x3 neighborhood, opponent suicide status,
own and opponent self-atari status, number of stones captured by own and opponent move,
and closeness to the previous move. Let’s call this local context simply "a pattern" and the
table "pattern values" or simply "patterns".

There are three built-in databases that you can select using the option
‘--mc-patterns <name>’, where ‘<name>’ is one of
• mc_mogo_classic

• mc_montegnu_classic

• mc_uniform

The first of these is an approximation of the previous random move generation algo-
rithm. The mogo_classic pattern values is an approximation of the simulation policy used
by early versions of MoGo, as published in the report odification of UCT with Patterns in
Monte-Carlo Go RR-6062, by Sylvain Gelly, Yizao Wang, Rmi Munos, and Olivier Teytaud.
The uniform pattern values is the so called "light" playout which chooses uniformly between
all legal moves except single point proper eyes.

If you’re not satisfied with these you can also tune your own pattern values with
a pattern database file and load it at runtime with ‘--mc-load-patterns <name>’ adding
your own pattern database.

Let’s start with the uniform pattern values. Those are defined by the file
‘patterns/mc_uniform.db’, which looks like this:

oOo
O*O
oO?

:0

oOo
O*O
---

http://www.lri.fr/~gelly/MoGo.htm
http://senseis.xmp.net/?MoGo
http://hal.inria.fr/inria-00117266
http://hal.inria.fr/inria-00117266


Chapter 14: Monte Carlo Go 147

:0

|Oo
|*O
+--

:0

Patterns are always exactly 3x3 in size with the move at the center point. The
symbols are the usual for GNU Go pattern databases:

* move
O own stone (i.e. the same color as the color to move)
o own stone or empty
X opponent stone
x opponent stone or empty
? own stone, opponent stone, or empty
| vertical edge
- horizontal edge
+ corner

There’s also a new symbol:
% own stone, opponent stone, empty, or edge

After the pattern comes a line starting with a colon. In all these patterns it says
that the pattern has a move value of 0, i.e. must not be played. Unmatched patterns have
a default value of 1. When all move values are zero for both players, the playout will stop.
Including the three patterns above is important because otherwise the playouts would be
likely to go on indefinitely, or as it actually happens be terminated at a hard-coded limit
of 600 moves. Also place these patterns at the top of the database because when multiple
patterns match, the first one is used, regardless of the values.

When using only these patterns you will probably notice that it plays rather heavy,
trying hard to be solidly connected. This is because uniform playouts are badly biased with
a high probability of non-solid connections being cut apart. To counter this you could try
a pattern like

?X?
O*O
x.?

:20,near

to increase the probability that the one-point jump is reinforced when threatened.
Here we added the property "near", which means that the pattern only applies if the
previous move was played "near" this move. Primarily "near" means within the surrounding
3x3 neighborhood but it also includes certain cases of liberties of low-liberty strings adjacent
to the previous move, e.g. the move to extend out of an atari created by the previous move.
You have to read the source to find out the exact rules for nearness.

We could also be even more specific and say
?X?
O*O



Chapter 14: Monte Carlo Go 148

x.?

:20,near,osafe,xsafe

to exclude the cases where this move is a self atari (osafe) or would be a self-atari
for the opponent (xsafe).

It may also be interesting to see the effect of capturing stones. A catch-all pattern
for captures would be

?X%
?*%
%%%

:10,ocap1,osafe
:20,ocap2
:30,ocap3

where we have used multiple colon lines to specify different move values depending
on the number of captured stones; value 10 for a single captured stone, value 20 for two
captured stones, and value 30 for three or more captured stones. Here we also excluded
self-atari moves in the case of 1 captured stone in order to avoid getting stuck in triple-ko
in the playouts (there’s no superko detection in the playouts).

The full set of pattern properties is as follows:

near The move is "near" the previous move.

far The move is not "near" the previous move.

osafe The move is not a self-atari.

ounsafe The move is a self-atari.

xsafe The move would not be a self-atari for the opponent.

xunsafe The move would be a self-atari for the opponent.

xsuicide he move would be suicide for the opponent

xnosuicide
move would not be suicide for the opponent.

ocap0 The move captures zero stones.

ocap1 The move captures one stone.

ocap2 The move captures two stones.

ocap3 The move captures three or more stones.

ocap1+ The move captures one or more stones.

ocap1- The move captures at most one stones.

ocap2+ The move captures two or more stones.

ocap2- The move captures at most two stones.

xcap0 An opponent move would capture zero stones.



Chapter 14: Monte Carlo Go 149

xcap1 An opponent move would capture one stone.

xcap2 An opponent move would capture two stones.

xcap3 An opponent move would capture three or more stones.

xcap1+ An opponent move would capture one or more stones.

xcap1- An opponent move would capture at most one stones.

xcap2+ An opponent move would capture two or more stones.

xcap2- An opponent move would capture at most two stones.

These can be combined arbitrarily but all must be satisfied for the pattern to take
effect. If contradictory properties are combined, the pattern will never match.

14.0.1 Final Remarks

• Move values are unsigned 32-bit integers. To avoid overflow in computations it is highly
recommended to keep the values below 10000000 or so.

• There is no speed penalty for having lots of patterns in the database. The average
time per move is approximately constant (slightly dependent on how often stones are
captured or become low on liberties) and the time per game mostly depends on the
average game length.

• For more complex pattern databases, see ‘patterns/mc_montegnu_classic.db’ and
‘patterns/mc_mogo_classic.db’.

Nobody really knows how to tune the random playouts to get as strong engine as
possible. Please play with this and report any interesting findings, especially if you’re able
to make it substantially stronger than the ‘montegnu_classic’ patterns.



Chapter 15: The Board Library 150

15 The Board Library

The foundation of the GNU Go engine is a library of very efficient routines for handling
go boards. This board library, called ‘libboard’, can be used for those programs that only
need a basic go board but no AI capability. One such program is ‘patterns/joseki.c’,
which compiles joseki pattern databases from SGF files.

If you want to use the board library in your own program, you need all the .c-files
listed under libboard SOURCES in engine/Makefile.am, and the files in the directories sgf/
and utils/. Then you should include engine/board.h in your code.

The library consists of the following files:

• ‘board.h’
The public interface to the board library.

• ‘board.c’
The basic board code. It uses incremental algorithms for keeping track of
strings and liberties on the go board.

• ‘boardlib.c’
This contains all global variable of the board library.

• ‘hash.c’
Code for hashing go positions.

• ‘sgffile.c’
Implementation of output file in SGF format.

• ‘printutils.c’
Utilities for printing go boards and other things.

To use the board library, you must include ‘liberty.h’ just like when you use the
whole engine, but of course you cannot use all the functions declared in it, i.e. the functions
that are part of the engine, but not part of the board library. You must link your application
with libboard.a.

15.1 Board Data structures

The basic data structures of the board correspond tightly to the board_state struct de-
scribed in See Section 17.3 [The Board State], page 163. They are all stored in global
variables for efficiency reasons, the most important of which are:

int board_size;
Intersection board[MAXSIZE];
int board_ko_pos;

float komi;
int white_captured;
int black_captured;

Hash_data hashdata;



Chapter 15: The Board Library 151

The description of the Position struct is applicable to these variables also, so we
won’t duplicate it here. All these variables are globals for performance reasons. Behind
these variables, there are a number of other private data structures. These implement
incremental handling of strings, liberties and other properties (see Section 15.3 [Incremental
Board], page 153). The variable hashdata contains information about the hash value for
the current position (see Section 11.2 [Hashing], page 113).

These variables should never be manipulated directly, since they are only the front
end for the incremental machinery. They can be read, but should only be written by using
the functions described in the next section. If you write directly to them, the incremental
data structures will become out of sync with each other, and a crash is the likely result.

15.2 The Board Array

GNU Go represents the board in a one-dimensional array called board. For some purposes
a two dimensional indexing of the board by parameters (i,j) might be used.

The board array includes out-of-board markers around the board. To make the
relation to the old two-dimensional board representation clear, this figure shows how the
1D indices correspond to the 2D indices when MAX BOARD is 7.

j -1 0 1 2 3 4 5 6
i +----------------------------------
-1| 0 1 2 3 4 5 6 7
0| 8 9 10 11 12 13 14 15
1| 16 17 18 19 20 21 22 23
2| 24 25 26 27 28 29 30 31
3| 32 33 34 35 36 37 38 39
4| 40 41 42 43 44 45 46 47
5| 48 49 50 51 52 53 54 55
6| 56 57 58 59 60 61 62 63
7| 64 65 66 67 68 69 70 71 72

To convert between a 1D index pos and a 2D index (i,j), the macros POS, I, and
J are provided, defined as below:

#define POS(i, j) ((MAX_BOARD + 2) + (i) * (MAX_BOARD + 1) + (j))
#define I(pos) ((pos) / (MAX_BOARD + 1) - 1)
#define J(pos) ((pos) % (MAX_BOARD + 1) - 1)

All 1D indices not corresponding to points on the board have the out of board marker
value GRAY. Thus if board_size and MAX_BOARD both are 7, this looks like



Chapter 15: The Board Library 152

j -1 0 1 2 3 4 5 6
i +----------------------------------
-1| # # # # # # # #
0| # . . . . . . .
1| # . . . . . . .
2| # . . . . . . .
3| # . . . . . . .
4| # . . . . . . .
5| # . . . . . . .
6| # . . . . . . .
7| # # # # # # # # #

The indices marked ‘#’ have value GRAY. If MAX_BOARD is 7 and board_size is only
5:

j -1 0 1 2 3 4 5 6
i +----------------------------------
-1| # # # # # # # #
0| # . . . . . # #
1| # . . . . . # #
2| # . . . . . # #
3| # . . . . . # #
4| # . . . . . # #
5| # # # # # # # #
6| # # # # # # # #
7| # # # # # # # # #

Navigation on the board is done by the SOUTH, WEST, NORTH, and EAST macros,

#define NS (MAX_BOARD + 1)
#define WE 1
#define SOUTH(pos) ((pos) + NS)
#define WEST(pos) ((pos) - 1)
#define NORTH(pos) ((pos) - NS)
#define EAST(pos) ((pos) + 1)

There are also shorthand macros SW, NW, NE, SE, SS, WW, NN, EE for two step move-
ments.

Any movement from a point on the board to an adjacent or diagonal vertex is guar-
anteed to produce a valid index into the board array, and the color found is GRAY if it is
not on the board. To do explicit tests for out of board there are two macros

#define ON_BOARD(pos) (board[pos] != GRAY)
#define ON_BOARD1(pos) (((unsigned) (pos) < BOARDSIZE) && board[pos] != GRAY)

where the first one should be used in the algorithms and the second one is useful for
assertion tests.

The advantage of a one-dimensional board array is that it gives a significant perfor-
mance advantage. We need only one variable to determine a board position, which means
that many functions need less arguments. Also, often one computation is sufficient for 1D-
coordinate where we would need two with two 2D-coordinates: If we, for example, want



Chapter 15: The Board Library 153

to have the coordinate of the upper right of pos, we can do this with NORTH(EAST(pos))
instead of (i+1, j-1).

Important: The 2D coordinate (-1,-1), which is used for pass and sometimes to
indicate no point, maps to the 1D coordinate 0, not to -1. Instead of a plain 0, use one of
the macros NO_MOVE or PASS_MOVE.

A loop over multiple directions is straightforwardly written:
for (k = 0; k < 4; k++) {
int d = delta[k];
do_something(pos + d);

}

The following constants are useful for loops over the entire board and allocation of
arrays with a 1-1 mapping to the board.

#define BOARDSIZE ((MAX_BOARD + 2) * (MAX_BOARD + 1) + 1)
#define BOARDMIN (MAX_BOARD + 2)
#define BOARDMAX (MAX_BOARD + 1) * (MAX_BOARD + 1)

BOARDSIZE is the actual size of the 1D board array, BOARDMIN is the first index
corresponding to a point on the board, and BOARDMAX is one larger than the last index
corresponding to a point on the board.

Often one wants to traverse the board, carrying out some function at every vertex.
Here are two possible ways of doing this:

int m, n;
for (m = 0; m < board_size; m++)
for (n = 0; n < board_size; n++) {

do_something(POS(m, n));
}

Or:
int pos;
for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
if (ON_BOARD(pos))

do_something(pos);
}

15.3 Incremental Board data structures

In addition to the global board state, the algorithms in ‘board.c’ implement a method of
incremental updates that keeps track of the following information for each string:
• The color of the string.
• Number of stones in the string.
• Origin of the string, i.e. a canonical reference point, defined to be the stone with

smallest 1D board coordinate.
• A list of the stones in the string.
• Number of liberties.
• A list of the liberties. If there are too many liberties the list is truncated.
• The number of neighbor strings.



Chapter 15: The Board Library 154

• A list of the neighbor strings.

The basic data structure is
struct string_data {

int color; /* Color of string, BLACK or WHITE */
int size; /* Number of stones in string. */
int origin; /* Coordinates of "origin", i.e. */

/* "upper left" stone. */
int liberties; /* Number of liberties. */
int libs[MAX_LIBERTIES]; /* Coordinates of liberties. */
int neighbors; /* Number of neighbor strings */
int neighborlist[MAXCHAIN]; /* List of neighbor string numbers. */
int mark; /* General purpose mark. */

};

struct string_data string[MAX_STRINGS];

It should be clear that almost all information is stored in the string array. To get
a mapping from the board coordinates to the string array we have

static int string_number[BOARDMAX];

which contains indices into the string array. This information is only valid at nonempty
vertices, however, so it is necessary to first verify that board[pos] != EMPTY.

The string_data structure does not include an array of the stone coordinates. This
information is stored in a separate array:

static int next_stone[BOARDMAX];

This array implements cyclic linked lists of stones. Each vertex contains a pointer to
another (possibly the same) vertex. Starting at an arbitrary stone on the board, following
these pointers should traverse the entire string in an arbitrary order before coming back to
the starting point. As for the ’string number’ array, this information is invalid at empty
points on the board. This data structure has the good properties of requiring fixed space
(regardless of the number of strings) and making it easy to add a new stone or join two
strings.

Additionally the code makes use of some work variables:
static int ml[BOARDMAX];
static int liberty_mark;
static int string_mark;
static int next_string;
static int strings_initialized = 0;

The ml array and liberty_mark are used to "mark" liberties on the board, e.g. to
avoid counting the same liberty twice. The convention is that if ml[pos] has the same value
as liberty_mark, then pos is marked. To clear all marks it suffices to increase the value
of liberty_mark, since it is never allowed to decrease.

The same relation holds between the mark field of the string_data structure and
string_mark. Of course these are used for marking individual strings.

next_string gives the number of the next available entry in the string array. Then
strings_initialized is set to one when all data structures are known to be up to date.



Chapter 15: The Board Library 155

Given an arbitrary board position in the ‘board’ array, this is done by calling incremental_
board_init(). It is not necessary to call this function explicitly since any other function
that needs the information does this if it has not been done.

The interesting part of the code is the incremental update of the data structures
when a stone is played and subsequently removed. To understand the strategies involved
in adding a stone it is necessary to first know how undoing a move works. The idea is
that as soon as some piece of information is about to be changed, the old value is pushed
onto a stack which stores the value and its address. The stack is built from the following
structures:

struct change_stack_entry {
int *address;
int value;

};

struct change_stack_entry change_stack[STACK_SIZE];
int change_stack_index;

and manipulated with the macros

BEGIN_CHANGE_RECORD()
PUSH_VALUE(v)
POP_MOVE()

Calling BEGIN_CHANGE_RECORD() stores a null pointer in the address field to indicate
the start of changes for a new move. As mentioned earlier PUSH_VALUE() stores a value and
its corresponding address. Assuming that all changed information has been duly pushed
onto the stack, undoing the move is only a matter of calling POP_MOVE(), which simply
assigns the values to the addresses in the reverse order until the null pointer is reached.
This description is slightly simplified because this stack can only store ’int’ values and we
need to also store changes to the board. Thus we have two parallel stacks where one stores
int values and the other one stores Intersection values.

When a new stone is played on the board, first captured opponent strings, if any,
are removed. In this step we have to push the board values and the next_stone pointers
for the removed stones, and update the liberties and neighbor lists for the neighbors of
the removed strings. We do not have to push all information in the ’string’ entries of the
removed strings however. As we do not reuse the entries they will remain intact until the
move is pushed and they are back in use.

After this we put down the new stone and get three distinct cases:

1. The new stone is isolated, i.e. it has no friendly neighbor.

2. The new stone has exactly one friendly neighbor.

3. The new stone has at least two friendly neighbors.

The first case is easiest. Then we create a new string by using the number given
by next_string and increasing this variable. The string will have size one, next_stone
points directly back on itself, the liberties can be found by looking for empty points in the
four directions, possible neighbor strings are found in the same way, and those need also to
remove one liberty and add one neighbor.



