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Abstract. Meet the abstract. This is the abstract.

1. Introduction

In (metric, Euclidean) multidimensional scaling (MDS) we minimize
stress, given by

(1) σ (X) =
∑∑
1≤i<j≤n

wij(δij − dij(X))2

over the n × p configurations. In (1) the δij are known non-negative
dissimilarities and the wij are known non-negative weights. We as-
sume, without loss of generality, that the dissimilarities are normal-
ized as

∑∑
1≤i<j≤n

wijδ
2
ij = 1.

For computational and analytical reasons it is convenient to use ma-
trix notation to reformulate the MDS loss function. Remember that
ei is the unit vector with element i equal to one and all others ele-

ments equal to zero. Let Aij
∆=(ei − ej)(ei − ej)′ and

A
⊕p
ij

∆=Aij ⊕ · · · ⊕Aij︸          ︷︷          ︸
p times

.

Thus Aij is block-diagonal, with all p diagonal blocks equal to Aij .
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Now

d2
ij(X) = (ei − ej)′XX ′(ei − ej) = tr X ′AijX = x′Aijx,

where x ∆=vec(X). From now on, we will also use the notation dij(x).

Let V ∆=
∑∑

1≤i<j≤n
wijAij and V ∆=V ⊕ · · · ⊕V︸       ︷︷       ︸

p times

. Then

η2(x) ∆=
∑∑
1≤i<j≤n

wijd
2
ij(x) = x′V x.

Note that if wij = 1 for all 1 ≤ i < j ≤ n then V = nI − J , where J has
all elements equal to +1.

Finally, let B(x) ∆=
∑∑

1≤i<j≤n
wij

(
δij
dij (x)

)
Aij , and B(x) ∆=B(x)⊕ · · · ⊕B(x)︸             ︷︷             ︸

p times

. Then

ρ(x) ∆=
∑∑
1≤i<j≤n

wijδijdij(x) = x′B(x)x,

and thus σ (x) = 1− 2ρ(x) + η2(x).

2. Derivatives

If dij(x) > 0 then the first and second partials are

Ddij(x) =
1

dij(x)
Aijx,

and

D(2)dij(x) =
1

dij(x)

Aij − Aijxx′Aijx′Aijx

 .
Of course

Dd2
ij(x) = 2Aijx,

and

D(2)d2
ij(x) = 2Aij .

Thus

Dσ (X) = 2(V −B(x))x,
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and

D(2)σ (X) = 2(V −H(x)),

where

H(x) =
∑∑
1≤i<j≤n

wij

(
δij
dij(x)

)Aij − Aijxx′Aijx′Aijx

 .
Note that H(x) is positive semi-definite, and H(x)x = 0. Also, at a
local minimum, H(x) . V in the Loewner sense, i.e. V − H(x) is
positive semi-definite.

3. Applications

3.1. SMACOF. The SMACOF algorithm [De Leeuw, 1977; De Leeuw
and Heiser, 1980] in this notation computes updates by x(k+1) = F(x(k)),
where

F(x) = V
+
B(x)x

is the Guttman Transform of x, and V
+

is the Moore-Penrose inverse
of V . If wij = 1 for all 1 ≤ i < j ≤ n then F(x) = 1

nB(x)x.

It follows that DF(x) = V +H(x), and thus the convergence rate of the
SMACOF algorithm is the largest eigenvalue of V +H(x).

3.2. Newton’s Method. If we write out the updates computed by
the standard Newton-Raphson method we find [De Leeuw, 1993]

x(k+1) = (I −V +
H(x(k)))−1F(x(k)).

More generally we can define a regularized version by defining

x(k+1) = (I −λV +
H(x(k)))−1F(x(k)),

with 0 ≤ λ ≤ 1. This is Newton’s method for λ = 1 and it is SMACOF
for λ = 0. Changing λ allows us to move between a globally linearly
convergent to a locally quadratically convergent iteration.
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3.3. Sensitivity Analysis. If we have found a vector x̂whereDσ (x̂) =
0 then in a neighborhood of that configuration we have

σ (x) ≈ σ (x̂) + (x − x̂)′[V −H(x̂)](x − x̂).

This can be used to draw “sensitivity regions” around configuration
points at a local minimum x̂. We show how to do this for point i.
Suppose δ is a p-element vector with perturbations, and x̂i(δ) = x̂ +
vec(eiδ′). Then for each K ≥ 1 we can draw the concentric ellipsoids

x̂i + {δ | (x̂i(δ)− x̂)′[V −H(x̂)](x̂i(δ)− x̂) = Kσ (x̂)}.

3.4. Inverse MDS. De Leeuw and Groenen [1997]
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