Chapter 15: The Board Library 156

In the second case we do not create a new string but extend the neighbor with the
new stone. This involves linking the new stone into the cyclic chain, if needed moving the
origin, and updating liberties and neighbors. Liberty and neighbor information also needs
updating for the neighbors of the new stone.

In the third case finally, we need to join already existing strings. In order not to
have to store excessive amounts of information, we create a new string for the new stone
and let it assimilate the neighbor strings. Thus all information about those can simply be
left around in the ’string’ array, exactly as for removed strings. Here it becomes a little
more complex to keep track of liberties and neighbors since those may have been shared
by more than one of the joined strings. Making good use of marks it all becomes rather
straightforward anyway.

The often used construction
pos = FIRST_STONE(s);
do {

...
pos = NEXT_STONE(pos);

} while (!BACK_TO_FIRST_STONE(s, pos));

traverses the stones of the string with number ‘s’ exactly once, with pos holding the co-
ordinates. In general pos is used as board coordinate and ‘s’ as an index into the string
array or sometimes a pointer to an entry in the string array.

15.4 Some Board Functions

Reading, often called search in computer game theory, is a fundamental process in GNU Go.
This is the process of generating hypothetical future boards in order to determine the answer
to some question, for example "can these stones live." Since these are hypothetical future
positions, it is important to be able to undo them, ultimately returning to the present board.
Thus a move stack is maintained during reading. When a move is tried, by the function
trymove, or its variant tryko. This function pushes the current board on the stack and
plays a move. The stack pointer stackp, which keeps track of the position, is incremented.
The function popgo() pops the move stack, decrementing stackp and undoing the last
move made.

Every successful trymove() must be matched with a popgo(). Thus the correct way
of using this function is:

if (trymove(pos, color, ... )) {
... [potentially lots of code here]
popgo();

}

In case the move is a ko capture, the legality of the capture is subject to the komaster
scheme (see Section 11.4 [Ko], page 117).
• int trymove(int pos, int color, const char *message)

Returns true if (pos) is a legal move for color. In that case, it pushes
the board on the stack and makes the move, incrementing stackp. If the



Chapter 15: The Board Library 157

reading code is recording reading variations (as with ‘--decide-string’
or with ‘-o’), the string *message will be inserted in the SGF file as a
comment. The comment will also refer to the string at str if this is not 0.
The value of str can be NO MOVE if it is not needed but otherwise the
location of str is included in the comment.

• int tryko(int pos, int color, const char *message)

tryko() pushes the position onto the stack, and makes a move pos of
color. The move is allowed even if it is an illegal ko capture. It is to be
imagined that color has made an intervening ko threat which was answered
and now the continuation is to be explored. Return 1 if the move is legal
with the above caveat. Returns zero if it is not legal because of suicide.

• void popgo()

Pops the move stack. This function must (eventually) be called after a
succesful trymove or tryko to restore the board position. It undoes all the
changes done by the call to trymove/tryko and leaves the board in the
same state as it was before the call.
NOTE: If trymove/tryko returns 0, i.e. the tried move was not legal, you
must not call popgo.

• int komaster_trymove(int pos, int color, const char *message, int str, int
*is_conditional_ko, int consider_conditional_ko)

Variation of trymove/tryko where ko captures (both conditional and
unconditional) must follow a komaster scheme (see Section 11.4 [Ko],
page 117).

As you see, trymove() plays a move which can be easily retracted (with popgo())
and it is call thousands of times per actual game move as GNU Go analyzes the board
position. By contrast the function play_move() plays a move which is intended to be
permanent, though it is still possible to undo it if, for example, the opponent retracts a
move.
• void play_move(int pos, int color)

Play a move. If you want to test for legality you should first call is_
legal(). This function strictly follows the algorithm:
1. Place a stone of given color on the board.
2. If there are any adjacent opponent strings without liberties, remove

them and increase the prisoner count.
3. If the newly placed stone is part of a string without liberties, remove

it and increase the prisoner count.

In spite of the name “permanent move”, this move can (usually) be un-
played by undo_move(), but it is significantly more costly than unplaying
a temporary move. There are limitations on the available move history, so
under certain circumstances the move may not be possible to unplay at a
later time.

• int undo_move(int n)

Undo ‘n’ permanent moves. Returns 1 if successful and 0 if it fails. If ‘n’
moves cannot be undone, no move is undone.



Chapter 15: The Board Library 158

Other board functions are documented in See Section 18.3 [Board Utilities], page 174.



Chapter 16: Handling SGF trees in memory 159

16 Handling SGF trees in memory

SGF - Smart Game Format - is a file format which is used for storing game records for
a number of different games, among them chess and go. The format is a framework with
special adaptions to each game. This is not a description of the file format standard. Too
see the exact definition of the file format, see http://www.red-bean.com/sgf/.

GNU Go contains a library to handle go game records in the SGF format in memory
and to read and write SGF files. This library - libsgf.a - is in the sgf subdirectory. To
use the SGF routines, include the file ‘sgftree.h’.

Each game record is stored as a tree of nodes, where each node represents a state
of the game, often after some move is made. Each node contains zero or more properties,
which gives meaning to the node. There can also be a number of child nodes which are
different variations of the game tree. The first child node is the main variation.

Here is the definition of SGFNode, and SGFProperty, the data structures which are
used to encode the game tree.

typedef struct SGFProperty_t {
struct SGFProperty_t *next;
short name;
char value[1];

} SGFProperty;

typedef struct SGFNode_t {
SGFProperty *props;
struct SGFNode_t *parent;
struct SGFNode_t *child;
struct SGFNode_t *next;

} SGFNode;

Each node of the SGF tree is stored in an SGFNode struct. It has a pointer to a linked
list of properties (see below) called props. It also has a pointer to a linked list of children,
where each child is a variation which starts at this node. The variations are linked through
the next pointer and each variation continues through the child pointer. Each and every
node also has a pointer to its parent node (the parent field), except the top node whose
parent pointer is NULL.

An SGF property is encoded in the SGFPoperty struct. It is linked in a list through
the next field. A property has a name which is encoded in a short int. Symbolic names of
properties can be found in ‘sgf_properties.h’.

Some properties also have a value, which could be an integer, a floating point value,
a character or a string. These values can be accessed or set through special functions.

http://www.red-bean.com/sgf/


Chapter 16: Handling SGF trees in memory 160

16.1 The SGFTree datatype

Sometimes we just want to record an ongoing game or something similarly simple and not do
any sofisticated tree manipulation. In that case we can use the simplified interface provided
by SGFTree below.

typedef struct SGFTree_t {
SGFNode *root;
SGFNode *lastnode;

} SGFTree;

An SGFTree contains a pointer to the root node of an SGF tree and a pointer to the
node that we last accessed. Most of the time this will be the last move of an ongoing game.

Most of the functions which manipulate an SGFTree work exactly like their SGFNode
counterparts, except that they work on the current node of the tree.

All the functions below that take arguments tree and node will work on:
1. node if non-NULL
2. tree->lastnode if non-NULL
3. The current end of the game tree.

in that order.



Chapter 17: Application Programmers Interface to GNU Go 161

17 Application Programmers Interface to GNU
Go

If you want to write your own interface to GNU Go, or if you want to create a go application
using the GNU Go engine, this chapter is of interest to you.

First an overview: GNU Go consists of two parts: the GNU Go engine and a program
(user interface) which uses this engine. These are linked together into one binary. The
current program implements the following user modes:
• An interactive board playable on ASCII terminals
• solo play - GNU Go plays against itself
• replay - a mode which lets the user investigate moves in an existing SGF file.
• GMP - Go Modem Protocol, a protocol for automatic play between two computers.
• GTP - Go Text Protocol, a more general go protocol, see Chapter 19 [GTP], page 179.

The GNU Go engine can be used in other applications. For example, supplied
with GNU Go is another program using the engine, called ‘debugboard’, in the directory
‘interface/debugboard/’. The program debugboard lets the user load SGF files and can
then interactively look at different properties of the position such as group status and eye
status.

The purpose of this Chapter is to show how to interface your own program such as
debugboard with the GNU Go engine.

Figure 1 describes the structure of a program using the GNU Go engine.
+-----------------------------------+
| |
| Go application |
| |
+-----+----------+------+ |
| | | | |
| | Game | | |
| | handling | | |
| | | | |
| +----+-----+ | |
| SGF | Move | |
| handling | generation | |
| | | |
+----------+------------+-----------+
| |
| Board handling |
| |
+-----------------------------------+

Figure 1: The structure of a program using the GNU Go engine

The foundation is a library called libboard.a which provides efficient handling of
a go board with rule checks for moves, with incremental handling of connected strings of
stones and with methods to efficiently hash go positions.



Chapter 17: Application Programmers Interface to GNU Go 162

On top of this, there is a library which helps the application use Smart Game Format
(SGF) files, with complete handling of game trees in memory and in files. This library is
called libsgf.a

The main part of the code within GNU Go is the move generation library which
given a position generates a move. This part of the engine can also be used to manipulate a
go position, add or remove stones, do tactical and strategic reading and to query the engine
for legal moves. These functions are collected into libengine.a.

The game handling code helps the application programmer keep tracks of the moves
in a game. Games can be saved to SGF files and then later be read back again. These are
also within libengine.a.

The responsibility of the application is to provide the user with a user interface,
graphical or not, and let the user interact with the engine.

17.1 How to use the engine in your own program: getting
started

To use the GNU Go engine in your own program you must include the file ‘gnugo.h’. This
file describes the whole public API. There is another file, ‘liberty.h’, which describes the
internal interface within the engine. If you want to make a new module within the engine,
e.g. for suggesting moves you will have to include this file also. In this section we will only
describe the public interface.

Before you do anything else, you have to call the function init_gnugo(). This
function initializes everything within the engine. It takes one parameter: the number of
megabytes the engine can use for the internal hash table. In addition to this the engine
will use a few megabytes for other purposes such as data describing groups (liberties, life
status, etc), eyes and so on.

17.2 Basic Data Structures in the Engine

There are some basic definitions in gnugo.h which are used everywhere. The most important
of these are the numeric declarations of colors. Each intersection on the board is represented
by one of these:

color value
EMPTY 0
WHITE 1
BLACK 2

There is a macro, OTHER_COLOR(color) which can be used to get the other color
than the parameter. This macro can only be used on WHITE or BLACK, but not on EMPTY.

GNU Go uses two different representations of the board, for most purposes a one-
dimensional one, but for a few purposes a two dimensional one (see Chapter 15 [Libboard],
page 150). The one-dimensional board was introduced before GNU Go 3.2, while the two-
dimensional board dates back to the ancestral program written by Man Lung Li before
1995. The API still uses the two-dimensional board, so the API functions have not changed
much since GNU Go 3.0.



Chapter 17: Application Programmers Interface to GNU Go 163

17.3 The board state struct

A basic data structure in the engine is the board_state struct. This structure is internal
to the engine and is defined in ‘liberty.h’.

typedef unsigned char Intersection;

struct board_state {
int board_size;

Intersection board[BOARDSIZE];
int board_ko_pos;
int black_captured;
int white_captured;

Intersection initial_board[BOARDSIZE];
int initial_board_ko_pos;
int initial_white_captured;
int initial_black_captured;
int move_history_color[MAX_MOVE_HISTORY];
int move_history_pos[MAX_MOVE_HISTORY];
int move_history_pointer;

float komi;
int move_number;

};

Here Intersection stores EMPTY, WHITE or BLACK. It is currently defined as an
unsigned char to make it reasonably efficient in both storage and access time. The board
state contains an array of Intersection’s representing the board. The move history is
contained in the struct. Also contained in the struct is the location of a ko (EMPTY) if the
last move was not a ko capture, the komi, the number of captures, and corresponding data
for the initial position at the beginning of the move history.

17.4 Functions which manipulate a Position

All the functions in the engine that manipulate Positions have names prefixed by gnugo_.
These functions still use the two-dimensional representation of the board (see Section 15.2
[The Board Array], page 151). Here is a complete list, as prototyped in ‘gnugo.h’:

• void init_gnugo(float memory)

Initialize the gnugo engine. This needs to be called once only.

• void gnugo_clear_board(int boardsize)

Clear the board.

• void gnugo_set_komi(float new_komi)

Set the komi.



Chapter 17: Application Programmers Interface to GNU Go 164

• void gnugo_add_stone(int i, int j, int color)

Place a stone on the board
• void gnugo_remove_stone(int i, int j)

Remove a stone from the board
• int gnugo_is_pass(int i, int j)

Return true if (i,j) is PASS MOVE
• void gnugo_play_move(int i, int j, int color)

Play a move and start the clock
• int gnugo_undo_move(int n)

Undo n permanent moves. Returns 1 if successful and 0 if it fails. If n
moves cannot be undone, no move is undone.

• int gnugo_play_sgfnode(SGFNode *node, int to_move)

Perform the moves and place the stones from the SGF node on the board.
Return the color of the player whose turn it is to move.

• int gnugo_play_sgftree(SGFNode *root, int *until, SGFNode **curnode)

Play the moves in ROOT UNTIL movenumber is reached. Return the color
of the player whose turn it is to move.

• int gnugo_is_legal(int i, int j, int color)

Interface to is_legal().
• int gnugo_is_suicide(int i, int j, int color)

Interface to is_suicide().
• int gnugo_placehand(int handicap)

Interface to placehand. Sets up handicap pieces and returns the number
of placed handicap stones.

• void gnugo_recordboard(SGFNode *root)

Interface to sgffile_recordboard()

• int gnugo_sethand(int handicap, SGFNode *node)

Interface to placehand. Sets up handicap stones and returns the number
of placed handicap stones, updating the sgf file

• float gnugo_genmove(int *i, int *j, int color, int *resign)

Interface to genmove().
• int gnugo_attack(int m, int n, int *i, int *j)

Interface to attack().
• int gnugo_find_defense(int m, int n, int *i, int *j)

Interface to find_defense().
• void gnugo_who_wins(int color, FILE *outfile)

Interface to who_wins().
• float gnugo_estimate_score(float *upper, float *lower)

Put upper and lower score estimates into *upper, *lower and return the
average. A positive score favors white. In computing the upper bound,



Chapter 17: Application Programmers Interface to GNU Go 165

CRITICAL dragons are awarded to white; in computing the lower bound,
they are awarded to black.

• void gnugo_examine_position(int color, int how_much)

Interface to examine_position.
• int gnugo_get_komi()

Report the komi.
• void gnugo_get_board(int b[MAX_BOARD][MAX_BOARD])

Place the board into the ‘b’ array.
• int gnugo_get_boardsize()

Report the board size.
• int gnugo_get_move_number()

Report the move number.

17.5 Game handling

The functions (in see Section 17.4 [Positional Functions], page 163) are all that are needed
to create a fully functional go program. But to make the life easier for the programmer,
there is a small set of functions specially designed for handling ongoing games.

The data structure describing an ongoing game is the Gameinfo. It is defined as
follows:

typedef struct {
int handicap;

int to_move; /* whose move it currently is */
SGFTree game_record; /* Game record in sgf format. */

int computer_player; /* BLACK, WHITE, or EMPTY (used as BOTH) */

char outfilename[128]; /* Trickle file */
FILE *outfile;

} Gameinfo;

The meaning of handicap should be obvious. to_move is the color of the side whose
turn it is to move.

The SGF tree game_record is used to store all the moves in the entire game, including
a header node which contains, among other things, komi and handicap.

If one or both of the opponents is the computer, the field computer_player is used.
Otherwise it can be ignored.

GNU Go can use a trickle file to continuously save all the moves of an ongoing
game. This file can also contain information about internal state of the engine such as move
reasons for various locations or move valuations. The name of this file should be stored in
outfilename and the file pointer to the open file is stored in outfile. If no trickle file is
used, outfilename[0] will contain a null character and outfile will be set to NULL.



Chapter 17: Application Programmers Interface to GNU Go 166

17.5.1 Functions which manipulate a Gameinfo

All the functions in the engine that manipulate Gameinfos have names prefixed by
gameinfo_. Here is a complete list, as prototyped in ‘gnugo.h’:
• void gameinfo_clear(Gameinfo *ginfo, int boardsize, float komi)

Initialize the Gameinfo structure.
• void gameinfo_print(Gameinfo *ginfo)

Print a gameinfo.
• void gameinfo_load_sgfheader(Gameinfo *gameinfo, SGFNode *head)

Reads header info from sgf structure and sets the appropriate variables.
• void gameinfo_play_move(Gameinfo *ginfo, int i, int j, int color)

Make a move in the game. Return 1 if the move was legal. In that case
the move is actually done. Otherwise return 0.

• int gameinfo_play_sgftree_rot(Gameinfo *gameinfo, SGFNode *head, const
char *untilstr, int orientation)

Play the moves in an SGF tree. Walk the main variation, actioning the
properties into the playing board. Returns the color of the next move to be
made. Head is an sgf tree. Untilstr is an optional string of the form either
’L12’ or ’120’ which tells it to stop playing at that move or move number.
When debugging, this is the location of the move being examined.

• int gameinfo_play_sgftree(Gameinfo *gameinfo, SGFNode *head, const char
*untilstr)

Same as previous function, using standard orientation.



Chapter 18: Utility Functions 167

18 Utility Functions

In this Chapter, we document some of the utilities which may be called from the GNU Go
engine.

18.1 General Utilities

Utility functions from ‘engine/utils.c’. Many of these functions underlie autohelper
functions (see Section 9.7 [Autohelper Functions], page 84).
• void change_dragon_status(int dr, int status)

Change the status of all the stones in the dragon at dr.
• int defend_against(int move, int color, int apos)

Check whether a move at move stops the enemy from playing at (apos).
• int cut_possible(int pos, int color)

Returns true if color can cut at pos, or if connection through pos is inhib-
ited. This information is collected by find_cuts(), using the B patterns
in the connections database.

• int does_attack(int move, int str)

returns true if the move at move attacks str. This means that it captures
the string, and that str is not already dead.

• int does_defend(int move, int str)

does_defend(move, str) returns true if the move at move defends str.
This means that it defends the string, and that str can be captured if no
defense is made.

• int somewhere(int color, int last_move, ...)

Example: somewhere(WHITE, 2, apos, bpos, cpos). Returns true if one
of the vertices listed satisfies board[pos]==color. Here num moves is the
number of moves minus one. If the check is true the dragon is not allowed
to be dead. This check is only valid if stackp==0.

• int visible_along_edge(int color, int apos, int bpos)

Search along the edge for the first visible stone. Start at apos and move
in the direction of bpos. Return 1 if the first visible stone is of the given
color. It is required that apos and bpos are at the same distance from the
edge.

• int test_symmetry_after_move(int move, int color, int strict)

Is the board symmetric (or rather antisymmetric) with respect to mir-
roring in tengen after a specific move has been played? If the move is
PASS MOVE, check the current board. If strict is set we require that each
stone is matched by a stone of the opposite color at the mirrored vertex.
Otherwise we only require that each stone is matched by a stone of either
color.

• int play_break_through_n(int color, int num_moves, ...)

The function play_break_through_n() plays a sequence of moves, alter-
nating between the players and starting with color. After having played



Chapter 18: Utility Functions 168

through the sequence, the three last coordinate pairs gives a position to be
analyzed by break_through(), to see whether either color has managed to
enclose some stones and/or connected his own stones. If any of the three
last positions is empty, it’s assumed that the enclosure has failed, as well
as the attempt to connect. If one or more of the moves to play turns out to
be illegal for some reason, the rest of the sequence is played anyway, and
break_through() is called as if nothing special happened. Like break_
through(), this function returns 1 if the attempt to break through was
succesful and 2 if it only managed to cut through.

• int play_attack_defend_n(int color, int do_attack, int num_moves, ...)

• int play_attack_defend2_n(int color, int do_attack, int num_moves, ...)

The function play_attack_defend_n() plays a sequence of moves, alter-
nating between the players and starting with color. After having played
through the sequence, the last coordinate pair gives a target to attack or
defend, depending on the value of do attack. If there is no stone present
to attack or defend, it is assumed that it has already been captured. If one
or more of the moves to play turns out to be illegal for some reason, the
rest of the sequence is played anyway, and attack/defense is tested as if
nothing special happened. Conversely, play_attack_defend2_n() plays
a sequence of moves, alternating between the players and starting with
color. After having played through the sequence, the two last coordinate
pairs give two targets to simultaneously attack or defend, depending on
the value of do attack. If there is no stone present to attack or defend, it
is assumed that it has already been captured. If one or more of the moves
to play turns out to be illegal for some reason, the rest of the sequence is
played anyway, and attack/defense is tested as if nothing special happened.
A typical use of these functions is to set up a ladder in an autohelper and
see whether it works or not.

• int play_connect_n(int color, int do_connect, int num_moves, ...)

Plays a sequence of moves, alternating between the players and starting
with color. After having played through the sequence, the two last co-
ordinates give two targets that should be connected or disconnected, de-
pending on the value of do connect. If there is no stone present to connect
or disconnect, it is assumed that the connection has failed. If one or more
of the moves to play turns out to be illegal for some reason, the rest of
the sequence is played anyway, and connection/disconnection is tested as
if nothing special happened. Ultimately the connection is decided by the
functions string_connect and disconnect (see Section 11.10 [Connection
Reading], page 125).

• void set_depth_values(int level)

It is assumed in reading a ladder if stackp >= depth that as soon as a
bounding stone is in atari, the string is safe. Similar uses are made of the
other depth parameters such as backfill_depth and so forth. In short,
simplifying assumptions are made when stackp is large. Unfortunately
any such scheme invites the “horizon effect,” in which a stalling move is



Chapter 18: Utility Functions 169

perceived as a win, by pushing the refutation past the “horizon”—the value
of stackp in which the reading assumptions are relaxed. To avoid the depth
it is sometimes necessary to increase the depth parameters. This function
can be used to set the various reading depth parameters. If mandated_
depth_value is not -1 that value is used; otherwise the depth values are
set as a function of level. The parameter mandated_depth_value can be
set at the command line to force a particular value of depth; normally it is
-1.

• void modify_depth_values(int n)

Modify the various tactical reading depth parameters. This is typically
used to avoid horizon effects. By temporarily increasing the depth values
when trying some move, one can avoid that an irrelevant move seems ef-
fective just because the reading hits a depth limit earlier than it did when
reading only on relevant moves.

• void increase_depth_values(void)

modify_depth_values(1).
• void decrease_depth_values(void)

modify_depth_values(-1).
• void restore_depth_values()

Sets depth and so forth to their saved values.
• void set_temporary_depth_values(int d, int b, int b2, int bc, int ss, int

br, int f, int k)

Explicitly set the depth values. This function is currently never called.
• int confirm_safety(int move, int color, int *defense_point, char

safe_stones[BOARDMAX])

Check that the move at color doesn’t involve any kind of blunder, regardless
of size.

• float blunder_size(int move, int color, int *defense_point, char
safe_stones[BOARDMAX])

This function will detect some blunders. If the move reduces the number of
liberties of an adjacent friendly string, there is a danger that the move could
backfire, so the function checks that no friendly worm which was formerly
not attackable becomes attackable, and it checks that no opposing worm
which was not defendable becomes defendable. It returns the estimated
size of the blunder, or 0.0 if nothing bad has happened. The array safe_
stones[] contains the stones that are supposedly safe after move. It may
be NULL. For use when called from fill_liberty(), this function may
optionally return a point of defense, which, if taken, will presumably make
the move at move safe on a subsequent turn.

• int double_atari(int move, int color, float *value, char safe_
stones[BOARDMAX])

Returns true if a move by (color) fits the following shape:
X* (O=color)



Chapter 18: Utility Functions 170

OX

capturing one of the two ‘X’ strings. The name is a slight misnomer since
this includes attacks which are not necessarily double ataris, though the
common double atari is the most important special case. If safe_stones
!= NULL, then only attacks on stones marked as safe are tried. The value
of the double atari attack is returned in value (unless value is NULL), and
the attacked stones are marked unsafe.

• void unconditional_life(int unconditional_territory[BOARDMAX], int color)

Find those worms of the given color that can never be captured, even if
the opponent is allowed an arbitrary number of consecutive moves. The
coordinates of the origins of these worms are written to the worm arrays
and the number of non-capturable worms is returned. The algorithm is to
cycle through the worms until none remains or no more can be captured.
A worm is removed when it is found to be capturable, by letting the op-
ponent try to play on all its liberties. If the attack fails, the moves are
undone. When no more worm can be removed in this way, the remaining
ones are unconditionally alive. After this, unconditionally dead opponent
worms and unconditional territory are identified. To find these, we con-
tinue from the position obtained at the end of the previous operation (only
unconditionally alive strings remain for color) with the following steps:
1. Play opponent stones on all liberties of the unconditionally alive strings

except where illegal. (That the move order may determine exactly
which liberties can be played legally is not important. Just pick an
arbitrary order).

2. Recursively extend opponent strings in atari, except where this would
be suicide.

3. Play an opponent stone anywhere it can get two empty neighbors. (I.e.
split big eyes into small ones).

4. an opponent stone anywhere it can get one empty neighbor. (I.e. re-
duce two space eyes to one space eyes.) Remaining opponent strings in
atari and remaining liberties of the unconditionally alive strings con-
stitute the unconditional territory. Opponent strings from the initial
position placed on unconditional territory are unconditionally dead.
On return, unconditional_territory[][] is 1 where color has un-
conditionally alive stones, 2 where it has unconditional territory, and
0 otherwise.

• void who_wins(int color, FILE *outfile)

Score the game and determine the winner
• void find_superstring(int str, int *num_stones, int *stones)

Find the stones of an extended string, where the extensions are through
the following kinds of connections:
1. Solid connections (just like ordinary string).

OO



Chapter 18: Utility Functions 171

2. Diagonal connection or one space jump through an intersection where
an opponent move would be suicide or self-atari.

...
O.O
XOX
X.X

3. Bamboo joint.

OO
..
OO

4. Diagonal connection where both adjacent intersections are empty.

.O
O.

5. Connection through adjacent or diagonal tactically captured stones.
Connections of this type are omitted when the superstring code is
called from reading.c, but included when the superstring code is called
from owl.c

• void find_superstring_liberties(int str, int *num_libs, int *libs, int
liberty_cap)

This function computes the superstring at str as described above, but
omitting connections of type 5. Then it constructs a list of liberties of
the superstring which are not already liberties of str. If liberty_cap is
nonzero, only liberties of substrings of the superstring which have fewer
than liberty_cap liberties are generated.

• void find_proper_superstring_liberties(int str, int *num_libs, int *libs,
int liberty_cap)

This function is the same as find superstring liberties, but it omits those
liberties of the string str, presumably since those have already been treated
elsewhere. If liberty_cap is nonzero, only liberties of substrings of the
superstring which have at most liberty_cap liberties are generated.

• void find_superstring_stones_and_liberties(int str, int *num_stones, int
*stones, int *num_libs, int *libs, int liberty_cap)

This function computes the superstring at str as described above, but
omitting connections of type 5. Then it constructs a list of liberties of
the superstring which are not already liberties of str. If liberty cap is
nonzero, only liberties of substrings of the superstring which have fewer
than liberty cap liberties are generated.

• void superstring_chainlinks(int str, int *num_adj, int adjs[MAXCHAIN], int
liberty_cap)

analogous to chainlinks, this function finds boundary chains of the super-
string at str, including those which are boundary chains of str itself. If
liberty_cap != 0, only those boundary chains with <= liberty_cap lib-
erties are reported.



Chapter 18: Utility Functions 172

• void proper_superstring_chainlinks(int str, int *num_adj, int
adjs[MAXCHAIN], int liberty_cap)

analogous to chainlinks, this function finds boundary chains of the super-
string at str, omitting those which are boundary chains of str itself. If
liberty_cap != 0, only those boundary chains with <= liberty_cap lib-
erties are reported.

• void start_timer(int n)

Start a timer. GNU Go has four internal timers available for assessing the
time spent on various tasks.

• double time_report(int n, const char *occupation, int move, double
mintime)

Report time spent and restart the timer. Make no report if elapsed time
is less than mintime.

18.2 Print Utilities

Functions in ‘engine/printutils.c’ do formatted printing similar to printf and its allies.
The following formats are recognized:

• %c, %d, %f, %s, %x

These have their usual meaning in formatted output, printing a character,
integer, float, string or hexadecimal, respectively.

• %o

‘Outdent.’ Normally output is indented by 2*stackp spaces, so that the
depth can be seen at a glance in traces. At the beginning of a format, this
%o inhibits the indentation.

• %H

Print a hashvalue.

• %C

Print a color as a string.

• %m, %2m (synonyms)

Takes 2 integers and writes a move, using the two dimensional board rep-
resentation (see Section 15.2 [The Board Array], page 151)

• %1m

Takes 1 integers and writes a move, using the one dimensional board rep-
resentation (see Section 15.2 [The Board Array], page 151)

We list the non statically declared functions in ‘printutils.c’.

• void gfprintf(FILE *outfile, const char *fmt, ...)

Formatted output to ‘outfile’.

• int gprintf(const char *fmt, ...)

Formatted output to stderr. Always returns 1 to allow use in short-circuit
logical expressions.



Chapter 18: Utility Functions 173

• int mprintf(const char *fmt, ...)

Formatted output to stdout.

• DEBUG(level, fmt, args...)

If level & debug, do formatted output to stderr. Otherwise, ignore.

• void abortgo(const char *file, int line, const char *msg, int pos)

Print debugging output in an error situation, then exit.

• const char * color_to_string(int color)

Convert a color value to a string

• const char * location_to_string(int pos)

Convert a location to a string

• void location_to_buffer(int pos, char *buf)

Convert a location to a string, writing to a buffer.

• int string_to_location(int boardsize, char *str, int *m, int *n)

Get the (m, n) coordinates in the standard GNU Go coordinate system
from the string str. This means that ‘m’ is the nth row from the top
and ‘n’ is the column. Both coordinates are between 0 and boardsize-1,
inclusive. Return 1 if ok, otherwise return 0;

• int is_hoshi_point(int m, int n) True if the coordinate is a hoshi point.

• void draw_letter_coordinates(FILE *outfile) Print a line with coordinate letters
above the board.

• void simple_showboard(FILE *outfile)

Bare bones version of showboard(0). No fancy options, no hint of color,
and you can choose where to write it.

The following functions are in ‘showbord.c’. Not all public functions in that file are
listed here.

• void showboard(int xo)

Show go board.

xo=0: black and white XO board for ascii game
xo=1: colored dragon display
xo=2: colored eye display
xo=3: colored owl display
xo=4: colored matcher status display

• const char * status_to_string(int status)

Convert a status value to a string.

• const char * safety_to_string(int status)

Convert a safety value to a string.

• const char * result_to_string(int result)

Convert a read result to a string



Chapter 18: Utility Functions 174

18.3 Board Utilities

The functions documented in this section are from ‘board.c’. Other functions in ‘board.c’
are described in See Section 15.4 [Some Board Functions], page 156.
• void store_board(struct board_state *state)

Save board state.
• void restore_board(struct board_state *state)

Restore a saved board state.
• void clear_board(void)

Clear the internal board.
• void dump_stack(void)

for use under GDB prints the move stack.
• void add_stone(int pos, int color)

Place a stone on the board and update the board hash. This operation
destroys all move history.

• void remove_stone(int pos)

Remove a stone from the board and update the board hash. This operation
destroys the move history.

• int is_pass(int pos)

Test if the move is a pass or not. Return 1 if it is.
• int is_legal(int pos, int color)

Determines whether the move color at pos is legal.
• int is_suicide(int pos, int color)

Determines whether the move color at pos would be a suicide. This is the
case if
1. There is no neighboring empty intersection.
2. There is no neighboring opponent string with exactly one liberty.
3. There is no neighboring friendly string with more than one liberty.

• int is_illegal_ko_capture(int pos, int color)

Determines whether the move color at pos would be an illegal ko capture.
• int is_edge_vertex(int pos)

Determine whether vertex is on the edge.
• int edge_distance(int pos)

Distance to the edge.
• int is_corner_vertex(int pos)

Determine whether vertex is a corner.
• int get_komaster()

• int get_kom_pos()

Public functions to access the variable komaster and kom_pos, which are
static in ‘board.c’.



Chapter 18: Utility Functions 175

Next we come to countlib() and its allies, which address the problem of determining
how many liberties a string has. Although countlib() addresses this basic question, other
functions can often get the needed information more quickly, so there are a number of
different functions in this family.

• int countlib(int str)

Count the number of liberties of the string at pos. There must be a stone
at this location.

• int findlib(int str, int maxlib, int *libs)

Find the liberties of the string at str. This location must not be empty.
The locations of up to maxlib liberties are written into libs[]. The full
number of liberties is returned. If you want the locations of all liberties,
whatever their number, you should pass MAXLIBS as the value for maxlib
and allocate space for libs[] accordingly.

• int fastlib(int pos, int color, int ignore_captures)

Count the liberties a stone of the given color would get if played at pos.
The intent of this function is to be as fast as possible, not necessarily
complete. But if it returns a positive value (meaning it has succeeded),
the value is guaranteed to be correct. Captures are ignored based if the
ignore_captures field is nonzero. The location pos must be empty. The
function fails if there are more than two neighbor strings of the same color.
In this case, the return value is -1. Captures are handled in a very limited
way, so if ignore capture is 0, and a capture is required, it will often return
-1.

• int approxlib(int pos, int color, int maxlib, int *libs)

Find the liberties a stone of the given color would get if played at pos,
ignoring possible captures of opponent stones. The location pos must be
empty. If libs != NULL, the locations of up to maxlib liberties are written
into libs[]. The counting of liberties may or may not be halted when
maxlib is reached. The number of liberties found is returned, which may
be less than the total number of liberties if maxlib is small. If you want
the number or the locations of all liberties, however many they are, you
should pass MAXLIBS as the value for maxlib and allocate space for libs[]
accordingly.

• int accuratelib(int pos, int color, int maxlib, int *libs)

Find the liberties a stone of the given color would get if played at pos. This
function takes into consideration all captures. Its return value is exact in
that sense it counts all the liberties, unless maxlib allows it to stop earlier.
The location pos must be empty. If libs != NULL, the locations of up to
maxlib liberties are written into libs[]. The counting of liberties may
or may not be halted when maxlib is reached. The number of found
liberties is returned. This function guarantees that liberties which are not
results of captures come first in libs[] array. To find whether all the
liberties starting from a given one are results of captures, one may use if
(board[libs[k]] != EMPTY) construction. If you want the number or the



Chapter 18: Utility Functions 176

locations of all liberties, however many they are, you should pass MAXLIBS
as the value for maxlib and allocate space for libs[] accordingly.

Next we have some general utility functions.

• int count_common_libs(int str1, int str2)

Find the number of common liberties of the two strings.
• int find_common_libs(int str1, int str2, int maxlib, int *libs)

Find the common liberties of the two strings. The locations of up to maxlib
common liberties are written into libs[]. The full number of common
liberties is returned. If you want the locations of all common liberties,
whatever their number, you should pass MAXLIBS as the value for maxlib
and allocate space for libs[] accordingly.

• int have_common_lib(int str1, int str2, int *lib)

Determine whether two strings have at least one common liberty. If they
do and lib != NULL, one common liberty is returned in *lib.

• int countstones(int str)

Report the number of stones in a string.
• int findstones(int str, int maxstones, int *stones)

Find the stones of the string at str. The location must not be empty. The
locations of up to maxstones stones are written into stones[]. The full
number of stones is returned.

• int chainlinks(int str, int adj[MAXCHAIN])

This very useful function returns (in the adj array) the chains surrounding
the string at str. The number of chains is returned.

• int chainlinks2(int str, int adj[MAXCHAIN], int lib)

Returns (in adj array) those chains surrounding the string at str, which
has exactly lib liberties. The number of such chains is returned.

• int chainlinks3(int str, int adj[MAXCHAIN], int lib)

Returns (in adj array) the chains surrounding the string at str, which
have less or equal lib liberties. The number of such chains is returned.

• int extended_chainlinks(int str, int adj[MAXCHAIN], int both_colors)

Returns (in the adj array) the opponent strings being directly adjacent to
str or having a common liberty with str. The number of such strings is
returned. If the both colors parameter is true, also own strings sharing a
liberty are returned.

• int find_origin(int str)

Find the origin of a string, i.e. the point with the smallest 1D board
coordinate. The idea is to have a canonical reference point for a string.

• int is_self_atari(int pos, int color)

Determine whether a move by color at pos would be a self atari, i.e.
whether it would get more than one liberty. This function returns true
also for the case of a suicide move.



Chapter 18: Utility Functions 177

• int liberty_of_string(int pos, int str)

Returns true if pos is a liberty of the string at str.

• int second_order_liberty_of_string(int pos, int str)

Returns true if pos is a second order liberty of the string at str.

• int neighbor_of_string(int pos, int str)

Returns true if pos is adjacent to the string at str.

• int has_neighbor(int pos, int color)

Returns true if pos has a neighbor of color.

• int same_string(int str1, int str2)

Returns true if str1 and str2 belong to the same string.

• int adjacent_strings(int str1, int str2)

Returns true if the strings at str1 and str2 are adjacent.

• int is_ko(int pos, int color, int *ko_pos)

Return true if the move pos by color is a ko capture (whether capture is
legal on this move or not). If so, and if ko_pos is not a NULL pointer, then
*ko_pos returns the location of the captured ko stone. If the move is not
a ko capture, *ko_pos is set to 0. A move is a ko capture if and only if

1. All neighbors are opponent stones.

2. The number of captured stones is exactly one.

• int is_ko_point(int pos)

Return true if pos is either a stone, which if captured would give ko, or if
pos is an empty intersection adjacent to a ko stone.

• int does_capture_something(int pos, int color)

Returns 1 if at least one string is captured when color plays at pos.

• void mark_string(int str, char mx[BOARDMAX], char mark)

For each stone in the string at pos, set mx to value mark. If some of the
stones in the string are marked prior to calling this function, only the
connected unmarked stones starting from pos are guaranteed to become
marked. The rest of the string may or may not become marked. (In the
current implementation, it will.)

• int move_in_stack(int pos, int cutoff)

Returns true if at least one move has been played at pos at deeper than
level cutoff in the reading tree.

• int stones_on_board(int color)

Return the number of stones of the indicated color(s) on the board.
This only counts stones in the permanent position, not stones placed by
trymove() or tryko(). Use stones_on_board(BLACK | WHITE) to get
the total number of stones on the board.



Chapter 18: Utility Functions 178

18.4 Utilities from ‘engine/influence.c’

We will only list here a portion of the public functions in influence.c. The influence code
is invoked through the function compute_influence (see Section 13.3 [Influence Usage],
page 130). It is invoked as follows.
• void compute_influence(int color, const char safe_stones[BOARDMAX], const

float strength[BOARDMAX], struct influence_data *q, int move, const char
*trace_message)

Compute the influence values for both colors. The caller must
− set up the board[] state
− mark safe stones with INFLUENCE_SAFE_STONE, dead stones with 0
− mark stones newly saved by a move with INFLUENCE_SAVED_STONE

(this is relevant if the influence data *q is reused to compute a followup
value for this move).

Results will be stored in q. move has no effects except toggling debugging.
Set it to -1 for no debug output at all (otherwise it will be controlled by the
‘-m’ command line option). It is assumed that color is in turn to move.
(This affects the barrier patterns (class A, D) and intrusions (class B)).
Color

Other functions in ‘influence.c’ are of the nature of utilities which may be useful
throughout the engine. We list the most useful ones here.
• void influence_mark_non_territory(int pos, int color)

Called from actions for ‘t’ patterns in ‘barriers.db’. Marks pos as not
being territory for color.

• int whose_territory(const struct influence_data *q, int pos)

Return the color of the territory at pos. If it’s territory for neither color,
EMPTY is returned.

• int whose_moyo(const struct influence_data *q, int pos)

Return the color who has a moyo at pos. If neither color has a moyo there,
EMPTY is returned. The definition of moyo in terms of the influences is
totally ad hoc.

• int whose_area(const struct influence_data *q, int pos)

Return the color who has dominating influence (“area”) at pos. If neither
color dominates the influence there, EMPTY is returned. The definition
of area in terms of the influences is totally ad hoc.



Chapter 19: The Go Text Protocol 179

19 The Go Text Protocol

19.1 The Go Text Protocol

GNU Go 3.0 introduced a new interface, the Go Text Protocol, abbreviated GTP. The
intention was to make an interface that is better suited for machine-machine communication
than the ascii interface and simpler, more powerful, and more flexible than the Go Modem
Protocol.

There are two versions of the protocol. Version 1 was used with GNU Go 3.0 and
3.2. GNU Go 3.4 and later versions use protocol version 2. The specification of GTP
version 2 is available at http://www.lysator.liu.se/~gunnar/gtp/. GNU Go 3.4 is the
reference implementation for GTP version 2, but all but the most common commands are
to be regarded as private extensions of the protocol.

The GTP has a variety of applications. For GNU Go the first use was in regression
testing (see Chapter 20 [Regression], page 202), followed by communication with the NNGS
go server and for automated test games against itself and other programs. Now there are
also many graphical user interfaces available supporting GTP, as well as bridges to other
Go servers than NNGS.

19.2 Running GNU Go in GTP mode

To start GNU Go in GTP mode, simply invoke it with the option ‘--mode gtp’. You will
not get a prompt or any other output to start with but GNU Go is silently waiting for GTP
commands.

A sample GTP session may look as follows:
virihaure 462% ./gnugo --mode gtp
1 boardsize 7
=1

2 clear_board
=2

3 play black D5
=3

4 genmove white
=4 C3

5 play black C3
?5 illegal move

6 play black E3
=6

7 showboard
=7

http://www.lysator.liu.se/~gunnar/gtp/


Chapter 19: The Go Text Protocol 180

A B C D E F G
7 . . . . . . . 7
6 . . . . . . . 6
5 . . + X + . . 5
4 . . . + . . . 4
3 . . O . X . . 3
2 . . . . . . . 2 WHITE (O) has captured 0 stones
1 . . . . . . . 1 BLACK (X) has captured 0 stones
A B C D E F G

8 quit
=8

Commands are given on a single line, starting by an optional identity number, fol-
lowed by the command name and its arguments.

If the command is successful, the response starts by an equals sign (‘=’), followed
by the identity number of the command (if any) and then the result. In this example all
results were empty strings except for command 4 where the answer was the white move at
C3, and command 7 where the result was a diagram of the current board position. The
response ends by two consecutive newlines.

Failing commands are signified by a question mark (‘?’) instead of an equals sign, as
in the response to command 5.

The detailed specification of the protocol can be found at http://www.lysator.liu.se/~gunnar/gtp/.
The available commands in GNU Go may always be listed using the command list_
commands. They are also documented in See Section 19.6 [GTP command reference],
page 184.

19.3 GTP applications

GTP is an asymmetric protocol involving two parties which we call controller and engine.
The controller sends all commands and the engine only responds to these commands. GNU
Go implements the engine end of the protocol.

With the source code of GNU Go is also distributed a number of applications imple-
menting the controller end. Among the most interesting of these are:

• ‘regression/regress.awk’

Script to run regressions. The script sends GTP commands to set up and
evaluate positions to the engine and then analyzes the responses from the
engine. More information about GTP based regression testing can be found
in the regression chapter (see Chapter 20 [Regression], page 202).

• ‘regression/regress.pl’

Perl script to run regressions, giving output which together with the CGI
script ‘regression/regress.plx’ generates HTML views of the regres-
sions.

http://www.lysator.liu.se/~gunnar/gtp/


Chapter 19: The Go Text Protocol 181

• ‘regression/regress.pike’
Pike script to run regressions. More feature-rich and powerful than
‘regress.awk’.

• ‘regression/view.pike’
Pike script to examine a single regression testcase through a graphical
board. This gives an easy way to inspect many of the GNU Go internals.

• ‘interface/gtp_examples/twogtp’
Perl script to play two engines against each other. The script essentially
sets up both engines with desired boardsize, handicap, and komi, then
relays moves back and forth between the engines.

• ‘interface/gtp_examples/twogtp-a’
An alternative Perl implementation of twogtp.

• ‘interface/gtp_examples/twogtp.py’
Implementation of twogtp in Python. Has more features than the Perl
variants.

• ‘interface/gtp_examples/twogtp.pike’
Implementation of twogtp in Pike. Has even more features than the Python
variant.

• ‘interface/gtp_examples/2ptkgo.pl’
Variation of twogtp which includes a graphical board.

More GTP applications, including bridges to go servers and graphical user interfaces,
are listed at http://www.lysator.liu.se/~gunnar/gtp/.

19.4 The Metamachine

An interesting application of the GTP is the concept of using GNU Go as an “Oracle” that
can be consulted by another process. This could be another computer program that asks
GNU Go to generate future board positions, then evaluate them.

David Doshay at the University of California at Santa Cruz has done interesting ex-
periments with a parallel engine, known as SlugGo, that is based on GNU Go. These are de-
scribed in http://lists.gnu.org/archive/html/gnugo-devel/2004-08/msg00060.html.

The “Metamachine” experiment is a more modest approach using the GTP to com-
municate with a GNU Go process that is used as an oracle. The following scheme is used.
• The GNU Go “oracle” is asked to generate its top moves using the GTP top_moves

commands.
• Both moves are tried and estimate_score is called from the resulting board position.
• The higher scoring position is selected as the engine’s move.

This scheme does not produce a stronger engine, but it is suggestive, and the SlugGo
experiment seems to show that a more elaborate scheme along the same lines could produce
a stronger engine.

Two implementations are distributed with GNU Go. Both make use of fork and
pipe system calls, so they require a Unix-like environment. The Metamachine has been
tested under GNU/Linux.

http://www.lysator.liu.se/~gunnar/gtp/
http://lists.gnu.org/archive/html/gnugo-devel/2004-08/msg00060.html


Chapter 19: The Go Text Protocol 182

Important: If the Metamachine terminates normally, the GNU Go process will be
killed. However there is a danger that something will go wrong. When you are finished
running the Metamachine, it is a good idea to run ps -A|grep gnugo or ps -aux|grep
gnugo to make sure there are no unterminated processes. (If there are, just kill them.)

19.4.1 The Standalone Metamachine

In ‘interface/gtp_examples/metamachine.c’ is a standalone implementation of the Meta-
machine. Compile it with cc -o metamachine metamachine.c and run it. It forks a gnugo
process with which it communicates through the GTP, to use as an oracle.

The following scheme is followed:

stdin pipe a
GTP client ----> Metamachine -----> GNU Go

<---- <-----
stdout pipe b

Most commands issued by the client are passed along verbatim to GNU Go by the
Metamachine. The exception is gg genmove, which is intercepted then processed differently,
as described above. The client is unaware of this, and only knows that it issued a gg genmove
command and received a reply. Thus to the the Metamachine appears as an ordinary GTP
engine.

Usage: no arguments gives normal GTP behavior. metamachine --debug sends
diagnostics to stderr.

19.4.2 GNU Go as a Metamachine

Alternatively, you may compile GNU Go with the configure option ‘--enable-metamachine’.
This causes the file oracle.c to be compiled, which contains the Metamachine code.
This has no effect on the engine unless you run GNU Go with the runtime option
‘--metamachine’. Thus you must use both the configure and the runtime option to get
the Metamachine.

This method is better than the standalone program since you have access to GNU
Go’s facilities. For example, you can run the Metamachine with CGoban or in Ascii mode
this way.

You can get traces by adding the command line ‘-d0x1000000’. In debugging the
Metamachine, a danger is that any small oversight in designing the program can cause the
forked process and the controller to hang, each one waiting for a response from the other.
If this seems to happen it is useful to know that you can attach gdb to a running process
and find out what it is doing.

19.5 Adding new GTP commands

The implementation of GTP in GNU Go is distributed over three files, ‘interface/gtp.h’,
‘interface/gtp.c’, and ‘interface/play_gtp.c’. The first two implement a small library
of helper functions which can be used also by other programs. In the interest of promot-
ing the GTP they are licensed with minimal restrictions (see Section A.6 [GTP License],
page 225). The actual GTP commands are implemented in ‘play_gtp.c’, which has knowl-
edge about the engine internals.



Chapter 19: The Go Text Protocol 183

To see how a simple but fairly typical command is implemented we look at gtp_
countlib() (a GNU Go private extension command):

static int
gtp_countlib(char *s)
{
int i, j;
if (!gtp_decode_coord(s, &i, &j))
return gtp_failure("invalid coordinate");

if (BOARD(i, j) == EMPTY)
return gtp_failure("vertex must not be empty");

return gtp_success("%d", countlib(POS(i, j)));
}

The arguments to the command are passed in the string s. In this case we expect a
vertex as argument and thus try to read it with gtp_decode_coord() from ‘gtp.c’.

A correctly formatted response should start with either ‘=’ or ‘?’, followed by the
identity number (if one was sent), the actual result, and finally two consecutive newlines.
It is important to get this formatting correct since the controller in the other end relies on
it. Naturally the result itself cannot contain two consecutive newlines but it may be split
over several lines by single newlines.

The easiest way to generate a correctly formatted response is with one of the functions
gtp_failure() and gtp_success(), assuming that their formatted output does not end
with a newline.

Sometimes the output is too complex for use with gtp success, e.g. if we want to
print vertices, which gtp success() does not support. Then we have to fall back to the
construction in e.g. gtp_genmove():

static int
gtp_genmove(char *s)
{
[...]
gtp_start_response(GTP_SUCCESS);
gtp_print_vertex(i, j);
return gtp_finish_response();

}

Here gtp_start_response() writes the equal sign and the identity number while
gtp_finish_response() adds the final two newlines. The next example is from gtp_list_
commands():

static int
gtp_list_commands(char *s)
{
int k;
UNUSED(s);

gtp_start_response(GTP_SUCCESS);



Chapter 19: The Go Text Protocol 184

for (k = 0; commands[k].name != NULL; k++)
gtp_printf("%s\n", commands[k].name);

gtp_printf("\n");
return GTP_OK;

}

As we have said, the response should be finished with two newlines. Here we have
to finish up the response ourselves since we already have one newline in place from the last
command printed in the loop.

In order to add a new GTP command to GNU Go, the following pieces of code need
to be inserted in ‘play_gtp.c’:
1. A function declaration using the DECLARE macro in the list starting at line 68.
2. An entry in the commands[] array starting at line 200.
3. An implementation of the function handling the command.

Useful helper functions in ‘gtp.c’/‘gtp.h’ are:
• gtp_printf() for basic formatted printing.
• gtp_mprintf() for printing with special format codes for vertices and colors.
• gtp_success() and gtp_failure() for simple responses.
• gtp_start_response() and gtp_end_response() for more complex responses.
• gtp_print_vertex() and gtp_print_vertices() for printing one or multiple vertices.
• gtp_decode_color() to read in a color from the command arguments.
• gtp_decode_coord() to read in a vertex from the command arguments.
• gtp_decode_move() to read in a move, i.e. color plus vertex, from the command

arguments.

19.6 GTP command reference

This section lists the GTP commands implemented in GNU Go along with some information
about each command. Each entry in the list has the following fields:
• Function: What this command does.
• Arguments: What other information, if any, this command requires. Typical values

include none or vertex or integer (there are others).
• Fails: Circumstances which cause this command to fail.
• Returns: What is displayed after the = and before the two newlines. Typical values

include nothing or a move coordinate or some status string (there are others).
• Status: How this command relates to the standard GTP version 2 commands. If

nothing else is specified it is a GNU Go private extension.

Without further ado, here is the big list (in no particular order).
Note: if new commands are added by editing ‘interface/play_gtp.c’ this list could

become incomplete. You may rebuild this list in ‘doc/gtp-commands.texi’ with the com-
mand make gtp-commands in the ‘doc/’ directory. This may require GNU sed.



Chapter 19: The Go Text Protocol 185

• quit: Quit
Arguments: none
Fails: never
Returns: nothing

Status: GTP version 2 standard command.

• protocol version: Report protocol version.
Arguments: none
Fails: never
Returns: protocol version number

Status: GTP version 2 standard command.

• name: Report the name of the program.
Arguments: none
Fails: never
Returns: program name

Status: GTP version 2 standard command.

• version: Report the version number of the program.
Arguments: none
Fails: never
Returns: version number

Status: GTP version 2 standard command.

• boardsize: Set the board size to NxN and clear the board.
Arguments: integer
Fails: board size outside engine’s limits
Returns: nothing

Status: GTP version 2 standard command.

• query boardsize: Find the current boardsize
Arguments: none
Fails: never
Returns: board_size

• clear board: Clear the board.
Arguments: none
Fails: never
Returns: nothing

Status: GTP version 2 standard command.

• orientation: Set the orienation to N and clear the board
Arguments: integer
Fails: illegal orientation
Returns: nothing



Chapter 19: The Go Text Protocol 186

• query orientation: Find the current orientation
Arguments: none
Fails: never
Returns: orientation

• komi: Set the komi.
Arguments: float
Fails: incorrect argument
Returns: nothing

Status: GTP version 2 standard command.

• get komi: Get the komi
Arguments: none
Fails: never
Returns: Komi

• black: Play a black stone at the given vertex.
Arguments: vertex
Fails: invalid vertex, illegal move
Returns: nothing

Status: Obsolete GTP version 1 command.

• playwhite: Play a white stone at the given vertex.
Arguments: vertex
Fails: invalid vertex, illegal move
Returns: nothing

Status: Obsolete GTP version 1 command.

• play: Play a stone of the given color at the given vertex.
Arguments: color, vertex
Fails: invalid vertex, illegal move
Returns: nothing

Status: GTP version 2 standard command.

• fixed handicap: Set up fixed placement handicap stones.
Arguments: number of handicap stones
Fails: invalid number of stones for the current boardsize
Returns: list of vertices with handicap stones

Status: GTP version 2 standard command.

• place free handicap: Choose free placement handicap stones and put them on the
board.
Arguments: number of handicap stones
Fails: invalid number of stones
Returns: list of vertices with handicap stones



Chapter 19: The Go Text Protocol 187

Status: GTP version 2 standard command.

• set free handicap: Put free placement handicap stones on the board.
Arguments: list of vertices with handicap stones
Fails: board not empty, bad list of vertices
Returns: nothing

Status: GTP version 2 standard command.

• get handicap: Get the handicap
Arguments: none
Fails: never
Returns: handicap

• loadsgf: Load an sgf file, possibly up to a move number or the first occurence of a
move.
Arguments: filename + move number, vertex, or nothing
Fails: missing filename or failure to open or parse file
Returns: color to play

Status: GTP version 2 standard command.

• color: Return the color at a vertex.
Arguments: vertex
Fails: invalid vertex
Returns: "black", "white", or "empty"

• list stones: List vertices with either black or white stones.
Arguments: color
Fails: invalid color
Returns: list of vertices

• countlib: Count number of liberties for the string at a vertex.
Arguments: vertex
Fails: invalid vertex, empty vertex
Returns: Number of liberties.

• findlib: Return the positions of the liberties for the string at a vertex.
Arguments: vertex
Fails: invalid vertex, empty vertex
Returns: Sorted space separated list of vertices.

• accuratelib: Determine which liberties a stone of given color will get if played at given
vertex.
Arguments: move (color + vertex)
Fails: invalid color, invalid vertex, occupied vertex
Returns: Sorted space separated list of liberties

• accurate approxlib: Determine which liberties a stone of given color will get if played
at given vertex.
Arguments: move (color + vertex)
Fails: invalid color, invalid vertex, occupied vertex



Chapter 19: The Go Text Protocol 188

Returns: Sorted space separated list of liberties

Supposedly identical in behavior to the above function and
can be retired when this is confirmed.

• is legal: Tell whether a move is legal.
Arguments: move
Fails: invalid move
Returns: 1 if the move is legal, 0 if it is not.

• all legal: List all legal moves for either color.
Arguments: color
Fails: invalid color
Returns: Sorted space separated list of vertices.

• captures: List the number of captures taken by either color.
Arguments: color
Fails: invalid color
Returns: Number of captures.

• last move: Return the last move.
Arguments: none
Fails: no previous move known
Returns: Color and vertex of last move.

• move history: Print the move history in reverse order
Arguments: none
Fails: never
Returns: List of moves played in reverse order in format:

color move (one move per line)

• invariant hash: Return the rotation/reflection invariant board hash.
Arguments: none
Fails: never
Returns: Invariant hash for the board as a hexadecimal number.

• invariant hash for moves: Return the rotation/reflection invariant board hash ob-
tained by playing all the possible moves for the given color.
Arguments: color
Fails: invalid color
Returns: List of moves + invariant hash as a hexadecimal number,

one pair of move + hash per line.

• trymove: Play a stone of the given color at the given vertex.
Arguments: move (color + vertex)
Fails: invalid color, invalid vertex, illegal move
Returns: nothing

• tryko: Play a stone of the given color at the given vertex, allowing illegal ko capture.
Arguments: move (color + vertex)
Fails: invalid color, invalid vertex, illegal move
Returns: nothing



Chapter 19: The Go Text Protocol 189

• popgo: Undo a trymove or tryko.
Arguments: none
Fails: stack empty
Returns: nothing

• clear cache: clear the caches.
Arguments: none.
Fails: never.
Returns: nothing.

• attack: Try to attack a string.
Arguments: vertex
Fails: invalid vertex, empty vertex
Returns: attack code followed by attack point if attack code nonzero.

• attack either: Try to attack either of two strings
Arguments: two vertices
Fails: invalid vertex, empty vertex
Returns: attack code against the strings. Guarantees there

exists a move which will attack one of the two
with attack_code, but does not return the move.

• defend: Try to defend a string.
Arguments: vertex
Fails: invalid vertex, empty vertex
Returns: defense code followed by defense point if defense code nonzero.

• does attack: Examine whether a specific move attacks a string tactically.
Arguments: vertex (move), vertex (dragon)
Fails: invalid vertex, empty vertex
Returns: attack code

• does defend: Examine whether a specific move defends a string tactically.
Arguments: vertex (move), vertex (dragon)
Fails: invalid vertex, empty vertex
Returns: attack code

• ladder attack: Try to attack a string strictly in a ladder.
Arguments: vertex
Fails: invalid vertex, empty vertex
Returns: attack code followed by attack point if attack code nonzero.

• increase depths: Increase depth values by one.
Arguments: none
Fails: never
Returns: nothing

• decrease depths: Decrease depth values by one.
Arguments: none
Fails: never
Returns: nothing

• owl attack: Try to attack a dragon.



Chapter 19: The Go Text Protocol 190

Arguments: vertex
Fails: invalid vertex, empty vertex
Returns: attack code followed by attack point if attack code nonzero.

• owl defend: Try to defend a dragon.
Arguments: vertex
Fails: invalid vertex, empty vertex
Returns: defense code followed by defense point if defense code nonzero.

• owl threaten attack: Try to attack a dragon in 2 moves.
Arguments: vertex
Fails: invalid vertex, empty vertex
Returns: attack code followed by the two attack points if

attack code nonzero.

• owl threaten defense: Try to defend a dragon with 2 moves.
Arguments: vertex
Fails: invalid vertex, empty vertex
Returns: defense code followed by the 2 defense points if

defense code nonzero.

• owl does attack: Examine whether a specific move attacks a dragon.
Arguments: vertex (move), vertex (dragon)
Fails: invalid vertex, empty vertex
Returns: attack code

• owl does defend: Examine whether a specific move defends a dragon.
Arguments: vertex (move), vertex (dragon)
Fails: invalid vertex, empty vertex
Returns: defense code

• owl connection defends: Examine whether a connection defends involved dragons.
Arguments: vertex (move), vertex (dragon1), vertex (dragon2)
Fails: invalid vertex, empty vertex
Returns: defense code

• defend both: Try to defend both of two strings
Arguments: two vertices
Fails: invalid vertex, empty vertex
Returns: defend code for the strings. Guarantees there

exists a move which will defend both of the two
with defend_code, but does not return the move.

• owl substantial: Determine whether capturing a string gives a living dragon
Arguments: vertex
Fails: invalid vertex, empty vertex
Returns: 1 if dragon can live, 0 otherwise

• analyze semeai: Analyze a semeai
Arguments: dragona, dragonb
Fails: invalid vertices, empty vertices
Returns: semeai defense result, semeai attack result, semeai move



Chapter 19: The Go Text Protocol 191

• analyze semeai after move: Analyze a semeai after a move have been made.
Arguments: color, vertex, dragona, dragonb
Fails: invalid vertices
Returns: semeai defense result, semeai attack result, semeai move

• tactical analyze semeai: Analyze a semeai, not using owl
Arguments: dragona, dragonb
Fails: invalid vertices, empty vertices
Returns: status of dragona, dragonb assuming dragona moves first

• connect: Try to connect two strings.
Arguments: vertex, vertex
Fails: invalid vertex, empty vertex, vertices of different colors
Returns: connect result followed by connect point if successful.

• disconnect: Try to disconnect two strings.
Arguments: vertex, vertex
Fails: invalid vertex, empty vertex, vertices of different colors
Returns: disconnect result followed by disconnect point if successful.

• break in: Try to break from string into area.
Arguments: vertex, vertices
Fails: invalid vertex, empty vertex.
Returns: result followed by break in point if successful.

• block off: Try to block string from area.
Arguments: vertex, vertices
Fails: invalid vertex, empty vertex.
Returns: result followed by block point if successful.

• eval eye: Evaluate an eye space
Arguments: vertex
Fails: invalid vertex
Returns: Minimum and maximum number of eyes. If these differ an

attack and a defense point are additionally returned.
If the vertex is not an eye space or not of unique color,
a single -1 is returned.

• dragon status: Determine status of a dragon.
Arguments: optional vertex
Fails: invalid vertex, empty vertex
Returns: status ("alive", "critical", "dead", or "unknown"),

attack point, defense point. Points of attack and
defense are only given if the status is critical.
If no vertex is given, the status is listed for all
dragons, one per row in the format "A4: alive".

FIXME: Should be able to distinguish between life in seki
and independent life. Should also be able to identify ko.

• same dragon: Determine whether two stones belong to the same dragon.



Chapter 19: The Go Text Protocol 192

Arguments: vertex, vertex
Fails: invalid vertex, empty vertex
Returns: 1 if the vertices belong to the same dragon, 0 otherwise

• unconditional status: Determine the unconditional status of a vertex.

Arguments: vertex
Fails: invalid vertex
Returns: unconditional status ("undecided", "alive", "dead",

"white_territory", "black_territory"). Occupied vertices can
be undecided, alive, or dead. Empty vertices can be
undecided, white territory, or black territory.

• combination attack: Find a move by color capturing something through a combination
attack.

Arguments: color
Fails: invalid color
Returns: Recommended move, PASS if no move found

• combination defend: If color can capture something through a combination attack, list
moves by the opponent of color to defend against this attack.

Arguments: color
Fails: invalid color
Returns: Recommended moves, PASS if no combination attack found.

• aa confirm safety: Run atari atari confirm safety().

Arguments: move, optional int
Fails: invalid move
Returns: success code, if failure also defending move

• genmove black: Generate and play the supposedly best black move.

Arguments: none
Fails: never
Returns: a move coordinate or "PASS"

Status: Obsolete GTP version 1 command.

• genmove white: Generate and play the supposedly best white move.

Arguments: none
Fails: never
Returns: a move coordinate or "PASS"

Status: Obsolete GTP version 1 command.

• genmove: Generate and play the supposedly best move for either color.

Arguments: color to move
Fails: invalid color
Returns: a move coordinate or "PASS" (or "resign" if resignation_allowed)

Status: GTP version 2 standard command.

• reg genmove: Generate the supposedly best move for either color.



Chapter 19: The Go Text Protocol 193

Arguments: color to move
Fails: invalid color
Returns: a move coordinate (or "PASS")

Status: GTP version 2 standard command.

• gg genmove: Generate the supposedly best move for either color.
Arguments: color to move, optionally a random seed
Fails: invalid color
Returns: a move coordinate (or "PASS")

This differs from reg_genmove in the optional random seed.

• restricted genmove: Generate the supposedly best move for either color from a choice
of allowed vertices.
Arguments: color to move, allowed vertices
Fails: invalid color, invalid vertex, no vertex listed
Returns: a move coordinate (or "PASS")

• kgs-genmove cleanup: Generate and play the supposedly best move for either color,
not passing until all dead opponent stones have been removed.
Arguments: color to move
Fails: invalid color
Returns: a move coordinate (or "PASS")

Status: KGS specific command.

A similar command, but possibly somewhat different, will likely be added
to GTP version 3 at a later time.

• level: Set the playing level.
Arguments: int
Fails: incorrect argument
Returns: nothing

• undo: Undo one move
Arguments: none
Fails: If move history is too short.
Returns: nothing

Status: GTP version 2 standard command.

• gg-undo: Undo a number of moves
Arguments: optional int
Fails: If move history is too short.
Returns: nothing

• time settings: Set time allowance
Arguments: int main_time, int byo_yomi_time, int byo_yomi_stones
Fails: syntax error
Returns: nothing



Chapter 19: The Go Text Protocol 194

Status: GTP version 2 standard command.

• time left: Report remaining time
Arguments: color color, int time, int stones
Fails: syntax error
Returns: nothing

Status: GTP version 2 standard command.

• final score: Compute the score of a finished game.
Arguments: Optional random seed
Fails: never
Returns: Score in SGF format (RE property).

Status: GTP version 2 standard command.

• final status: Report the final status of a vertex in a finished game.
Arguments: Vertex, optional random seed
Fails: invalid vertex
Returns: Status in the form of one of the strings "alive", "dead",

"seki", "white_territory", "black_territory", or "dame".

• final status list: Report vertices with a specific final status in a finished game.
Arguments: Status in the form of one of the strings "alive", "dead",

"seki", "white_territory", "black_territory", or "dame".
An optional random seed can be added.

Fails: missing or invalid status string
Returns: Vertices having the specified status. These are split with

one string on each line if the vertices are nonempty (i.e.
for "alive", "dead", and "seki").

Status: GTP version 2 standard command.
However, "dame", "white_territory", and "black_territory"
are private extensions.

• estimate score: Estimate the score
Arguments: None
Fails: never
Returns: upper and lower bounds for the score

• experimental score: Estimate the score, taking into account which player moves next
Arguments: Color to play
Fails: Invalid color
Returns: Score.

This function generates a move for color, then adds the
value of the move generated to the value of the position.
Critical dragons are awarded to the opponent since the
value of rescuing a critical dragon is taken into account
in the value of the move generated.



Chapter 19: The Go Text Protocol 195

• reset life node counter: Reset the count of life nodes.
Arguments: none
Fails: never
Returns: nothing

Note: This function is obsolete and only remains for backwards
compatibility.

• get life node counter: Retrieve the count of life nodes.
Arguments: none
Fails: never
Returns: number of life nodes

Note: This function is obsolete and only remains for backwards
compatibility.

• reset owl node counter: Reset the count of owl nodes.
Arguments: none
Fails: never
Returns: nothing

• get owl node counter: Retrieve the count of owl nodes.
Arguments: none
Fails: never
Returns: number of owl nodes

• reset reading node counter: Reset the count of reading nodes.
Arguments: none
Fails: never
Returns: nothing

• get reading node counter: Retrieve the count of reading nodes.
Arguments: none
Fails: never
Returns: number of reading nodes

• reset trymove counter: Reset the count of trymoves/trykos.
Arguments: none
Fails: never
Returns: nothing

• get trymove counter: Retrieve the count of trymoves/trykos.
Arguments: none
Fails: never
Returns: number of trymoves/trykos

• reset connection node counter: Reset the count of connection nodes.
Arguments: none
Fails: never
Returns: nothing

• get connection node counter: Retrieve the count of connection nodes.



Chapter 19: The Go Text Protocol 196

Arguments: none
Fails: never
Returns: number of connection nodes

• test eyeshape: Test an eyeshape for inconsistent evaluations
Arguments: Eyeshape vertices
Fails: Bad vertices
Returns: Failure reports on stderr.

• analyze eyegraph: Compute an eyevalue and vital points for an eye graph
Arguments: Eyeshape encoded in string
Fails: Bad eyeshape, analysis failed
Returns: Eyevalue, vital points

• cputime: Returns elapsed CPU time in seconds.
Arguments: none
Fails: never
Returns: Total elapsed (user + system) CPU time in seconds.

• showboard: Write the position to stdout.
Arguments: none
Fails: never
Returns: nothing

Status: GTP version 2 standard command.

• dump stack: Dump stack to stderr.
Arguments: none
Fails: never
Returns: nothing

• initial influence: Return information about the initial influence function.
Arguments: color to move, what information
Fails: never
Returns: Influence data formatted like:

0.51 1.34 3.20 6.60 9.09 8.06 1.96 0.00 0.00
0.45 1.65 4.92 12.19 17.47 15.92 4.03 0.00 0.00

.

.

.
0.00 0.00 0.00 0.00 0.00 100.00 75.53 41.47 23.41

The available choices of information are:

white_influence (float)
black_influence (float)
white_strength (float)
black_strength (float)
white_attenuation (float)



Chapter 19: The Go Text Protocol 197

black_attenuation (float)
white_permeability (float)
black_permeability (float)
territory_value (float)
influence_regions (int)
non_territory (int)

The encoding of influence_regions is as follows:
4 white stone
3 white territory
2 white moyo
1 white area
0 neutral
-1 black area
-2 black moyo
-3 black territory
-4 black stone

• move influence: Return information about the influence function after a move.
Arguments: move, what information
Fails: never
Returns: Influence data formatted like for initial_influence.

• move probabilities: List probabilities of each move being played (when non-zero). If
no previous genmove command has been issued, the result of this command will be
meaningless.
Arguments: none
Fails: never
Returns: Move, probabilty pairs, one per row.

• move uncertainty: Return the number of bits of uncertainty in the move. If no previous
genmove command has been issued, the result of this command will be meaningless.
Arguments: none
Fails: never
Returns: bits of uncertainty

• followup influence: Return information about the followup influence after a move.
Arguments: move, what information
Fails: never
Returns: Influence data formatted like for initial_influence.

• worm data: Return the information in the worm data structure.
Arguments: optional vertex
Fails: never
Returns: Worm data formatted like:

A19:
color black
size 10
effective_size 17.83



Chapter 19: The Go Text Protocol 198

origin A19
liberties 8
liberties2 15
liberties3 10
liberties4 8
attack PASS
attack_code 0
lunch B19
defend PASS
defend_code 0
cutstone 2
cutstone2 0
genus 0
inessential 0
B19:
color white
.
.
.
inessential 0
C19:
...

If an intersection is specified, only data for this one will be returned.

• worm stones: List the stones of a worm
Arguments: the location, "BLACK" or "WHITE"
Fails: if called on an empty or off-board location
Returns: list of stones

• worm cutstone: Return the cutstone field in the worm data structure.
Arguments: non-empty vertex
Fails: never
Returns: cutstone

• dragon data: Return the information in the dragon data structure.
Arguments: optional intersection
Fails: never
Returns: Dragon data formatted in the corresponding way to worm_data.

• dragon stones: List the stones of a dragon
Arguments: the location
Fails: if called on an empty or off-board location
Returns: list of stones

• eye data: Return the information in the eye data structure.
Arguments: color, vertex
Fails: never
Returns: eye data fields and values, one pair per row

• half eye data: Return the information in the half eye data structure.



Chapter 19: The Go Text Protocol 199

Arguments: vertex
Fails: never
Returns: half eye data fields and values, one pair per row

• start sgftrace: Start storing moves executed during reading in an sgf tree in memory.
Arguments: none
Fails: never
Returns: nothing

Warning: You had better know what you’re doing if you try to use this
command.

• finish sgftrace: Finish storing moves in an sgf tree and write it to file.
Arguments: filename
Fails: never
Returns: nothing

Warning: You had better know what you’re doing if you try to use this
command.

• printsgf: Dump the current position as a static sgf file to filename, or as output if
filename is missing or "-"
Arguments: optional filename
Fails: never
Returns: nothing if filename, otherwise the sgf

• tune move ordering: Tune the parameters for the move ordering in the tactical reading.
Arguments: MOVE_ORDERING_PARAMETERS integers
Fails: incorrect arguments
Returns: nothing

• echo: Echo the parameter
Arguments: string
Fails: never
Returns: nothing

• echo err: Echo the parameter to stdout AND stderr
Arguments: string
Fails: never
Returns: nothing

• help: List all known commands
Arguments: none
Fails: never
Returns: list of known commands, one per line

Status: GTP version 2 standard command.

• known command: Tell whether a command is known.
Arguments: command name
Fails: never



Chapter 19: The Go Text Protocol 200

Returns: "true" if command exists, "false" if not

Status: GTP version 2 standard command.

• report uncertainty: Turn uncertainty reports from owl attack and owl defend on or
off.
Arguments: "on" or "off"
Fails: invalid argument
Returns: nothing

• get random seed: Get the random seed
Arguments: none
Fails: never
Returns: random seed

• set random seed: Set the random seed
Arguments: integer
Fails: invalid data
Returns: nothing

• advance random seed: Advance the random seed by a number of games.
Arguments: integer
Fails: invalid data
Returns: New random seed.

• is surrounded: Determine if a dragon is surrounded
Arguments: vertex (dragon)
Fails: invalid vertex, empty vertex
Returns: 1 if surrounded, 2 if weakly surrounded, 0 if not

• does surround: Determine if a move surrounds a dragon
Arguments: vertex (move), vertex (dragon)
Fails: invalid vertex, empty (dragon, nonempty (move)
Returns: 1 if (move) surrounds (dragon)

• surround map: Report the surround map for dragon at a vertex
Arguments: vertex (dragon), vertex (mapped location)
Fails: invalid vertex, empty dragon
Returns: value of surround map at (mapped location), or -1 if

dragon not surrounded.

• set search diamond: limit search, and establish a search diamond
Arguments: pos
Fails: invalid value
Returns: nothing

• reset search mask: unmark the entire board for limited search
Arguments: none
Fails: never
Returns: nothing

• limit search: sets the global variable limit search



Chapter 19: The Go Text Protocol 201

Arguments: value
Fails: invalid arguments
Returns: nothing

• set search limit: mark a vertex for limited search
Arguments: position
Fails: invalid arguments
Returns: nothing

• draw search area: Draw search area. Writes to stderr.
Arguments: none
Fails: never
Returns: nothing



Chapter 20: Regression testing 202

20 Regression testing

The standard purpose of regression testing is to avoid getting the same bug twice. When
a bug is found, the programmer fixes the bug and adds a test to the test suite. The test
should fail before the fix and pass after the fix. When a new version is about to be released,
all the tests in the regression test suite are run and if an old bug reappears, this will be
seen quickly since the appropriate test will fail.

The regression testing in GNU Go is slightly different. A typical test case involves
specifying a position and asking the engine what move it would make. This is compared to
one or more correct moves to decide whether the test case passes or fails. It is also stored
whether a test case is expected to pass or fail, and deviations in this status signify whether
a change has solved some problem and/or broken something else. Thus the regression
tests both include positions highlighting some mistake being done by the engine, which are
waiting to be fixed, and positions where the engine does the right thing, where we want to
detect if a change breaks something.

20.1 Regression testing in GNU Go

Regression testing is performed by the files in the ‘regression/’ directory. The tests are
specified as GTP commands in files with the suffix ‘.tst’, with corresponding correct results
and expected pass/fail status encoded in GTP comments following the test. To run a test
suite the shell scripts ‘test.sh’, ‘eval.sh’, and ‘regress.sh’ can be used. There are also
Makefile targets to do this. If you make all_batches most of the tests are run. The Pike
script ‘regress.pike’ can also be used to run all tests or a subset of the tests.

Game records used by the regression tests are stored in the directory
‘regression/games/’ and its subdirectories.

20.2 Test suites

The regression tests are grouped into suites and stored in files as GTP commands. A part
of a test suite can look as follows:

# Connecting with ko at B14 looks best. Cutting at D17 might be
# considered. B17 (game move) is inferior.
loadsgf games/strategy25.sgf 61
90 gg_genmove black
#? [B14|D17]

# The game move at P13 is a suicidal blunder.
loadsgf games/strategy25.sgf 249
95 gg_genmove black
#? [!P13]

loadsgf games/strategy26.sgf 257
100 gg_genmove black
#? [M16]*

Lines starting with a hash sign, or in general anything following a hash sign, are
interpreted as comments by the GTP mode and thus ignored by the engine. GTP commands



Chapter 20: Regression testing 203

are executed in the order they appear, but only those on numbered lines are used for testing.
The comment lines starting with #? are magical to the regression testing scripts and indicate
correct results and expected pass/fail status. The string within brackets is matched as a
regular expression against the response from the previous numbered GTP command. A
particular useful feature of regular expressions is that by using ‘|’ it is possible to specify
alternatives. Thus B14|D17 above means that if either B14 or D17 is the move generated in
test case 90, it passes. There is one important special case to be aware of. If the correct
result string starts with an exclamation mark, this is excluded from the regular expression
but afterwards the result of the matching is negated. Thus !P13 in test case 95 means that
any move except P13 is accepted as a correct result.

In test case 100, the brackets on the #? line is followed by an asterisk. This means
that the test is expected to fail. If there is no asterisk, the test is expected to pass. The
brackets may also be followed by a ‘&’, meaning that the result is ignored. This is primarily
used to report statistics, e.g. how many tactical reading nodes were spent while running
the test suite.

20.3 Running the Regression Tests

./test.sh blunder.tst runs the tests in ‘blunder.tst’ and prints the results of the com-
mands on numbered lines, which may look like:

1 E5
2 F9
3 O18
4 B7
5 A4
6 E4
7 E3
8 A3
9 D9
10 J9
11 B3
12 C6
13 C6

This is usually not very informative, however. More interesting is ./eval.sh
blunder.tst which also compares the results above against the correct ones in the test
file and prints a report for each test on the form:

1 failed: Correct ’!E5’, got ’E5’
2 failed: Correct ’C9|H9’, got ’F9’
3 PASSED
4 failed: Correct ’B5|C5|C4|D4|E4|E3|F3’, got ’B7’
5 PASSED
6 failed: Correct ’D4’, got ’E4’
7 PASSED
8 failed: Correct ’B4’, got ’A3’
9 failed: Correct ’G8|G9|H8’, got ’D9’
10 failed: Correct ’G9|F9|C7’, got ’J9’



Chapter 20: Regression testing 204

11 failed: Correct ’D4|E4|E5|F4|C6’, got ’B3’
12 failed: Correct ’D4’, got ’C6’
13 failed: Correct ’D4|E4|E5|F4’, got ’C6’

The result of a test can be one of four different cases:
• passed: An expected pass

This is the ideal result.
• PASSED: An unexpected pass

This is a result that we are hoping for when we fix a bug. An old test case that used
to fail is now passing.

• failed: An expected failure
The test failed but this was also what we expected, unless we were trying to fix the
particular mistake highlighted by the test case. These tests show weaknesses of the
GNU Go engine and are good places to search if you want to detect an area which
needs improvement.

• FAILED: An unexpected failure
This should nominally only happen if something is broken by a change. However,
sometimes GNU Go passes a test, but for the wrong reason or for a combination of
wrong reasons. When one of these reasons is fixed, the other one may shine through so
that the test suddenly fails. When a test case unexpectedly fails, it is necessary to make
a closer examination in order to determine whether a change has broken something.

If you want a less verbose report, ./regress.sh . blunder.tst does the same thing
as the previous command, but only reports unexpected results. The example above is
compressed to

3 unexpected PASS!
5 unexpected PASS!
7 unexpected PASS!

For convenience the tests are also available as makefile targets. For example, make
blunder runs the tests in the blunder test suite by executing eval.sh blunder.tst. make
all_batches runs all test suites in a sequence using the regress.sh script.

20.4 Running regress.pike

A more powerful way to run regressions is with the script ‘regress.pike’. This requires
that you have Pike (http://pike.ida.liu.se) installed.

Executing ./regress.pike without arguments will run all testsuites that make all_
batches would run. The difference is that unexpected results are reported immediately
when they have been found (instead of after the whole file has been run) and that statistics
of time consumption and node usage is presented for each test file and in total.

To run a single test suite do e.g. ./regress.pike nicklas3.tst or ./regress.pike
nicklas3. The result may look like:

nicklas3 2.96 614772 3322 469
Total nodes: 614772 3322 469
Total time: 2.96 (3.22)
Total uncertainty: 0.00

http://pike.ida.liu.se


Chapter 20: Regression testing 205

The numbers here mean that the test suite took 2.96 seconds of processor time
and 3.22 seconds of real time. The consumption of reading nodes was 614772 for tactical
reading, 3322 for owl reading, and 469 for connection reading. The last line relates to the
variability of the generated moves in the test suite, and 0 means that none was decided by
the randomness contribution to the move valuation. Multiple testsuites can be run by e.g.
./regress.pike owl ld_owl owl1.

It is also possible to run a single testcase, e.g. ./regress.pike strategy:6, a
number of testcases, e.g. ./regress.pike strategy:6,23,45, a range of testcases, e.g.
./regress.pike strategy:13-15 or more complex combinations e.g. ./regress.pike
strategy:6,13-15,23,45 nicklas3:602,1403.

There are also command line options to choose what engine to run, what options to
send to the engine, to turn on verbose output, and to use a file to specify which testcases
to run. Run ./regress.pike --help for a complete and up to date list of options.

20.5 Viewing tests with Emacs

To get a quick regression view, you may use the graphical display mode available with
Emacs (see Section 3.5 [Emacs], page 13). You will want the cursor in the regression buffer
when you enter M-x gnugo, so that GNU Go opens in the correct directory. A good way to
be in the right directory is to open the window of the test you want to investigate. Then
you can cut and past GTP commands directly from the test to the minibuffer, using the :
command from Emacs. Although Emacs mode does not have a coordinate grid, you may
get an ascii board with the coordinate grid using : showboard command.

20.6 HTML Regression Views

Extremely useful HTML Views of the regression tests may be produced using two perl
scripts ‘regression/regress.pl’ and ‘regression/regress.plx’.
1. The driver program (regress.pl) which:

• Runs the regression tests, invoking GNU Go.
• Captures the trace output, board position, and pass/fail status, sgf output, and

dragon status information.
2. The interface to view the captured output (regress.plx) which:

• Never invokes GNU Go.
• Displays the captured output in helpful formats (i.e. HTML).

20.6.1 Setting up the HTML regression Views

There are many ways configuring Apache to permit CGI scripts, all of them are featured in
Apache documentation, which can be found at http://httpd.apache.org/docs/2.0/howto/cgi.html

Below you will find one example.
This documentation assumes an Apache 2.0 included in Fedora Core distribution,

but it should be fairly close to the config for other distributions.
First, you will need to configure Apache to run CGI scripts in the directory you wish

to serve the html views from. In ‘/etc/httpd/conf/httpd.conf’ there should be a line:
DocumentRoot "/var/www/html"

http://httpd.apache.org/docs/2.0/howto/cgi.html


Chapter 20: Regression testing 206

Search for a line <Directory "/path/to/directory">, where /path/to/directory
is the same as provided in DocumentRoot, then add ExecCGI to list of Options. The whole
section should look like:

<Directory "/var/www/html">
...

Options ... ExecCGI
...
</Directory>

This allows CGI scripts to be executed in the directory used by regress.plx. Next,
you need to tell Apache that ‘.plx’ is a CGI script ending. Your ‘httpd.conf’ file should
contain a line:

AddHandler cgi-script ...

If there isn’t already, add it; add ‘.plx’ to the list of extensions, so line should look
like:

AddHandler cgi-script ... .plx

You will also need to make sure you have the necessary modules loaded to run
CGI scripts; mod cgi and mod mime should be sufficient. Your ‘httpd.conf’ should have
the relevant LoadModule cgi_module modules/mod_cgi.so and LoadModule mime_module
modules/mod_mime.so lines; uncomment them if necessary.

Next, you need to put a copy of ‘regress.plx’ in the DocumentRoot directory
/var/www/html or it subdirectories where you plan to serve the html views from.

You will also need to install the Perl module GD (http://search.cpan.org/dist/GD/),
available from CPAN.

Finally, run ‘regression/regress.pl’ to create the xml data used to generate the
html views (to do all regression tests run ‘regression/regress.pl -a 1’); then, copy the
‘html/’ directory to the same directory as ‘regress.plx’ resides in.

At this point, you should have a working copy of the html regression views.
Additional notes for Debian users: The Perl GD module can be installed by apt-get

install libgd-perl. It may suffice to add this to the apache2 configuration:
<Directory "/var/www/regression">
Options +ExecCGI
AddHandler cgi-script .plx
RedirectMatch ^/regression$ /regression/regress.plx
</Directory>

and then make a link from ‘/var/www/regression’ to the GNU Go regression di-
rectory. The RedirectMatch statement is only needed to set up a shorter entry URL.

http://search.cpan.org/dist/GD/


Appendix A: Copying 207

Appendix A Copying

The program GNU Go is distributed under the terms of the GNU General Public License
(GPL). Its documentation is distributed under the terms of the GNU Free Documentation
License (GFDL).

A.1 GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright c© 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away
your freedom to share and change the works. By contrast, the GNU General Public License
is intended to guarantee your freedom to share and change all versions of a program–to
make sure it remains free software for all its users. We, the Free Software Foundation, use
the GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights
or asking you to surrender the rights. Therefore, you have certain responsibilities if you
distribute copies of the software, or if you modify it: responsibilities to respect the freedom
of others.

For example, if you distribute copies of such a program, whether gratis or for a fee,
you must pass on to the recipients the same freedoms that you received. You must make
sure that they, too, receive or can get the source code. And you must show them these
terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert
copyright on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is
no warranty for this free software. For both users’ and authors’ sake, the GPL requires
that modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions
of the software inside them, although the manufacturer can do so. This is fundamentally



Appendix A: Copying 208

incompatible with the aim of protecting users’ freedom to change the software. The sys-
tematic pattern of such abuse occurs in the area of products for individuals to use, which
is precisely where it is most unacceptable. Therefore, we have designed this version of the
GPL to prohibit the practice for those products. If such problems arise substantially in
other domains, we stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should
not allow patents to restrict development and use of software on general-purpose computers,
but in those that do, we wish to avoid the special danger that patents applied to a free
program could make it effectively proprietary. To prevent this, the GPL assures that patents
cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. DEFINITIONS

"This License" refers to version 3 of the GNU General Public License.

"Copyright" also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

"The Program" refers to any copyrightable work licensed under this License. Each
licensee is addressed as "you". "Licensees" and "recipients" may be individuals or
organizations.

To "modify" a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a "modified version" of the earlier work or a work "based on" the earlier
work.

A "covered work" means either the unmodified Program or a work based on the Pro-
gram.

To "propagate" a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To "convey" a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays "Appropriate Legal Notices" to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.



Appendix A: Copying 209

1. SOURCE CODE
The "source code" for a work means the preferred form of the work for making modi-
fications to it. "Object code" means any non-source form of a work.
A "Standard Interface" means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.
The "System Libraries" of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A "Major Component",
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.
The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same work.

2. BASIC PERMISSIONS
All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.



Appendix A: Copying 210

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. PROTECTING USERS’ LEGAL RIGHTS FROM ANTI-CIRCUMVENTION LAW
No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.
When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. CONVEYING VERBATIM COPIES
You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.
You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. CONVEYING MODIFIED SOURCE VERSIONS
You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified it, and giving a
relevant date.
b) The work must carry prominent notices stating that it is released under this License
and any conditions added under section 7. This requirement modifies the requirement
in section 4 to "keep intact all notices".
c) You must license the entire work, as a whole, under this License to anyone who comes
into possession of a copy. This License will therefore apply, along with any applicable
section 7 additional terms, to the whole of the work, and all its parts, regardless of how
they are packaged. This License gives no permission to license the work in any other
way, but it does not invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display Appropriate Legal No-
tices; however, if the Program has interactive interfaces that do not display Appropriate
Legal Notices, your work need not make them do so.
A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution



Appendix A: Copying 211

medium, is called an "aggregate" if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. CONVEYING NON-SOURCE FORMS
You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:
a) Convey the object code in, or embodied in, a physical product (including a physical
distribution medium), accompanied by the Corresponding Source fixed on a durable
physical medium customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product (including a physical
distribution medium), accompanied by a written offer, valid for at least three years and
valid for as long as you offer spare parts or customer support for that product model,
to give anyone who possesses the object code either (1) a copy of the Corresponding
Source for all the software in the product that is covered by this License, on a durable
physical medium customarily used for software interchange, for a price no more than
your reasonable cost of physically performing this conveying of source, or (2) access to
copy the Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally and
noncommercially, and only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same way
through the same place at no further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to copy the object code
is a network server, the Corresponding Source may be on a different server (operated by
you or a third party) that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source, you remain obligated to
ensure that it is available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.
A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.
A "User Product" is either (1) a "consumer product", which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status of the par-



Appendix A: Copying 212

ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

"Installation Information" for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.
The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. ADDITIONAL TERMS

"Additional permissions" are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:



Appendix A: Copying 213

a) Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or author attributions in
that material or in the Appropriate Legal Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or requiring that modi-
fied versions of such material be marked in reasonable ways as different from the original
version; or

d) Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e) Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f) Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions of liabil-
ity to the recipient, for any liability that these contractual assumptions directly impose
on those licensors and authors.

All other non-permissive additional terms are considered "further restrictions" within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. TERMINATION

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.



Appendix A: Copying 214

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. ACCEPTANCE NOT REQUIRED FOR HAVING COPIES

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.
However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

10. AUTOMATIC LICENSING OF DOWNSTREAM RECIPIENTS

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An "entity transaction" is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

11. PATENTS

A "contributor" is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s "contributor version".

A contributor’s "essential patent claims" are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, "con-
trol" includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.



Appendix A: Copying 215

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To "grant" such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.
If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. "Knowingly relying"
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.
If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.
A patent license is "discriminatory" if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

12. NO SURRENDER OF OTHERS’ FREEDOM
If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey



Appendix A: Copying 216

the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

13. USE WITH THE GNU AFFERO GENERAL PUBLIC LICENSE

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

14. REVISED VERSIONS OF THIS LICENSE

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License "or any later version"
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

15. DISCLAIMER OF WARRANTY

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. LIMITATION OF LIABILITY.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-



Appendix A: Copying 217

CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

17. INTERPRETATION OF SECTIONS 15 AND 16
If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

How to Apply These Terms to your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to
the start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the "copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.> Copyright
(C) <year> <name of author>

This program is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foundation,
either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short notice like this when

it starts in an interactive mode:
<program> Copyright (C) <year> <name of author> This program comes with AB-

SOLUTELY NO WARRANTY; for details type ‘show w’. This is free software, and you
are welcome to redistribute it under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts
of the General Public License. Of course, your program’s commands might be different; for
a GUI interface, you would use an "about box".

You should also get your employer (if you work as a programmer) or school, if any,
to sign a "copyright disclaimer" for the program, if necessary. For more information on
this, and how to apply and follow the GNU GPL, see <http://www.gnu.org/licenses/>.



Appendix A: Copying 218

The GNU General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it more
useful to permit linking proprietary applications with the library. If this is what you want
to do, use the GNU Lesser General Public License instead of this License. But first, please
read <http://www.gnu.org/philosophy/why-not-lgpl.html>.

A.5 GNU FREE DOCUMENTATION LICENSE
Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The

http://fsf.org/


Appendix A: Copying 219

relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.
A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.
The “publisher” means any person or entity that distributes copies of the Document
to the public.
A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to



Appendix A: Copying 220

be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.
If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing



Appendix A: Copying 221

distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.



Appendix A: Copying 222

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.
You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted



Appendix A: Copying 223

document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have



Appendix A: Copying 224

been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING
“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.
“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.
“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.
An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.
The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/


Appendix A: Copying 225

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of
the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license, such as the
GNU General Public License, to permit their use in free software.

A.6 The Go Text Protocol License

In order to facilitate the use of the Go Text Protocol, the two files ‘gtp.c’ and ‘gtp.h’ are
licensed under the following terms.

Copyright 2001 by the Free Software Foundation.
Permission is hereby granted, free of charge, to any person obtaining a copy of this

file ‘gtp.x’, to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, provided that the above
copyright notice(s) and this permission notice appear in all copies of the Software and
that both the above copyright notice(s) and this permission notice appear in supporting
documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL
THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE
LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH
THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this Software without
prior written authorization of the copyright holder.



Concept Index 226

Concept Index

A
aa confirm safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
accurate approxlib . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
accuratelib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
adjacent dragons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
advance random seed . . . . . . . . . . . . . . . . . . . . . . . . 200
all legal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
amalgamation of worms into dragons . . . . . . . . . . . 51
analyze eyegraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
analyze semeai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
analyze semeai after move . . . . . . . . . . . . . . . . . . . 190
API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
ascii description of shapes . . . . . . . . . . . . . . . . . . . . . 77
ascii interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
ascii mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
attack shapes database . . . . . . . . . . . . . . . . . . . . . . . . 77
attack either . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
autohelper actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Autohelpers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
automaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

B
black . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
block off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
board state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
boardsize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
break in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

C
cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
cache-size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
captures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
CGoban . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
clear board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
clear cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
color (dragon) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
colored display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38, 59
combination attack . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
combination defend . . . . . . . . . . . . . . . . . . . . . . . . . . 192
command line options . . . . . . . . . . . . . . . . . . . . . . . . . 14
connect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
connection shapes database . . . . . . . . . . . . . . . . 77, 90
connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
connections database . . . . . . . . . . . . . . . . . . . . . . . . . . 90
corner matcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
countlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
cputime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
cutting stone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
cutting stone, potential . . . . . . . . . . . . . . . . . . . . . . . . 50

D
data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
debugging on a graphical board . . . . . . . . . . . . . . . . 38
debugging options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Debugging the reading code . . . . . . . . . . . . . . . . . . 122
decide-dragon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
decide-string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
decrease depths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
defence shapes database . . . . . . . . . . . . . . . . . . . . . . . 77
defend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
defend both . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Depth of reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
description of shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
dfa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
dfa.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
dfa.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
disconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
distance from liberty to dragon . . . . . . . . . . . . . . . . 49
does attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
does defend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
does surround . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
dragon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
dragon escape route . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
dragon genus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
dragon lunch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
dragon number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
dragon origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
dragon safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
dragon size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
dragon status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
dragon weakness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
dragon data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
dragon status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
dragon stones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
dragons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
draw search area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
dump stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

E
echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
echo err . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
editing pattern database . . . . . . . . . . . . . . . . . . . . . . 102
editing patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
effective size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
effective size (worm) . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
eliminate the randomness . . . . . . . . . . . . . . . . . . . . . . 95
emacs mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
escape route . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
estimate score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
eval eye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
experimental score . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
eye shapes database . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



Concept Index 227

eye space display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
eye data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

F
false eye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
fast pattern matching . . . . . . . . . . . . . . . . . . . . . . . . . 103
final score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
final status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
final status list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
findlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
finish sgftrace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
finite state automaton . . . . . . . . . . . . . . . . . . . . . . . . 103
fixed handicap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
FIXME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
followup influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
format of the pattern database . . . . . . . . . . . . . . . . . 77
formatted printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

G
GDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38, 123
generation of helper functions . . . . . . . . . . . . . . . . . . 82
genmove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
genmove black . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
genmove white . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
genus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
genus (worm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
get connection node counter . . . . . . . . . . . . . . . . . 195
get handicap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
get komi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
get life node counter . . . . . . . . . . . . . . . . . . . . . . . . . 195
get owl node counter . . . . . . . . . . . . . . . . . . . . . . . . . 195
get random seed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
get reading node counter . . . . . . . . . . . . . . . . . . . . . 195
get trymove counter . . . . . . . . . . . . . . . . . . . . . . . . . . 195
gg-undo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
gg genmove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
GMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
GNU Go’s GDB commands . . . . . . . . . . . . . . . . . . . 124
go position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
grid optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
GTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13, 38
GTP command reference . . . . . . . . . . . . . . . . . . . . . 184

H
half eye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
half eye data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Hash node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Hashing of positions . . . . . . . . . . . . . . . . . . . . . . . . . . 113
help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
helper functions in pattern matching . . . . . . . . . . . 81
how GNU Go learns new joseki . . . . . . . . . . . . . . . . 98
How to debug the reading code . . . . . . . . . . . . . . . 122

I
implementation of pattern matching . . . . . . . 95, 100
increase depths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
inessential string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
initial influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
invariant hash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
invariant hash for moves . . . . . . . . . . . . . . . . . . . . . 188
invincible worm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
invoking GNU Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
is legal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
is surrounded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

J
jago . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
joseki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98, 100

K
kgs-genmove cleanup . . . . . . . . . . . . . . . . . . . . . . . . . 193
known command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
komi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

L
ladder attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
last move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17, 193
level of play . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
liberties (worm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
liberties, higher order (worm) . . . . . . . . . . . . . . . . . . 48
licence, documentation (GFDL) . . . . . . . . . . . . . . . 218
licence, program (GPL) . . . . . . . . . . . . . . . . . . . . . . . 207
limit search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
list stones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
loadsgf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
lunch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
lunch (worm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

M
matchpat.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Monte Carlo Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
move generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
move generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
move reasons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25, 40
move history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
move influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
move probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
move uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
moyo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

N
name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
neighbor dragons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



Concept Index 228

O
orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
origin (worm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
output file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
owl attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
owl attack certain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
owl attack code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
owl attack point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
owl connection defends . . . . . . . . . . . . . . . . . . . . . . . 190
owl defend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
owl defense certain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
owl defense code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
owl defense point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
owl does attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
owl does defend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
owl second attack point . . . . . . . . . . . . . . . . . . . . . . . 59
owl second defense point . . . . . . . . . . . . . . . . . . . . . . 59
owl substantial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
owl threaten attack . . . . . . . . . . . . . . . . . . . . . . . . . . 190
owl threaten defense . . . . . . . . . . . . . . . . . . . . . . . . . 190

P
pattern attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
pattern database . . . . . . . . . . . . . . . . . . . . . . . . . . 77, 103
pattern matching . . . . . . . . . . . . . . . . . . . . . . . . . 77, 103
pattern matching optimization . . . . . . . . . . . . . . . . . 96
pattern overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
pattern.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
pattern.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
persistent cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
place free handicap . . . . . . . . . . . . . . . . . . . . . . . . . . 186
play . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
playwhite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
popgo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
position struct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
potential cutting stone . . . . . . . . . . . . . . . . . . . . . . . . . 50
printsgf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
protocol version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Q
qGo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
quarry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
query boardsize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
query orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
quit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

R
Read result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Reading code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Reading code debugging tools . . . . . . . . . . . . . . . . . 122
reading DEPTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Reading optimisation . . . . . . . . . . . . . . . . . . . . . . . . . 113
Reading process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

reading return codes . . . . . . . . . . . . . . . . . . . . . . . . . . 111
reading shadow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
reading.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111, 112
reading.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
reg genmove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
report uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
reset connection node counter . . . . . . . . . . . . . . . . 195
reset life node counter . . . . . . . . . . . . . . . . . . . . . . . 194
reset owl node counter . . . . . . . . . . . . . . . . . . . . . . . 195
reset reading node counter . . . . . . . . . . . . . . . . . . . 195
reset search mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
reset trymove counter . . . . . . . . . . . . . . . . . . . . . . . . 195
restricted genmove . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
return codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

S
same dragon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
scoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
semeai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
semeai attack certain . . . . . . . . . . . . . . . . . . . . . . . . . . 58
semeai attack point . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
semeai defense certain . . . . . . . . . . . . . . . . . . . . . . . . . 58
semeai defense point . . . . . . . . . . . . . . . . . . . . . . . . . . 58
set free handicap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
set random seed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
set search diamond . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
set search limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
SGF (Smart Game Format) . . . . . . . . . . . . . . . . . . . . 14
SGF files in memory . . . . . . . . . . . . . . . . . . . . . . . . . . 159
shape attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
showboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Smart Game Format . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Speedup of reading process . . . . . . . . . . . . . . . . . . . 113
start sgftrace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
superstring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
surround . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
surround map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
surround size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
surround status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
symmetry and transformations . . . . . . . . . . . . . . . . . 95
symmetry and transformations of shapes . . . . . . . 95

T
tactical analyze semeai . . . . . . . . . . . . . . . . . . . . . . . 191
teaching josekis to GNU Go . . . . . . . . . . . . . . . . . . . 98
territory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
test eyeshape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
The Go Modem Protocol and Go Text Protocol

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
the joseki compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
time left . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
time settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Transposition table . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



Concept Index 229

Trying hypothetical moves . . . . . . . . . . . . . . . . . . . . 111
tryko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
trymove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
tune move ordering . . . . . . . . . . . . . . . . . . . . . . . . . . 199
tuning GNU Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
tuning the pattern database . . . . . . . . . . . . . . . . . . . 92
tuning the shapes database . . . . . . . . . . . . . . . . . . . . 92

U
UCT algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
unconditional status . . . . . . . . . . . . . . . . . . . . . . . . . . 192
undo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Usage of the stack in reading . . . . . . . . . . . . . . . . . 111

V
version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

W
weakness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
worm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
worm cutstone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
worm data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
worm stones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Z
Zobrist hashing algorithm . . . . . . . . . . . . . . . . . . . . 113



Functions Index 230

Functions Index

A
abortgo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
accuratelib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
add_eyevalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
add_false_eye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
add_stone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
adjacent_strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
amalgamate_most_valuable_helper . . . . . . . . . . . 52
analyze_eyegraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
approxlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
atari_atari . . . . . . . . . . . . . . . . . . . . . . . . . . 26, 44, 128
atari_atari_blunder_size . . . . . . . . . . . . . . . . . . 128
atari_atari_confirm_safety . . . . . . . . . . . . . . . . 128
attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

B
block_off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
blunder_size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
break_in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

C
chainlinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
chainlinks2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
chainlinks3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
change_dragon_status . . . . . . . . . . . . . . . . . . . . . . . 167
clear_board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
color_to_string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
compute_escape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
compute_eyes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
compute_eyes_pessimistic . . . . . . . . . . . . . . . 74, 126
compute_influence . . . . . . . . . . . . . . . . . . . . . . . . . . 178
compute_surrounding_moyo_sizes . . . . . . . . . . . . . 57
confirm_safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
count_common_libs . . . . . . . . . . . . . . . . . . . . . . . . . . 176
countlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
countstones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
cut_connect_callback . . . . . . . . . . . . . . . . . . . . . . . . 92

D
DEBUG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
decrease_depth_values . . . . . . . . . . . . . . . . . . . . . . 169
defend_against . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
disconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
does_attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
does_capture_something . . . . . . . . . . . . . . . . . . . . . 177
does_defend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
double_atari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
dragon_eye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
draw_letter_coordinates . . . . . . . . . . . . . . . . . . . 173
dump_stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

E
edge_distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
endgame_shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
estimate_territorial_value . . . . . . . . . . . . . . . . . 45
extended_chainlinks . . . . . . . . . . . . . . . . . . . . . . . . 176
eyevalue_to_string . . . . . . . . . . . . . . . . . . . . . . . . . . 75

F
far . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
fastlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
fill_liberty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
find_common_libs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
find_connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
find_cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50, 92
find_defense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
find_eye_dragons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
find_half_and_false_eyes . . . . . . . . . . . . . . . . . . . 74
find_neighbor_dragons . . . . . . . . . . . . . . . . . . . . . . . 56
find_origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
find_proper_superstring_liberties . . . . . . . . 171
find_superstring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
find_superstring_liberties . . . . . . . . . . . . . . . . 171
find_superstring_stones_and_liberties . . . 171
findlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
findstones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
followup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
fuseki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

G
gameinfo_clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
gameinfo_load_sgfheader . . . . . . . . . . . . . . . . . . . 166
gameinfo_play_move . . . . . . . . . . . . . . . . . . . . . . . . . 166
gameinfo_play_sgftree . . . . . . . . . . . . . . . . . . . . . . 166
gameinfo_play_sgftree_rot . . . . . . . . . . . . . . . . . 166
gameinfo_print . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
get_kom_pos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
get_komaster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
gfprintf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
gnugo_add_stone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
gnugo_attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
gnugo_clear_board . . . . . . . . . . . . . . . . . . . . . . . . . . 163
gnugo_estimate_score . . . . . . . . . . . . . . . . . . . . . . . 164
gnugo_examine_position . . . . . . . . . . . . . . . . . . . . . 165
gnugo_find_defense . . . . . . . . . . . . . . . . . . . . . . . . . 164
gnugo_genmove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
gnugo_get_board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
gnugo_get_boardsize . . . . . . . . . . . . . . . . . . . . . . . . 165
gnugo_get_komi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
gnugo_get_move_number . . . . . . . . . . . . . . . . . . . . . . 165
gnugo_is_legal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
gnugo_is_pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
gnugo_is_suicide . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164



Functions Index 231

gnugo_placehand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
gnugo_play_move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
gnugo_play_sgfnode . . . . . . . . . . . . . . . . . . . . . . . . . 164
gnugo_play_sgftree . . . . . . . . . . . . . . . . . . . . . . . . . 164
gnugo_recordboard . . . . . . . . . . . . . . . . . . . . . . . . . . 164
gnugo_remove_stone . . . . . . . . . . . . . . . . . . . . . . . . . 164
gnugo_set_komi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
gnugo_sethand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
gnugo_undo_move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
gnugo_who_wins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
gprintf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

H
has_neighbor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
hashnode_new_result . . . . . . . . . . . . . . . . . . . . . . . . 114
hashtable_enter_position . . . . . . . . . . . . . . . . . . 114
hashtable_search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
have_common_lib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

I
increase_depth_values . . . . . . . . . . . . . . . . . . . . . . 169
influence_mark_non_territory . . . . . . . . . . . . . . 178
init_gnugo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162, 163
is_corner_vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
is_edge_vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
is_eye_space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
is_false_eye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
is_halfeye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
is_hoshi_point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
is_illegal_ko_capture . . . . . . . . . . . . . . . . . . . . . . 174
is_ko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
is_ko_point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
is_legal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29, 174
is_marginal_eye_space . . . . . . . . . . . . . . . . . . . . . . . 74
is_pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
is_proper_eye_space . . . . . . . . . . . . . . . . . . . . . . . . . 74
is_self_atari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
is_suicide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

K
komaster_trymove . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

L
liberty_of_string . . . . . . . . . . . . . . . . . . . . . . . . . . 177
location_to_buffer . . . . . . . . . . . . . . . . . . . . . . . . . 173
location_to_string . . . . . . . . . . . . . . . . . . . . . . . . . 173

M
make_domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50, 73
mark_string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
max_eye_threat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
max_eye_value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

max_eyes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
maxterri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
maxvalue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
min_eye_threat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
min_eyes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
minterri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
minvalue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
modify_depth_values . . . . . . . . . . . . . . . . . . . . . . . . 169
modify_eye_spaces1 . . . . . . . . . . . . . . . . . . . . . . . . . . 92
move_in_stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
mprintf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

N
near . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
neighbor_of_string . . . . . . . . . . . . . . . . . . . . . . . . . 177

O
obvious_false_eye . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
ocap0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
ocap1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
ocap1+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
ocap1- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
ocap2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
ocap2+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
ocap2- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
ocap3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
osafe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
OTHER_COLOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
ounsafe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
owl_attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
owl_defend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
owl_reasons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25, 43

P
partition_eyespaces . . . . . . . . . . . . . . . . . . . . . . . . . 73
play_attack_defend_n . . . . . . . . . . . . . . . . . . . . . . . 168
play_attack_defend2_n . . . . . . . . . . . . . . . . . . . . . . 168
play_break_through_n . . . . . . . . . . . . . . . . . . . . . . . 167
play_connect_n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
play_move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
popgo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29, 157
propagate_eye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
proper_superstring_chainlingks . . . . . . . . . . . 172
purge_persistent_breakin_cache . . . . . . . . . . . 116
purge_persistent_connection_cache . . . . . . . . 116
purge_persistent_owl_cache . . . . . . . . . . . . . . . . 116
purge_persistent_reading_cache . . . . . . . . . . . 116

R
remove_stone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
restore_board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
restore_depth_values . . . . . . . . . . . . . . . . . . . . . . . 169
result_to_string . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173



Functions Index 232

revise_semeai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
revise_thrashing_dragon . . . . . . . . . . . . . . . . . . . . . 26

S
safe_move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
safety_to_string . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
same_string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
search_persistent_reading_cache . . . . . . . . . . 116
second_order_liberty_of_string . . . . . . . . . . . 177
semeai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
set_depth_values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
set_eyevalue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
shapes_callback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
showboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
simple_showboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
small_semeai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
somewhere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
start_timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
status_to_string . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
stones_on_board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
store_board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
store_persistent_reading_cache . . . . . . . . . . . 116
string_connect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
string_to_location . . . . . . . . . . . . . . . . . . . . . . . . . 173
superstring_chainlinks . . . . . . . . . . . . . . . . . . . . . 171

T
terri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
test_eyeshape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
test_symmetry_after_move . . . . . . . . . . . . . . . . . . 167
time_report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

topological_eye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
tryko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
trymove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29, 156

U
unconditional_life . . . . . . . . . . . . . . . . . . . . . . 50, 170
undo_move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

V
value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
value_move_reasons() . . . . . . . . . . . . . . . . . . . . . . . . 44

W
whose_area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
whose_moyo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
whose_territory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
worm_reasons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

X
xcap0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
xcap1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
xcap1+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
xcap1- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
xcap2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
xcap2+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
xcap2- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
xcap3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
xnosuicide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
xsafe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
xsuicide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
xunsafe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148


	
	Introduction
	About GNU Go and this Manual
	Copyrights
	Authors
	Thanks
	Development

	Installation
	GNU/Linux and Unix
	Configure Options
	Ram Cache
	Default Level
	Other Options

	Compiling GNU Go on Microsoft platforms
	Windows 95/98, MS-DOS and Windows 3.x using DJGPP
	Windows NT, 2000, XP, 95/98/ME using Cygwin
	Windows NT, 2000, XP, 95/98/ME using MinGW32
	Windows NT, Windows 95/98 using Visual C and project files
	Running GNU Go on Windows NT and Windows 95/98

	Macintosh

	Using GNU Go
	Getting Documentation
	Running GNU Go via CGoban
	Other Clients
	Ascii Interface
	GNU Go mode in Emacs
	The Go Modem Protocol and Go Text Protocol
	Computer Go Tournaments
	Smart Game Format
	Invoking GNU Go: Command line options
	Some basic options
	Monte Carlo Options
	Other general options
	Other options affecting strength and speed
	Ascii mode options
	Development options
	Experimental options


	GNU Go engine overview
	Gathering Information
	Move Generators
	Move Valuation
	Detailed Sequence of Events
	Roadmap
	Files in engine/
	Files in patterns/

	Coding styles and conventions
	Coding Conventions
	Tracing
	Assertions
	FIXME

	Navigating the Source

	Analyzing GNU Go's moves
	Interpreting Traces
	The Output File
	Checking the reading code
	Checking the Owl Code
	GTP and GDB techniques
	Debugging on a Graphical Board
	Scoring the game
	Colored Display
	Dragon Display
	Eye Space Display


	Move generation
	Introduction
	Generation of move reasons
	Detailed Descriptions of various Move Reasons
	Attacking and defending moves
	Threats to Attack or Defend
	Multiple attack or defense moves
	Cutting and connecting moves
	Semeai winning moves
	Making or destroying eyes
	Antisuji moves
	Territorial moves
	Attacking and Defending Dragons
	Combination Attacks

	Valuation of suggested moves
	Territorial Value
	Strategical Value
	Shape Factor
	Minimum Value
	Secondary Value
	Threats and Followup Value

	End Game

	Worms and Dragons
	Worms
	Amalgamation
	Connection
	Half Eyes and False Eyes
	Dragons
	Colored Dragon Display

	Eyes and Half Eyes
	Local games
	Eye spaces
	The eyespace as local game
	An example
	Graphs
	Eye shape analysis
	Eye Local Game Values
	Topology of Half Eyes and False Eyes
	Eye Topology with Ko
	False Margins
	Functions in optics.c

	The Pattern Code
	Overview
	Pattern Attributes
	Constraint Pattern Attributes
	Action Attributes

	Pattern Attributes
	Helper Functions
	Autohelpers and Constraints
	Autohelper Actions
	Autohelper Functions
	Attack and Defense Database
	The Connections Database
	Connections Functions
	Tuning the Pattern databases
	Implementation
	Symmetry and transformations
	Implementation Details
	The ``Grid'' Optimization
	The Joseki Compiler
	Ladders in Joseki
	Corner Matcher
	Emacs Mode for Editing Patterns

	The DFA pattern matcher
	Introduction to the DFA
	What is a DFA
	Pattern matching with DFA
	Building the DFA
	Incremental Algorithm
	Some DFA Optimizations

	Tactical reading
	Reading Basics
	Organization of the reading code
	Return Codes
	Reading cutoff and depth parameters

	Hashing of Positions
	Calculation of the hash value
	Organization of the hash table
	Hash Structures

	Persistent Reading Cache
	Ko Handling
	A Ko Example
	Another Ko Example
	Alternate Komaster Schemes
	Essentially the 2.7.232 scheme.
	Revised 2.7.232 version

	Superstrings
	Debugging the reading code
	Connection Reading

	Pattern Based Reading
	The Owl Code
	Combination reading

	Influence Function
	Conceptual Outline of Influence
	Territory, Moyo and Area
	Where influence gets used in the engine
	Influence and Territory
	Details of the Territory Valuation
	The Core of the Influence Function
	The Influence Algorithm
	Permeability
	Escape
	Break Ins
	Surrounded Dragons
	Patterns used by the Influence module
	Colored display and debugging of influence
	Influence Tuning with view.pike

	Monte Carlo Go
	Final Remarks
	The Board Library
	Board Data structures
	The Board Array
	Incremental Board data structures
	Some Board Functions

	Handling SGF trees in memory
	The SGFTree datatype

	Application Programmers Interface to GNU Go
	How to use the engine in your own program: getting started
	Basic Data Structures in the Engine
	The board_state struct
	Functions which manipulate a Position
	Game handling
	Functions which manipulate a Gameinfo


	Utility Functions
	General Utilities
	Print Utilities
	Board Utilities
	Utilities from engine/influence.c

	The Go Text Protocol
	The Go Text Protocol
	Running GNU Go in GTP mode
	GTP applications
	The Metamachine
	The Standalone Metamachine
	GNU Go as a Metamachine

	Adding new GTP commands
	GTP command reference

	Regression testing
	Regression testing in GNU Go
	Test suites
	Running the Regression Tests
	Running regress.pike
	Viewing tests with Emacs
	HTML Regression Views
	Setting up the HTML regression Views


	Copying
	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS
	How to Apply These Terms to your New Programs
	GNU FREE DOCUMENTATION LICENSE
	The Go Text Protocol License

	Concept Index
	Functions Index

